Milestone-Proposal:Sonar, 100th birthday of Paul Langevin Invention 1917-2017

From IEEE Milestones Wiki
Revision as of 12:30, 31 May 2019 by Bleridon (talk | contribs)

To see comments, or add a comment to this discussion, click here.

Docket #:2014-04

This is a draft proposal, that has not yet been submitted. To submit this proposal, click on the edit button in toolbar above, indicated by an icon displaying a pencil on paper. At the bottom of the form, check the box that says "Submit this proposal to the IEEE History Committee for review. Only check this when the proposal is finished" and save the page.

To the proposer’s knowledge, is this achievement subject to litigation? No

Is the achievement you are proposing more than 25 years old? Yes

Is the achievement you are proposing within IEEE’s designated fields as defined by IEEE Bylaw I-104.11, namely: Engineering, Computer Sciences and Information Technology, Physical Sciences, Biological and Medical Sciences, Mathematics, Technical Communications, Education, Management, and Law and Policy. Yes

Did the achievement provide a meaningful benefit for humanity? Yes

Was it of at least regional importance? Yes

Has an IEEE Organizational Unit agreed to pay for the milestone plaque(s)? Yes

Has an IEEE Organizational Unit agreed to arrange the dedication ceremony? Yes

Has the IEEE Section in which the milestone is located agreed to take responsibility for the plaque after it is dedicated? Yes

Has the owner of the site agreed to have it designated as an IEEE Milestone? Yes

Year or range of years in which the achievement occurred:


Title of the proposed milestone:

Paul Langevin's Improvements to Sonar, 1917

Plaque citation summarizing the achievement and its significance:

In France in 1917, Paul Langevin designed a submarine detector using piezoelectric quartz crystal transceivers. This improved method for submarine ultrasonic echo detection, (later known as sonar), obtained 4000-meter echo soundings from the cable ship Charente in the Bay of Biscay. Echo sounding based on the piezoelectric effect led to other applications such as medical echography and diverse acoustic sensors.

In what IEEE section(s) does it reside?


IEEE Organizational Unit(s) which have agreed to sponsor the Milestone:

IEEE Organizational Unit(s) paying for milestone plaque(s):

Unit: IEEE France
Senior Officer Name: Amara

IEEE Organizational Unit(s) arranging the dedication ceremony:

Unit: IEEE France
Senior Officer Name: Amara

IEEE section(s) monitoring the plaque(s):

IEEE Section: France
IEEE Section Chair name: Amara

Milestone proposer(s):

Proposer name: Barbaresco Frédéric
Proposer email: Proposer's email masked to public

Please note: your email address and contact information will be masked on the website for privacy reasons. Only IEEE History Center Staff will be able to view the email address.

Street address(es) and GPS coordinates of the intended milestone plaque site(s):

ESPCI Paris - 10 rue Vauquelin -75005 Paris France

Describe briefly the intended site(s) of the milestone plaque(s). The intended site(s) must have a direct connection with the achievement (e.g. where developed, invented, tested, demonstrated, installed, or operated, etc.). A museum where a device or example of the technology is displayed, or the university where the inventor studied, are not, in themselves, sufficient connection for a milestone plaque.

Please give the address(es) of the plaque site(s) (GPS coordinates if you have them). Also please give the details of the mounting, i.e. on the outside of the building, in the ground floor entrance hall, on a plinth on the grounds, etc. If visitors to the plaque site will need to go through security, or make an appointment, please give the contact information visitors will need. Historic site. Paul Langevin was Professor at ESPCI . Sonar has been invented in ESPCI (Ecole Superieure de Physique Chimie Industrielles) in Paris (

Are the original buildings extant?

Yes; both the Laboratory and the office of Paul Langevin still exist.

Details of the plaque mounting:

On the wall outside of Langevin's laboratory, facing the building where he had his office.

How is the site protected/secured, and in what ways is it accessible to the public?

The plaque site will be inside the Vauquelin campus that is well secured. For two years from now, the visitors will have to go through security and ask to see it, but in two years, this wall will be next to the future entrance of the campus and visitors will be able to access it freely.

Who is the present owner of the site(s)?


What is the historical significance of the work (its technological, scientific, or social importance)?

See attached document. Many applications in civil (echography, ...) and military domains (sonar)

What obstacles (technical, political, geographic) needed to be overcome?

Technical issue: control of piezo-electric Quartz transducer

What features set this work apart from similar achievements?

Radar invention

Supporting texts and citations to establish the dates, location, and importance of the achievement: Minimum of five (5), but as many as needed to support the milestone, such as patents, contemporary newspaper articles, journal articles, or chapters in scholarly books. 'Scholarly' is defined as peer-reviewed, with references, and published. You must supply the texts or excerpts themselves, not just the references. At least one of the references must be from a scholarly book or journal article. All supporting materials must be in English, or accompanied by an English translation.

Langevin Patents : [P1] Chilowsky CM, Langevin MP. Procédés et appareils pour la production de signaux sous-marins dirigés et pour la localisation à distance d’obstacles sous-marins. French patent #502913, 1916 [P2] Chilowsky CM, Langevin MP. Production of submarine signals and the location of submarine objects. US Patent #1471547, 1917 [P3] Langevin MP. 1918 ‘Procédé et appareils d’émission et de réception des ondes élastiques sous-marines à l’aide des propriétés piézo-électriques du quartz’ (Brevet francais, No. 505703, 17 Septembre 1918) pp. 538–542 in: Oeuvres Scientifiques de Paul Langevin, CNRS, Paris,1950 References: [1] Shaul Katzir, Who knew piezoelectricity? Rutherford and Langevin on submarine detection and the invention of sonar, Notes and Records, The Royal Society Journal of The History of Science, March 7, 2012 [2] David Zimmerman, Paul Langevin and the Discovery of Active Sonar or Asdic, The Northern Mariner/Le marin du nord, XII, No. 1, pp. 39-52, January 2002 [3] Benoit Lelong, Paul Langevin et la détection sous-marine, 1914-1929: Un Physicien acteur de l’Innovation industrielle et militaire, Epistémologiques, Vol.2, n°1-2, p. 205-232, Juin 2002 [4] Manbachi, A.; Cobbold, R. S. C., Development and application of piezoelectric materials for ultrasound generation and detection. Ultrasound 19 (4): 187., 2011

Supporting materials (supported formats: GIF, JPEG, PNG, PDF, DOC): All supporting materials must be in English, or if not in English, accompanied by an English translation. You must supply the texts or excerpts themselves, not just the references. For documents that are copyright-encumbered, or which you do not have rights to post, email the documents themselves to Please see the Milestone Program Guidelines for more information.

Please email a jpeg or PDF a letter in English, or with English translation, from the site owner(s) giving permission to place IEEE milestone plaque on the property, and a letter (or forwarded email) from the appropriate Section Chair supporting the Milestone application to with the subject line "Attention: Milestone Administrator." Note that there are multiple texts of the letter depending on whether an IEEE organizational unit other than the section will be paying for the plaque(s).