Property:Proposed Milestone Plaque Citation
From IEEE Milestones Wiki
This is a property of type Text.
A
"The Eagle has landed." On July 20, 1969, half-a-billion television viewers heard astronaut Neil Armstrong live from the moon, across a quarter-million miles of space. The Apollo 11 Unified S-Band communication system, pioneered by NASA's Jet Propulsion Laboratory and MIT's Lincoln Laboratory, delivered his voice while simultaneously relaying command, tracking, and imagery data between multiple spacecraft and a global network of land-based, airborne, and seaborne tracking stations. +
D
'A pulse oximeter' is a medical device monitoring non-invasively patents' blood oxigen saturation, developed in 1972 at Nihon Kohden (Japan). In the following decades, pulse oximeters were further developed and provided reliable tools for easy and immediate detection of oxigen saturation values, paving the way to the widespread commercialization of devices that became a standard of care in most clinical settings and also in home monitoring. +
B
(Note that there will be four plaques in order to provide space to list the achievements)
BELL LABS – WIRELESS AND SATELLITE COMMUNICATIONS, 1925-1983
Bell Telephone Laboratories, Inc. introduced: the first radio astronomical observations (1933), Smith Chart (1939), early mobile phone service (1946), cellular wireless concept (1947), TDX Microwave Radio System (1947), TD Transcontinental Microwave Radio System (1950), Telstar - first active communications satellite (1962), first observation of the cosmic background radiation (1964), first U.S. cellular wireless system (1978), digital cellular technology (1980), and the AR6A SSB-SC Microwave System (1981).
(65 words, not including the title)
BELL LABS - DIGITAL SIGNAL PROCESSING AND COMPUTING, 1925-1983
Bell Telephone Laboratories, Inc. introduced: the first electronic speech synthesizer (1936), first binary digital computer (1939), first long-distance computing (1940), digitized and synthesized music (1957), digital computer art (1962), text-to-speech synthesis (1962), UNIX operating system (1969), the C and S languages (1972, 1976), first single-chip digital signal processor (1979), single-chip 32-bit microprocessor (1980), 5ESS Digital Switching System (1982), and C++ language (1983).
(62 words not including the title)
BELL LABS - SOLID STATE AND OPTICAL DEVICES, 1925-1983
Bell Telephone Laboratories, Inc. introduced: the point-contact and junction transistors (1947, 1948), zone refining (1951), silicon epitaxy (1951), ion implantation (1952), solar cell (1954), oxide masking (1955), laser concept (1958), MOSFET (1959), foil electret microphone (1962), CO2 laser (1964), silicon gate (1966), heterostructure semiconductor laser (1968), charge coupled device (1969), theory of disordered states of matter (1977), heterojunction phototransistor (1980), and VLSI CMOS technology and circuits (1981).
(67 words, not including the title)
BELL LABS - COMMUNICATIONS THEORY AND NETWORKS, 1925-1983
Bell Telephone Laboratories, Inc. introduced: type A facsimile service (1925), first long-distance television transmission (1927), negative feedback amplifier (1927), first stereo sound transmission (1933), Hamming error-correcting codes (1948), information theory (1948), direct distance dialing (1951), TAT-1 transatlantic telephone cable (1956), T1 transmission system (1962), touch-tone dialing (1963), 1ESS electronic switch (1965), wide area telephone 800 service (1965), and first U.S. commercial fiber-optic system (1977).
(64 words, not including the title)
(Citations modified: Mar. 2014)
O
<p style="text-align:justify">In 1983 - 1986, orbital X-band real-aperture side-looking radar of Cosmos-1500 spacecraft was operational. Designed by the team led by Anatoly Kalmykov at the Institute of Radiophysics and Electronics NASU in Kharkiv, Ukraine, it was a pioneering achievement in oceanography from space. Radar highlighted invaluable opportunities of orbital microwave imagery in the study of ocean waving and atmospheric phenomena and provision of safe navigation in Arctic and Antarctic.</p> +
I
<strong>Citation test </strong> +
M
A dynamo with a slotted ring armature, described and built at the University of Pisa by Antonio Pacinotti, was a significant step leading to practical electrical machines for direct current. Groups of turns of the closed winding were connected to the bars of a commutator. The machine worked as a motor also. +
H
A pioneering achievement in the national development of the near-millimeter and sub-millimeter wavelength ranges occurred at the Department of Quasioptics of the Institute of Radio-Physics and Electronics NASU in 1966, when the hollow dielectric beam waveguide and the kit of associated components were designed. Led by Yevgeny M. Kuleshov and Moisei S. Yanovsky, this work laid foundation for the original transmission-line technology and measuring techniques, with main application in hot plasma diagnostics in the Tokamak nuclear fusion machines. +
A
A research team in the Physics department of Dundee University, Scotland demonstrated in 1979 that amorphous silicon field-effect transistors were able to switch liquid crystal arrays. Other semiconductor thin film materials had been found to be unsuitable for deposition on large area substrates. The invention laid the foundation for the commercial development of flat panel television displays. +
K
A self-contained portable digital camera was invented at an Eastman Kodak Company laboratory. It used movie camera optics, a charge-coupled device as an electronic light sensor, a temporary buffer of random-access memory, and image storage on a digital cassette. Subsequent commercial digital cameras using flash memory storage revolutionized how images are captured, processed, and shared, creating opportunities in commerce, education, and global communications. +
A
ASCII, a character-encoding scheme originally based on the Latin alphabet, became the most common character encoding on the World Wide Web through 2007. ASCII is the basis of most modern character-encoding schemes. The American Standards Association X3.2 subcommittee published the first edition of the ASCII standard in 1963. Its first widespread commercial implementation was in the American Telephone & Telegraph (AT&T) Teletypewriter eXchange network and Teletype Model 33 teleprinters. +
AT&T History Archives Special Citation in History, covers 150 years of inventions pioneered by the Labs, the people involved, and impact on society from the transistor to fiber optic cables, communications satellites, the UNIX operating system, artificial intelligence and beyond many of which are also presented to the public employing meaningful engaging interactive and multimedia displays and with comprehensive articles for researchers, scientists, students, and the public of all ages, for diversity, equity, inclusion, science, technology, engineering, mathematics (STEM), for further discovery, research and information. +
I
Improvements in and relating to Sound-transmission, Sound-recording and Sound-reproduction systems by Alan Dower Blumlein +
Alan Dower Blumlein filed a patent for a two-channel audio system called “stereo” on 14 December 1931. It included a "shuffling" circuit to preserve directional sound, an orthogonal “Blumlein Pair” of velocity microphones, the recording of two orthogonal channels in a single groove, stereo disc-cutting head, and hybrid transformer to mix directional signals. Blumlein brought his equipment to Abbey Road Studios in 1934 and recorded the London Philharmonic Orchestra. +
F
Allen B. DuMont, Television Pioneer , started DuMont Laboratories in his garage located about one quarter mile to the southwest. There he developed the modern oscilloscope and the first commercially successful Cathode Ray Tube for television. DuMont introduced the first all-electronic television sets in 1938 and established the first television network with stations WABD and WTTG. On April 30, 1952, Montclair State Teachers College, with DuMont support, pioneered educational television. +
O
Alvin was the first manned submersible to explore hydrothermal vents in the 1970s. In 1985 and 1986,''Alvin,'' ''Argo,'' and ''Jason'' -- special vehicles developed by Woods Hole Oceanic Institution to carry sensors, sonars, and an imaging system with remote-operated cameras -- surveyed the wreck of the ''Titanic.'' These expeditions were highly successful, and made possible advances in ocean sciences and engineering. +
U
An industry consortium published the first Universal Serial Bus (USB) specification in January 1996. Initially intended to simplify attaching electronic devices to a PC, USB became a very successful low-cost, high-speed interface for home and business use. Its ability to support new device classes and functionalities, including data storage, power delivery, and battery charging, has made USB's cabling, connectors, and logo recognizable worldwide. +
W
As an electro-mechanical method, lens stabilization is the most effective for removing blurring effects from involuntary hand movement or shaking of the camera. Panasonic Corporation has regarded an image stabilization system, or an image stabilizer, as the most practical for avoiding camera blur and immediately begun to develop it. +
F
As part of the landmark International Electrical Exhibition organized by the Franklin Institute and held in Philadelphia, Pennsylvania, in 1884, the American Institute of Electrical Engineers, a predecessor of IEEE, held its first conference on 7-8 October 1884. This meeting was the first formal technical conference on electrical engineering held in the United States. +
T
At this location, 391 San Antonio Road, the Shockley Semiconductor Laboratory manufactured the first silicon devices in what became known as Silicon Valley. Some of the talented scientists and engineers initially employed there left to found their own companies, leading to the birth of the silicon electronics industry in the region. Hundreds of firms in electronics and computing can trace their origins back to Shockley Semiconductor. +
At this site on 21 June 1948 the “Baby” became the first computer to execute a program stored in addressable read-write electronic memory. “Baby” validated Williams-Kilburn Tube random-access memories, later widely used, and led to the 1949 Manchester Mark I which pioneered index registers. In February 1951, Ferranti Ltd's commercial derivative became the first electronic computer marketed as a standard product delivered to a customer.
<b><i>Justification for the plaque/citation text.</i></b>
Three issues are addressed: (a) the inclusion of Williams and Kilburn's names in the citation in relation to the Random Access Memory device; (b) evidence that the Manchester Baby computer was indeed the first of its kind; (c) evidence that the Ferranti Mark I was indeed the first commercially produced computer of this type.
<b><i>(a). Random Access Memory Device Name.</i></b>
F C Williams (1911 – 1977) and Tom Kilburn (1921 – 2001) were co-inventors of the Williams-Kilburn Tube. Whilst some texts refer to this device as just the 'Williams Tube', the term 'Williams-Kilburn Tube' is now the universally accepted name of the important random-access memory device upon which the Manchester Baby computer and its derivatives were founded and there is no doubt as to Kilburn's key role in this and later inventions. Williams-Kilburn Tubes were used successfully by sixteen other early computer projects world-wide, before being superseded by ferrite core memories. The invention and development of Williams-Kilburn Tubes is discussed below in the “Memory Development” section.
F C Williams led the computer research team at Manchester University during the period 1947-1950. He headed up the University’s relevant interactions with government (MOS, DSIR and NRDC) and with industry (Ferranti Ltd.) during the exploitation of the Baby’s ideas in the period 1948 – 1951. He continued to lead the Department of Electrical Engineering until his retirement, making notable contributions in the field of variable-speed AC electrical drives.
Tom Kilburn chose the Manchester Baby’s register-level architecture and its instruction set and wrote the first program to successfully run. He took over leadership of the computer design group at Manchester University from 1950 until his retirement in 1981. This group produced four other operational computers, from which three further commercially-available production machines were derived (the Metropolitan-Vickers MV950, the Ferranti Mercury and the Ferranti Atlas). When the UK’s first Department of Computer Science was founded at Manchester University in 1964, Kilburn was appointed Professor and Head of Department. The University subsequently named its Computer Building after him.
Williams and Kilburn both attracted numerous external honours. For Williams, these included Fellow of the Royal Society (1950); the Faraday Medal of the I.E.E. (1972); the Pioneer Award of the IEEE (1972); and the national honours of Officer of the Most Excellent Order of the British Empire (OBE) (1945), Commander of the Most Excellent Order of the British Empire (CBE) (1961) and Knight Bachelor (1976) - [ref. 17b]. For Kilburn, the honours included Fellow of the Royal Society (1965); Fellow and founder member of the Fellowship of Engineering, now the Royal Academy of Engineering (1976); Royal Medal of the Royal Society (1978); Charter Recipient in 1981 of the IEEE Computer Society's Computer Pioneer Award; Eckert-Mauchly Award, ACM & IEEE Computer Society (1983); Fellow of the Computer History Museum (2000); and the national honour of Commander of the Most Excellent Order of the British Empire (CBE) (1973).
<b><i>(b). The Baby computer as first of its kind.</i></b>
By ‘first of its kind’ is meant a general-purpose, stored-program, computer which holds both instructions and data in a read/write memory. This formal definition of a modern computer follows the theoretical principles first conceived by Alan Turing in his famous 1937 paper [ref. 15]. As discussed in [ref. 1(b)], , the contemporary mathematician M H A (Max) Newman described the Manchester Baby as “the first of these automatic general-purpose computing machines to have actually worked” [ref. 1(b)]. Newman, who in 1936 was Turing’s tutor at Cambridge, had led the Colossus group at Bletchley Park. After the war Newman had kept in touch with computer design groups in America and the UK. He was writing in October 1948 when he used the phrase ‘automatic general-purpose’ and he certainly knew its meaning.
Various claims to be the first such type of computer have appeared from time to time in the literature, including those for Konrad Zuse’s Z3 (1941), the Atanasov-Berry computer (1942), COLOSSUS (1943), ENIAC (1945), BINAC (March 1949), EDSAC (May 1949). Except for BINAC (1949) and EDSAC (1949), it is believed that the other four machines fail to qualify under the definition of an operational stored-program computer. The various claims are discussed further below in Section 1 and in [ref. 19].
<b><i>(c). The Ferranti Mark I as first of its kind.</i></b>
The first of nine Ferranti Mark I and Mark I* (pronounced Mark One Star) computers was delivered to the University of Manchester on 12th February 1951. Confirmation of this date comes from a letter written by Alan Turing in 1951 [ref. 16]. The February Ferranti Mark I was the first commercially-produced stored-program computer to be marketed as a standard product and delivered to a customer. There are other claims in the literature for the first delivery to a customer. These include Konrad Zuse’s Z4 (July 1950), CSAW’s Task 13 (later named Atlas 1, December 1950), UNIVAC (sale announced March 1951, delivery June 1951) and LEO (September 1951 first working but no deliveries to customers). These claims, set in the context of products and markets, are discussed further in Section 1 below and in [ref. 20]. None of these four claims appears to pre-date the delivery of the Ferranti Mark I.
A
At this site, the first actively shielded superconducting magnets for diagnostic Magnetic Resonance Imaging (MRI) use were conceived, designed, and produced. Active shielding reduced the size, weight, and installed cost of MRI systems, allowing them to be more easily transported and advantageously located, thereby benefiting advanced medical diagnosis worldwide. +