Milestones:QR Code

From IEEE Milestones Wiki

This is a temporary page. The final version of this page can be found on the Engineering and Technology History Wiki

Title

QR (Quick Response) Code, 1994

Citation

DENSO developed two-dimensional QR Code technology, inexpensive machine-readable optical labels that improved on barcoding by conveying larger amounts of data more quickly. Worldwide businesses soon adopted QR Codes to improve manufacturing, logistics, and management. Camera-equipped mobile phones brought QR Codes into advertising, design, and widespread applications such as electronic payments, giving consumers efficient new ways to access digital information.

Street address(es) and GPS coordinates of the Milestone Plaque Sites

1-1, Showa-cho, Kariya, Aichu, 448-8661, Japan 34.995533, 137.008989, 1-1, Showa-cho, Kariya, Aichu, 448-8661, Japan 34.995533, 137.008989

Details of the physical location of the plaque

DENSO Gallery

How the intended plaque site is protected/secured

DNSO Gallery is open to everyone for free admission. Opening days are from Monday to Friday and the first Saturday of every month. However, it is closed during the Japanese spring holidays, Japanese summer holidays and New Year holidays. The opening hours are from 9:30 to 17:00.

Historical significance of the work

(1)Development of QR Code DENSO considered that bar code are the limit in the information-oriented society that handles a lot of information accurately with the advancement of computer and network technology in the future, and started developing QR Code as the next generation codes in 1992. In March 1994, we completed the development of QR Code that can handle high-capacity information and that is easy to read and that can be read quickly and accurately in any environment. The developed QR Code can handle numbers of up to 7087 digits and can be read accurately even if 30% of the code area is soiled and damaged. The biggest feature of QR Code is that it can read 5 times the information of bar code with the same reading time as bar code. (2)Activities for popularization Together with the development, DENSO has actively introduced and promoted QR Code to companies and business organizations [4]. In addition, we believe that application development that creates value for users is the key to the spread of QR Codes, so that users can easily develop applications in the automobile / auto parts industry, electrical / electronic industry, etc. Acquired many industry standards such as distribution industry and aviation industry. In 2000, we acquired the ISO standard [5], an international standard. DENSO has obtained QR Code patents in Japan (1999) [1], U.S.A. (1998) [2], and Europe (2000) [3], but does not use patent rights to allow more people to use it in 1996 [6]. As a result, QR Code has become widespread as cheap and safe open codes. (3)Widespread usage of QR Code In the 1990s, QR Code was used in the manufacturing, logistics, and food fields for purposes such as process management, quality control, shipping management, inventory management, and expiration date management [7][8]. In the 2000s, it began to be used with camera-equipped mobile phones and became widely used as a communication tool to connect people and information [9]. As a result, QR Code started from industrial use and became a tool that strongly enhanced the convenience of consumer life and became widely used around the world. Because of these achievements, QR Code was awarded several awards, such as “R&D 100 Awards” (U.S.A.) in 2002 [23], “European Inventor Award Popular Prize” (Europe) in 2014 [24]. In this way, QR Code is indispensable in the advanced information society as a communication tool that connects people and things to information. In the future, the use of QR Code will continue to increase as a tool for creating new value [10] [11] [12].

Features that set this work apart from similar achievements

(1)Establishment of the infrastructure where users can use QR Code freely and comfortably No matter how excellent code is developed, it would not become popular unless its infrastructure is constructed and everyone can use it comfortably. In addition, QR Code application development is important for widespread use, and an environment that facilitates application development is required. Therefore, we actively acquired industry standards and requested ISO standards from various industries, and QR Code was established as an ISO standard (ISO / IEC18004) six years after its birth. By publishing QR Code specifications in ISO standards and knowing how to encode and decode QR Code, many companies entered QR Code market, and the infrastructure was developed early [16]. In creating an environment that anyone can use freely, QR Code patents were used as follows. The policy is to open patent rights to users of QR Code, but to eliminate them from the market by exercising patent rights for counterfeits and unauthorized use of QR Code. In addition, the acquisition of patent rights provided proof that no other patent infringement would be sued, and provided an environment that users could use freely and with confidence.

(2)Improvement of QR Code corresponding to the drastically changing needs in the society DENSO WAVE INCORPORATED, an operating company of the DENSO Group that inherited DENSO technology, captures changes in the social needs of QR Code, and focuses on creating user value, with the aim of "miniaturization", “increasing capacity”, “design”, and “security performance”. New QR Code have been developed and evolved in four categories. In "miniaturization", a micro QR Code that can print data of about 20 alphanumeric characters that can handle product numbers and serial numbers in 1 mm square was announced in 1997 [17]. In “increasing capacity”, we developed QR Code that efficiently encoded non-alphabet Asian languages such as Kanji and Korean characters other than Japan in 2001, and obtained national standards in Asian countries [18]. In “security”, SQRC (Security QR Code) was developed in 2007 [19] [20]. The main feature of SQRC is the two-layer structure of the public information area and the private information area. The public information area can be read by all readers such as mobile phones, but the information is encrypted in the private area. In addition, SQRC-specific recognition software is installed, and only readers with the same encryption key can read. In “design”, in 2014 we developed Frame QR Code that inherits QR Code reading performance and pursues maximum design. Frame QR Code is only available in Japan, but is expected to spread worldwide [21] [22]. In this way, QR Code continues to evolve in response to the needs of society and has become an indispensable part of society as a code that leads the times.

Significant references

List of supporting materials included with nomination:

[1]Japan Patent No.2938338 Masahiro Hara et al. “Two-dimensional code” application filed at Mar.14,1994 and patented at Jun.11,1999<br><br> [2] US Patent No.5726435 Masahiro Hara et al. “Optically Readable Two-dimensional code and method and apparatus using the same” application filed at Mar.14, 1995, foreign application priority date Mar.14,1994(JP) and patented at Mar.10, 1998<br><br> [3] European Patent No. EP 0 672 994 B1 Masahiro Hara et al. “Method and apparatus for reading an optically two-dimensional code” application filed at Sep.20,1995, foreign application priority date at Mar.14,1994(JP) and patented at Jul.26,2000<br><br> [4]AIM Interntional Technical Standard ITS/97-001, Publication date at Oct.27, 1997<br><br> [5] ISO/IEC 18004:2000, Publication date at Jun. 2000<br><br> [6] Declared public domain policy to AIM Interntional at Apr.19, 1996<br><br> [7] Synthesiology - English edition Vol.12 No.1 2019 page25 https://www.aist.go.jp/pdf/aist_e/synthesiology_e/vol12_no1/vol12_01_p19_p28.pdf <br><br> [8] https://en.wikipedia.org/wiki/QR_code <br><br> [9] https://ja.wikipedia.org/wiki/J-SH09

 The following is a summary translated into English.

J-SH09 is a PDC communication type mobile phone terminal developed by Sharp and release date is Aug, 2002. A successor to J-SH08, with significant spec improvements. Until now, the camera used in the company's photo mail terminal was the CMOS method, but now it has changed from the model to the CCD method, and it has become stronger in shooting in the dark. Mobile lights were also provided to support shooting in the dark. In addition, a new close-up mode has been added as a shooting mode, enabling close-up shooting at about 5cm. A bar code reader function is installed to take advantage of this close-up mode, and it supports reading JAN codes and QR Code. This terminal is the first mobile phone terminal that supports QR code reading. <br><br> [10] ANA Corporation has introduced QR code boarding pass for Japan domestic flight https://www.ana.co.jp/en/jp/domestic/prepare/checkin/skip/ <br><br> [11] Delhi Metro Rail Corporation has introduced QR code-based ticketing facility for travel on Airport Express Line. http://www.delhimetrorail.com/press_reldetails.aspx?id=iW5uUs6132Alld <br><br> [12] Synthesis journal 2008 Page70-77

   https://foxdesignsstudio.com/uploads/pdf/Three_QR_Code.pdf <br><br>

[13] Synthesis journal 2008 Page62-63 <br><br> [14] Synthesiology - English edition Vol.12 No.1 2019 Page22-23 <br><br> [15] Synthesiology - English edition Vol.12 No.1 2019 Page23-24 <br><br> [16] Synthesis journal 2008 Page68-70 <br><br> [17] Japan Patent No.3726395 Masahiro Hara et al. “Two-dimensional code and Read for reading Two-dimensional code” application filed at Jan.30, 1997 and patented at Oct.7, 2005 <br><br> [18] Chinese National Standard GB/T 18284 <br><br> The following is a summary translated into English. This standard is not equivalent to ISO/IEC 18004:2000 "Automatic Identification and Data Collection Technology - Bar Code Symbol Technical Specification - QR Code". QR Code is a matrix two-dimensional code,which is arranged by square modules in a square graphic. The square graphic also includes a unique companion pattern at the three corners of the symbol that helps determine the position, size, and slope of the symbol. And QR Code has a large size range and provides 4 levels of error correction. The square module width can be determined by the user based on the conditions of the application. According to the application status of China's two-dimensional code, this standard has made trade-offs and supplements to ISO/IEC 18004 on the basis of careful analysis and research. QR Code symbol specified in ISO/IEC 18004 has two symbol modes: mode 1 symbol and mode 2 symbol. Considering that QR Code mode 1 symbol is the initial specification of QR Code, mode 2 symbol is an enhanced form of QR Code, mode 2 symbol have been added many new features comparing with mode 1 symbol, and the ISO/IEC 18004 standard recommends the use of the mode 2 symbol in new and open systems. Therefore, this standard only specifies the technical requirements of QR Code mode 2 symbol code encoding, symbol structure and size, reference decoding algorithm in ISO/IEC 18004 standard, and discards the relevant content of QR Code mode 1 symbol. Chapter 14 of the International Standards was removed: Automatic Identification Capability, Appendix J (Appendix to the Prompt): Automatic Authentication and Appendix M (Appendix to the Prompt): Content of QR Code Mode 1 Symbol Feature. In order to facilitate the popularization and application of this standard in China, the JIS 0201 character set in the original standard is replaced by a specific extended ASCII character set. The Chinese character data representation mode replaces the content of the Japanese Kanji character representation mode in ISO/IEC 18004, which improves the efficiency of Chinese character two-dimensional code representation and satisfies the requirement of using Chinese characters in two-dimensional bar code, thus ensuring the application of this standard in China. Feasibility and practicality. <br><br> [19] Japan Patent No.4924206 Masahiro Hara “Method for producing Two-dimensional code and Read for reading Two-dimensional code” application filed at May29, 2007 and patented at Feb.17,2012 <br><br> [20] US Patent No.5726435 Masahiro Hara “Method for producing Two-dimensional code and Read for reading Two-dimensional code” application filed at May 29, 2008, foreign application priority date at Mar.29, 2007(JP) and patented at Sep.10, 2013 <br><br> [21] Japan Patent No.6136808 Masami Tanaka et al. “Information code, information code producing method, information code reader and system which uses information code” application filed at Sep.20, 2013 and patented at May 12, 2017 <br><br> [22]US Patent No.9711113 Masami Tanaka et al. “Information code, information code producing method, information code reader and system which uses information code” application filed at Dec.18, 2013, foreign application priority date at Sep.20, 2013 (JP) and patented at Jul.18, 2017 <br><br> [23] R&D 100 Conference Winner in 2002 <br><br> [24] https://www.epo.org/learning-events/european-inventor/finalists/2014/hara.html <br><br>

Supporting materials

{{{support}}}