Milestone-Proposal:Sonar, 100th birthday of Paul Langevin Invention 1917-2017


To see comments, or add a comment to this discussion, click here.

Docket #:2014-04

This is a draft proposal, that has not yet been submitted. To submit this proposal, click on "Actions" in the toolbar above, then "Edit with form". At the bottom of the form, check the box that says "Submit this proposal to the IEEE History Committee for review. Only check this when the proposal is finished" and save the page.


To the proposer’s knowledge, is this achievement subject to litigation? No

Is the achievement you are proposing more than 25 years old? Yes

Is the achievement you are proposing within IEEE’s designated fields as defined by IEEE Bylaw I-104.11, namely: Engineering, Computer Sciences and Information Technology, Physical Sciences, Biological and Medical Sciences, Mathematics, Technical Communications, Education, Management, and Law and Policy. Yes

Did the achievement provide a meaningful benefit for humanity? Yes

Was it of at least regional importance? Yes

Has an IEEE Organizational Unit agreed to pay for the milestone plaque(s)? Yes

Has an IEEE Organizational Unit agreed to arrange the dedication ceremony? Yes

Has the IEEE Section in which the milestone is located agreed to take responsibility for the plaque after it is dedicated? Yes

Has the owner of the site agreed to have it designated as an IEEE Milestone? Yes


Year or range of years in which the achievement occurred:

1915-1918

Title of the proposed milestone:

Paul Langevin's Invention of Sonar, 1915-1918

Plaque citation summarizing the achievement and its significance:

At Ecole de Physique et Chimie Industrielles de Paris in France, from 1915 to 1917, Paul Langevin designed a submarine detector using piezoelectric quartz crystal transceivers. This improved method for submarine ultrasonic echo detection, (later known as sonar), obtained 4000-meter echo soundings from the cable ship Charente in the Bay of Biscay and was later successfully used during world war II. Echo sounding based on the piezoelectric effect led also to other applications such as medical echography and diverse acoustic sensors.

In what IEEE section(s) does it reside?

France

IEEE Organizational Unit(s) which have agreed to sponsor the Milestone:

IEEE Organizational Unit(s) paying for milestone plaque(s):

Unit: IEEE France
Senior Officer Name: Senior officer name masked to public

IEEE Organizational Unit(s) arranging the dedication ceremony:

Unit: IEEE France
Senior Officer Name: Senior officer name masked to public

IEEE section(s) monitoring the plaque(s):

IEEE Section: France
IEEE Section Chair name: Section chair name masked to public

Milestone proposer(s):

Proposer name: Proposer's name masked to public
Proposer email: Proposer's email masked to public

Please note: your email address and contact information will be masked on the website for privacy reasons. Only IEEE History Center Staff will be able to view the email address.

Street address(es) and GPS coordinates of the intended milestone plaque site(s):

ESPCI Paris - 10 rue Vauquelin -75005 Paris France

Describe briefly the intended site(s) of the milestone plaque(s). The intended site(s) must have a direct connection with the achievement (e.g. where developed, invented, tested, demonstrated, installed, or operated, etc.). A museum where a device or example of the technology is displayed, or the university where the inventor studied, are not, in themselves, sufficient connection for a milestone plaque.

Please give the address(es) of the plaque site(s) (GPS coordinates if you have them). Also please give the details of the mounting, i.e. on the outside of the building, in the ground floor entrance hall, on a plinth on the grounds, etc. If visitors to the plaque site will need to go through security, or make an appointment, please give the contact information visitors will need. Historic site. Paul Langevin was Professor at ESPCI . Sonar has been invented in ESPCI (Ecole Superieure de Physique Chimie Industrielles) in Paris (http://www.espci.fr/en/)

Are the original buildings extant?

Yes; both the Laboratory and the office of Paul Langevin still exist.

Details of the plaque mounting:

On the wall outside of Langevin's laboratory, next to the building where he had his office.

How is the site protected/secured, and in what ways is it accessible to the public?

The plaque site will be on Rue Vauquelin, out of reach of pedestrians but visible by all public. It will be on the outside wall of the laboratory where Paul Langevin worked on the sonar in a sink that is still visible inside the Lab.

Who is the present owner of the site(s)?

ESPCI (http://www.espci.fr/en/)

What is the historical significance of the work (its technological, scientific, or social importance)?

In 1912 the Titanic sank after colliding an iceberg. A few months later, an English scientist Lewis Richardson filed a patent for echolocation of icebergs in water. The detection of undermarine objects was also investigated by Alexander Belm in Austria and Reginald Fressenden in the US. The First World War had created a maritime blockade around Great Britain, that was the allies base for logistics. Aware of this situation, the German Minister von Brettreich declared: "Our submarines will have completed their glorious task in a few months and we will have won the war". The considerable extent of the maritime losses inflicted on the Allies by the German submarines made therefore necessary all scientific and technological efforts to detect them. In particular Paul Langevin gave up his previous research interests to fully investigate the use of piezoelectric transducers in order to design an ultrasonic detection device able to detect both distance and direction. While these efforts had little effect during the first world war since they were mature only by the end of the conflict, they had a considerable impact during the Second World War. These developments had also considerable consequences for civil applications such as, for instance the use of medical ultrasound to visualize the interior of a non-transparent environment in echography.

What obstacles (technical, political, geographic) needed to be overcome?

In February 1915, Constantin Chilowski submitted to French Minister Paul Painlevé a first project to emit ultrasound using an electromagnetic vibrator powered by high frequency signals similar to those used in wireless telegraphy. The idea was to build on Reginald Fessenden's idea to use sonic echo method for location of icebergs by doing ultrasonic echo detection. Paul Langevin, immediately informed, retained the idea of ultrasound but preferred to direct the research in another direction: to use electrostatic attraction between the fittings of a capacitor, instead of the magnetic emitter proposed by Chilowski. In June 1915, a first experiment was carried out in the laboratory of the Ecole de Physique et Chimie de la Ville de Paris to evaluate the power radiated by a device excited at 100 kHz. A second device emitting at 40 kHz was designed to be immersed. An original solution was chosen: the mica sheet, originally inserted between the fittings of a capacitor, was in direct contact with conductive water. Acoustic range measurements were carried out in December 1915 over a distance of 100 m between the banks of the Seine, then over a distance of up to 2000 m off Toulon; a granular microphone was used as a receiver. A patent was filed on May, 29th 1916 [P1,P2]. In order to improve the detection of acoustic signals - the sensitivity of the granular microphones varied with hydrostatic pressure - Paul Langevin then considered piezoelectricity.

Technical obstacles:

The idea of using piezoelectricity was indeed briefly considered by Ernest Rutherford who was conducting similar research. Rutherford focussed mostly on passive methods for sonic detection of boats (sonic hydrophones). In september 2016 he considered using piezoelectricity for detection of sound waves, and also for emission of supersonic waves (without mention to echo detection). However, during the experimental attempts that he conducted, he simply made use (at finite frequency) of a specific quartz designed by Pierre Curie for his famous piezoelectric balance, that was aimed as a high-sensitivity detector (used by Marie Curie to measure radioactivity) and which exploited transverse piezoelectric effect. This choice prevented Boyle (to whom Rutherford had sent a quartz crystal coming from Paris) to obtain sufficient power for the suitable generation of ultrasounds in water. Langevin on the contrary, designed and cut a specific set of quartz, taking advantage of the longitudinal piezoelectric effect and aimed at producing ultrasound power generation. Is it probably because of the proximity that he had had with Pierre Curie, his mentor at Ecole De Physique et Chimie Industrielle, discoverer of the piezoelectricity effect with his brother Jacques, and theorist of the symmetry principles that describe the relation between cause and effect, that he was able to sufficiently master the piezoelectric effect, understand that the effect could lead to successful wave generation and detection and to conceive and build a suitable device. [1]

Paul Langevin was able to invent a sonar device giving both distance and direction with sufficiently sensitivity using tow major ideas: - The detection of wave direction was only possible by using transducer with diameter larger than the wavelength, so about at least 20 cm, which was too large to consider monocrystalline quartz. Langevin had the idea of cutting several crystal quartz along the same cristallographic axes, polishing them to the same thickness and pasting them together side by side, thus creating a large diameter transducer. - Given the performances of the electronics available at the time, Langevin decided to work in resonant mode, in order to improve the sensitivity of the device. One possible option would have been to work with a thick quartz, but this would have been at the expense of the capacitance, thus creating high impedance adaptation issues. Langevin therefore had the idea to create a mechanically resonant structure with several relatively thin quartz separated by steel plates, giving birth to the famous Langevin triplet (or even in some cases Langevin quintuplet).

In February 1917, Paul Langevin used a quartz blade as a receiver for the first time. Four months later, the same quartz was used as a transmitter. The problem of emission-reception switching having been solved by Marcel Tournier of the laboratory of the Ecole de Physique et Chimie de la Ville de Paris, the detection of echoes of an ultrasonic wave was first carried out in February 1918; the reflector was constituted by the gate of the Vauban basin of the Toulon arsenal (France). On May 4th, 1918, the submarine Messidor was detected at 500 m.[P3] See the photograph of a 1925 device. File:SondeurLangFlo.pdf Impressed by this invention, the British government delegated the Canadian Richard William Boyle to Paul Langevin. The latter, in charge of coordinating research with the admiralty in this field, went to Toulon. Aware of the importance of underwater acoustics, the Allies met in Paris, just before the armistice, to create the Allied Submarine Detection Investigation Committee (ASDIC). This designation was very successful until the day it was replaced by SONAR (SOund-NAvigation-Ranging), an acronym to which one of the two adjectives "active" or "passive" was added. The latter describes the listening systems that were the only ones used during the conflict, the first being systems based on sound emission followed by detection of the echo returned by a target. See the photograph of a 1925 device File:SondeurLangFlo.pdf.

What features set this work apart from similar achievements?

The need to detect an obstacle, such as an iceberg in the case of the Titanic sinking in 1912, had boosted research in the field of radio waves. However in order to detect underwater obstacles, electromagnetic waves were no longer an option, and sound waves were considered. In the first patents the transmitter was a vibrating capacitor associated with a granular carbon microphone [P1, P2]. However the accurate detection of underwater obstacles required the optimization of the transmitter diameter and transmission frequency. This led Paul Langevin to take an interest in piezoelectric quartz and to use it as a receiver [P3]. Since the amplifier associated with quartz in echo reception has a high gain, it was necessary to find a way to avoid blinding it during emission and several "electronic" difficulties had to be solved. The problem of signal recording was solved later on. This achievement was the first realization of an ultrasonic echo detection. It was elaborated in a war context where its inventor, Paul Langevin gave up completely his current research to contribute to this invention. The novelty of this work was to use piezoelectric effect for emission and reception of ultrasounds with sufficient sensitivity and in a way that both distance and direction of the undermarine object could be inferred [P1,P2, P3].

Supporting texts and citations to establish the dates, location, and importance of the achievement: Minimum of five (5), but as many as needed to support the milestone, such as patents, contemporary newspaper articles, journal articles, or chapters in scholarly books. 'Scholarly' is defined as peer-reviewed, with references, and published. You must supply the texts or excerpts themselves, not just the references. At least one of the references must be from a scholarly book or journal article. All supporting materials must be in English, or accompanied by an English translation.

Langevin Patents :

[P1] Chilowsky CM, Langevin MP. Procédés et appareils pour la production de signaux sous-marins dirigés et pour la localisation à distance d’obstacles sous-marins. French patent #502913, 1916 File:Patents, 1916-17 Chilowsky and Langevin.pdf French version of the following patent.

[P2] Chilowsky CM, Langevin MP. Production of submarine signals and the location of submarine objects. US Patent #1471547, 1917 File:Patents, 1916-17 Chilowsky and Langevin.pdf

[P3] Langevin MP. 1918 ‘Procédé et appareils d’émission et de réception des ondes élastiques sous-marines à l’aide des propriétés piézo-électriques du quartz’ (Brevet francais, No. 505703, 17 Septembre 1918)File:Brevet 505.703 1918.pdf File:Translation Résumé French patent 1918.pdf

[P4]: Langevin, Paul, 'Piezoelectric signaling apparatus', US Patent 22498870, N° 390,542, June 21rst 1920 File:US2248870.pdf

References: [1] Shaul Katzir, Who knew piezoelectricity? Rutherford and Langevin on submarine detection and the invention of sonar, Notes and Records, The Royal Society Journal of The History of Science, March 7, 2012 File:Rsnr.2011.0049.pdf [2] David Zimmerman, Paul Langevin and the Discovery of Active Sonar or Asdic, The Northern Mariner/Le marin du nord, XII, No. 1, pp. 39-52, January 2002 File:Tnm 12 1 39-52.pdf

Supporting materials (supported formats: GIF, JPEG, PNG, PDF, DOC): All supporting materials must be in English, or if not in English, accompanied by an English translation. You must supply the texts or excerpts themselves, not just the references. For documents that are copyright-encumbered, or which you do not have rights to post, email the documents themselves to ieee-history@ieee.org. Please see the Milestone Program Guidelines for more information.

File:Patents, 1916-17 Chilowsky and Langevin.pdf File:US2248870.pdf File:Brevet 505.703 1918.pdf File:Translation Résumé French patent 1918.pdf File:Rsnr.2011.0049.pdf File:Tnm 12 1 39-52.pdf

Please email a jpeg or PDF a letter in English, or with English translation, from the site owner(s) giving permission to place IEEE milestone plaque on the property, and a letter (or forwarded email) from the appropriate Section Chair supporting the Milestone application to ieee-history@ieee.org with the subject line "Attention: Milestone Administrator." Note that there are multiple texts of the letter depending on whether an IEEE organizational unit other than the section will be paying for the plaque(s).