Milestone-Proposal:Ampere discovers Electrodynamics, 1820


To see comments, or add a comment to this discussion, click here.

Docket #:2021-13

This is a draft proposal, that has not yet been submitted. To submit this proposal, click on "Actions" in the toolbar above, then "Edit with form". At the bottom of the form, check the box that says "Submit this proposal to the IEEE History Committee for review. Only check this when the proposal is finished" and save the page.


To the proposer’s knowledge, is this achievement subject to litigation? No

Is the achievement you are proposing more than 25 years old? Yes

Is the achievement you are proposing within IEEE’s designated fields as defined by IEEE Bylaw I-104.11, namely: Engineering, Computer Sciences and Information Technology, Physical Sciences, Biological and Medical Sciences, Mathematics, Technical Communications, Education, Management, and Law and Policy. Yes

Did the achievement provide a meaningful benefit for humanity? Yes

Was it of at least regional importance? Yes

Has an IEEE Organizational Unit agreed to pay for the milestone plaque(s)? Yes

Has an IEEE Organizational Unit agreed to arrange the dedication ceremony? Yes

Has the IEEE Section in which the milestone is located agreed to take responsibility for the plaque after it is dedicated? Yes

Has the owner of the site agreed to have it designated as an IEEE Milestone? Yes


Year or range of years in which the achievement occurred:

1820

Title of the proposed milestone:

Ampere discovers Electrodynamics, 1820

Plaque citation summarizing the achievement and its significance:

In 1820, André-Marie Ampère conceived and developed Electrodynamics, the science of interactions between electric currents. He brought back the magnetic phenomena to galvanism. He made clear distinction between voltage and current. Electrodynamics is a cornerstone of electromagnetism and underpin electrical technologies such as electromagnets, motors, generators. In 1881, the international community decided to name “ampere” (A) the unit of electrical current.

In what IEEE section(s) does it reside?

France

IEEE Organizational Unit(s) which have agreed to sponsor the Milestone:

IEEE Organizational Unit(s) paying for milestone plaque(s):


IEEE Organizational Unit(s) arranging the dedication ceremony:


IEEE section(s) monitoring the plaque(s):


Milestone proposer(s):

Proposer name: Bernadette Bouchon-Meunier
Proposer email: Proposer's email masked to public

Please note: your email address and contact information will be masked on the website for privacy reasons. Only IEEE History Center Staff will be able to view the email address.

Street address(es) and GPS coordinates of the intended milestone plaque site(s):


Describe briefly the intended site(s) of the milestone plaque(s). The intended site(s) must have a direct connection with the achievement (e.g. where developed, invented, tested, demonstrated, installed, or operated, etc.). A museum where a device or example of the technology is displayed, or the university where the inventor studied, are not, in themselves, sufficient connection for a milestone plaque.

Please give the address(es) of the plaque site(s) (GPS coordinates if you have them). Also please give the details of the mounting, i.e. on the outside of the building, in the ground floor entrance hall, on a plinth on the grounds, etc. If visitors to the plaque site will need to go through security, or make an appointment, please give the contact information visitors will need.


Are the original buildings extant?


Details of the plaque mounting:

Proposed Milestone Plate to be fixed on the wall in “College de France” in Paris, where Ampere had the head of the Chair of Experimental Phisics. A copy could be also placed in the family house where Ampere grew up, located near Lyons in Poleymieux, now a museum of electricity.

How is the site protected/secured, and in what ways is it accessible to the public?


Who is the present owner of the site(s)?


What is the historical significance of the work (its technological, scientific, or social importance)?

André-Marie Ampère (1775-1836), bathed in the encyclopedic spirit of the French Enlightenment of the XVIIIth century, was engaged in nearly all disciplines of human thought. Mathematician, chemist, biologist, poet, linguist, philosopher, metaphysician. However, his genius literally exploded in 1820 as a physicist when, fascinated by the Danish Oersted’s experience, he developed in a few months the whole theory of electrodynamics. From his first contribution at French Science Academy on 18th of September 1820 to the first trimester of 1821, he built the main concepts which will become the cornerstone of Maxwell’s electromagnetism laws.

With Ampère, the phenomena of magnets are brought back to those of galvanism. These are due to electrical currents in planes perpendicular to magnets’ axis, including for earth’s magnetism.

Ampère is the first scientist who made clear distinction between current and voltage and the inventor of electrical current. This main contribution will be recognized during the first international congress of electricity in 1881 by naming “ampere” (A) the international unit of electrical current.

He highlights and characterizes the attractions and repulsions between currents. In particular, he defined a simple rule to determinate the direction and sense of the interaction between a conductor and a needle of magnet, the famous “Bonhomme d’Ampère” rule. He defined at the end of 1820 the formula for interactions between elementary conductors.

Ampère invented various astatic devices to overcome the earth’s magnetic field during experimentations. Ampère also invented solenoids, discovered the temporary magnetization of iron and invents electromagnets. He is the first to have the idea of the electromagnetic telegraph.

In 1826, Ampère publishes “Mathematical theory of electrodynamic phenomena uniquely derived from experiments” which concluded his intensive work on electrodynamics

What obstacles (technical, political, geographic) needed to be overcome?


What features set this work apart from similar achievements?


Supporting texts and citations to establish the dates, location, and importance of the achievement: Minimum of five (5), but as many as needed to support the milestone, such as patents, contemporary newspaper articles, journal articles, or chapters in scholarly books. 'Scholarly' is defined as peer-reviewed, with references, and published. You must supply the texts or excerpts themselves, not just the references. At least one of the references must be from a scholarly book or journal article. All supporting materials must be in English, or accompanied by an English translation.


Supporting materials (supported formats: GIF, JPEG, PNG, PDF, DOC): All supporting materials must be in English, or if not in English, accompanied by an English translation. You must supply the texts or excerpts themselves, not just the references. For documents that are copyright-encumbered, or which you do not have rights to post, email the documents themselves to ieee-history@ieee.org. Please see the Milestone Program Guidelines for more information.


Please email a jpeg or PDF a letter in English, or with English translation, from the site owner(s) giving permission to place IEEE milestone plaque on the property, and a letter (or forwarded email) from the appropriate Section Chair supporting the Milestone application to ieee-history@ieee.org with the subject line "Attention: Milestone Administrator." Note that there are multiple texts of the letter depending on whether an IEEE organizational unit other than the section will be paying for the plaque(s).