
The committee considered three major proposals. Although the one
adopted is nontraditional and seems radically different from

the others, it shares many details with them.

Analysis of Proposals for
the Floating-Point Standard

II 111'111 Illli I' 111 111' 111-111 I-11l I-111I-

W. J. Cody
Argonne National Laboratory

During its deliberations, the IEEE Computer
Society's Floating-Point Committee, Task 754, con-
sidered three main proposals. The first, the so-called KCS
proposal, was originally drafted by William Kahan,
Jerome Coonen, and Harold Stone. It was based on early
work by Konrad Zuse and others, Kahan's 15 years of ex-
perience writing mathematical software, and a paper by
John Palmer.' The other two were counterproposals to
certain features of the KCS proposal. The first, the FW
proposal, was drafted by Robert Fraley and J. Stephen
Walther, and the second, the PS proposal, was drafted by
Mary Payne and William Strecker, based on their long ex-
perience in designing and implementing minicomputers.
After extended, serious discussion within the committee,
the KCS proposal received the two-thirds majority sup-
port necessary for formal adoption.
The major proposals considered by the committee are

publicly available. In addition to the draft standard,
which is the final version of the KCS proposal, this
presentation borrows heavily from the references, which
we highly recommend to the reader. TheACMSIGNUM
Newsletter2 contains the formal KCS and PS proposals as
they stood in October 1979, a discussion by Fraley and
Walther of their objections to the KCS proposal, a
discussion by Kahan and Palmer of the advantages of the
KCS proposal, and a number of other articles. Coonen's
article3 is an explanation of the KCS proposal without the
formalism necessary in a draft standard (no such explana-
tion exists for the other proposals). Finally, Payne has
carefully outlined the differences between the propos-
als.4'5 The tabular presentation of these differences is
especially valuable.5 There are some minor discrepancies
in the discussions because the proposals were "moving
targets." Coonen's article, for example, includes a quad-
precision data type not contained in the KCS proposal but
advocated in the PS proposal.

We outline the KCS proposal first and then indicate
how the FW and PS proposals differ. Many of the details
as to formats, methods of rounding, and operations are
common to all proposals, so some of the discussion ofthe
KCS proposal carries over to the others as well.

The KCS proposal
The KCS proposal specifies

* floating-point number formats;
* results for add, subtract, multiply, divide, square

root, remainder, and compare;
* conversions between integers and floating-point
numbers;

* conversions between different floating-point for-
mats;

* conversions between basic-format floating-point
numbers and decimal strings; and

* floating-point exceptions and their handling, in-
cluding non-numbers, called NaNs for not-a-
number.

The KCS proposal specifies two basic floating-point
formats, single and double, that are intended to be fully
supported when they are implemented. Any standard-
conforming system must support single precision and
may also optionally support double precision. In addi-
tion, the system may optionally provide an extended for-
mat, with limited support, for the widest basic format
that is provided. Coonen3 included a quad-precision
which essentially replaced double-extended. We include
quad in this discussion, with the understanding that it
must be filtered out when considering the pure KCS
proposal.
The number of bits in each basic format and the alloca-

tion of those bits to the various fields of the format are all

0018-9162/81/0300-0063$00.75 C 1981 IEEE 63March 1981

Table 1.
Bit patterns of data formats.

TYPE BIT PATTERN PURPOSE

SIGN EXPONENT SIGNIFICAND

NORMALIZEDBASIC r MIN, |
MAX I TO PROVIDE THE GREATEST ACCURACY

FOR A FIXED NUMBER OF BITS

NORMALIZEDEXTENDED T MAX NINTHESIGNIFICAND

DENORMALIZED BASIC TO INCREASE THE AVAILABLE
MIN NOT ZERO FLOATING-POINT NUMBERS TO

DENORMALIZED EXTENDED MITIGATE THE EFFECT OF UNDERFLOW

TO RECORD IN EXTENDED FORMAT
UNNORMALIZED EXTENDED #MIN, | THAT THE NUMBER CAME FROMMAX 10 A DENORMALIZED NUMBER IN

THE BASIC FORMAT.

specified (see Table 1). The basic formats are sign-
magnitude representations containing an implicit bit in
the significand. Nonzero normalized numbers contain a
nonzero exponent field and a significand between 1 and 2.
A normalized zero is represented by zero exponent and
significand fields. In addition, there are certain
"denormalized"numbers with zero exponent fields, no
implicit bits, and nonzero (fractional) significands which
may contain one or more leading zero bits. They are the
default results for underflow. Specific bit patterns are
also reserved to represent infinity and NaNs, the default
results for invalid operations.

All of the possible single-precision entities are well
ordered in the natural lexicographic ordering of their
machine representations interpreted as sign-magnitude
binajry integers (see Table 2). This ordering facilitates
compare operations and gives easy access to the successor
of a floating-point number.
Coonen's quad format is more conventional in that all

significand bits are explicit. The representations ofNaNs,
infinities, zeros, and unnormalized numbers in quad are
what one might expect. Positive infinity, for example, is
represented by the largest possible-exponent and either a

Table 2.
Floating-point quantities.

SIGN EXPONENT SIGNIFICAND QUANTITY
O MAX >0 + NaN
O MAX 0 + INFINITy
O O<E<MAX >0 +REAL
O 0 >0 + DENORMALIZED
O 0 0 +0
1 0 0 -O
1 0 >0 -DENORMALIZED
1 O<E<MAX >0 -REAL
1 MAX 0 -INFINITY
1 MAX >0 - NaN

zero significand or a significand with only the first bit
nonzero.
The easiest way to implement single- and double-

precision arithmetic is probably to unpack the bit strings
representing numbers into their constituent parts and to
manipulate them separately. Extended formats are in-
tended to allow natural exploitation of this unpacked for-
mat in certain intermediate computations. Expansion of
both the exponent and significand fields of the extended
formats simplifies the accurate computation of the
elementary functions, and otherwise protects inter-
mediate computations in the corresponding basic format
from unnecessary underflow, overflow, and loss of
significance. Such an extended format greatly simplifies
the computation of the Euclidean norm of a vector, for
example. Extended formats would probably only be ac-
cessible to assembly language at first, but we suspect that
they would rapidly become available to algebraic
languages through local enhancements. We can only hope
that the language people get into' the act early enough to
standardize these enhancements in some way-but that is
another issue. The double format meets or exceeds the re-
quirements for the single-extended format, and quad
similarly passes for a double-extended. Therefore, it is
not required to have both single-extended and double, for
example.
The proposed standard, which'will be known as IEEE

Standard 754, carefully specifies several different round-
ing modes. In each case the rounded result of an operation
will be one of the representable neighbors of the infinitely
precise true result. This is a source of minor disagreement
between KCS and FW on the one hand and PS on the
other in the case of the remainder operation. In the
RN-round to the nearest even-mode of rounding, the
rounded result is the nearest representable neighbor ofthe
true result, with ties being broken in favor ofthe neighbor
with the least significant bit zero. The other modes are
RZ, forced round toward zero; RP, round toward plus in-

COMPUTER64

finity; and RM, round toward minus infinity. RP andRM
are provided to facilitate implementation of interval
arithmetic. A standard-conforming system must provide
all four rounding modes.
The KCS proposal also provides for control over the

handling of infinities and zeros. The projective mode, in
which there is only one infinity, is the default mode of
operation. In this mode the algebraic signs on zero and in-
finity are ignored and infinity obeys no order relation-
ships. This mode is ordinarily used for rational
arithmetic, such as in the evaluation of continued frac-
tions, because it allows for division by zero without risk of
undetected anomalies.
The second mode is the affine mode, in which the

algebraic signs of zero and infinity are preserved. With
appropriate care to be certain that the algebraic signs are
not determined by rounding error, the affine mode
preserves order relations while fixing up overflow. Thus,
for example, the reciprocal of a negative number which
underflows is still negative.
The KCS proposal provides for a number of different

arithmetic exceptions: invalid-operation, underflow,
overflow, division-by-zero, and inexact-result. In every
case the default response to an exception is to provide a
specified result and proceed after either trapping or set-
ting a "sticky" flag. The use of traps with transfer of con-
trol to the user is an implementation option. If traps are
used, the system should provide sufficient information
for correction of the fault and subsequent continuation of
processing. It is intended that the user will have full con-
trol over enabling and disabling traps and over clearing
and interrogating flags.

Default results for invalid-operations such as O*infinity
are NaNs which are intended to either progagate through
subsequent arithmetic operations or be trapped. Their
precise informational content is left to the implementa-
tion; for example:

* An operating system might initialize storage to NaNs
which specify the storage location. Propagation of
these NaNs would then aid in debugging programs
which reference uninitialized data.

* Trapping NaNs might be used as pointers to non-
standard data formats for unusual arithmetics.

The handling of underflow is one of the most con-
troversial issues in the KCS proposal. Basically,
underflow occurs when the exponent of a result becomes
too small. This is always signalled by setting a sticky flag.
If the underflow trap is enabled, the exponent ofthe result
is wrapped around into the accepted range and the
resulting value is delivered to the trap handler. If the trap
is disabled, the result is denormalized by right-shifting its
significand, incrementing the exponent for each shift,
until the exponent is acceptable. This process could result
in what appears to be a normal zero, but the underflow
sticky bit distinguishes this case from the true normal
zero.

Denormalized numbers do not propagate in the usual
manner. It is intended that descendants of these numbers
will be forever marked, unless the loss in significance
traceable to the original denormalization becomes of the
same order of magnitude as normal rounding errors.

Ordinarily, a denormalized number will disappear quietly
only when it is added to a normalized number and the
result is also normalized. In most other cases an invalid
operation is signalled. This is the default mode of opera-
tion, called the warning mode. There is provision for an
optional normalizing mode, in which all results are com-
puted as though the operands were normalized. The
results for all manipulations of denormalized numbers,
such as conversion from one format to another, are care-
fully specified in the proposal.
An arithmetic exception for an inexact result is sig-

nalled whenever a rounding error occurs. When the
floating-point system is used for integer arithmetic,
floating-point error may be introduced into the least-
significant bits of a result. The usual integer arithmetic ex-
pects those bits to be correct. If the inexact-result flag is
cleared before doing floating-point integer arithmetic and
is still clear afterwards, then the floating-point results
agree with what would have been obtained using ordinary
interger arithmetic.

That is a basic outline of the KCS proposal. We have
not discussed some aspects of the proposal, such as the
arithmetic tables and the conversions between various
formats, nor have we given much detail on those things
that were discussed. We fill in some of the missing infor-
mation below.

Counterproposals

The FW proposal. Fraley and Walther made specific
counterproposals to the KCS scheme for the handling of
underflow, overflow, zeros, and infinities. The latest ver-
sion of their draft, which is not reproduced in the refer-
ences, was distributed to committee members in Novem-
ber 1979. In it they propose arithmetic on a set of
operands consisting of zero, infinity, normal numbers,
special overflow symbols + OV and - OV, special under-
flow symbols +UN and - UN, an operand ERR repre-
senting an error condition, and a set ofreserved operands.
These quantities are not well-ordered in the sense that
comparisons involving INF and ERR return "unor-
dered" as a result, and comparisons involving a reserved
operand usually result in an exception for an invalid
operation. The remaining quantities are ordered + OV,
+ reals, + UN, 0, - UN, - reals, and - OV.
FW provides for essentially the same exceptions as

KCS, but the exception for an inexact result is omitted
and an exception for a "risky" operation is introduced.
As in KCS, the default mode of operation is to set a flag,
provide a default result, and proceed unless a trap is
enabled. Default results for underflow and overflow are
the special symbols UN and OV, respectively, with ap-
propriate algebraic signs. Each of the special operands
enters a computation and propagates in a sensible but
somewhat pessimistic manner. Once introduced, a UN
symbol tends to propagate as either another UN or an
OV, or to degenerate into an ERR or a reserved operand.
It will disappear quietly only when it is added to a real of
sufficiently large magnitude. OV and UN are reciprocals,
as are zero and infinity. AnERR operand is generated and
propagates in much the same way as a nontrapping NaN,

March 1981 65

and a reserved operand behaves much like a trapping
NaN.

There are two fundamental modes of operation called
"risky" and "careful." The term "risky" is also applied
to an operation whenever the result of the operation can-
not be guaranteed because of underflow and overflow.
Default results are provided for risky operations in both
modes. If the result destination of a risky operation has a
binary floating-point form, ERR is returned in the careful
mode. Otherwise, a propagating risky flag is set. For ex-
ample, when X is very close to the underflow threshold,
UN + Xis Xwith a risky flag in risky mode, and is ERR in
careful mode. Otherwise, exception and trap-handling
facilities are very similar to those in the KCS proposal,
with the obvious mappings between NaNs and ERR,
NaNs and reserved operands, etc.

This proposal retains the rounding rules of the KCS
proposal while introducing the additional concept of
bounding, which is used to avoid - OV and + UN as right
endpoints, and + OV and - UN as left endpoints in inter-
val arithmetic. For example, bounding in the RP round-
ing mode changes - OV and + UN to the largest negative
and smallest positive normalized operands, respectively.
There are analogous changes for + OV and - UN when
bounding in the RM rounding mode.

In most other matters, such as data formats, conver-
sions, and the like, the FW draft is similar to the KCS
draft. There are some minor differences but nothing of
great importance. For example, there are differences in
the minimum and maximum exponents in the basic for-
mats as a result of eliminating denormalized numbers.
FW does not provide either quad precision or the affine
mode. It also leaves the specific bit patterns for the
various entities that it treats to the implementation. Thus
it requires two reserved exponent fields for INF, ERR,
and reserved operands but does not specify what they
shall be.

The PS proposal. Payne and Strecker object to essen-
tially the same features ofthe KCS proposal as Fraley and
Walther do, but they repair things in a more conventional
manner. Briefly, quad is required, extended formats are
not allowed, there is only one reserved exponent field
available for special operands, trapping. is mandatory
rather than optional when an exception occurs, under-
flow is flushed to zero when the underflow trap is dis-
abled, and remaindering and conversion between floating
point and decimal are not specified. The trapping mech-
anism of PS and FW may be used to incorporate many of
the features of KCS.
To be more specific, the representation of a floating-

point number is specified much as in the KSC proposal ex-
cept that the significand is interpreted as a fraction and
the minumum and maximum exponents are different
(they also differ from those in the FW proposal). A zero
exponent field with a " + " sign field indicates true zero
regardless of significand, while a zero exponent with a
- sign indicates a reserved operand. The normal

mode of operation is to trap on an exception and to pass
control to a trap handler with enough information for
recovery. Trapping is provided for underflow, overflow,
division by zero, attempting the square root of a negative

number, and encountering a reserved operand. When the
user does not provide a trap handler, a default trap
handler replaces underflow with a zero result and pro-
vides a reserved operand as the result in all other cases.
These reserved operands then propagate in the expected
way.

There are some other minor differences between PS
and KCS. For example, PS has no affine mode. Again,
these remaining differences are small.
The critical difference between PS and KCS is that PS

has only one reserved exponent for representing special
operands. Leaving aside questions of which options are
defaults, the major features ofKCS could be imbedded in
PS were it not for that missing reserved field. In fact, with
this one exception, the main features of each of the pro-
posals can be imbedded in each of the other proposals.

These then are the proposals that were debated within
the committee. The KCS proposal is radically different
from anything most of us have seen before, the PS pro-
posal is almost traditional in its details, and the FW pro-
posal lies somewhere between the others. We urge that
each of the proposals be read for technical content. Do
not be misled by rough edges in language or sometimes
contradictory statements regarding minor points, be-
cause the published proposals were primarily working
drafts and some had undergone more corrective iterations
than others.

The underflow controversy

Now let us return to the basic controversy regarding un-
derflow. The KCS scheme is to implement underflow
"gradually" through denormalized numbers. The
justification is that the effect of underflow then becomes
comparable to that of roundoff. Proponents argued that
gradual underflow works better in this sense than flush to
zero when both work, that it occasionally works when
flush to zero does not, and that it usually provides a warn-
ing when it does not work. Opponents argued that it is too
complicated to be understood and is therefore likely to be
misused, a-nd that it is too expensive to implement. They
proposed instead either the familiar flush-to-zero ap-
proach or special underflow symbols with appropriate
properties.

Fraley and Walther include an example in their
SIGNUM paper2 which is worth examining in detail
because it does point up some of the conceptual problems
with gradual underflow. As indicated earlier, it is intend-
ed that the arithmetic operations on basic format
numbers be carried out by unpacking the numbers into
wider registers in which the implicit bit in the significand
becomes explicit. Denormalized numbers become unnor-
malized numbers in this unpacked representation. That
is, they have the exponent corresponding to the minimum
exponent in the basic format, and their significand has the
appropriate number ofleading zero bits to properly repre-
sent the number. Multiplication in general is carried out
by generating the sign of the result according to conven-
tion, adding the unbiased exponents of the operands, and
then multiplying the significands (see Table 3). Recall that
the significands of normalized numbers lie between 1 and

COMPUTER66

2, so the significand of the product of two normalized
numbers lies between 1 and 4. If the resulting significand
is greater than 2, it is shifted right one place and the expo-
nent is increased by one. Finally, the result is converted
back to the basic format and an arithmetic exception is
signalled if the result in the basic format is nonstandard in
some way. If one of the original operands is denormal-
ized, the result will usually be denormalized. However,
normalized results may occur when the original operand
is only slightly denormalized. For example, suppose we
multiply the slightly denormalized number
X=2**(- 126)*(3/4) by the normalized number
5 = 2* * (2)*(5/4). Then the significand in the unpacked for-
mat is 15/16 < 1, and an arithmetic exception is raised
when the result is converted to single precision. If X is
multiplied by 6 = 2* *(2) * (3/2), the significand of the un-
packed result is properly normalized and no exception is
raised. But if Xis multiplied by 8 = 2* *(3) * (1), the signifi-
cand of the unpacked result is again unnormalized, and
once again an arithmetic exception is signalled.

One side of this controvesy focused attention on the
raggedness of the boundary between normalized and
denormalized results in this case, claiming that the
behavior was difficult to justify or to explain to ordinary
users. The other side felt that this seemingly erratic
behavior was actually quite normal and no more com-
plicated than rounding error. Their explanation was that
the denormalization error for some of the products had
simply become comparable to normal rounding error,
hence the products need no longer be branded as "dif-
ferent, " while for others it had not. They pointed out that
some denormalized numbers had contributed to accept-
able results in this case, and that this was not possible with
the competing proposals for handling underflow.

Each side of this controversy supported its position
with similar examples purporting to show that its par-
ticular view was superior to other views. In my opinion an
infinite number of such examples existed for each side,
and the only way to reach a reasonable deci'sion in this
matter was to look at the overall picture. We had to
choose that alternative which works best in the most com-
monly occurring stituations and not worry about the rest.
I personally support gradual underflow, because I believe
it enlarges the set ofproblems that can be safely solved in a
natural way without penalizing previously successful
methods. Like any new tool, it is possible to misuse this
facility and to have a malfunction, but I do not believe
that the facility introduces malfunctions into processes
that previously worked. Consider the simple computation

(Y-X)+X

where Y-Xunderflows. Then gradual underflow always
returns Y exactly, flush to zero returns X, and the FW
scheme returns X with a risky flag in the risky mode and
ERR in the careful mode. We could look at this as another
isolated example, but I prefer to look at it as the preserva-
tion of the associative law of addition to within rounding
error. That is, under gradual underflow we always have

Table 3.
KCS multiplication table, X*Y.

Y

0 W INF NaN
0 a a b Y

X W a c d Y
INF b d d Y
NaN X X X M

W is any finite number except normal zero.

M indicates the system's precedence rule is to be applied to nontrapping
NaNs.

a: Result= 0 with sign.

b: Signal invalid-operation. If result must be delivered, use a NaN.

c: Compute as follows:

(1) Generate sign and exponent per convention. Multiply significands.
(2) If significand overflows, shift right one and adjust exponent.
(3) Check underflow, round, and check invalid and overflow.

d: If either operand is an unnormal zero, proceed as in b; otherwise
result= INF with sign.

to within rounding error. This is compelling, in my
opinion.
The controversy between the various proposals was

fueled from time to time by manufacturers who announced
intentions to produce floating-point chips or systems con-

PURCHASE PLAN * 12-24 MONTH FULL OWNERSHIP PLAN 0 36 MONTH LEASE PLN
PURCHASE PER MONTH

DESCRIPTION PRICE 12 MOS. 24 MOE. 36 MOS.

LA36 DECwrfter 11$1,095 $105 $ 58 $40
LU4DECwriterlV 995 95 53 36
LA34 DECwriter IV Forms Ctrl. 1,095 105 58 40

IH._L^20DECriter LA120 DECwrdter Ill KSR....... 2,295 220 122 83
LA120DECwrIter IllRO. 2,095 200 112 75
_1001CRTDECscope. 1,595 153 85 58

VT132CRTDECscope. 1,995 190 106 72
T1745PortableTerminal 1,595 153 85 58
T1765 BubbleMemoryTerminal. 2,595 249 138 93
T1783 Portable KSR, 120 CPS 1,745 167 93 63
T1785 Portable KSR, 120 CPS 2,395 230 128 86
T1787 Porable KSR, 120 CPS 2,845 273 152 102
T1810SROPrinter .1,895 182 102 69
T1820 KSR Printer. 2,195 211 117 80
730 DeskTopPrinter .715 69 39 28
737 W/PDDsk Top Printer . . 895 86 4 32
704 R5232-C PrInter......1,795 172 96 65
6681 High Speed Band Printer 5,495 527 293 198
DT8O/1CRT Terminal. 1,695 162 90 61I £ 0DT80/1L 15" Screen CRT. 2,295 220 122 83
DT80/5 APL CRT .2.095 200 112 75
ADM3A CRT Terminal.875 84 47 32
ADM5 CRT Terminal.975 93 52 35
ADM31CRTTTemina. 1,450 139 78 53
ADM42CRTTermina. 2,195 211 117 79
1420 CRT Terminal .945 91 51 34
1500CRTTerminal........... 1,095 105 58 40
1552 CRT Terminal.1,295 125 70 48
Letter Quality KSR, 55CPS 3,395 326 181 123
Letter Quality RO, 55 CPS. 2,895 278 154 104

.ls 2621ACRTTenninal. 1,495 144 80 54
i n in 2621PCRTTerinal. 2,650 255 142 96

FULL OWNERSHIP AFTER 12 OR 24 MONTHS * 10% PURCHASE OPTION AFTER 36 MONTHS
ACCESSORIES AND PERIPHERAL EQUIPMENT

ACOUSTIC COUPLERS * MODEMS * THERMAL PAPER * RIBBONS * INTERFACE MODULES * FLOPPY DISK UNITS

OTHER POPULAR TERMINALS. COMPUTER PERIPHFRALS AND CnMPIITfFRS AVAILARLF

(Y-X)+X= Y+(-X+X)

Reader Service Number 7March 1981

forming to various versions of the KCS and PS proposals.
DEC announced its intention to implement a substantial
subset of the PS proposal,5 and two chips are currently
available, theAMD 9512 and the Intel 8232, which almost
conform to a subset of the KCS proposal. At this writing,
several manufacturers-including Advanced Micro
Devices, Intel,6 Motorola, National Semiconductor, and
Zilog-have either produced full implementations of the
KCS proposal or are rumored to be working on them. U

2. ACM SIGNUM Newsletter, special issue on the Proposed
IEEE Floating-Point Standard, October 1979.

3. J. T. Coonen, "An Implementation Guide to a Proposed
Standard for Floating-Point Arithmetic," Computer,
January 1980, Vol. 13, No. 1, pp. 68-79.

4. M. H. Payne, "Floating Point Standardization," Proc.
COMPCON Fall 79, pp. 166-169.

5. M. H. Payne and D. Bhandarkar, "VAX Floating Point:
A Solid Foundation for Numerical Computation," Com-
puter Architecture News, Vol. 8, No. 4, June 1980, pp.
22-33.

6. R. Nave, "A Numeric Data Processor," Proc. IEEE
ISSCC 1980, pp. 108-109.

Acknowledgment

This work was supported by the Applied Mathematical
Sciences Research Program (KC-04-02) of the Office of
Energy Research of the US Department of Energy under
Contract W-31-109-Eng-38.

References

1. J. Palmer, "The INTEL Standard for Floating-Point
Arithmetic," Proc. COMPSAC 77, pp. 107-112.

W. J. Cody is a senior mathematician at
Argonne National Laboratory where he
has worked since 1959. His current in-
terests include the approximation and
evaluation of elementary and special func-

0 tions, the design and evaluation of numer-
ical software, and the interaction between
computer arithmetic design and numerical
algorithms. He received the BS degree in
mathematics from Elmhurst College, Elm-

hurst, Ill., in 1951, the MA degree in mathematics from the
University of Oklahoma, Norman, in 1956, and an honorary ScD
degree from Elmhurst College in 1977.

COMPUTER SCIENCE
The Science and Technology Division of the Institute for
Defense Analyses (IDA) is seeking a few outstanding
computer scientists with in-depth knowledge of recent
technical developments of potential importance for large
military communications networks, including protocols,
packet communications techniques, and information (not
data) processing as applied to C3 systems.
The position requires a Ph.D. in computer science or
electrical engineering or the equivalent in demonstrated
professional competence, together with recent relevant
research and development experience in computer
technology and application. The ability to communicate
the results of analyses both in briefings and in
professional reports is necessary. Ideas, objectivity, and
the ability to analyze broadly stated problems are very
important. The successful candidates will act as principalinvestigator or member of a small study team a dressing
these issues for Government officials within the Office of
the Secretary of Defense.
If you find satisfaction in a challenge, we urge you to
submit a resume and a list of recent publications to:

Mr. Thomas J. Shirhall _
Manager of Professional Staffing

Institute for Defense Analyses
400 Army Navy Drive, Arlington, VA 22202

An Equal Opportunity Employer M/F.
U.S. Citizenship Required.

IDA

COMTAI3M
COMTAL/3M is in a growth ex-
pansion mode and is looking
for qualified individuals with
experience in automated
printed circuit board CAD soft-
ware systems. COMTAL/ 3M is
establishing such a facility the
first quarter of 1981, and is
looking for operators and users
experienced in the usage of in-

teractive software packages
for printed circuit board lay-
out procedures. Interested ap-
plicants please send resume in
confidence to:

Patti L. Svetich
COMTA L13M

505 W. Woodbury Rd.
Altadena, CA 91001

m

