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The S/390@ floating-point unit (FPU) on  the 
fourth-generation (G4) CMOS microprocessor 
chip has  been  implemented in a CMOS 
technology with a 0.20-pm  effective  channel 
length  and  has  been  demonstrated  at  more 
than 400 MHz.  The microprocessor  chip is 
17.35 by 17.30 mm in size,  and  one  copy  of  the 
FPU including the dataflow  and control flow 
but not including the FPR register file is 5.3 by 
4.7 mm in size.  There  are two copies on the 
chip for error-detection purposes  only; both 
copies  execute the same instruction stream 
and  are  checked  against  each  other.  The  high- 
performance  implementation  has  a  throughput 
of  one instruction per  cycle  and an  average 
latency  of  three  execution  cycles,  yielding 
approximately 70 MFLOPS at 300 MHz on  the 
Linpack  benchmark.  Currently,  the G4 FPU 
is the  highest-performance S/390 CMOS 
FPU with fault tolerance. It uses  several 
innovative  and  high-performance  algorithms 
not commonly  found in S/390 FPUs or 
other FPUs, such  as  a  radix-8  Booth 
multiplier,  a  Goldschmidt  division  and  square- 
root algorithm,  techniques for updating the 
exponent in parallel with normalization,  and 
avoidance  of the remainder  comparison in 
quadratically  converging division and  square- 

root algorithms. Also demonstrated is a 
practical design  technique for designing 
control flow into the dataflow  and  early 
floorplanning  techniques. 

Introduction 
The IBM S/390* floating-point  architecture is an extension 
of the well-known  System/360* architecture  from  the 
1960s [l]. The  floating-point  format  has a  hexadecimal 
exponent with a  7-bit characteristic  biased by 64 and a 
1-bit  sign,  as indicated by the following: 

X =  ( - l ) x ~  * 16(xc-64) * x,, 0.0 I Xf < 1.0, 

where X ,  is the sign bit, X, is the  characteristic,  and X, is 
the  fraction or mantissa. Extended  format was added in 
the 1970s along with square-root  operation, which started 
out as  a mathematical assist until  it was recently  included 
in the  base  architecture.  The  short  format  has a fraction 
of  24 bits, the long format  has  one of 56 bits, and  the 
extended  format  has  one of 112 bits. The G4 FPU is 
optimized  for long format  but also supports  the  other 
formats.  The  short  format  requires  use of a  trivial set of 
masking functions  to  implement on  the  long-format 
dataflow. The  extended-format  data  are  partitioned  into 
two long-format  numbers  per  operand, which requires 
several  passes  through  the FPU to  execute.  The  extended- 
format  operations  and  high-order  arithmetic  operations 

I 

"Copyright 1997 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of  royalty provided that (1) each 

of this paper may  be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other 
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, hut no other portions, 

portion of this paper must be obtained from the Editor. 

0018-8646/97/$5.00 Q 1997 IBM 

IBM J. RES.  DEVELOP. VOL. 41 NO. 415 JULYISEPTEMBER 1997 E. M. SCHWARZ, L. SIGAL, AND T. J.  McPHERSON 



such as division and  square  root  operate in  a nonpipelined 
mode.  They  require many suboperations  to  complete  and 
internally  are highly pipelined  but  are  not  pipelined  at  the 
instruction level. The most common  operations such  as 
load,  addition,  and  multiplication  are  pipelined  and  can 
execute  one every cycle. The  dataflow  has  been  optimized 
for  addition  and  multiplication of long-format  operands, 
and very little  hardware  has  been  added  to  support 
nonpipelined  instructions. 

The  G4  FPU is also responsible  for  performing fixed- 
point  multiplication  and fixed-point  division. The  FPU  has 
a very fast  multiplier which is capable of supporting two’s- 
complement  numbers  for fixed-point calculations  and sign- 
magnitude  numbers  for  floating-point  calculations.  The 
fixed-point arithmetic  operations  are  executed in a 
nonpipelined  mode, which simplifies the  data  dependency 
analysis between  instructions.  The  G4  microprocessor 
issues one  instruction  per cycle in order  and  completes  at 
most one  instruction  per cycle in  order.  Thus, executing 
fixed-point  multiply  in nonpipelined  mode  does  not  cause 
much performance  degradation, since  most  fixed-point 
instructions  require only one execution cycle, and a fixed- 
point  instruction  stream would  have to wait for  the 
multiply result  even if pipelined.  This would result in a 
larger  performance  degradation in an  out-of-order- 
completion  machine.  Fixed-point division is also  executed 
in the  FPU  and  uses  an  algorithm similar to floating- 
point divide short.  However,  there is the  additional 
complexity in  producing a remainder  and conditionally 
complementing  the  input  operands  and  output  operands. 

functions normally thought  to  reside within the  FPU.  The 
FXU aligns input  data  from  memory  for  floating-point 
instructions which are in RX  format  (register-and-indexed- 
storage  operations).  Data in  memory are  byte-addressable, 
and  floating-point  data  can  be 4 or 8 bytes, which are  not 
necessarily  aligned to a cache-line  boundary.  The  cache 
returns  the  doublewords of memory  containing  the  data 
and  does  not  separate  and  rotate  the  data  for  the 
functional units. The  operand  buffers in the  FXU provide 
this service for  both  the  FXU  and  the  FPU.  The  FXU also 
performs floating-point stores  for  the  FPU,  and  that 
activity can  require  storage  alignment,  data masking, and 
multiple  data  writes  that  cross  doubleword  boundaries. 
The  performance  penalty of the  FXU  performing  the 
floating-point  stores is zero cycles for  non-data-dependent 
stores,  but two cycles for  dependent  stores. 

The  G4  FPU  executes  the most common  floating-point 
instructions in  a pipelined  fashion with  a throughput of 
one  per cycle, and  the  infrequent  operations  are  executed 
in a nonpipelined  mode.  The dataflow is described in 
detail,  along with the  execution of each  type of 
instruction. In addition,  the overall control flow is 

Also, the fixed-point unit  (FXU)  performs  some 

476 presented, followed by circuit implementation, physical 
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design,  discussion of designing control flow into  the 
dataflow, and  early  floorplanning  techniques. 

Dataflow and  execution 
The  fraction dataflow,  shown  in Figure 1, consists of a 
long-format  multiplication  and  addition dataflow  with  a 
common 120-bit carry-propagate  adder.  At  the  top of 
the figure are  the  buses  into  and  out of the  FPU.  The 
FPU-A-BUS and  FPUB-BUS  are 64 bits  each  and 
bring  operand 1 and  operand 2 into  the  FPU  from  the 
FXU.  Operand 1 is from  the  FPRs  for  floating-point 
computation  and  from  the  GPRs  for fixed-point 
computation.  Operand 2 is from  the  FPRs,  the  GPRs, or 
the  operand  buffers  for memory operands.  The  operands 
are  latched  into  the  FPU A and B registers, which have 
fraction,  exponent,  and sign portions. Only the  fraction 
part of the  internal dataflow is shown  in the figure. The 
output  bus  for  the  floating-point  unit is the FPU-C-BUS, 
which is 64 bits wide and is driven to  the  register files. 
Internally  there  are eight additional  bits of precision for 
intermediate  calculations in the division and  square-root 
routines.  The FPU-C-BUS drives dependent  data  back 
into  the A and B registers  and  into  the first cycle of 
execution  through  the  three  late multiplexors. One  other 
bus  at  the  top of the dataflow is the  output  from  the 
divide and  square-root  lookup  tables.  This bus is only 10 
bits wide.  All of these  buses drive data  to  the A and B 
registers.  The  reading of operands  from  the  register files 
or memory into  these  latches is defined to  be  the “EO” 
cycle. This is the cycle prior  to  the first execution cycle. 
Note  that  the A and B registers have multiplexors  on  their 
input which are  capable of masking data  for  short-format 
instructions. 

In  the first execution cycle the A and B registers 
drive data  into  the  late multiplexors. The  term  “late 
multiplexor” is actually  a misnomer,  since  these 
multiplexors  are  located  early in the first execution cycle, 
but  can  provide  late-arriving  interlocked  data  from  the 
FPU-CBUS.  There is a late multiplexor for  the multiply 
A operand  (MAL),  the  adder A operand (AAL), and  the 
B operand  for  both multiply and  add  (BL).  The multiply 
A operand  can  be 64 bits to  support  extra precision for 
division and  square-root  intermediate  calculations.  The 
other  late  multiplexors  are  56 bits to  support long format. 

The  MAL  and  BL  multiplexors drive the multiply first 
cycle, which consists of a 3X adder  and  Booth  decode;  for 
addition,  the  AAL  and  BL  multiplexors drive the  compare 
and swap and  aligner  and  XOR logic. The  MAL  and  BL 
multiplexors  also  drive  binary  shifters which are  capable of 
binary-aligning data  or  forcing  binary shifts of up  to 3 bits 
right or left.  These  shifters  are used for division and 
square-root  operations,  and  their  output is latched back 
into  the A and B  registers. The  output of the multiply first 
cycle is latched in the   3x  and X registers  and  the  Booth 
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decode  registers.  The  output of the  addition first cycle is 
latched in the  carry  and  sum  registers. 

Booth  decode  registers  feeds a Booth multiplexor and a 
19-to-2  counter  tree  resulting in two partial  products. 
These two partial  results  are 120 bits  each  and  are  latched 
into  the 120-bit  carry and sum registers. 

multiplication  pass  through  the 120-bit adder.  There 
are several feedback  paths shown which are  used  for 
extended-precision  operations  and  for division and  square 
root.  The  result of the  adder  can  be  driven  to  either  the 
FC1  register  or  the  FC3  register  (for  the  case of a 
multiply). 

The  FCl  register drives  117 bits  to  the  post-normalizer 
for  the  third  addition  execution cycle. The  post-normalizer 
determines  the shift amount by performing a leading-zero 
detect (LZD) of the  fraction,  and  then  the  fraction is 
shifted  and  the  exponent is updated in parallel.  The 
normalizer  output is driven  to  both  the  FC2  and  FC3 
registers. 

The  FC2  register provides an  extra  internal working 
register  for division and  square  root.  It  also drives to a 
binary  shifter, which is used to  transform binary-aligned 
intermediate  results  for division and  square  root  into hex- 
aligned results.  The binary shifter  can shift the  fraction  up 

The  output of the multiply’s 3X register, X register,  and 

The  second cycle of an  addition  and  third cycle of a 

478 to 3 bits  left  or right and is controlled by an LZD of the 
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most significant  digit or by a forced shift amount  from 
controls.  The binary shifter  output is connected  to  the 
FC3  register. 

The  FC3  register receives the  result of the  arithmetic 
computation  and drives the  results  to  register files or back 
to  the  FPU dataflow by  way  of the FPU-C-BUS. The  FC3 
register also has  the ability to shift itself by 56 bits  to  the 
left so that  extended  data  can  be  stored in the  FC3 
register  and  written  to  the FPU-C-BUS with  two back-to- 
back write cycles without involving the  other  elements of 
the  FPU  fraction dataflow. 

The  overall  FPU  fraction dataflow has five stages, 
though  the most common  operations  require only three 
cycles or  stages of execution.  The  execution of addition, 
multiplication,  load, division, square-root,  and  extended- 
precision  instructions is detailed in the following 
subsections. 

Addition 
The  operations  subtract,  add,  or  compare  are collectively 
referred  to  as  an  addition.  Floating-point  addition involves 
aligning the  fractions of the  operands,  conditional 
complementation of the  smaller  operand, a two’s- 
complement  addition,  normalization,  and  condition  code 
setting.  This usually requires  three cycles of execution. 
The key to  subtraction of sign-magnitude  numbers is 
identifying and  complementing  the  smaller of the two 
operands  prior  to  the  carry-propagate  addition.  The 
resulting  sum is a magnitude  and  does  not  require 
conditional  post-complementation. As shown  in Figure 2, 
the first cycle consists of comparing  the A and B register 
exponents  to  determine which operand is the  smaller of 
the two, and conditionally  swapping the  fractions so 
that  the  smaller  operand  proceeds  to  be conditionally 
complemented  and  aligned by the  exponent  difference. 
One  additional hex guard digit (4 bits) is maintained 
during  alignment,  as specified by ESA/390* floating-point 
architecture.  Then  the  larger  operand is placed in the  sum 
register  and  the  aligned  operand is placed in the  carry 
register.  The  second cycle involves a  two’s-complement 
addition of the  fractions.  The  28  fraction  bits of short 
operands  or 60 fraction  bits of long  operands  are easily 
accommodated by the 120-bit adder.  The  sum is latched  in 
the  FC1  register.  The  third cycle of execution involves a 
post-normalization. 

Post-normalization of the sum is not always necessary, 
but it  is rather  frequent  for S/390 architecture.  In all 
architectures  there  could  be  cancellation of the  most 
significant bits  for  an effective subtract  operation which 
changes  the  location of the most  significant bit.  There 
could  also  be a carry-out  for  an effective addition 
operation.  But  for S/390, there is the  additional possibility 
of unnormalized  fractions  or  the  case of a zero  fraction 
with  a nonzero  characteristic.  Other  architectures have 
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denormalized  numbers,  but  the  occurrence is less frequent 
and  their  range of values is limited. So, for simplicity all 
additions  are  routed  through  the  post-normalizer. 

In  the  post-normalization cycle, a leading-zero  detect is 
performed  on  the  fraction  to  determine  the shift amount. 
The  most significant bits of the shift amount  are available 
earlier  than  the  least significant  bits, and  the  exponent is 
updated in parallel with the  delayed arrival of the  least 
significant  bits [2 ] .  The  determination of exponent 
underflow and overflow is  also calculated in parallel with 
the  fraction  normalization.  The  resulting  normalized 
fraction  and  exponent  are  latched in the  FC3  register 
at  the  end of the  third cycle of execution.  During  the 
following cycle the  result is written  into  the  FPR. 

Of these  three  execution cycles, the first addition 
cycle is the  most complex; Figure 2 describes  the 
interconnection of the dataflow,. Since this cycle is very 
timing-critical, both  the dataflow and  the  control design 
were specified with custom circuits. The cycle begins with 
the A and B exponent  registers  being driven to  the 
exponent  compare  circuit  and  to  the  exponent  difference 
logic. A  signal  called EXP4_GT, which is a compare of A 
exponent  greater  than B for  the  least significant four bits 
of exponent, is driven to  the  swapper.  It actually uses five 
bits of exponent  for  the  comparison, as  shown by the 
following equation: 

EXP4-GT = (EA,,, > EB,,Sb) @ (EA,  @El?,). 

If the fifth-to-least  significant bits (EX,) of the two 
exponents  are  not  equal,  the  comparison of the  least 
significant four bits > EB4,s,) is inverted.  Thus, 
EXP4-GT is an  approximation of which operand is 
greater.  The  operand guessed to  be  larger is driven  on  the 
Big bus, and  the  smaller  operand is driven on the Small 
bus. Feeding  the  swapper in the  fraction dataflow are  the 
late multiplexors, which can receive data  from  the 
FPU-C-BUS or the  fraction  registers.  The Small bus 
drives an  XOR circuit which conditionally complements 
the  data  for  an effective subtract  operation  where  the shift 
amount  is less than 16. The  XOR  output drives an  aligner 
which can shift  right 0 to 15 digits. The shift amount is 
determined by two subtractors.  Both  exponents A minus B 
and B minusA  are  calculated,  and  then  the  appropriate 
result is chosen  once EXP4-GT is known. The  output of 
the  aligner drives to  the carry multiplexorhegister. 
The Big signal is driven  directly to the sum 
multiplexor/register. The  selection of carry  and sum 
multiplexors is determined by a custom  control  macro 
called the  AI  magnitude  control  macro.  It  determines 
whether  the swap  was correct  and  whether  to  force  zeros 
for shifts greater  than  the width of the fractions or to mask 
the  operands  for  short data. In addition to  the fraction being 
latched, the larger of the two exponents is latched  into the 
sum and carry exponent registers (SC EXP reg). 
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This is the  general  procedure  for most cases of addition 
execution,  although  the  procedure is actually more 
complex and  can  be  separated  into five cases:  effective 
load, effective add,  one’s-complement, two’s-complement, 
and simple subtract.  The  details  for  each  case  are 
described below. 

Effective load: (SHIFT-GT15) 
If there is an  exponent  difference  greater  than 15 
(signaled by SHIFT-GTlS), the  operation is effectively a 
load.  There  are 14 hex digits  in  a long operand,  and Si390 
dictates  that  one  additional  guard digit be  maintained,  for 
a total of 15 hex digits. Note  that  short  operands  were 
treated  the  same as  longs, but with additional masking 
to allow only seven hex digits of precision. Since the 
rounding  mode of Si390 hex floating-point is truncation 
with the  exception of square  root,  the  smaller  operand 
does  not  contribute  to  the  addition if the  exponent 
difference is greater  than 15. 

The  execution of this case of addition  could  be 
accomplished in two execution cycles. However, it  was 
designed  to  be  completed in three cycles to avoid creating 
any  critical control  paths. So, for simplicity this  case 
consumes  an  adder cycle. To accomplish this,  the  operand 
with the  larger  exponent  and  zeros  are  gated  into  the  sum 
and carry  registers. There is a complication in doing  this, 
since the  swapper  does  not  use  an exact exponent  greater 
than  the  compare signal but  instead uses  a  signal based on 
the  least significant four bits. Thus,  there is the  potential 
for  the swap to  be  incorrect (i.e., the Big signal is actually 
the  smaller of the two operands,  and Small is the bigger 
operand).  This  must  be  taken  into  account in the  A1 
magnitude  control  macro when selecting  the  larger 
operand  and  zeros  to be multiplexed into  the two 
registers. 

the  operand with the  greater  exponent  and  zero is gated 
into  the  sum  and  carry registers. 

This  case  executes in three cycles, and in the first cycle, 

Effective add: (SHIFT-GT15 E F F S U B )  
Another simple case is an effective add  operation 
(signaled by EFF-SUB) which exists when the operation is 
add  and  the  operands have the  same sign or  the  operation 
is subtract  or  compare  and  the  operands have different 
signs. For this case,  no  complementation is necessary. 
Since the shift amount is less than 16, the  least significant 
bits of the  exponent  are  guaranteed  to give the  proper 
shift amount,  and  this 4-bit exponent  difference is driven 
to  the aligner. The  aligner  output  and  the Big bus  are 
driven to  the  carry  and  sum registers,  respectively. This 
case  requires  three cycles, since  the  normalization cycle 
may be required if the  operand with the  larger  exponent is 
unnormalized. 
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Conditional one’s-complement: 
(SHIFT-GT15 * EFF-SUB * EXP-EQ) 
The  remaining  cases  are  more difficult and involve an 
effective subtraction with shift amount less than 16. 
Determination of the  operand  to conditionally 
complement  and align  is  difficult,  especially considering 
that  the  input  fractions  could  be  unnormalized.  The  case 
in which the  exponents  are  equal (signaled by EXP-E&) is 
called  conditional  one’s-complement.  For  timing  reasons, 
the  fraction  comparator receives the  unaligned  operands. 
When  the  exponents  are  equal,  the  fraction  comparison 
gives a true  indication of the  relative  magnitude of the 
two operands,  but it  is determined  too  late  to  complement 
the  smaller of the two before  addition. However, this is 
not necessary to  obtain  the  correct  result.  In [3], a method 
is described of always complementing  operand B and still 
computing  the  correct  result.  Note,  for A - B, 

IRI = pi - IBI = + + 1 ulp, 

where is the  one’s-complement of B and  ulp  refers  to a 
unit in the  last place of operand  B.  For B - A the 
following can  be  derived [4]: 

IRI = IBl - 1 . 1 1  = (11 + + 0 ulp). 

Thus, B can always be  complemented, if for B < A the 
carry-in to  the  adder is set  (1  ulp)  and  the  true sum is 
the  result,  and  for A < B the carry-in is zero  and  the 
complement of the sum is the  result.  This  causes  the 
critical path  to  be  the  setting of one bit, the carry-in 
to  the  adder,  rather  than  requiring  conditionally 
complementing all the  fraction  bits of Small and Big 
and conditionally selecting  them  to  the  carry  and  sum 
registers. The  control signal for  the  FC1  register which 
receives the  adder  output  can  be  determined  to  be  the 
true  or  the  complemented  output. 

Thus,  this  case  requires  three cycles of execution:  the 
first cycle, in which B is complemented  and  the carry-in to 
the  adder conditionally set  based on the  fraction  greater 
than signal, the  second cycle of a 2-to-1  addition  and 
conditional  selection of the  true  or  complemented  output 
into  the  FC1  register,  and  the  third cycle of post- 
normalization. 

~ 

Conditional two’s-complement: 
(SHIFT-GT15  EFFSUB . EXP-EQ * UNNORM) 
When  the  exponents  are  not  equal  and  the  data  are 
unnormalized (signaled by UNNORM), this is called  the 
conditional two’s-complement. For  this case,  a prior 
determination of the  larger  operand is not possible, 
so a post-adder  determination is made.  Four cycles of 
execution  are  needed; two cycles use  the  adder.  The 
second cycle through  the  adder is used to  create a two’s- 

480 complement of the sum. The first time  through  the  adder, 

the  carry-out  can  be  latched  along with the guessed true 
sum,  and in the following cycle the  carry-out  can  be  used 
as  a select signal either  to hold the  true  sum if the 
original  guess of the  greater  operand is correct,  or  to 
select  the  complemented  sum  to  be  gated  into  the FC1 
register.  Thus,  there is  a pipeline  stall  for this case.  It was 
estimated  that  this  case  occurs only about 3 percent of the 
time. 

Simple subtract: 
(SHIFT-GT15 * E F F S U B  * EXP-E& * UNNORM) 
If the  input  operands  are  both  normalized  and  the shift is 
less than 16, the  exponent  compare of the  least significant 
four bits  truly indicates  the  smaller of the two operands. 
Thus,  the  correct  operand  can  be identified and 
complemented in the first cycle of execution. This is called 
the  simple  subtract case, and  requires only three cycles of 
execution. 

Thus, in summary  for  addition,  there exists only one 
rare  case,  conditional two’s-complement, which requires 
four  execution cycles; all of the  other  cases  are  completed 
in three execution cycles. The  adder dataflow has  been 
optimized  to  be  pipelined  one  instruction  per cycle, and 
each cycle has been  optimized  to  meet cycle time.  The 
most  complex of these cycles is the first add cycle, which 
makes many of its  decisions based on only four  or five bits 
of the  exponents.  This  enables a very fast cycle time,  but 
at  the cost of complexity of design, which is evident in the 
five separate  cases of control signal selection.  To  reduce 
timing, the  control design was implemented in custom 
circuits; it was designed  into  the dataflow early in the 
design phase. 

Multiplication 
Both fixed-point and  floating-point  multiplication  are 
performed on the  FPU’s  multiplier. In addition,  the 
multiplier is used by the division and  square-root  routines. 
These  high-order  routines  require  greater precision for 
intermediate  results  than is supported by the  long  format. 
Thus,  additional  bits of precision are necessary, but  the 
critical  timing of long  format  for a 56-by-56-bit 
multiplication  must  not  be  exceeded. To accomplish this, 
only one  operand is extended with additional  bits  to  be  64 
bits. The  other  operand  dictates  the cycle time,  since  it 
specifies the  number of partial  products which determine 
the  number of stages in the  counter  tree.  Other designs 
[4] have increased  both  operands,  creating a 60-by-%bit 
multiplier which increases  the  performance of division and 
square  root. On the G4 microprocessor  chip,  though,  this 
type of implementation would create a longer cycle time, 
affecting the  performance of all instructions.  Thus, a  56- 
by-64-bit multiplier was implemented in the G4 FPU. 

of the  FPU design; it is timing-critical and it is very large, 
The  counter  tree design in  the  FPU is an important  part 
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consuming 15 percent of the  G4  FPU. Our design  goal for 
the  multiplier was to have it pipelined every cycle and 
have an  approximate latency of two or  three cycles. One 
full cycle is required  for 2-to-1 addition, so the  counter 
tree  had  to  complete in one  or two cycles. Radix-4  Booth 
algorithms [5, 61 are  interesting  because of their simplicity, 
but  for a  56-bit operand they require a  29-to-2 partial 
product  array,  and  Booth multiplexing requires a 2-to-1 
true/complement multiplexor. This  counter  tree  requires 
eight  levels of 3/2 counters, which did  not  meet  our cycle 
time objective. Another  option is to  implement  the 
counter  tree with latches in the  middle,  but  this is 
prohibitive  to  implement  because of the  large  number of 
signals that must be  latched. 

Two other  alternatives  are  to  create a two-cycle path 
that is unlatched or to  perform  an  iterative multiply. The 
first option was rejected by our  test  personnel,  who  did 
not  like  the  large  number of paths  that  had  to  be specially 
tested  for cycle time.  This would  have added a huge 
amount of time  to  test  the  chip,  and was determined  to  be 
too costly. The  other  alternative is an  iterative multiply 
[7] in which half the  multiplication is computed  each 
iteration, e.g.  by using  a 28-by-64-bit multiplier.  This  has a 
very small area  and very fast  critical path,  but it does  not 
have the  performance benefit of being  able  to  pipeline a 
multiply  every cycle. 

The  solution  that  has  been  implemented in the  G4  chip 
is a higher-radix  Booth  algorithm.  In  particular, a  radix-8 
Booth  algorithm was used  to simplify the  counter  tree 
[8, 91. The  counter  tree  for a  radix-8 algorithm  requires 
only  a  19-to-2 partial  product  reduction which has six 
levels of 312 counters.  The  counters in 0.2-wm technology 
supporting a  300-MHz clock frequency have  a  delay of 
approximately 350 ps for  the  sum  output  and 250 ps for 
the  carry  output,  for  an  average delay of 300 ps. The 
Booth multiplexing requires a 4-to-1  true/complement 
multiplexor which has a  delay of approximately 450 ps. 
The delay of both  the  counter  tree  and  the  Booth 
multiplexing meets  the cycle-time  objective. The main 
problem with higher-radix algorithms, though, is creating 
the difficult multiples of the multiplicand which are  not 
powers of 2 .  For a  radix-8 algorithm,  the  multiples of +4, 
+3,  +2,  +1, 0, -1,  -2, -3, and  -4 of the  multiplicand 
are  required.  The only difficult multiples  to  form  are  the 
?3X.  In  the first cycle of execution,  the 3X multiple is 
formed,  and  the  Booth  selects  for  the multiplexing are 
determined.  In  the  second cycle, the  Booth multiplexing 
between all of the possible multiples (+4  to  -4) is 
performed using  4-to-1 true/complement multiplexors; 
then,  19  partial  products  are  reduced  to two in six levels 
of 3/2 counters.  This cycle is shown  in Figure 3. In  the 
third cycle, the  2-to-1  addition is performed. A radix-8 
Booth  algorithm  provides  the  best  partitioning  for our 

1 Dataflow of the second multiplication cycle. 

particular  implementation.  The  detailed  implementation of 
the  counter  tree is described in [lo]. 

The  common  cases  for  post-normalization have been 
designed  into  the dataflow of the  third cycle of execution. 
From  instruction  traces, it was determined  that  more  than 
90 percent of the  time  both  operands  are  normalized. If 
both  operands  are  normalized, it can easily be shown 
that  the  result  could have one of two normalizations. 
Multiplying the minimum normalized  numbers  and  the 
maximum normalized  numbers gives the following range 
of products: 

(0.Ul6 * (o.1)16 = (OW16 

and 

(O.FFF ' ' .)16 * (0 .FFF.  . .)16 < (0.FFF . . . )16.  

Thus,  the  minimum  product  requires a  left  shift of one 
hex digit (4  bits),  and  the maximum product  has a  shift of 
zero, or no shift. The  determination of which shift is 
required is designed  into  the 120-bit adder  to  execute in 
parallel with the  determination of the  conditional sum of 
the most  significant hex digit. An  enable signal is sent  to 
this logic to allow it to drive the  select signals to  the  FC3 
register.  Both possible combinations of fraction shifts are 
driven  to  the  FC3  register  and  are  selected by this control 
signal, which was designed  into  the dataflow  in custom 
circuits. Thus,  the critical control  paths  were  designed in 
custom logic. Note  that if the  operands  are  unnormalized 481 
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or if the  exponents  are close to underflowing or  The  initial  convergence  factor is determined  from a 
overflowing, the multiply instruction  requires  four cycles lookup  table,  but  the  subsequent  convergence  factors 
and is driven  into  the  post-normalizer.  Hence,  the most are  determined by two's-complementing the  current 
common  case  has a latency of three cycles with  a denominator: 
throughput of one  instruction  per cycle, but  some  cases 
have  a latency of four cycles with  a throughput of one  per R, - 
cycle. Do 

Load 
Loads  are  executed in the  floating-point  pipeline  to  take 
advantage of the  fast bypassing between  data-dependent 
instructions.  The  actual  execution involves two cycles. First = 1 + D,E,,; 
the  operand in the B register is moved  directly to  the  FC1 
register.  The  second cycle passes through  the  normalizer 
with  a forced shift amount (no normalization is allowed by x, = -D,E,,, 
the  architecture)  and is latched  into  the  FC3  register. 
Thus,  loads  require two execution cycles. 

1 

Dl = D, * R, 

= DO * (i + ' R O )  

Let 

Dl = 1 - X l ,  

R l = 2 - D l = 2 - ( 1 - X , ) = 1 + X , ;  
Division 

The division implementation  uses  the  Goldschmidt 
algorithm, which has  been  described in  many conferences 
and  papers [4-6, 11-16]. It is a very interesting  algorithm 
for high performance  because of its quadratic  convergence 
and its  ability to  execute  some of its multiplications in 
parallel.  The  algorithm was first used  in the IBM 
System/360* Model 91 [17], but  since  then  has  not  been 
implemented on S/390 mainframes,  except  for  one low-end 
mainframe [4]. The  main  limitation of this  algorithm is 
that it requires  nontrivial  error analysis and  the  avoidance 
of extra cycles to  round  the  result.  Other  algorithms  such 
as nonrestoring  algorithms  or  even  the Newton-Raphson 
quadratically converging algorithm  are much easier  to 
analyze, since  they  are  self-correcting. Analyzing the  error 
in one  iteration  and  the  error in the  lookup  table is 
enough  to  prove  these  algorithms  for  the  Nth  iteration. 
The  Goldschmidt  algorithm  has  error which propagates 

Then, 

D, = DL-l * Ri-l ,  

Ni = * Ri - l ,  

Ri = 2 - D,. 

The  error analysis was performed by 1) expanding  the 
equations  for  four  iterations,  where RC, is the  calculated 
convergence  factor in the  ith  iteration including error 
terms, DC, is the  calculated divisor, NC, is the  calculated 
dividend, tevenl is the  truncation  error in the divisor 
calculation, toddi is the  truncation  error in  dividend 
calculation, E,, is the  error in the  lookup  table,  and tsi is 
the small error in the  convergence  factor  truncation;  and 
2) performing a one's-complementation  instead of a two's- 
complementation: 

RC, = 1/D + ERo, 

each  iteration,  and all iterations must be analyzed. DC, = D,  

(denominator)  to  one;  then,  the dividend (numerator) is NC, = N ,  

equal  to  the  quotient.  Let Q equal  the  quotient,  and  the DCi = Dei-, * RCi-, - t2*i, 

The  algorithm is based  on converging the divisor 

dividend of the  ith  iteration is Ni ,  the divisor Di,  and  the NC, = NC,_, * R C ~ _ ,  - t2*i-l ,  

convergence  factor R,. The following can  be  stated: 
RC, = 2 - DCi - ts,. 

The analysis of the  error in the final quotient, NC,, 
was arduous.  After  substituting  the values of the  errors 
due to truncation,  it was  possible to  prove  that  the 
implementation satisfied the  error  constraints. 

The timing diagram of the  iteration cycles of a 
Goldschmidt division algorithm is shown  in Table 1 for 
long operands.  Short  operands  require only three 
iterations.  In  the  G4  implementation  there  are  an 
additional  four cycles on  the  front  end of the  diagram  to 
get  the  operands  binary-normalized  and  in  the  proper 

E. M. SCHWARZ, L. SIGAL, AND T. J. McPHERSON IBM .I. RES. DEVELOP. VOL. 41 NO. 415 JULYiSEPTEMBER 1997 



Table 1 Timing diagram for long divide. 

Cycle I 2 3 4 5 6 7 8  9 10 11 12 13 14 15 

RO D l  D l   D l  D2  D2 D2  D3 D3  D3 
NO N1 N1 N1  N2 N2  N2 N3 N3 N3 PN4  PN4  PN4 N4 

registers.  And  there  are several cycles on the  back  end  to 
hex-normalize and  properly  round  the  result. 

Rounding  poses  an  additional  problem  for  quadratically 
converging algorithms, since  a remainder is not 
determined as an  intermediate  product of the  iteration 
step.  The G4 implementation is able  to  eliminate  the 
remainder  comparison  step half of the  time by examining 
an  additional  bit of precision [17]. The  intermediate  result 
is formed with one  additional  guard  bit with an  error 
tolerance of less than  the weight of the  guard bit. For 
truncation which S/390 dictates, if the  guard  bit is 1, the 
result  should  be  truncated.  This is true since the  error 
tolerance  guarantees  that  the  actual  quotient is less than 
the next higher  machine-representable  number  and  not 
equal  to it. But if the  guard  bit is 0, a remainder 
comparison is needed. If the  remainder is greater  than  or 
equal  to  zero,  the  result is the  truncated  intermediate 
result; if the  remainder is less than  zero,  the  result is the 
decremented  intermediate  result.  This  eliminates  the 
remainder  comparison  for half of the cases. If there  are 
additional  guard bits, this  algorithm  can  be  expanded  to 
eliminate  the  remainder  comparison in all but  one of the 
2' cases, where G is the  number of guard bits. 

With  the  startup  penalty of hex-normalizing and  then 
binary-normalizing the  operands  and  the  ending  penalty of 
hex-aligning the  data,  the overall division requires  either 
18 or 24 cycles for  short  operands  and  either 22 or 28 
cycles for long operands  for a guard  bit  equal  to 1 or 0, 
respectively. The  startup  and  ending  penalties  are very 
significant and  make a quadratically converging algorithm 
only slightly better  than a nonrestoring division algorithm. 
Thus,  the G4 FPU chip  implements a very aggressive 
division algorithm which is quadratically converging, and 
eliminates  the  remainder  comparison in half of the cases. 

Square root 
The  square-root  algorithm is also based on the 
Goldschmidt  algorithm [18]. The following are  the 

ro = l/@, 

Bo = N ,  

x, = N; 

iterate: 

SQr, = r, * r, , 
BI+,  = Bi * ri ,  

X,+, = X, * SQri, 

r,tl = 1 + 0.5 

final: 

fi = BhSt. 

The expression for  the  square  root of the  convergence 
factor, which does  not  take  much delay to  calculate, is one 
plus  one half of the  fractional  part of X complemented.  It 
is formed  in  the binary shifters  located  near  the A and B 
fraction registers. The  choice of the above formula  for 
the  square  root of the  convergence  factor  can  be  best 
understood by studying the  convergence  of Xi+,  to 1.0. 
Let X ,  be dl different  from 1.0; then, 

X = 1 - d l ,  

r, i=: 1 + 112 * dt 

~ 1 + 1 / 2 * ( 1 - x ) = 1 + 1 / 2 * ( 2 - X , - 1 )  

= 1 + 112 * (Xi - 1) = 1 + 1/2 *x;, 
SQ, = 1 + di + 114 * df - 1 + d , ,  

XLtl 1 - d f .  

Thus,  there is quadratic  convergence with  this  choice for 
the  square  root of the  convergence  factor. 

The  overall delay of the  implementation is 26 or 
32 cycles for short  operands  and 35 or 42 cycles for 
long operands,  depending  on  the  guard bit. This 
implementation  eliminates  the  remainder  calculation 
in half of the cases. 

equations  used,  where ri is the  square  root of the 
convergence  factor in the  ith  iteration, SQr, is the 
convergence  factor, Bi is the accumulative approximation 
to  the  root of N ,  and X, is an  intermediate  variable  that 
approaches 1. 

Initialize: the  exponents  and aligning the  operand with the  smaller 483 

Extended-precision  instructions 
Extended-precision  instructions  were  also  implemented in 
hardware,  but in nonpipelined  mode.  Their  performance is 
not critical, and  thus  uses  simple cost-efficient  algorithms. 

Extended-precision  addition is performed by examining 
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Overall control flow. 

Pipeline state diagram. 

exponent in the  post-normalizer.  The  post-normalizer is 
121 bits  wide and  has  the capability of having the shift 
amount  overridden by controls which then specify its own 
shift amount.  Once  data have been aligned, they  are 
conditionally complemented  and  loaded in stages  into  the 
carry  and  sum  registers.  Then  the  actual  addition  requires 
one cycle. The  result is then  normalized  and  driven  to  the 
FC3  register,  where it is written  to  the  FPRs with  two 

484 write cycles. 

Extended-precision  multiplication is performed by 
separating  the  extended  inputs  into two long fractions 
each.  Four  long  multiplications  and  three  additions  are 
performed.  Note  that  pre-normalization may be  required 
if the  operands  are  not  already  normalized. 

restoring 1-bit  algorithms. Paths have been  created  into 
the  carry  and  sum  multiplexor/registers  to  support this. 
The  latency is very long, but  the  amount of hardware 
invested is minimal. 

Control flow 
The  control flow was designed with  synthesized macros  to 
allow changes  late in the design phase  for  problems  found 
in  simulation. The overall control flow  is shown in Figure 4. 
There  are two major  macros in the design: the global 
control  macro  and  the  nonpipelined  control  macro.  The 
global control  macro  handles  the  state  information  for 
pipelined  instructions  and  sequences  the  start of 
nonpipelined  instructions.  It also handles all handshaking 
with other  units.  The  nonpipelined  control  macro  handles 
the  select  lines  for all nonpipelined  instructions such  as 
extended-precision  floating-point, division, square-root, 
and fixed-point instructions.  These  routines  are similar to 
horizontal millicode routines, since the  macro  implements 
a cycle counter  and  instruction  decode which determine 
the  selects  to  enable.  The  other  control  macros listed are 
collectively referred  to as the  pipeline-select macros;  they 
determine  the values on  the select lines  from  global 
pipeline  state  information  and  from  information  from  the 
nonpipelined  control  macro.  This  partitioning of controls 
makes it simpler  to design,  since the  task of maintaining 
state  information is separated from determining  the  select 
line values. 

Global  state  information  for  pipelined  instructions is 
maintained in the  global  control  macro  (see Figure 5) .  
There  are seven states: FSO, FS1, FS2,  FS3,  FS4, FS5, and 
FS6. FSO corresponds  to  the EO cycle, FS1 corresponds 
to  the El  cycle, FS2 corresponds  to  the  E2 cycle of 
multiplication, FS3 corresponds  to  the 120-bit adder cycle, 
FS4 corresponds  to  the  normalizer, FS5 is not  maintained 
but  corresponds  to  the  shifter  between  the  FC2  and  FC3 
registers, and FS6 corresponds  to  the  write cycle. There 
are basically two methods  for designing  pipelines: up-front 
blocking and  feed-forward.  Up-front blocking prevents 
an  instruction  from  entering  the  pipeline until  it is 
guaranteed  not  to have  any dependencies  or  resource 
conflicts. Feed-forward  pushes  the  instruction  as  far  into 
the  pipeline  as possible until  contentions  or  dependencies 
make it  wait.  Since the  G4  FPU  can  be  considered a 
peripheral  unit which is not  aware of the global central 
processor  state, it  was best  to  implement a feed-forward 
pipeline so as not  to  become  instruction-starved or data- 
starved. 

Extended-precision division and  square  root  use 
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In the global control  macro  there is a scoreboard-type 
implementation of the  information  for  each  state [19]. 
This  information  includes  the  write  address,  the  length of 
the  operands,  whether  the  data must be  normalized,  the 
instruction type, etc.  The  status of each  state is also 
maintained (e.g., whether  the  state is valid or whether it 
is busy and holding for this cycle). The  state  information 
from  the global control  macro is sent  to  pipeline-select 
macros,  where decisions <re made as to which selects  to 
each multiplexor should  be  invoked.  For  example, if the 
FS3 state which corresponds  to  the 120-bit adder  function 
is busy, the sum and  carry  registers  should  be  held.  This is 
determined by the  sum  and  carry  registers  pipeline-select 
macro  (SCR), which  drives select  lines to the multiplexor. 
Separating  maintenance of the global state  from 
determining values of select lines  made  the  controls 
simpler  to design. 

Also, the global control  macro is responsible  for 
resolving resource conflicts. An example is a  multiply 
instruction followed by an  add  instruction.  Figure 5 shows 
that  the multiply requires  the FS1, FS2, and  FS3  states, 
while the  add  requires  the FS1, FS3, and FS4 states. 
There may be a contention  for  the  FS3  state, which is the 
120-bit addition cycle. In this case  the  add would be 
delayed, since the multiply  was  issued first. This conflict 
can  be resolved by simply giving the  transition  from  the 
FS2 to  the  FS3  state  higher  priority  than  the  transition 
from  the FS1 to  the FS3 state.  Note  that  this example 
shows  a common  resource conflict of using the  adder  for 
both  multiplication  and  addition.  The  performance benefit 
of eliminating  this conflict by having two adders was 
determined  not to be  worth  the  area  cost. 

Resolving data dependencies 
The  most complex part of the  control design is the 
resolution of data  dependencies  between  instructions. 
These  dependencies  can  be classified into  four types, 
depending on timing  and  the  buses  used  for bypassing (or 
wrapping)  information: early wrap,  late  wrap,  long-to-short 
wrap,  and  short-to-long  wrap. 

Early wrap This  case  has  the best performance; it 
involves wrapping  the  exponents a cycle early and  then 
wrapping  the  fraction  into  the E l ,  or execute-first, cycle 
as the  data  are being written  to  the  register file. The 
exponent dataflow does  not have late  multiplexors in the 
E l  cycle, since they  are timing-critical in the  add-1 cycle. 
Instead,  the  exponent is wrapped back to the A and B 
exponent  registers directly from  the FS3, FS4, or FS6 
state.  This involves wrapping two separate  exponents  for a 
multiplication  that is completing  from  the  FS3  because of 
the  different  normalizations  that  are  created  on  the fly. 
The following  shows the relative  timing of control signals 
and dataflow signals: 

END OP  WR/E1 
EXP WRAP Fraction to late mux 

END  OP  represents  the  end of the  instruction  handshake 
signal, EXP  WRAP is the  exponent wrapping, WR 
indicates  the  write cycle, and E l  the first cycle of 
execution.  The  wrapping  takes two cycles. 

Late wrap If the  instruction  that is the  target of the 
bypass is not received  early enough  for  the  exponent  to  be 
wrapped early, the  wrap is known as  a late wrap. This 
involves wrapping  the  exponent  and  fraction  during  the 
write cycle to the A and B fraction  and  exponent registers. 
The following is the timing: 

END OP WR El 
EXP/fraction to 
A and B registers 

Long-to-short wrap For a long-to-short  wrap,  the timing 
is the  same as for  the  late wrap.  A longer  data type is 
being  written  to  the  FPRs  than  has  to  be  read  from  the 
FPRs.  The  low-order  data must be  masked,  and  there is 
no masking function on the  late multiplexors.  However, 
there is masking on  the  input  to  the A and B registers. 
Thus,  the  data must be  wrapped  to  the  input of the A and 
B registers.  Another  case of this  wrap  condition is creating 
a true  zero  (fraction,  characteristic,  and sign are  set  equal 
to zero) on a  significance exception  (result  equal  to 
zero).  The  true  zeroing of the  exponent  for significance 
exception is performed in the  FC3  exponent multiplexor. 
Thus,  an  early  exponent  wrap would  have  invalid data. 
The following is the timing: 

END OP WR El 
EXP/Fraction to 
A and B registers 

Short-to-long wrap For a short-to-long  wrap,  the  data 
must be  reread  from  the  FPRs.  There is no  merge 
capability on  the  input  to  the A and B registers or in the 
late multiplexors. Thus, if data  from a write must be 
combined with low-order  data  from  the  register file, a 
reread must take  place.  In  addition to this  case,  exponent 
underflow, which results in a true  zero, is detected very 
late  and is bypassed  in the  same  manner.  The  zeroing of 
the  result  for  exponent underflow  actually takes  place in 
the C bus multiplexing of FPU-C-BUS and FXU-C-BUS 
prior to the  register file. Thus, bypassing this  exponent 
requires a reread of the  register file; the timing is shown 
below: 

END OP WR Read El 

The early wrap is the most common of the wraps;  it 
demonstrates  an  interesting design strategy.  Methods of 
bypassing data  can  be divided into  four  categories: 485 
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1 Macro layout. 

1. Do not  overlap  the  read  and  write cycle. 
2. Overlap  the  read  and  write cycle. 
3. Overlap  the  last  execute cycle with the  read cycle. 
4. Overlap  the  write cycle with the first execute cycle. 

The first two methods  are  low-performance  and  can  be 
used  for  infrequent  or complex  cases. The  last two 
methods  are  high-performance.  However,  method 4, which 
has  been  implemented  for  the  early  wrap  case,  has  an 
interesting  advantage in our  implementation  over  method 
3. The  last  execution  stage  can  take  place in several 
different  pipeline stages: FS3, FS4, or  even FS6. To 
implement  method 3, a  new bus  or  potentially  several new 

486 buses would be  needed  to  wrap  the  fraction  data  to  the 

A and B registers. For  method 4, only the C bus  has  to  be 
used  to drive into  the  late multiplexors.  Since the C bus is 
an existing  bus, no new tracks  are  needed  for bypassing 
the  fraction.  Implementing  method 4 reduces wiring 
congestion  and gives good  performance  on  data 
dependencies. 

Physical design 
The  unit  floorplan is shown  in Figures 6 and I. In  effect, 
it is optimized  around  the  multiplier. In order  to  meet  the 
cycle time in the  multiplier, we have reduced  the 19 
partial  products  generated in the  fastest way possible- 
with six levels of CSA. This  approach is very wire- 
intensive and consumes all of the wire resources on metal 1 
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to  metal 4  in the  heart of the multiply array.  This  fact was 
recognized  early in the design, and  the  multiplier was 
placed  at  the very top of the unit (corner of the  chip)  to 
eliminate any  wires that would  have to  cross  it. 

The dataflow was partitioned in 126-bit fraction  and 14- 
bit exponent stacks. Some  room  on  the  sides of stacks was 
allocated  for overflow logic required by many macros. All 
of the  macros in the first cycle of execution are 60 bits 
wide (see  Figures 1 and 2),  while the  rest of the  macros 
are  about 120 bits wide. To  reduce  unit  area, we placed 
several 60-bit macros  side by side. This  created  one 
horizontal wiring channel of 56 bits;  however, overall we 
were  able  to  reduce  stack  height. 

Dataflow  stacks were  placed  and wired  manually.  Since 
dataflow macro definitions were  stable  early in the design 
process, this  approach  led  to  the most compact design. 
Tracks  were  partitioned  according  to wire length,  and 
wide  wires were  used  for long nets  to minimize  delays and 
slews. Control  macros  were manually placed  and wired 
with a vendor  tool. A program was written  that  located 
areas  for  decoupling  capacitor  placements.  The  decoupling 
capacitors  were  placed  both within and  outside  macros  for 
a unit  total of over  10  nF. 

Circuit  implementation 
Most of the  macros  were  implemented with static  CMOS 
circuits.  Only fraction/exponent dataflow registers  and 
dividehquare-root  lookup ROS (read only storage)  are 
dynamic [20]. The  use of dynamic  circuits was always an 
option  for  designers if delay  goals were  not  met. However, 
through  careful  optimization of circuits  in  critical paths, 
we were  able  to  meet  our cycle-time  objectives  with what 
amounts  to all static  CMOS circuits. 

Fraction/exponent dataflow macros  were  custom- 
designed.  Even  when  common cells were used among 
several  macros  (such as register building  blocks), they 
were custom-wired. Custom design  was required  to 
achieve both  the cycle-time and  area  budgets in the 
dataflow  macros. Control macros, on  the  other  hand,  were 
all  synthesized and  placed  and  routed with  fixed-power 
library  books. There  are  approximately 320K dataflow 
FETs in an  area of 18.3 mm2  and 61K control  FETs 
in an  area of 5 mm’. 

The  control  macros  were  implemented using  a 
customized version of the  IBM  BooleDozer* logic 
synthesis tool.  In  order  to  meet  the design schedule, it was 
very important  to  concentrate on improving our synthesis 
tool  rather  than manually tuning  the  results  from 
synthesis. The design team  restructured  the  VHDL  to 
obtain  improved synthesis implementation of the logic. 
This was done in parallel with focusing on improving the 
standard cell  library and  the logic transforms used  within 
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synthesis. The  result of this  effort was that all of the  FPU 
control logic initially targeted  for synthesis  achieved the 
cycle-time goal  and  area  constraints. 

running  an  FPU-level timing  analysis to  create timing 
reports  and macro-level timing  assertions used for 
synthesis and  custom design.  Unit-level  timing runs  were 
run in parallel with full-chip  timing runs  to  create  the 
necessary  timing assertions.  See [21] for  more  details  on 
the design  methodology. 

The timing reduction  effort was facilitated by frequently 

Summary 
A CMOS 57390 floating-point  unit  has  been  described 
which has  been  demonstrated  at  more  than 400 MHz 
[22]. The design was optimized  for  frequently  executed 
operations,  and  other  instructions were implemented with 
cost-efficient algorithms.  Some  uncommon  and aggressive 
algorithms  were  implemented ( e g ,  radix-8 multiplication; 
Goldschmidt division and  square  root);  these  algorithms 
were  coupled with remainder-avoidance  algorithms  and 
parallel  exponent  calculation  for  normalization.  Because 
the design caused critical control signals to  be  included in 
the dataflow,  dataflow paths  rather  than  control  paths 
determined  the cycle time.  This  made possible  a reduced 
cycle time, which, coupled with  a throughput of one cycle 
per  instruction  and a  latency of three cycles for  the most 
common  additions  and multiplications, resulted in  a 
relatively high-performance  FPU. 
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