
Eac h I E E E s t a nd a rd mu s t be re v i sed e ver y
10 years or it will be withdrawn. IEEE Standard
754-2008, Standard for Floating-Point Arithme-
tic, was scheduled to expire in 2018; therefore, a

bug-fix-and-minor-enhancements revision activity began
in 2015 and with an IEEE Standards Association ballot in

early 2019. That balloter-approved
draft was accepted by the IEEE Stan-
dards Board as IEEE Standard 754-
2019 in June 2019.

The simplified scope of the new
draft is as follows:

This standard specifies formats
and operations for float-
ing-point arithmetic in com-
puter systems. Exception condi-
tions are defined, and handling
of these conditions is specified.

The IEEE 754 Working Group
considered 50 drafts over a period
of three and one-half years. That’s a
lot of work for bug fixes and minor
enhancements, such as augmented

arithmetic and payload operations! To put that effort into
perspective, let’s review the history of IEEE Standard 754.

ARITHMETIC DIVERSITY
The 1960s saw the flowering of the mainframe era, epito-
mized by the IBM 360, CDC 6600, and Digital Equipment
Corporation (DEC) 10, but with many other contenders as
well. In the 1970s, there was a corresponding boom in mini-
computers, epitomized by the DEC PDP-11 and, again, many

Digital Object Identifier 10.1109/MC.2019.2926614
Date of current version: 22 November 2019

The IEEE Standard
754: One for the
History Books
David G. Hough, IEEE 754 Working Group

IEEE Standard 754, Standard for Floating

Point Arithmetic, had its beginnings more

than 40 years ago. Implementations of the

standard have flourished in many commercial

microprocessors and other computer platforms.

In June, a revision of the standard was approved

by the IEEE Standards Association Standards

Board. This column recounts some of the

interesting history behind the standard.

EDITOR F. DON WRIGHT
Standards Strategies; don@standards-strategies.comSTANDARDS

C O M P U T E R 0 0 1 8 - 9 1 6 2 / 1 9 © 2 0 1 9 I E E E P U B L I S H E D B Y T H E I E E E C O M P U T E R S O C I E T Y D E C E M B E R 2 0 1 9 109

110	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

STANDARDS

competitors. These systems all had
floating-point arithmetic, usually pro-
grammed with Fortran compilers, but
that was about all one could generalize.
Each system’s arithmetic was different
in greater or lesser ways, sometimes
even within the same instruction-set
architecture. Quite an engineering

art was developed to write programs
that would run equally correctly when
compiled with differing compilers
targeted at different hardware. The
“portable” numerical programs that
resulted were often much more com-
plicated than corresponding programs
targeted at just one system.

STANDARDS EMERGE
Meanwhile, microprocessor develop-
ment was taking over the steepest part
of the development curve. Although
the single-chip processors available
around 1976 had no f loating-point
hardware and often not much integer
arithmetic hardware beyond addition
and subtraction, technologists and ex-
ecutives could foresee that powerful
arithmetic engines would be feasible in
a few years. To address this emerging
need, Intel hired John Palmer to gather
customer requirements and coordi-
nate a specification for floating-point
software for Intel processors, with the
expectation that hardware would be
the next step. Intel also consulted with

William Kahan from the University of
California, who, in the course of math-
ematical error analysis for scientific
computing, had unearthed and pub-
licized the consequences of many bad
choices made in mainframe and mini-
computer f loating-point hardware,
system software, and compilers. At the

same time, Bob Stewart and others in
the IEEE standards community decided
it would be more efficient and timely to
standardize aspects of microprocessors
in advance, by achieving consensus
among individual technical experts,
rather than trying to standardize in
the traditional way, after the fact, by
achieving consensus among commer-
cial organizations. Thus, the IEEE Mi-
croprocessor Standards Committee
was commissioned to promote “timely
development of great technical stan-
dards.” In 1977, these diverse threads
converged in the IEEE 754 Working
Group for binary floating-point arith-
metic. Under Dick Delp and Dave Ste-
venson, the working group labored to
produce IEEE Standard 754-1985, Binary
Floating-Point Arithmetic.

1985
The motivation for IEEE Standard 754-
1985 was to make it easier to provide
portable, robust mathematical soft-
ware. It is far more efficient to put a lit-
tle more effort into the hardware and

system software specifications than
to put much more effort into keeping
the entire world’s portable mathemat-
ical software working. IEEE Standard
754-1985 specifies formats, operations,
rounding, and exceptions that affect
all levels of hardware and software; but
in several places, it reads mostly like
a hardware specification, referring to
condition codes, traps, global mode,
and status bits. Mathematical software
providers would have preferred to
standardize high-level language facili-
ties, but there was no chance of getting
language standards interested until
there were some hardware implemen-
tations and some compilers and librar-
ies proving the concepts. Therefore,
the intent was to build some hardware
implementations, subroutine libraries
to provide access, compilers to gener-
ate the obvious mappings of language
constructs to hardware, and finally,
compilers to add language features
that would allow access to the novel as-
pects of the standard.

Typical contentious issues of this
effort included questions, such as the
following:

›› Why not standardize DEC VAX
arithmetic, which was closest to
the proposed standard?

›› How should underflow be
handled?

›› Why not do something really
novel, such as symbols for over-
flow and underflow intervals or
variable-length exponent fields?

Over time, these issues were resolved,
and the final consensus was not very
different from the early “CKPPS”: the
proposal drafted by Jerome Coonen,
Ka ha n, Pa l mer, Tom Pit t ma n, a nd
Harold Stone. Dave Goldberg wrote an
excellent summary of IEEE Standard
754-1985 for ACM Computing Surveys1;
see also a 2001 article by Overton.5

1987
In the midst of the IEEE 754 Working
Group’s endeavors, a pa ra l lel ef-
fort under Jim Cody tackled decimal

FROM THE EDITOR

In the early 1980s, this young (at the time) engineer worked for IBM and
had the opportunity to first learn about many of the concepts of IEEE Stan-
dard 754 while implementing the Intel 8087 floating-point coprocessor
instruction set via macros. Although the original IBM PC had a socket to add
the 8087 chip, there was no way to access the 8087’s floating-point in-
struction set from the original macro assembler. As always, actually doing
drove learning. – F. Don Wright

The motivation for IEEE Standard 754-1985 was
to make it easier to provide portable, robust

mathematical software.

	 D E C E M B E R 2 0 1 9 � 111

floating-point arithmetic and word
lengths other than 32 and 64 bits. Al-
though potentially of greater impor-
tance to ordinary computer users who
think in decimal rather than binary,
this process was not as contentious
because the main issues had been set-
tled in IEEE Standard 754-1985. IEEE
Standard 854-1987, Radix-Independent
Floating-Point Arithmetic, was the re-
sult, but it had little industrial impact
compared to IEEE Standard 754-1985.

2008
IEEE Standard 754-1985 was adopted
in whole or in part by most micropro-
cessor architectures as they began to
incorporate hardware floating-point
instructions. Because IEEE Standard
754-1985 couldn’t be implemented
entirely in hardware, manufacturers
developed subroutine libraries to pro-
vide access to the novel aspects of the
standard, in particular, modes and
exception flags. The libraries tended
to be different, so that once again por-
table mathematical software develop-
ment was inhibited. Unfortunately,
the latitude allowed to implementers
in IEEE Standard 754-1985 had more
negative consequences than antici-
pated, as described by Doug Priest.9

By now, C had become an important
system and application programming
language, so Rex Jaeschke convened
a subgroup of the C Language Stan-
dards Committee to start developing
proposals for numerical C extensions,
including full support of IEEE Stan-
dard 754-1985. Much of its work was
incorporated in the 1999 standard for
C. Meanwhile, IEEE Standard 754-1985
had expired and been quietly renewed
several times. In 2001, a new IEEE 754
Working Group was convened under
Bob Davis and Dan Zuras to produce
a comprehensive revision to super-
sede IEEE Standards 754-1985 and
854-1987. The goal was ambitious—
encompassing incorporating insights
from IEEE Standard 854-1987, decimal
arithmetic proposed by Mike Cowl-
ishaw of IBM, the fused multiply-add
operation, a new 16-bit binary format,

specifications for elementary tran-
scendental functions, higher-level lan-
guage facilities for dealing with modes
and exceptions, expression evaluation,
and optimization.

Such an ambitious project became
quite contentious on a number of tech-
nical points, but the biggest challenge
was a dispute that led to standardiz-
ing two encodings for decimal float-
ing-point formats. No end user asked
for that, but the compromise was ac-
cepted to prevent stalling out on the rest
of the standard. The most significant
change from IEEE Standard 754-1985
was turning from a specification close
to hardware to a specification close to
higher-level language constructs. This
was the ultimate intention all along,
but it s e e me d pre m at u re i n I E E E
Standard 754-1985. Now, however, ISO/
International Electrotechnical Com-
mission Technical Specification 18661
specifies extensions to C to support
nearly all of IEEE Standard 754-2008.8
The extensions are 18661-1:2014, Part 1:
Bi na r y f loat i ng-poi nt a r it h met ic;
18661-2:2015, Part 2: Decimal f loat-
ing-point arithmetic; 18661-3:2015,
Pa r t 3: Interchange and extended
types; 18661-4:2015, Part 4: Supplemen-
tary functions; and 18661-5:2016, Part 5:
Supplementary attributes. These speci-
fications are candidates for inclusion in
the next version of the C standard, C2X.
You can read more about IEEE Standard
754-2008 in Muller et al.7

2019
IEEE Standard 754-2008 was due to ex-
pire in 2018. The many IEEE Standard
754-2008 veterans, eager to avoid an-
other eight-year ordeal, intended the
next version to be an upwardly compat-
ible bug-fix-and-minor-enhancements

revision. The bug f i xes are many,
mostly refinements of language and
the elimination of accidental incon-
sistencies; the description of com-
parison operations was substantially

rewritten to better clarify the original
intent. The minor enhancements are
new recommended operations:

›› quantum for decimal formats
›› tanPi, aSinPi, and aCosPi
›› augmented{Addition,Subtrac-

tion,Multiplication}
›› {min,max}imum{,Number,Mag-

nitude,MagnitudeNumber};
Not-a-Number (NaN) and signed
zero handling are changed from
754-2008 5.3.1.

›› {getPayload,setPayload,setPay-
loadSignaling}.

To retain compatibility with IEEE
Standard 754-2008, all new operations
are “recommended,” even though the
intent is for them to be universally
implemented. Several additions were
inspired by existing features of the C
language support for IEEE Standard
754-2008 arithmetic. For various rea-
sons, these had been omitted from
IEEE Standard 754-2008. The new Pi
operations complete the set defined in
IEEE Standard 754-2008. The payload
operations allow applications to read
and write payloads of NaN representa-
tions in an implementation-indepen-
dent way.

Somehow, IEEE Standard 754-2008
incorporated a defective definition
of the {min,max} {Num,NumMag}
operations, which weren’t associa-
tive in the presence of NaNs. To ad-
dress this deficiency, that definition
was removed from IEEE Standard
754-2019. Instead, new operat ions

IEEE Standard 754-1985 was adopted in whole
or in part by most microprocessor architectures

as they began to incorporate hardware
floating-point instructions.

112	 C O M P U T E R � W W W . C O M P U T E R . O R G / C O M P U T E R

STANDARDS

{min,max}imum{Number,Magnitude,
MagnitudeNumber} are defined that
are associative. Implementations can
conform to both IEEE Standard 754-
2008 and IEEE Standard 754-2019 by
providing all of these operations, but
the defective ones are deprecated.

The most interesting new feature
of IEEE Standard 754-2019 is the aug-
mented arithmetic operations. These
provide the exact result of an addi-
tion, subtraction, or multiplication
in two parts that add up to the exact
result. These operations were added
because hardware implementations
of similar functionality appeared
i m m i nent, a nd we hoped to have
them work identically and provide
the most usef ul f unctionalit y. To
that end, a new rounding method—
round to nearest, ties toward zero—
was defined for these operations.
So defined, they are useful for two
target applications: bitwise repro-
ducible vector summation indepen-
dent of the order of summation (for
example, in the presence of varying
numbers of threads2,3) and “dou-
ble-double” software that extends
the topmost hardware precision,4
used in high-precision mathematical
calculations and some physics sim-
ulations, such as climate prediction
and solar system stability.

More extensive background dis-
cussions of the rationales for the new
operations and explanations for some
confusing parts retained from IEEE
Standard 754-2008 may be found in the
document at http://grouper.ieee.org/
groups/msc/ANSI_IEEE-Std-754-2019/
background/.

THE FUTURE—
2029 AND BEYOND
IEEE Standard 754-2019 was self-con-
strained to be compatible, with only
minor extensions, with the previous
IEEE Standard 754-2008. It is expected
that new kinds of computational

demands might eventually encompass
new kinds of standards, particularly
for fields such as artificial intelligence,
machine vision, speech recognition,
and machine learning. Some of these
fields obtain greater accuracy by pro-
cessing more data faster rather than
by computing with more precision—
rather different constraints from those
for traditional scientific computing.
Old ideas like block floating point have
become new again.6 There might be
arithmetic standards dedicated to very
specific application areas, rather than
compromises intended to be suitable
for a wide range of diverse applications.

The next generation of applica-
tion programmers and error
analysts will face new chal-

lenges and have unique requirements
for standardization. Good luck to them
as they develop the next revision of
IEEE Standard 754!

REFERENCES
1.	 D. Goldberg, “What every com-

puter scientist should know
about f loating-point arithme-
tic,” ACM Comput. Surv., vol. 23,
no. 1, pp. 5–48, Mar. 1991. doi:
10.1145/103162.103163.

2.	 J. Demmel, J. Riedy, and P. Ahrens,
“Reproducible BLAS: Make addition

associative again!” SIAM News,
vol. 51, no. 8, p. 8, Oct. 2018.
[Online]. Available: https://
sinews.siam.org/Details-Page/
reproducible-blas-make
-addition-associative-again

3.	 J. Riedy and J. Demmel, “Augmented
arithmetic operations proposed
for IEEE-754 2018,” in Proc. 25th
IEEE Symp. Computer Arithmetic
(ARITH 25), June 2018. doi: 10.1109/
ARITH.2018.8464813.

4.	 D. H. Bailey, “High-precision float-
ing-point arithmetic in scientific
computation,” Comput. Sci. Eng.,
vol. 7, no. 3, pp. 54–61, May–June
2005. doi: 10.1109/MCSE.2005.52.

5.	 M. L. Overton, Numerical Computing
with IEEE Floating Point Arithmetic,
vol. 76. Philadelphia, PA: SIAM,
2001.

6.	 J. H. Wilkinson, Rounding Errors in
Algebraic Processes. Notes on Applied
Science No. 32, Her Majesty’s Statio-
nery Office, London. Englewood Cliffs,
NJ: Prentice Hall, 1963.

7.	 J.-M. Muller et al., Handbook of
Floating-Point Arithmetic, Basel:
Birkhäuser, 2018.

8.	 ISO/IEC TS, “Information technology—
Programming languages, their envi-
ronments, and system software in-
terfaces—Floating-point extensions
for C,” 18661-1:2014, Part 1: Binary
floating-point arithmetic.

9.	 D. Priest, “Differences among IEEE
754 implementations,” IEEE, Piscat-
away, NJ. [Online]. Available: http://
grouper.ieee.org/groups/
msc/ANSI_IEEE-Std-754-2019/
background/addendum.htm

DAVID G. HOUGH, retired from Sun
Microsystems, chaired the IEEE 754
Working Group during the drafting
of the IEEE Standard 754-2019
revision. Contact him at 754r@
ucbtest.org.

IEEE Standard 754-2019 was self-constrained to be
compatible, with only minor extensions, with the

previous IEEE Standard 754-2008.

