
Eac h I E E E s t a nd a rd mu s t be re v i sed e ver y 
10  years or it will be withdrawn. IEEE Standard 
754-2008, Standard for Floating-Point Arithme-
tic, was scheduled to expire in 2018; therefore, a 

bug-fix-and-minor-enhancements revision activity began 
in 2015 and with an IEEE Standards Association ballot in 

early 2019. That balloter-approved 
draft was accepted by the IEEE Stan-
dards Board as IEEE Standard 754-
2019 in June 2019.

The simplified scope of the new 
draft is as follows:

This standard specifies formats 
and operations for float-
ing-point arithmetic in com-
puter systems. Exception condi-
tions are defined, and handling 
of these conditions is specified.

The IEEE 754 Working Group 
considered 50 drafts over a period 
of three and one-half years. That’s a 
lot of work for bug fixes and minor 
enhancements, such as augmented 

arithmetic and payload operations! To put that effort into 
perspective, let’s review the history of IEEE Standard 754.

ARITHMETIC DIVERSITY
The 1960s saw the flowering of the mainframe era, epito-
mized by the IBM 360, CDC 6600, and Digital Equipment 
Corporation (DEC) 10, but with many other contenders as 
well. In the 1970s, there was a corresponding boom in mini-
computers, epitomized by the DEC PDP-11 and, again, many 
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competitors. These systems all had 
floating-point arithmetic, usually pro-
grammed with Fortran compilers, but 
that was about all one could generalize. 
Each system’s arithmetic was different 
in greater or lesser ways, sometimes 
even within the same instruction-set 
architecture. Quite an engineering 

art was developed to write programs 
that would run equally correctly when 
compiled with differing compilers 
targeted at different hardware. The 
“portable” numerical programs that 
resulted were often much more com-
plicated than corresponding programs 
targeted at just one system.

STANDARDS EMERGE
Meanwhile, microprocessor develop-
ment was taking over the steepest part 
of the development curve. Although 
the single-chip processors available 
around 1976 had no f loating-point 
hardware and often not much integer 
arithmetic hardware beyond addition 
and subtraction, technologists and ex-
ecutives could foresee that powerful 
arithmetic engines would be feasible in 
a few years. To address this emerging 
need, Intel hired John Palmer to gather 
customer requirements and coordi-
nate a specification for floating-point 
software for Intel processors, with the 
expectation that hardware would be 
the next step. Intel also consulted with 

William Kahan from the University of 
California, who, in the course of math-
ematical error analysis for scientific 
computing, had unearthed and pub-
licized the consequences of many bad 
choices made in mainframe and mini-
computer f loating-point hardware, 
system software, and compilers. At the 

same time, Bob Stewart and others in 
the IEEE standards community decided 
it would be more efficient and timely to 
standardize aspects of microprocessors 
in advance, by achieving consensus 
among individual technical experts, 
rather than trying to standardize in 
the traditional way, after the fact, by 
achieving consensus among commer-
cial organizations. Thus, the IEEE Mi-
croprocessor Standards Committee 
was commissioned to promote “timely 
development of great technical stan-
dards.” In 1977, these diverse threads 
converged in the IEEE 754 Working 
Group for binary floating-point arith-
metic. Under Dick Delp and Dave Ste-
venson, the working group labored to 
produce IEEE Standard 754-1985, Binary 
Floating-Point Arithmetic.

1985
The motivation for IEEE Standard 754-
1985 was to make it easier to provide 
portable, robust mathematical soft-
ware. It is far more efficient to put a lit-
tle more effort into the hardware and 

system software specifications than 
to put much more effort into keeping 
the entire world’s portable mathemat-
ical software working. IEEE Standard 
754-1985 specifies formats, operations, 
rounding, and exceptions that affect 
all levels of hardware and software; but 
in several places, it reads mostly like 
a hardware specification, referring to 
condition codes, traps, global mode, 
and status bits. Mathematical software 
providers would have preferred to 
standardize high-level language facili-
ties, but there was no chance of getting 
language standards interested until 
there were some hardware implemen-
tations and some compilers and librar-
ies proving the concepts. Therefore, 
the intent was to build some hardware 
implementations, subroutine libraries 
to provide access, compilers to gener-
ate the obvious mappings of language 
constructs to hardware, and finally, 
compilers to add language features 
that would allow access to the novel as-
pects of the standard. 

Typical contentious issues of this 
effort included questions, such as the 
following:

›› Why not standardize DEC VAX 
arithmetic, which was closest to 
the proposed standard?

›› How should underflow be 
handled?

›› Why not do something really 
novel, such as symbols for over-
flow and underflow intervals or 
variable-length exponent fields?

Over time, these issues were resolved, 
and the final consensus was not very 
different from the early “CKPPS”: the 
proposal drafted by Jerome Coonen, 
Ka ha n, Pa l mer, Tom Pit t ma n, a nd 
Harold Stone. Dave Goldberg wrote an 
excellent summary of IEEE Standard 
754-1985 for ACM Computing Surveys1; 
see also a 2001 article by Overton.5

1987
In the midst of the IEEE 754 Working 
Group’s endeavors, a pa ra l lel ef-
fort under Jim Cody tackled decimal 

FROM THE EDITOR

In the early 1980s, this young (at the time) engineer worked for IBM and 
had the opportunity to first learn about many of the concepts of IEEE Stan-
dard 754 while implementing the Intel 8087 floating-point coprocessor 
instruction set via macros. Although the original IBM PC had a socket to add 
the 8087 chip, there was no way to access the 8087’s floating-point in-
struction set from the original macro assembler. As always, actually doing 
drove learning. – F. Don Wright

The motivation for IEEE Standard 754-1985 was 
to make it easier to provide portable, robust 

mathematical software.
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floating-point arithmetic and word 
lengths other than 32 and 64 bits. Al-
though potentially of greater impor-
tance to ordinary computer users who 
think in decimal rather than binary, 
this process was not as contentious 
because the main issues had been set-
tled in IEEE Standard 754-1985. IEEE 
Standard 854-1987, Radix-Independent 
Floating-Point Arithmetic, was the re-
sult, but it had little industrial impact 
compared to IEEE Standard 754-1985.

2008
IEEE Standard 754-1985 was adopted 
in whole or in part by most micropro-
cessor architectures as they began to 
incorporate hardware floating-point 
instructions. Because IEEE Standard 
754-1985 couldn’t be implemented 
entirely in hardware, manufacturers 
developed subroutine libraries to pro-
vide access to the novel aspects of the 
standard, in particular, modes and 
exception flags. The libraries tended 
to be different, so that once again por-
table mathematical software develop-
ment was inhibited. Unfortunately, 
the latitude allowed to implementers 
in IEEE Standard 754-1985 had more 
negative consequences than antici-
pated, as described by Doug Priest.9 

By now, C had become an important 
system and application programming 
language, so Rex Jaeschke convened 
a subgroup of the C Language Stan-
dards Committee to start developing 
proposals for numerical C extensions, 
including full support of IEEE Stan-
dard 754-1985. Much of its work was 
incorporated in the 1999 standard for 
C. Meanwhile, IEEE Standard 754-1985 
had expired and been quietly renewed 
several times. In 2001, a new IEEE 754 
Working Group was convened under 
Bob Davis and Dan Zuras to produce 
a comprehensive revision to super-
sede IEEE Standards 754-1985 and 
854-1987. The goal was ambitious—
encompassing incorporating insights 
from IEEE Standard 854-1987, decimal 
arithmetic proposed by Mike Cowl-
ishaw of IBM, the fused multiply-add 
operation, a new 16-bit binary format, 

specifications for elementary tran-
scendental functions, higher-level lan-
guage facilities for dealing with modes 
and exceptions, expression evaluation, 
and optimization.

Such an ambitious project became 
quite contentious on a number of tech-
nical points, but the biggest challenge 
was a dispute that led to standardiz-
ing two encodings for decimal float-
ing-point formats. No end user asked 
for that, but the compromise was ac-
cepted to prevent stalling out on the rest 
of the standard. The most significant 
change from IEEE Standard 754-1985 
was turning from a specification close 
to hardware to a specification close to 
higher-level language constructs. This 
was the ultimate intention all along, 
but it  s e e me d pre m at u re i n I E E E 
Standard 754-1985. Now, however, ISO/
International Electrotechnical Com-
mission Technical Specification 18661 
specifies extensions to C to support 
nearly all of IEEE Standard 754-2008.8  
The extensions are 18661-1:2014, Part 1:  
Bi na r y f loat i ng-poi nt a r it h met ic;  
18661-2:2015, Part 2: Decimal f loat-
ing-point arithmetic; 18661-3:2015, 
Pa r t 3: Interchange and extended 
types; 18661-4:2015, Part 4: Supplemen-
tary functions; and 18661-5:2016, Part 5: 
Supplementary attributes. These speci-
fications are candidates for inclusion in 
the next version of the C standard, C2X. 
You can read more about IEEE Standard 
754-2008 in Muller et al.7

2019
IEEE Standard 754-2008 was due to ex-
pire in 2018. The many IEEE Standard 
754-2008 veterans, eager to avoid an-
other eight-year ordeal, intended the 
next version to be an upwardly compat-
ible bug-fix-and-minor-enhancements 

revision. The bug f i xes are many, 
mostly refinements of language and 
the elimination of accidental incon-
sistencies; the description of com-
parison operations was substantially 

rewritten to better clarify the original 
intent. The minor enhancements are 
new recommended operations:

›› quantum for decimal formats
›› tanPi, aSinPi, and aCosPi
›› augmented{Addition,Subtrac-

tion,Multiplication}
›› {min,max}imum{,Number,Mag-

nitude,MagnitudeNumber}; 
Not-a-Number (NaN) and signed 
zero handling are changed from 
754-2008 5.3.1.

›› {getPayload,setPayload,setPay-
loadSignaling}.

To retain compatibility with IEEE 
Standard 754-2008, all new operations 
are “recommended,” even though the 
intent is for them to be universally 
implemented. Several additions were 
inspired by existing features of the C 
language support for IEEE Standard 
754-2008 arithmetic. For various rea-
sons, these had been omitted from 
IEEE Standard 754-2008. The new Pi 
operations complete the set defined in 
IEEE Standard 754-2008. The payload 
operations allow applications to read 
and write payloads of NaN representa-
tions in an implementation-indepen-
dent way.

Somehow, IEEE Standard 754-2008 
incorporated a defective definition 
of the {min,max} {Num,NumMag} 
operations, which weren’t associa-
tive in the presence of NaNs. To ad-
dress this deficiency, that definition 
was removed from IEEE Standard 
754-2019. Instead, new operat ions 

IEEE Standard 754-1985 was adopted in whole  
or in part by most microprocessor architectures  

as they began to incorporate hardware  
floating-point instructions.
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{min,max}imum{Number,Magnitude, 
MagnitudeNumber} are defined that 
are associative. Implementations can 
conform to both IEEE Standard 754-
2008 and IEEE Standard 754-2019 by 
providing all of these operations, but 
the defective ones are deprecated.

The most interesting new feature 
of IEEE Standard 754-2019 is the aug-
mented arithmetic operations. These 
provide the exact result of an addi-
tion, subtraction, or multiplication 
in two parts that add up to the exact 
result. These operations were added 
because hardware implementations 
of similar functionality appeared 
i m m i nent, a nd we hoped to have 
them work identically and provide 
the most usef ul f unctionalit y. To 
that end, a new rounding method—
round to nearest, ties toward zero—
was defined for these operations. 
So defined, they are useful for two 
target applications: bitwise repro-
ducible vector summation indepen-
dent of the order of summation (for 
example, in the presence of varying 
numbers of threads2,3) and “dou-
ble-double” software that extends 
the topmost hardware precision,4 
used in high-precision mathematical 
calculations and some physics sim-
ulations, such as climate prediction 
and solar system stability.

More extensive background dis-
cussions of the rationales for the new 
operations and explanations for some 
confusing parts retained from IEEE 
Standard 754-2008 may be found in the 
document at http://grouper.ieee.org/
groups/msc/ANSI_IEEE-Std-754-2019/
background/.

THE FUTURE— 
2029 AND BEYOND
IEEE Standard 754-2019 was self-con-
strained to be compatible, with only 
minor extensions, with the previous 
IEEE Standard 754-2008. It is expected 
that new kinds of computational 

demands might eventually encompass 
new kinds of standards, particularly 
for fields such as artificial intelligence, 
machine vision, speech recognition, 
and machine learning. Some of these 
fields obtain greater accuracy by pro-
cessing more data faster rather than 
by computing with more precision—
rather different constraints from those 
for traditional scientific computing. 
Old ideas like block floating point have 
become new again.6 There might be 
arithmetic standards dedicated to very 
specific application areas, rather than 
compromises intended to be suitable 
for a wide range of diverse applications. 

The next generation of applica-
tion programmers and error 
analysts will face new chal-

lenges and have unique requirements 
for standardization. Good luck to them 
as they develop the next revision of 
IEEE Standard 754! 
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