4

Inventing Systems Engineering

John Aris

The J. Lyons food and catering company in 1949 undertook an
ambitious project known as LEO (Lyons Electronic Office). This
created, for the first time anywhere, computer hardware and
software for business applications. The author describes the history
and applications legacy of this successful endeavor, using personal
reminiscences and letters from one of LEO’s founding participants.

The year is 1949. Your company’s board of
directors has just approved an ambitious new
project called LEO. You are responsible for cre-
ating the software (as we would now call it) for
a series of substantial business applications for
a computer. They include a sophisticated pay-
roll system, invoicing, innovative stock control,
and production scheduling. You also have a
remit to improve the business by using the
computer in whatever other ways you can make
feasible. The hardware does not exist. Nobody
in the world has ever specified or designed a
business application for a computer. Nobody
has ever written a business program. You have
two years in which to work out the principles
then design the jobs, get them programmed
and working, ensure they yield an economic
return, and satisfy users—all from scratch.

The man who was faced with this interesting
challenge, and who met it triumphantly, was
David Caminer, manager of the Systems
Research Office of J. Lyons and Company. This
article! is based on, and frequently quotes, con-
versations and correspondence with him. I also
gratefully acknowledge valuable suggestions
from another early LEO pioneer, Frank Land.

More complete accounts of the LEO project
can be found in two books: LEO—The Incredible
Story of the World’s First Business Computer,> which
contains a 150 page history of LEO by Caminer,
with contributions by twelve other authors who
were personally involved with LEO; and the sim-
ilarly titled LEO, the First Business Computer,® in
which Peter Bird tells the story with more
emphasis on the engineering aspects.

Definitions

A difficulty in writing about this early peri-
od is the terminology. At the time the terms for
everything from client liaison and require-
ments scoping, through coding and operating,
to implementation in the field, were “systems
and programming” (for the activity) and “pro-
grammer” (for the practitioner). In this article

IEEE Annals of the History of Computing

I use “systems engineering” and “systems engi-
neer” in this same comprehensive sense; “sys-
tems analysis” for the phase of scoping,
requirements analysis, and specification; “sys-
tems design” for the phase of turning a require-
ments specification into a set of defined
programs with detailed input layouts, file lay-
outs, output layouts, and technical provisos
(such as reconciliations to be carried out); and
“programming” for the phase of coding, test-
ing and integration. The phases of course tend-
ed to overlap. hope those who use these terms
in rather different senses will indulge me. It
should also be mentioned that throughout this
paper I use the term “LEO” to refer to the proj-
ect, the machine or the staff: the context will
make clear which is intended.

Background

It is remarkable that J. Lyons, a catering and
food manufacturing company, should have ini-
tiated such a project, the first of its kind in the
world.* There was, however, good reason. The
computer project was a natural, though ambi-
tious, development of Lyons’ pioneering
approach to office work since the 1920s.

Lyons’ main business activities were run-
ning restaurants and teashops, and making
food products—principally bakery products,
tea, and ice cream—that were for sale in the
company'’s catering establishments, to other
caterers, and to the public). The business, by its
nature, involved a very large number of low-
value transactions, and the administration for
these transactions was laborious, tedious, and
expensive to a degree that threatened the
health and growth of the company. Lyons had
always invested in modern and efficient man-
ufacturing processes; in the 1920s they set their
minds to a similar policy of investment in
modern and efficient administration.

The mainspring of this was John Simmons,
a Cambridge Wrangler® whom Lyons engaged
in 1923. Under his leadership during the 1920s

1058-6180/00/$10.00 © 2000 IEEE

and 1930s all Lyons’ administrative processes
were studied with great intellectual rigor,
redesigned, and redesigned again. The objective
was always that the processes must be as effec-
tive and as economic as Simmons’ impressive
team, together with the best available technol-
ogy, could make them. Lyons, always under the
imperative of their multiplicity of low-value
transactions, became world leaders in this
process engineering, then known as O & M.
Systems analysis and systems design (though of
course not computer systems analysis and com-
puter systems design) were integral parts of O
& M. Pioneering applications of calculating and
accounting machines and a world’s first use of
microfilm were typical of the systems that
Simmons’ team devised. Simmons declared, as
a pre-LEO lesson from the past, “record keep-
ing was of greatest value when it showed what
ought to be done, rather than merely what had
been done.”®

It was therefore not amazing that in 1947
members of Simmons’ team were the first in
the world to see that the “electronic brains”
invented during World War Il might have a role
to play in business administration. Not only
did they have this wild idea, they followed it
up and established its feasibility, leading to the
Lyons board’s remarkable decision in 1949.

The LEO project set up by that decision
was to design and build a computer based on
the Cambridge University electronic delay
storage automatic calculator (EDSAC) and to
mount a series of systems on it that would
improve further, in effectiveness and econo-
my, upon those already honed by twenty
years of high-grade O & M work. The EDSAC
had triggered Lyons’ decision by carrying out
its first successful run that very day. The LEO
systems were to include payroll, stock control,
sales invoicing, and whatever else could fruit-
fully be devised (the feasibility studies had
even envisaged word processing, which, it
turned out, did not become economically
viable for thirty years). This was not an exper-
iment or a pilot project: it was expected to
pay its way.

There was no question of imposing applications.
They had to be “sold” to the client departments.
—Caminer’

The key figures in the LEO project were
Simmons, with board-level responsibility;
Raymond Thompson, on whose ideas it was
founded and who was in overall charge; John
Pinkerton, who was to design and build the
hardware; and Caminer, who was to design and

implement the applications. This article con-
centrates on Caminer’s area of responsibility.

The challenge

The job I was given was to prepare production
work for the computer system and to have the
work ready to run as soon as the not yet fully
designed equipment was itself ready to run it.
Everything—coding standards, program con-
struction, and systems documentation—had to
be created from scratch. The aim was always to
be ready to use whatever facility Pinkerton was
bringing to fruition.

—Caminer®

Caminer joined J. Lyons as a management
trainee on Simmons’ team at the age of 21 in
1936. He served in the infantry in World War II
and then rejoined Lyons with the responsibili-
ty of assembling the management accounts for
its board—a task which (then as now) was less
straightforward than might appear, it involved
dealing with issues of incompatibility in termi-
nology and data, of error trapping, of interpre-
tation, and of politics. He then became
manager of the Systems Research Office, which
as its name implies was a forward-looking
team, some twenty strong, considering new
systems approaches and new technologies. He
was thus the natural choice to take responsibil-
ity for LEO’s systems and programming—
though he was not released to do the job full
time until May 1950.

In dealing with the challenge’ outlined at
the beginning of this article Caminer had a
number of important advantages. He had been
trained in Lyons’ elite O & M team. He had a
long personal experience with the company: its
systems, people, and culture. He was able to
recruit other individuals to the project with a
similar background, experience, and knowl-
edge (though not, in the early days, very many
of them). Time in the Army had given him fur-
ther experience in the benefits of good order
and military discipline when tackling demand-
ing objectives. Finally, he had the trust and
support of Simmons and Thompson, and
through them the trust and support from the
company as a whole that Simmons’ team had
built up.

Difficulties

Perhaps, on the basis of all that, the chal-
lenge sounds not so daunting after all. Was it
just a matter of applying the well-understood
Lyons approach to systems analysis and design
and coding the results? Hardly.

July-September 2000

5

6

Systems Engineering

Business tasks were going to
call for long, complex
programs with complicated
data and results, many
alternative paths, and much
dealing with exceptions.

Apart from the basic principles and objectives it
emerged that there was little relationship
between the analysis for a job using convention-
al equipment and that for an integrated applica-
tion on the computer. What had started as
draughts had become three-dimensional chess.
—Caminer!”

One obvious difficulty was that the systems
to be implemented were already highly devel-
oped in their noncomputer form. There was no
fat on them but economic savings were
nonetheless required. The computer was
notionally a wonderful tool, but copious data
was going to have to be entered into it, and
copious results were going to have to be print-
ed. These operations would not only hold back
the computer’s electronic speed, but would
introduce staff costs, particularly for data
preparation, which were absent in the non-
computer systems. Achieving net savings was
not going to be easy.

A less obvious difficulty was that a prime
advantage of the computer was integration—
tackling business processes end-to-end and with-
out human intervention once the basic data was
entered. But just how far should that principle
be taken? Where did the law of diminishing
returns set in and where did feasibility give out?
There was no basis, either of experience or of
theory, for answering those questions.

A third difficulty arose from the very
absence of human intervention, which the
project targeted. Humans are intelligent and
flexible. When something looks strange they
notice it and perhaps correct it or perhaps raise
a query. Computers are not like that. The whole
strategy for detecting and dealing with data
errors was going to have to be rethought in
minute detail and redesigned.

Fourth, there was a group of difficulties aris-
ing from the computer itself. It had to be recon-

IEEE Annals of the History of Computing

figured halfway through the project because
the original intention of using magnetic tape
storage proved beyond the technology of the
day. The computer’s electronic speeds, though
they seemed impressive at the time, were slow
and the internal storage was very limited. The
computer’s reliability was poor, which was a
very serious issue when the daily operations of
the business were to depend upon it. What
could be done about this, and what contin-
gency planning was required?

Fifth, how were the new systems, once spec-
ified and programmed, to be validated?
Computer time for testing was going to be a
rare and precious commodity on a unique
machine, and business users were not going to
tolerate a trial and error experience when the
systems went live.

Sixth, programming was going to be an
even more novel activity than systems design.
The few computers that then existed were all in
universities, research, and defense establish-
ments and were used for mathematical and sci-
entific tasks. Programming these tasks was a
chore carried out by the mathematicians with
a little help from the local computer team. Pro-
gramming was not thought of as an important,
or even an interesting, discipline in its own
right—but mathematical skills were thought to
be necessary for doing it. For most mathemati-
cal and scientific tasks the programs were rela-
tively concise. Business tasks, on the other
hand, were going to call for long, complex pro-
grams with complicated data and results, many
alternative paths, and much dealing with
exceptions. Writing, testing, and maintaining
such programs was going to require discipline
and professionalism. Professional mathemati-
cians were not available to perform the task
(and would have found it deeply unsatisfying
if they had been available). Of course no soft-
ware tools of any kind existed.

Some of these difficulties were obvious from
the start and solutions for them could be
planned. Some difficulties gradually manifest-
ed themselves and the LEO team had to retro-
fit solutions to the work already done. Some
problems were apparent only to imaginative
insight or could be solved only by intuition.

It might be asked whether experience of
punched-card systems took some of the sting
out of the difficulties. Punched cards were some-
thing of a halfway house between noncomputer
and computer systems. Did they not throw light
on integration, on coping with the absence of
human intervention, on systems testing, on
writing complex programs? The answer is no,
because Lyons’ experience of punched-card

systems consisted mainly of considering and
rejecting them on cost-effectiveness grounds. In
most cases Lyons found that the cost of data
preparation and handling could not be com-
pensated by savings from the limited integration
such systems could offer. Whether it would have
helped if Lyons had had more experience of
implementing punched cards is an interesting
question (my guess is yes, but not much).

Faced by this situation, Caminer started four

broad lines of action. Principles and standards
for systems and programming work had to be
prepared (and kept under review as experience
developed); a team had to be assembled;
research on how to write and test business pro-
grams was necessary; and the specification and
design of the first applications had to be tackled.

Principles

Many of the early principles and standards,

based on a combination of Lyons’ O & M expe-
rience and Caminer’s very acute intuition of
what was needed, lasted throughout the proj-
ect and long after:

The scope and aims of each application
must be searchingly and creatively estab-
lished, defined, and discussed with the
client to reach agreement.

Requirements specifications must be well
written, well understood by the users, and
have client agreement.

Specifications should be kept as unchanged
as possible during implementation.
Systems should be as comprehensive as possi-
ble, dealing with exceptions as well as normal
situations, but should not attempt “a bridge
too far” (plenty of room for intuition here).!!
System benefits must be explicit and
quantified.

An imaginative examination of all kinds of
possible pitfalls in the system must be made
and evasive actions taken.

Detailed flowcharts of paths through the sys-
tem must be drawn and kept up to date.
Data must be entered only once.

All data must be rigorously checked for
credibility by the program and rejected if
unacceptable but with allowances made for
later reinsertion, and amendable if found to
be in error.

Form design, for both computer input and
computer output, is crucial.
Reconciliations on the computer’s and the
program’s internal workings should be cal-
culated and displayed. (This principle was
eventually discarded in the early 1960s, by
which time reliability had greatly improved.)

The LEO approach was to
optimize memory occupancy
and runtime by clever
coding, that is, minimizing
the number of instructions
written or to be obeyed.

e Programs must be carefully checked by a sec-
ond programmer before trying them on the
computer. The computer’s time must be
regarded as a means of verifying correctness,
not finding errors. (This principle is perhaps
still valid, though cheap computer time has
led to near universal neglect of it.)

¢ No error is the computer’s fault, it is the fault
of the people who should have corrected it
or who should have allowed for the possi-
bility of it happening.

* Spare space must be left in all programs for
future modifications.

e Orderliness in thought and in documenta-
tion is essential.

The team

Assembling the original team was not a
huge task. It consisted of five people including
Caminer; all (except one new management
trainee) were established Lyons staff.

It is worth emphasizing the extent to which
Lyons did see the computer project as another
venture in which the resources of the company
would participate organically rather than as
something deposited complete on the company
from outer space.

—Caminer!?

Business programming

One of the team, Derek Hemy, had a partic-
ular aptitude for programming and program
design. He undertook the first steps in LEO’s
programming research in conjunction with the
EDSAC team at Cambridge. A number of
important ideas came from Cambridge, such as
indirect addressing. One of the Cambridge
team sketched, with Hemy, the first outline of
a payroll program but, as mentioned above,
mathematical programming was very different
from business programming. Cambridge made

July-September 2000

7

8

Systems Engineering

The principle was first to
establish the outlines of a
system and then to amplify
them through successive
levels of detail.

much use of standard subroutines (such as
square root, trigonometry functions) that could
be assembled into programs, whereas the LEO
team, after one abortive experiment, found lit-
tle use for this technique. The LEO approach
was to optimize memory occupancy and run-
time by clever coding, that is, minimizing the
number of instructions written or to be obeyed,
whereas this was less of a priority for mathe-
maticians. The LEO team emphasized the
importance of breaking programs into discrete,
comprehensible stages and annotating them so
other programmers could more readily under-
stand what they did—uvital for both program
checking and subsequent modification. Coding
sheets, memory layout sheets, file layout
sheets, and other documentation had to be
designed and standardized.

Applications

Caminer personally carried out the specifi-
cation and flowcharting of the earliest applica-
tions: a notable historic first. The use of
flowcharts was itself innovative, having recent-
ly been introduced as a system design aid by
Lyons’ Systems Research Office. Caminer had
the help of Lyons’ O & M staff, who of course
were still involved and conducted most of the
liaison in detail between the LEO project and
the users. Hemy also turned out to have a talent
for estimating program sizes and timings, which
was invaluable in the systems design phase.

What could go wrong was as important to identi-
fy as what was needed to go right. Errors and stop-
pages had to be guarded against, not accepted as
inevitable, for all that the art was in its infancy.
—Caminer!?

The principle was first to establish the out-
lines of a system and then to amplify them
through successive levels of detail. The typical
sequence was that Caminer, with his thorough
knowledge of Lyons’ processes, drafted the

IEEE Annals of the History of Computing

scope and aims of each system and reached
agreement on them with user management. He
then went on to detail inputs, outputs, calcula-
tions to be performed, and any other key issues.
At this point he would also draft a (necessarily
long and elaborate) requirements specification,
including outline flowcharts, which, with the
aid of O & M, was agreed upon and signed off
by the users. Inputs and outputs were now
frozen and, with the help of Hemy, the com-
puter design was worked out. This design would
evolve during implementation as memory and
running time considerations became clearer.

Lyons had always assumed that LEO’s first
application would be the company payroll.
However as the project progressed four further
major jobs were developed almost in parallel
with the payroll, all of which broke new sys-
tems ground. Teashops Distribution was a time-
critical daily stock replenishment system for
some 200 retail outlets. Reserve Stores was a
stock control and production scheduling sys-
tem. Tea Blending not only tracked stocks of
about 300 types of unblended tea—available or
in transit from growers—but provided Lyons,
for the first time, with full, detailed cost and
availability data for the complex problem of
mixing these into branded blends—effectively
a decision support system.!* Bakery Wholesale
Rails was a highly integrated set of procedures
involving dispatching, invoicing, sales
accounting, sales statistics, directions to pack-
ers on carton sizes, packers’ bonuses, and man-
agement reports. The output from the bakery
application went to thousands of small and
large retail stores selling food products
throughout Britain. It was the first system in
which the public outside the computer owning
organization received and used computer out-
put as part of their everyday work.

The first system that Caminer specified in
detail was the payroll. In the project’s feasibili-
ty phase (pre-1949) the outlines of a computer
payroll system—inputs, brought forward and
carried forward files, outputs—had been com-
pleted (there was a perfectly valid half page
description of the payroll in the 1947 report
that inspired the LEO project) but Caminer
now had to go into all the massive detail that
would put flesh on those bones.

Caminer needed to address many payroll
systems issues. What should be in those files
and how much file space would it require?
Exactly what inputs and outputs were needed?
What must the input and output forms look
like? Precisely what credibility checks must be
carried out on the data? Exactly what calcula-
tions must be performed (for example, what

were the tax calculations on advances of pay to
those going on holiday)? What exception rou-
tines were needed? What aspects of payroll
might be “a bridge too far” (as it turned out,
only team bonus payments)? What possible pit-
falls might there be in the logic of the system,
in its implementation, in the regular operation
of the computer, in the surrounding manual
procedures, and what should be done about
them? What reconciliations were needed? What
contingency plans? What management infor-
mation might be a valuable by-product? And so
on. Specifications for noncomputer payrolls
had of course been written before, but many
points had to be covered in this computer sys-
tem that no previous one had addressed.

The payroll was the first such specification
but Teashops Distribution was not far behind.
Unlike payroll, the teashops application was
not an adaptation of a precomputer system and
had not been an explicit part of the LEO remit.
It was an entirely fresh look at an old but recal-
citrant problem. The problem was that each of
the 200 teashops had to reorder hundreds of
bakery and kitchen products every afternoon
for the following day to ensure freshness and
avoid waste (these were the days of rationing).
The products then had to be manufactured,
packed, and delivered overnight. The prepara-
tion of the orders was a big and tedious task
every day for the teashop manageresses. Once
the teashops’ order forms were delivered (phys-
ically) to Lyons’ Hammersmith works there was
formidable paperwork necessary to initiate pro-
duction and dispatch, and the time available
was limited. It was certainly too short a time to
allow an extensive data-preparation operation
followed by a series of computer runs before
production could begin. At the same time, the
computer was potentially an ideal way of opti-
mizing production runs, assembly of individ-
ual teashops’ orders, van loading, and the
necessary documentation.

The new system was Caminet’s invention. He
discovered, in true O & M fashion by studying
piles of previous transactions, that orders for any
one teashop fell into a pattern dependent on the
day of the week. Armed with this knowledge, he
devised a system whereby the computer pro-
duced for each manageress each day a suggest-
ed reorder. The manageress now had only to
indicate any changes she wanted to make, vast-
ly reducing the data preparation load. The man-
ageresses dictated any changes over the
telephone directly to keypunch operators (such
use of the telephone was itself innovative in the
early 1950s). The resulting punched cards went
into the computer in batches and the computer

Three types of work were
carried out appreciably
earlier than the major
applications and became
important ingredients in the
evolution of systems
engineering.

could do its part in good time for production.
Not quite a real-time job, perhaps, but very
much a time-critical one—probably the first of
its kind in the world by at least five years. Most
computer applications throughout the 1950s
processed data after the business event, rather
than on the critical path before it.

Preliminaries

It all seemed so obvious that what Simmons
described as the “incredible speed” of the com-
puter would have to be matched by a medium
that was equally state of the art. The fact that
with planning and programming skill a balanced
system could be put together with paper tapes as
the main current data medium and with
punched cards as the main data storage medium
had not been explored.

—Caminer®®

The LEO team had initially envisaged mag-
netic tape as the main device for carrying data,
and magnetic tape drives were installed in the
early days. However the technology chosen
proved unworkable at that time, so punched
card equipment had to be installed instead.
This setback delayed the major applications
significantly, so they were not in fact the first
jobs to run on LEO.

Three types of work were carried out appre-
ciably earlier than the major applications and
became important ingredients in the evolution
of systems engineering. They were the test pro-
grams for the computer; the Bakery Valuations
job, which had the distinction of being the first
regularly run (though not major) business com-
puter application; and a series of mathematical
jobs undertaken on an opportunist basis for
customers outside Lyons.

July-September 2000

9

10

Systems Engineering

It became clear early in the project that test
programs were a nontrivial requirement. This
computer, uniquely for its time, was going to
have to give dependable service to a business.
Teashops Distribution was particularly time crit-
ical, but all the jobs had a degree of time criti-
cality. For example, payroll had to be ready (and
correct) for payday; tea stock reports had to be
available to production planners when needed;
and delays anywhere were likely to be very
damaging to the credibility with business man-
agement that LEO crucially needed to sustain.

However 1950 valve-based technology was
inherently fault prone. Specifying and pro-
gramming the test programs became a chal-
lenging application in its own right. The
detailed requirements were worked out and
documented (and continually updated as expe-
rience accumulated), flowcharts were drawn,
and programs were coded and independently
checked. These programs had to exercise each
logical function and each circuit. Though this
test application bore little resemblance to a
business system it was sophisticated, and its use
of systems engineering skills was an important
stage in their evolution.

The Bakery Valuations job was a modest
one, not demanding bulk input and output
and not especially time critical. It was sched-
uled at Caminer’s instigation when it became
clear that the major applications would have to
be postponed while new input and output
mechanisms were designed and developed to
take the place of magnetic tape. There was
some resistance from higher management to
introducing such a trivial job: it was not the
kind of major advance that the Lyons board
was looking for from its LEO investment.
Nonetheless it was useful, it provided econom-
ic savings, it would yield—for the first time—
experience of regular running of a job, and it
would be a satisfying and tangible achievement
for the systems engineering team.

Caminer, again, specified and flowcharted
the system, which valued the weekly output of
each bakery, bakery dispatches to each sales out-
let, and stocks awaiting dispatch. The results
went to top management. He built reconcilia-
tions and restart points into the programs. It
went live in November 1951 and ran every
week thereafter. The system saved money and
produced its reports faster than the previous
noncomputer system. Perhaps more signifi-
cantly, it provided the experience of using data
from the outside world, with all the fallibilities
that had previously been circumvented by intel-
ligent human interpretation on the job. It also
turned out to be a valuable extra test program

IEEE Annals of the History of Computing

for the hardware and even contained an alter-
native piece of code to be activated if one par-
ticularly refractory circuit was malfunctioning!

It scarcely mattered whether a scientific job was
executed today or tomorrow or the day after. It
was generally being accomplished altogether
faster and with less human effort than had hith-
erto been conceivable.

—Caminer!®

Mathematical jobs came in when it became
known in the market that the computer under
development could offer some capacity, partic-
ularly for work that was not time critical and
had no need for bulk input or output. Typical
jobs were weather forecasting, ballistic tables
for the army, and flutter calculations for aircraft
design. These jobs were again subjected to, and
influenced, the evolving systems and program-
ming disciplines, and furthermore were oper-
ated in a revenue-earning context.

This first experience of live operation cast
new light on the issue of hardware unreliabili-
ty and how to deal with it. Restart procedures
were introduced, which allowed long program
runs to be repeated in part rather than as a
whole if they had encountered hardware trou-
ble. It sharpened thinking and sophistication
for the design of in-program reconciliations. It
also illuminated issues of accuracy in rounding
off large numbers.

Implementation tasks

Programmers of the early applications, par-
ticularly the major jobs, faced three particular
challenges. The first was retaining an overall
intellectual grasp of the sprawling complexity of
the programs while coding in machine code
(though not, mercifully, binary). Flowcharts,
breaking the program into short, logically coher-
ent stages, and annotation were vital to this.

The second challenge was fitting each pro-
gram and its data into the memory (there was of
course no backing store). This required mini-
mization of the number of instructions in the
program and tight packing of data. Data had to
be packed more tightly still on the brought for-
ward and carried forward files, which were held
on the slow medium of punched cards. The
cards were ingeniously used to their utmost by
holding binary numbers horizontally rather
than decimal numbers vertically: this was one
of the many clever expedients devised as the
project proceeded to cope with the limitations
of the hardware. Another was forming instruc-
tions by program for later execution (“if X, plant
an instruction to go to Y ten steps ahead”).

The third challenge was to minimize run-
time. Major file processing programs and major
mathematical tasks took hours not minutes to
execute. As computer time was scarce and valu-
able and as the mean time between faults was
short, reducing these runtimes was a priority.
One instruction saved in a main loop could
reduce overall running time by many minutes.
Unfortunately it was often only possible to save
running time at the cost of increasing memory
occupancy and vice versa. Satisfactory compro-
mises could sometimes be achieved only by
redesigning the program structure of the system.

These challenges will be unfamiliar to the
great majority of today’s programmers. They
made programming much more interesting but
were expensive in skilled people’s time—which,
however, was cheap in relation to computer
time. An interesting reflection of the skill
employed is that the runtimes for the payroll,
estimated on the assumption that the file hold-
ing medium would be magnetic tape, were
faster in practice despite having to use much
slower punched cards.

Independent checking eliminated many
program errors, but inevitably not all.
Debugging online was discouraged because of
the scarcity of computer time, but nonetheless
some expertise in it was developed, usually
after midnight. The debugging involved peer-
ing at binary patterns on a cathode-ray tube,
with some additional help from listening to
patterns of machine activity on a loudspeaker.
The alternative was to study memory dumps,
also in binary, offline. Test data came in two
varieties. First the programmer devised his or
her own, trying to cover all paths through the
program and all permissible and impermissible
data variants. When he or she was satisfied, real
data, more voluminous and typical but less log-
ically stringent, was acquired from the prospec-
tive users for a further round of tests. Only
when all glitches revealed by either set of test
data were fully explained and corrected could
pilot runs with the users begin.!”

LEO people

The rapidity and the success of the achievement
owed much to the preparatory thinking that had
anticipated the decision to proceed, but a great
deal, too, was due to the closeness of the work-
ing relationship between myself and John
Pinkerton.

—Caminer®

A feature of the whole project was how
closely the systems and programming and the

engineering teams worked together. There was
little difficulty in doing so, as both teams were
very small, largely made up of long-term Lyons
people, and located together. The benefits were
significant. The programmers were able not
only to influence the hardware’s logic design
(for example, by calling for hardware instruc-
tions for conversion between binary and deci-
mal) but also to understand issues, such as
circuit reliability, which directly affected their
own work. Similarly, the combination in the
same individuals of the systems analysis, sys-
tems design, and programming roles led to a
work optimization, which was highly necessary
given the limitations of the technology. The
loss of this close, interdisciplinary cooperation,
though no doubt inevitable as the computer
industry grew, has been sad.

It was clear that for regular time-critical
business applications to succeed, hardware and
software were not enough. Professional data
preparation and professional computer operat-
ing would also be required. For data entry two
media were used: punched paper tape, where
variable length fields were needed, and con-
ventional (decimal) punched cards, where
mechanical sorting was a requirement. For
punched cards the discipline of keypunching,
checked by rekeying and comparison, was well
established and the appropriate equipment was
available. This was not the case for paper tape.
LEO designed a paper tape “comparator” specif-
ically to carry out the checking. A team of
punch operators was assembled—this was the
world’s first computer data preparation section.
Operating again presented new challenges.
Nothing in the nature of operating system soft-
ware existed. Much manual intervention
between programs, often including card sort-
ing and printer plug board changes, was
required. Decisions had to be made when
unexpected stoppages occurred, as they often
did. Again a specialized team was formed.

As the reader will have realized, the work on
the major and minor applications and the ever-
increasing understanding of systems engineer-
ing was intellectually fascinating and
absorbing. It was also extremely demanding.
The team frequently worked all night. Caminer
was a hard taskmaster and his wrath was terri-
ble—though it was reserved for occasions when
it was deserved (cutting corners, ignoring dis-
ciplines, making the same mistake twice), and
he worked himself as hard as the others.

I believe that I was regarded as unreasonable in
those days. There seemed no other way. There
was so much to do and so little time to do it in,

July-September 2000

11

12

Systems Engineering

and resources were so limited. To keep ahead of
expectations in Systems Engineering and to pro-
duce a stream of dependable, economically
viable integrated jobs meant years of grinding,
dedicated work by the application team. I myself
was completely dedicated to the work in hand
and placed it before family commitments and
other interests. I expected others to behave sim-
ilarly on the particular jobs with which they were
concerned, and to be ready to help out in a com-
radely manner when one of their colleagues
needed a hand. When they had been engaged
they had been warned that the work would be
both mentally and physically exacting. That had
frightened no one whom we wanted away. But
looking back it must have been a sore trial. My
own wife was totally resilient in dealing with my
odd hours and absences and our young children
saw little of me. Happily the other young wives
were tough too, though it must have been less
easy for them to understand the voracious
demands of what we were about.

—Caminer!"?

The team now began to be expanded, with
individuals drawn from within Lyons but soon
also with new graduates, and questions of how
to select and train them had to be considered.
This gave rise to an aptitude test (essentially a
simple exercise in programming) and a train-
ing course, both designed by Caminer. Both ran
regularly (with occasional adaptations as the
technology developed) for some ten years and
were much praised by LEO’s customers.

Month-long training courses were established
which converted newcomers in a short time into
active contributors. The existing staff were the
instructors and the evaluators. Students quickly
became teachers.

—Caminer?®

The challenge accomplished

The new input and output system came
online in 1953 and the first pilot runs of the
payroll took place that June. The Lyons organ-
ization was understandably cautious about
committing anything as sensitive as the pay of
their employees to a system as innovative and
vulnerable as this, so a long series of pilot, then
parallel runs took place.

Parallel running, as its name implies,
involved comparing the computer’s results, in
detail, with those produced by the noncom-
puter system and explaining any differences (by
no means were the errors always by the com-
puter system!). Though costly and tedious, this
process was essential not only to getting the

IEEE Annals of the History of Computing

computer system right but also to building
management’s confidence in it. Parallel running
was an accepted Lyons practice for noncom-
puter systems, but once again it was the first
time that system proving on such a scale had
been done by anybody. Eventually the first live
run took place in February 1954, and 10,000
employees were on the system by the summer
of that year. Lyons would not go beyond that
number while there was only one computer,
and contingency plans for making emergency
payments remained in place for some years.
However, they were never needed. The system
ran every week and though, of course, there
were both hardware and software problems
from time to time it never failed to deliver.

There was extensive press coverage of the
first live runs. The Economist, for example, was
moved to futuristic speculation:

A year or so ago, a suggestion that one of those
thinking robots, the electronic brains, should be
put to tasks so mundane as the counting of
pounds, shillings, and pennies for a weekly wage
packet would have been greeted with general
scepticism. Now that it has actually happened,
preconceived opinions about the type of machine
suitable for office and accounting work have
received a severe jolt... Is this the first step in an
accounting revolution or merely an interesting
and expensive experiment? There are those who
do not believe in the desirability of introducing
anything as esoteric as electronics into business
routine at all. Others believe that there is a limit-
ed field for electronic methods, providing that
they fit into, and do not disrupt, established busi-
ness systems. But there is a third group—of which
Lyons is one—who consider that a major revolu-
tion in office methods may be possible...
Electronic computors [sic] were essential for the
development of atomic physics and are rapidly
becoming a necessity for aircraft and missile
development. Might they not also have a valu-
able, if less spectacular, contribution to make to
improving business efficiency? ...To save time
and labour is always worth while. But what may
be more important in the long run is the prospect
of doing calculations on electronic computors
that would simply not be possible by normal
methods because of the time that they would
take. This has opened up fresh fields in science; it
may conceivably do the same in business.?!

Teashops Distribution was not far behind
the payroll. It went live in October 1954 and
ran regularly and dependably every day there-
after. Its inventiveness, and in particular the
work it saved the manageresses every day, was

quickly recognized and acknowledged. After
only a few days of operation, the daily report
from the Wembley teashop said “the head staff
at this shop would like to give thanks for LEO.
This is a wonderful time-saver, work saver, and
we are grateful for it.” As the manageresses were
a notoriously crusty group this was a most sat-
isfying achievement.

Reserve Stores and Tea Blending also suc-
cessfully went live during this period. Reserve
Stores was a short-lived job because its necessi-
ty went away with the abolition of rationing.
Tea Blending continued to run (on successive
generations of hardware) for at least 25 years
and may still be in operation in recognizable
form today—which would make it the world’s
oldest business application.

The LEO team, therefore, had gone from the
completely green field of 1949—no hardware,
no experience anywhere of computer systems
analysis, computer systems design, or business
programming—to four major live applications
and a large number of minor ones in just more
than five years. Except for the magnetic tape
problems that time could have been consider-
ably shorter. The major applications were
sophisticated even by current standards— they
also were economically successful and satisfied
their users. The number of people who had
achieved all this was extraordinarily small: up
to the go-live of Bakery Valuations, fewer than
20 people in total (management, design and
maintenance engineers, “programmers,” secre-
taries, data preparation staff) had taken part. By
1954 the systems engineering team had risen
to about ten, none of them of course with any
previous experience.

Spreading beyond Lyons

This is an impressive story, but of course it
is only the beginning of the story of systems
engineering. The leading role in that story con-
tinued to be LEO’s for at least another five
years, as a number of striking new develop-
ments now took place. Further major applica-
tions for Lyons were initiated. Outside
customers, impressed by what Lyons had
achieved, began to commission systems from
the LEO team. Lyons management not only
approved the building of a second machine for
the company but also agreed that LEO could
make machines for customers. The teashops
company was now in the computer business.
The systems engineering principles and prac-
tices developed during the formative period
turned out to be generally applicable.

The first major outside customer was the
Ford Motor Company. They knew and respect-

ed Simmons through the Institute of Office
Management (now the Institute of
Administrative Management in London), of
which he was a leading light. Ford managers
visited Lyons to see the payroll system and
commissioned a payroll system of their own to
run on LEO’s machine. Obviously they could
not use the Lyons software as it stood, but the
principles were similar and quite a lot of the
program code was actually copied. Caminer
produced a draft specification in May 1955; the
order was placed in August, parallel running
started in November, and the first live run was
in December. For a major custom-built system
this timescale still seems incredible.

Many other customers followed, initially for
jobs to be run on LEO’s machines (the second
went live in May 1957) and then for machines
of their own. The first customers had strong O
& M teams of their own and an approach simi-
lar to that at Lyons was possible—with the LEO
systems engineers collaborating with the cus-
tomers’ O & M. Caminer personally specified
the Stewarts and Lloyds (a steel firm) payroll
and others. Indeed members of the LEO team
were still writing specifications and designing
systems for customers—often in the form of
elaborate presales proposals—in the 1960s.

However, a notable difference gradually
became apparent between customer and Lyons
work, that is, the customers had reduced room
for maneuver in systems analysis and design. In
Lyons there was a general understanding that the
efficiency and effectiveness of any business
process could and should be improved, and that
computerization was an excellent opportunity
for doing so. For many customers radical change
in working practices was not an option. Top
management were in most cases not sufficiently
committed to push such radical change through,
even if they recognized it as desirable. These
managers were therefore looking for something
that saved money but did not aim at uncom-
fortably realized optimization. In many cases
they had a background in punched card systems,
and saw a computer as an enhancement of unit
record equipment rather than as a major, liber-
ating innovation. LEO was able to satisfy such
customers, but the team was always happiest
dealing with the minority of adventurous cus-
tomers who saw the computer’s true potential.

There were indeed customers who expanded
LEO’s thinking. One early example is that Lyons
had resolved that alphabetic (in addition to
numeric) printed outputs were an expensive lux-
ury and that all results should be coded as num-
bers. The first customer to buy a LEO machine,
the tobacco manufacturer W.D.& H.O.Wills, saw

July-September 2000

13

14

Systems Engineering

the extra flexibility and user friendliness of
alphabetic printing and insisted upon it.

In the 1950s and early 1960s adventurous
customers for business systems may have been
commoner in the United Kingdom than in the
United States. There was an important differ-
ence in the economics of computing between
the two countries. In the US labor costs were
high, so cautious computer systems—easy to
implement but falling far short of exploiting
computers’ true potential— could readily be
justified by quite minor staff savings. As a
result, most early US business systems did not
depart far from the pattern established using
punched cards (much to the benefit of IBM). In
the UK, by contrast, labor was cheaper so unad-
venturous systems were harder to justify.

The strategy by which LEO specified and
designed adventurous customers’ systems (it
could be regarded as an early manifestation of
outsourcing) was successful but could not be sus-
tained indefinitely. Customers were encouraged
to hire their own professional staff, often from
LEO, and gradually took over these tasks for
themselves. However, by the late 1950s the
majority of the world’s sophisticated business
computer applications were still LEO designed,
or designed by systems engineers trained by LEO,
in accordance with the principles laid down by
Caminer and his staff, although by then the
competition was beginning to catch up.

Commentary

The list of LEO world firsts in systems engi-
neering is impressive but perhaps a more
important question is which of LEO’s achieve-
ments lasted to become part of world best prac-
tice. It is also interesting to ask what, with
hindsight, LEO got wrong.

The list of firsts goes like this:

¢ Lyons employees conceived the idea of
using computers for business administration
before anybody else.

e Caminer specified the first business applica-
tions of computers both inside and outside
Lyons and, with his team, designed the
systems.

e These early specifications and designs pio-
neered flowcharts, file design, form design
for input and output documents, in-pro-
gram reconciliations, and restart procedures.

e More subtly, LEO developed the concepts of
systems integration (entering data once and
squeezing the most out of it) and of han-
dling error-prone data without human
intervention.

e The developed systems involved business

IEEE Annals of the History of Computing

process reengineering, and included time-
critical and decision support systems as well
as systems initiating operational action
rather than reacting to it.

¢ Hemy established the disciplines for writing
the long, complex programs characteristic
of business systems and, with his team,
wrote the first such programs.

e LEO created the disciplines of checking pro-
grams offline, debugging them, and carry-
ing out large scale pilot and parallel
running.

e LEO set up the first professional computer
data preparation unit and the first profes-
sional computer operators.

What were the lasting achievements? By the
time I joined LEO (in 1958, some five years
after parallel running of the Lyons payroll
began, and a few months after the delivery of
the first LEO machines to outside customers),
there was a highly professional systems engi-
neering department, including customer
employed as well as LEO staff, constantly
applying all the lessons of the early applica-
tions. Further experience was of course contin-
ually adding to good practice but the principles
were remarkably unchanged and survived the
advent of magnetic tape, operating systems,
and other upheavals. Most of the principles
remain sound today; though some are now
concealed in software (for example, operating
procedures) and some have been overtaken by
technological advance (for example, the need
for in-program reconciliations). Some are neg-
lected though they should not be (such as flow-
charting and offline program checking).?

LEO, and to a lesser extent its successors
English Electric and ICL, continued to teach
those principles and their further enhance-
ments for many years. However other comput-
er companies by the early 1960s were teaching
their own versions, and the cohesion and dis-
cipline of LEO’s approach gradually disap-
peared. Much of that approach was obvious
good practice and was reinvented (and is still
being reinvented) elsewhere. LEO’s historical
claim is not that its thinking was unique but
that it did it first and it did it whole heartedly.

What did LEO get wrong in the field of sys-
tems engineering??® In the early days it went up
some blind alleys (for example, a very complex
set of flowcharting symbols or a program struc-
ture based on closed subroutines like those
used for mathematical algorithms), but perhaps
more importantly it lacked the resources or
time to try alternative approaches and then use
the winner.

We always had to choose right first time and not
being on Olympus didn’t always succeed.
—Caminer?*

LEO may have missed an opportunity to
reuse systems and coding (moving towards soft-
ware packages), but the hardware constraints of
space and time made anything other than intel-
ligent Chinese copying infeasible until the late
1950s. LEO indeed got so good at Chinese copy-
ing that it missed the importance of forward
compatibility, which IBM exploited so well in
the 1960s. It was very dependent on high-qual-
ity individuals working extremely hard, which
was not sustainable over the long term. The
LEO approach was inward looking and in an
ideal world the group would perhaps have
deliberately spread its hard-won good practice
to universities, business schools, software hous-
es, consultants, other computer manufacturers,
and so on. However, the time was not ripe,
effort was scarce, and the task did not appeal to
Lyons, not least for commercial reasons. Some
dissemination did take place through the export
of LEO people, not only to customers but to
other companies both in the UK and abroad.

Systems engineering was invented in many
places in many ways, it must be admitted. It
emerged from punched card and other office
machine techniques in the manufacturers of
those devices and in the customers who used
them, from engineering practice in engineer-
ing companies, from accounting practice in
financial departments, from trial and error
everywhere. David Caminer and his team did
it very early, very successfully, through a com-
bination of prior experience, intuition, and
conscientious and imaginative learning on the
job, and set a standard of best practice that was
unique for its time.

References

1. This paper is a revised and expanded version of
one presented and published under the same
title in Proc. Kiev Symp. Computers in Europe: Past,
Present, and Future, Int’l| Charity Foundation for
History and Development of Computer Science
and Technology, 1998

2. D. Caminer et al., LEO—The Incredible Story of the
World'’s First Business Computer, McGraw-Hill,
New York, 1998. (UK edition: User-Driven Innova-
tion, McGraw-Hill, Maidenhead, 1996.)

3. P. Bird, LEO, the First Business Computer, Hasler
Publishing, Wokingham, 1994.

4. The background is examined more closely in).
Hendry, “The Teashops Computer Manufactur-
er,” Business History, Vol. 29, No, 8, 1986 and in
F.F. Land, “The First Business Computer: a Case

Study in User-Driven Innovation,” Proc. Kiev Sym-
posium, 1998, and in this Annals issue.

5. Cambridge University gave the title of

“Wrangler” to its top mathematics graduates.
6. J.R.M. Simmons, LEO and the Managers, Macdon-
ald, London, 1962. p. 25.

7. Note from Caminer to Aris, May 1998.

. Note from Caminer to Aris, May 1998.

9. D. Caminer, “LEO and Its Applications: The
Beginning of Business Computing,” Computer
Journal, Vol. 40, No. 10, 1997.

10. Note from Caminer to Aris, May 1998.

11. D. Caminer, “...And How to Avoid Them,” Com-
puter Journal, Vol. 1, No. 1, 1958.

12. Note from Caminer to Aris, May 1998.

13. Note from Caminer to Aris, May 1998.

14. These systems are described in F.F. Land,
“Systems Analysis for Business Applications,” Res-
urrection, Summer 1996.

15. Note from Caminer to Aris, May 1998.

16. Note from Caminer to Aris, May 1998.

17. Fascinating material on the early days of
programming, supplied by Derek Hemy, will be
found in Bird, op. cit., pp. 52-62.

18. Note from Caminer to Aris, May 1998.

19. Note from Caminer to Aris, May 1998.

20. Note from Caminer to Aris, May 1998.

21. "Electronic Abacus,” The Economist, 13 March
1954, pp. 789-791.

22. Comparisons between LEO and modern practice
can be found in J.B.B. Aris, “Systems Design—
Then and Now,” Resurrection, Summer 1996.

23. The wider question of why LEO did not sustain its
world lead in business computing to become a
dominant supplier is intriguing but beyond the
scope of this paper. It is the subject of a so far
unpublished note from Caminer, dated 19 July
1998, to the author.

24. Note from Caminer to Aris, August 1998.

[e]

John Aris joined LEO Comput-
ers immediately after graduating
in classics from Oxford in 1958.
He worked for LEO and its suc-
cessors until 1975, when he
became head of computer devel-
opment at Imperial Group.
From 1985 to 1990 he was director and chief executive
of the UK National Computing Centre. Since 1990 he
has been associated with the IMPACT Programme,
which he founded.

Readers can contact the author by e-mail at
johnbaris@aol.com.

July-September 2000

15

