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ABSTRACT

The two well-known fast multipliers are those presented by Wallace and Dadda. Both consist of three stages. In
the first stage, the partial product matrix is formed. In the second stage, this partial product matrix is reduced
to a height of two. In the final stage, these two rows are combined using a carry propagating adder. In the
Wallace method, the partial products are reduced as soon as possible. In contrast, Dadda’s method does the
minimum reduction necessary at each level to perform the reduction in the same number of levels as required by a
Wallace multiplier. It is generally assumed that, for a given size, the Wallace multiplier and the Dadda multiplier
exhibit similar delay. This is because each uses the same number of pseudo adder levels to perform the partial
product reduction. Although the Wallace multiplier uses a slightly smaller carry propagating adder, usually this
provides no significant speed advantage. A closer examination of the delays within these two multipliers reveals
this assumption to be incorrect. This paper presents a detailed analysis for several sizes of Wallace and Dadda
multipliers. These results indicate that despite the presence of the larger carry propagating adder, Dadda’s
design yields a slightly faster multiplier.
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1. INTRODUCTION

The two well-known fast multipliers are the column compression multipliers presented by Wallace [1] and Dadda
[2]. Both of these multipliers consist of three stages. In the first stage, the partial product matrix is formed. In
the second stage, this partial product matrix is reduced to a height of two. In the final stage, these two rows
are combined using a carry propagating adder. In the Wallace method, the partial products are reduced as soon
as possible. In contrast, Dadda’s method does the minimum reduction necessary at each level to perform the
reduction in the same number of levels as required by a Wallace multiplier.

Because each method uses the same number of pseudo adder levels to perform the partial product reduction
it is generally assumed that, for a given size, the Wallace multiplier and the Dadda multiplier exhibit similar
delay. However, as the Wallace multiplier requires a smaller carry propagating adder, it is sometimes assumed
to be the faster of the two methods [3]. A closer examination of the delays within these two multipliers reveals
this assumption to be incorrect. This paper presents a detailed analysis for several sizes of Wallace and Dadda
multipliers. These results indicate that despite the presence of the larger carry propagating adder, Dadda’s
design yields a slightly faster multiplier.

This paper considers unsigned multipliers with multiplicands and multipliers of equal size. Baugh and Wooley
[4] have presented the modifications required to use signed operands with column compression multipliers. The
remainder of this paper is organized as follows. Sections 2 and 3 review Dadda’s multiplier design methodology
and Wallace’s multiplier design methodology respectively. Section 4 describes the gate level examination used
to compare these two methodologies for delay and area. Section 5 presents the results of calculations for Dadda
and Wallace multipliers of varying operand sizes. Section 6 provides conclusions.
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2. DADDA MULTIPLIERS

Dadda multipliers are a refinement of the parallel multipliers first presented by Wallace in 1964 [1]. Thus both
multiplier methodologies consist of three stages. The partial product matrix is formed in the first stage by N2
AND gates. In the dot diagram notation developed by Dadda [2] each partial product is represented by a dot.
The dot diagram for an 8 by 8 Dadda multiplier is shown in Figure 1. The eight rows of eight dots each at the
top of the figure represent the partial product matrix formed by the AND gates.

In the second stage the partial product matrix is reduced to a height of two. Dadda replaced Wallace’s pseudo
adders in this stage with parallel (n,m) counters. A parallel (n,m) counter is a circuit which has n inputs and
produce m outputs which provide a binary count of the number of ONES present at the inputs. A full adder is
an implementation of a (3,2) counter which takes 3 inputs and produces 2 outputs. Similarly a half adder is an
implementation of a (2,2) counter which takes 2 inputs and produces 2 outputs. Although other sizes of counters
are possible as discussed by Dadda [5], this paper considers Dadda and Wallace multipliers with compression
trees consisting only of (3,2) and (2,2) counters.

Dadda multipliers use a minimal number of (3,2) and (2,2) counters at each level during the compression to
achieve the required reduction. The reduction procedure for Dadda compression trees is given by the following
recursive algorithm [6].

1. Let d; =2 and dj41 = [1.5-d;]|. Dj is the height of the matrix for the ji* stage. Repeat until the largest
jth stage is reached in which the original N height matrix contains at least one column which has more

than d; dots.

2. In the j'* stage from the end, place (3,2) and (2,2) counters as required to achieve a reduced matrix. Only
columns with more than d; dots or which will have more than d; dots as they receive carries from less
significant (3,2) and (2,2) counters are reduced.

3. Let j = j — 1 and repeat step 2 until a matrix with a height of two is generated. This should occur when
j=1

The dot diagram shown in Figure 1 shows this algorithm implemented for an 8 by 8 multiplier. Four reduction
levels are required with matrix heights of 6, 4, 3, and 2. In the figure, two dots joined by a diagonal line indicate
that these two dots are the outputs from a (3,2) counter. Similarly two dots joined by a crossed diagonal line
indicate that these two dots are the outputs from a (2,2) counter. 64 AND gates, 35 (3,2) counters, 7 (2,2)
counters, and a 14-bit carry propagating adder are required to form the 16-bit product.

The number of (3,2) and (2,2) counters required for a Dadda multiplier depends on N, the number of bits of
the operands, and is determined as follows [7].

(3,2) counters = N> —4- N +3
(2,2) counters = N — 1

Dadda’s scheme for placing these counters was determined to be optimal by Habibi and Wintz [8]. Dadda
multipliers require fewer (3,2) and (2,2) counters during the compression stage than do the corresponding Wallace
multipliers.

Once the matrix has been reduced to a height of two, the final stage consists of using a carry propagating
adder to produce the final product. The size of the final carry propagating adder is determined as follows [7].

CPA length=2-N —2

Within this paper Ripple Carry Adders (RCA) and Carry Lookahead Adders (CLA) will be considered as final
carry propagating adders.
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Figure 1. Dot Diagram for an 8 by 8 Dadda Multiplier

3. WALLACE MULTIPLIERS

For Wallace multipliers the partial products are formed by N? AND gates in the same manner as for Dadda
multipliers. Next the N rows of partial products are grouped together in sets of three rows each. Any additional
rows that are not a member of a group of three are transferred to the next level without modification. Within
each group of three rows, (3,2) counters are applied to the columns containing three bits and (2,2) counters are
applied to the columns containing two bits. Columns containing only a single bit are transferred to the next level
unchanged. The height of the matrix in the jth reduction stage, w; is given by the following recursive equations
[9].

w():N

Wit =2- L%J + w; mod 3

As for the Dadda multipliers, when the matrix has been reduced to a level with a height of two, a carry
propagating adder is used to perform the final addition whose sum is the product of the multiplication. Wallace
and Dadda multipliers each require the same number of levels to perform the reduction to a level with a height of
two, however, the heights of the different levels can vary between the two methodologies. Although Wallace and
Dadda multipliers contain nearly identical numbers of full adders, more of the Wallace full adders are applied
during the reduction of the matrix. This and the additional half adders used in a Wallace reduction result in
the shorter final carry propagating adder.

A dot diagram for an 8 by 8 Wallace multiplier is shown in Figure 2. Four reduction stages are required with
matrix heights of 6, 4, 3, and 2. 64 AND gates, 1 OR gate, 38 (3,2) counters, 15 (2,2) counters, and a 10-bit
carry propagating adder are required to form the 16-bit product.



O
e

cod N S
e

O

e i

Figure 2. Dot Diagram for an 8 by 8 Wallace Multiplier

The number of (3,2) counters and the size of the final carry propagating adder required for a Wallace multiplier
depends on N, the number of bits of the operands, and S, the number of stages in the reduction, and can be
determined as follows [7].

3<N<5

(3,2) counters = N* —4-N +3+ S
CPA length=2-N—-2- 5

5< N
(3,2) counters = N? —4-N +2+ S
or

(3,2) counters = N> —4-N +1+ S
CPA length=2-N-1-S§

The number of (2,2) counters required by a Wallace multiplier is either equal to or greater than N. While
always at least IV, this number is often much greater than IV and results in Wallace multipliers typically requiring
more gates, thus more area, than the corresponding Dadda multipliers despite the smaller final carry propagating
adder.



4. DELAY METHODOLOGY

Typically when the delays of Dadda and Wallace multipliers are compared, the number of reduction levels is
compared as well as the size of the final carry propagating adder. Each reduction level is considered to have
a delay equivalent to the delay of a (3,2) counter and the final carry propagating adder the appropriate delay
for its type. Using this methodology the two designs are assumed either to exhibit similar delay or the Wallace
multiplier is assumed to be faster due to the slightly smaller carry propagating adder. With closer examination
these assumptions are revealed as incorrect.

The multiplier designs considered here are composed of (3,2) counters which are composed of nine gate full
adders [10]. These gates are limited to 2-input AND and 2-input OR gates as well as inverters. The (2,2) counters
are implemented using four 2-input gates. Due to the limitation on the number of inputs to the gates, each gate
will be considered to be roughly equivalent in speed and area and gate counts will be used to determine relative
speed and area for the two designs.

On the left side of Figure 3 is the dot diagram for a 4 by 4 Dadda multiplier. The top matrix representing
the formation of the partial products contains sixteen dots. On the right side of Figure 3 is the corresponding
delay diagram for this multiplier. As each partial product has been formed by a two-input AND gate each dot
is represented by a 1 which gives the delay through each AND gate in forming the partial product matrix.
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Figure 3. Dot Diagram for a 4 by 4 Dadda Multiplier and the Corresponding Delay Diagram

The first reduction level in a 4 by 4 Dadda multiplier is to a height of three. This requires two (2,2) counters
to be applied, one to the column which contains four dots, and the other to the column on its left which has
only three dots but which will receive an additional dot from the first (2,2) counter. These two (2,2) counters
are represented in the dot diagram on the left. The delay through a (2,2) counter is 3 gate delays for the least
significant bit which corresponds to the sum for a half adder and 1 gate delay for the most significant bit which
corresponds to the carry for a half adder, (assuming that all inputs arrive simultaneously). Thus in the delay
diagram on the right of Figure 3 the two 4s in the first row represent the least significant bits from the two (2,2)
counters and the two 2s in the second row represent the most significant bits from the two (2,2) counters. All
of the other partial products have been passed to the second level unchanged as reflected by the ONES in the
matrix.

The second reduction level is to a height of two. This requires one (2,2) counter and three (3,2) counters as
shown in the dot diagram. The delay through a (3,2) counter is 6 gate delays for the least significant bit which
corresponds to the sum for a full adder and 5 gate delays for the most significant bit which corresponds to the
carry for a full adder, (assuming that all inputs arrive simultaneously). The 2 and the 4 in the third matrix
represent the outputs of the (2,2) counter. The pair, 7 and 6, immediately to the left of the 4 and 2 represent
the output of the (3,2) counter on the right which has inputs with delays of 1, 1, and 4. The pair, 7 and 8,
represent the output of the (3,2) counter in the middle which has inputs with delays of 1, 2, and 4. The output
of the left (3,2) counter which has inputs with delays of 1, 2, and 1 is the pair, 7 and 6, on the left side of the
matrix. Five of the partial products are brought to this level unchanged represented by the ONESs.



A 6-bit RCA completes the multiplication. The inputs to the half adder arrive at 1 and 1 producing a carry
at 2 and the sum bit at 4. The carry at 2 and the unmodified partial product bit are used by the next full
adder to produce a carry at 7 and a sum bit at 8. The carry continues to ripple through the final adder and
the corresponding sum bit arrival times are shown for each bit position. The overall delay of the 4 by 4 Dadda
multiplier is found to be 19 gate delays using this methodology.

On the left side of Figure 4 is the dot diagram for a 4 by 4 Wallace multiplier. The top matrix representing
the formation of the partial products contains sixteen dots. On the right side of Figure 4 is the corresponding
delay diagram for this multiplier. As before for the Dadda multiplier each dot is represented by a 1 which gives
the delay through the AND gates which form the partial products.
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Figure 4. Dot Diagram for a 4 by 4 Wallace Multiplier and the Corresponding Delay Diagram

The first reduction level in a 4 by 4 Wallace multiplier is to a height of three. Grouping the top three rows of
the partial product matrix results in two columns containing three dots, two columns containing two dots, and
two columns containing a single dot. This grouping requires two (3,2) counters to be applied to those columns
which contain three dots and two (2,2) counters to be applied to those columns which contain two dots. These
counters are represented in the dot diagram on the left side of Figure 4. In the corresponding delay diagram on
the right side of Figure 4 the two pairs of 4 and 2 are the outputs of the two (2,2) counters and the two pairs
of 6 and 7 are the outputs of the two (3,2) counters. The two ONES in the top row correspond to the columns
in the grouping which had single dots and were unchanged. At the bottom of the matrix is the fourth row from
the partial product matrix which has been brought to this level unmodified.

The second reduction level is to a height of two. The three rows form one grouping which requires one (2,2)
counter and three (3,2) counters. The pair, 8 and 10, correspond to the outputs of the (2,2) counter which has
inputs of 2 and 7. The pair, 11 and 12, correspond to the outputs of the (3,2) counter on the right which has
inputs of 1, 6, and 7. The pair, 9 and 10, correspond to the outputs of the (3,2) counter in the middle which
has inputs of 1, 6, and 4. The pair, 6 and 7, correspond to the outputs of the (3,2) counter on the left which
has inputs of 1, 2, and 1. Two partial products from the original partial product matrix remain unchanged
represented by the two ONES.

A 4-bit RCA completes the multiplication. The first three low order bits of the product are already computed.
The inputs to the half adder are 8 and 12 which produce a sum at 15 and a carry at 12. The carry ripples through
the adder producing the corresponding sum bit arrival times as shown for each bit position. The overall delay
of the 4 by 4 Wallace multiplier is found to be 21 gate delays using this methodology.

The delay diagram for the 8 by 8 Dadda multiplier whose dot diagram was shown in Figure 1 is shown in
Figure 5. The top matrix representing the formation of the partial products contains sixty-four ONES, comprised
of eight rows of eight ONES each. The first reduction level in the 8 by 8 Dadda multiplier is to a height of six
as shown. The next reduction level is to a height of three and illustrates the use of the following heuristics for
the interconnections between the levels.
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Figure 5. Delay Diagram for an 8 by 8 Dadda Multiplier with a Ripple Carry Final Adder

1. The delay numbers in any given column are considered from lowest to highest regardless of their row
position within the column.

2. Once the number of (3,2) and (2,2) counters has been determined from the dot diagram, inputs are assigned
from lowest to highest delay values, first to (3,2) and then to (2,2) counters in each column.

3. If any column has remaining dots left to be transferred to the next level unchanged, those delay values
with the highest numerical values are the ones that should be transferred.

One example application of these heuristics can be seen in the second reduction level in Figure 1. In the sixth
column from the left, two (3,2) counters are placed. The first (3,2) counter receives inputs at gate delays of 1, 1,
and 1 and produces outputs at gate delays of 6 and 7. The second (3,2) counter receives inputs at gate delays of
2, 6, and 7 and produces outputs at gate delays of 11 and 12. An application of the last heuristic can be seen in
the third reduction level. In the fifth column from the right, a (3,2) counter is placed. It receives the inputs at
gate delays of 1, 1, and 1 producing outputs at gate delays of 6 and 7 while the remaining data in the column
with a gate delay value of 4 is transferred to the next level unchanged.

The delay diagram for the 8 by 8 Wallace multiplier whose dot diagram was shown in Figure 2 is shown in
Figure 6.

5. RESULTS

Dadda and Wallace multipliers with operand sizes of 4, 8, 16, and 32 bits are compared within this section.
The multipliers containing ripple carry adders for the final carry propogating adder are composed entirely of
two-input AND gates, two-input OR gates, and inverters. Table 1 presents the delay comparisons for all four
sizes of multipliers containing ripple carry final adders. Despite the presence of longer carry propagating adders
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Figure 6. Delay Diagram for an 8 by 8 Wallace Multiplier with a Ripple Carry Final Adder

within the Dadda multipliers, each is faster than the corresponding Wallace multiplier by 9% - 14%. Table 1 also
provides the corresponding complexity comparison for these multipliers. For the smallest pair of multipliers, the
results are the same. However, as the size increases there becomes a 5% increase in the number of gates required
to implement the Wallace multiplier over the Dadda multiplier. Thus Wallace multipliers containing ripple carry
final adders are found to be both larger and slower than the corresponding Dadda multipliers with respect to
gate delay calculations and the number of gates required for implementation.

Table 1. Delay and Complexity Comparisons for Multipliers with RCAs
| Multiplier Size || Dadda Delay | Wallace Delay || Dadda Complexity | Wallace Complexity |

Aby 4 19 (100%) 21 (111%) 104 (100%) 104 (100%)
8 by 8 37 (100%) 42 (114%) 528 (100%) 552 (105%)
16 by 16 69 (100%) 77 (112%) 2336 (100%) 2476 (106%)
32 by 32 133 (100%) 145 (109%) 9792 (100%) 10283 (105%)

Multipliers containing carry lookahead adders for the final carry propogating adder are also considered. These
multipliers are composed only of two-input AND gates, two-input OR gates, and inverters for those portions of
the circuit which form the partial products and for the compression, but these multipliers also contain three-
input AND gates, three-input OR gates, four-input AND gates, and four-input OR gates within the final adder
portion of the circuit. Modified full adders containing only two-input gates as described in [10] are used within
the carry-lookahead blocks to generate the initial generates and propagates. Thus four bit carry lookahead blocks
are used although they add a slightly optimistic bias to the delay and complexity results if these multipliers are
compared with the ripple carry versions.

Table 2 presents the delay comparisons for all four sizes of multipliers containing carry lookahead adders. The



Dadda multipliers are slightly faster than the corresponding Wallace multipliers for each size considered despite
the larger carry lookahead adders required. For the smallest pair of multipliers, the Dadda multiplier requires
two levels of carry lookahead logic, while the Wallace multiplier requires only one. Despite this, all of the Dadda
multipliers retain a slight advantage. Table 2 also provides the corresponding complexity comparison for these
multipliers. Due to the extra level of carry lookahead logic for the smallest multiplier, the Dadda multiplier
requires more gates than the corresponding Wallace multiplier. For all of the larger multipliers however, the
Wallace multipliers again require approximately 5% more gates than the corresponding Dadda multipliers. Thus
Dadda multipliers are found to be faster than the corresponding Wallace multipliers for all sizes considered and
to require fewer gates for every size except the smallest.

Table 2. Delay and Complexity Comparisons for Multipliers with CLAs
| Multiplier Size || Dadda Delay | Wallace Delay || Dadda Complexity | Wallace Complexity |

Aby 4 15 (100%) 18 (120%) 120 (100%) 112 (93%)
8 by 8 29 (100%) 31 (107%) 573 (100%) 582 (102%)
16 by 16 43 (100%) 45 (105%) 2440 (100%) 2557 (105%)
32 by 32 54 (100%) 56 (104%) 10013 (100%) 10475 (105%)

6. CONCLUSIONS

This paper has presented a gate level comparison of Dadda and Wallace multiplier areas and delays. Although it
has generally been assumed that a Wallace multiplier yields a slightly faster design due to its smaller final adder,
a closer examination of the delays within these two multipliers considered at the gate level rather than at the full
adder level has proven this assumption to be incorrect. Results have been presented for multipliers of varying
operand sizes with both ripple carry and carry lookahead final adders which confirm that Dadda multipliers are
both faster and smaller than the corresponding Wallace multipliers.
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