SPECIAL
COMPUTATIONAL
INSTRUCTIONS

The instructions presented in the preceding chapter dealt with data transfers
(loading and storing information) and elementary arithmetic operations (addition
and subtraction). This chapter describes more advanced computational instruc-
tions such as square root and exponentiation. These instructions perform opera-
tions on the top-of-stack register(s) and thus always treat the 8087 as a simple
stack.

The special computational instructions can be subdivided into special
arithmetic instructions and elementary transcendental instructions as shown in
table 6.1. The formats for these instructions are shown in figure 6.1.

Special Arithmetic Instructions

The special arithmetic instructons are absolute-value, change-sign, round-to-
integer, extract, square-root, scale, and remainder.

The absolute-value instruction (FABS) changes the sign bit of the top-of-stack
register to 0 (non-negative), and the change-sign instruction (FCHS) inverts the sign
of the top-of-stack register,

The round-to-integer instruction (FRNDINT) does nothing if the stack top is an
integral value; otherwise, the instruction converts the stack-top value to one of the
two integral values bounding it, as determined by the rounding mode.

The extract instruction (FXTRACT) decomposes the stack-top value into its ex-
ponent and significand. The stack-top value is removed from the stack, and the ex-
ponent followed by the significand are then pushed on the stack. For example, if

a7

98 THE 8087 PRIMER

Table 6.1 Special Computational Ins_tructinns_

Special Arithmetic Instructions

mAemonic function

FABS absolute wvalue

FCHS change sign

FRNDINT round to integer

FXTRACT extract exponent and significand
FSOQRT square root

FSCALE scale

FPREM partial remainder

Elementary Transcendental Instructions

mnemonic function
FPTAN partial tangent
FPATAN partial arctangent
FYL2X y*log,(x)
FYL2XP1 y*log,(x + 1)
F2XM]1 2*=1

the stack top has the value 1.5*2-20' FXTRACT would create 1.5*2° and
—-201*2° as the new stack-top and nextto-top values. FXTRACT is useful
whenever the exponent and significand must be operated on separately as, for ex-
ample, when performing binary to decimal conversions.

The 8087 square-root instruction (FSQRT) replaces the value in the top-of-
stack register with its square root. This instruction is unique to commercial
floating-point implementations in several ways. For one, it is as fast as a divide in-
struction (in fact, it is slightly faster because the 8087 does not have to check for
overflow or underflow since neither can occur). For another, it is as accurate (to
within one-half a unit in the last place of the significand) as the primitive functions
of add, subtract, multiply, and divide. And, finally, the square root is implemented
so that all rounding modes are available. Because of its speed and accuracy, users
of the 8087 can think of square root as if it were one of the primitive arithmetic
functions and not an operation to avoid,

The scale instruction (FSCALE) is obviously used to scale variables. It adds the
value (assumed to be integral) in the register below the stack top (this value is
called the scale factor) to the exponent of the stack-top value. This is a very fast
way of multiplying (dividing if scale facter is negative) by a power of two (scaling).
Note that the scale factor was not put in the top-of-stack register, but in the next
register below it. This makes it easy to scale a sequence of values, such as an array,
by the same factor; we simply load, scale, and store each array element with no
need for intermediate stack manipulations.

SPECIAL COMPUTATIONAL INSTRUCTIONS

s N A R

0 0 1

FSQRT — square root of ST(0)

il 82038 1

g O 1

FSCALE — scale ST(0) by ST(1)

e L S

g0

FPREM — partial remainder of ST(0) + ST(1)

T 1. 0D 1 1

0 0 1

FRNDINT — round ST(0) to integer

T

0 0 1|

FXTRACT — extract components of ST(0)

59 o 1 o

e

0O 0 1]

FABS — absolute value of ST(O)

[N S S

g i 1

FCHS — change sign of ST(0)

(i, S .

0 0 1|

FPTAN — partial tangent of ST(D)

& 1 @ 1

o 0 1|

FPATAN — partial arctangent of ST(0) = ST(1)

BT ERE

6.0 1)

F2xM1 — 25Ti0—

ST 10 0 1]

FYL2X — ST(1) - log,[ST(0)]

el dh a1 .1

0.0 1]

FYL2XP1 — ST(1) - log, [ST(0) + 1]

S b G e e e)
T N
11 f 91 0le o
1 £ 3 9 90 0]
fodu St Bde i 0
(4 &+ ¢+ 6.0 0@ 1]
o1 1 .0 0.0 0.0
B e i D e
[7 1 17 6 0 1.4
[A # % 14 D 6 0 6
B B e o e
i bt 1.1 B 0.1

Fig. 6.1 Formats of special computational instructions

100 THE 8087 PRIMER

-

The remainder instruction (FPREM) is unique to the 8087. It is used to
calculate exact remainders. We are emphasizing “exact” because that is what is
unique about it; no other floating-point operation is exact over its entire domain,
and no other computer provides this operation. The FPREM instruction is intended
to be used by system programmers so that they can provide us with reliable
transcendental functions over these functions’ entire domains.

To see why an exact remainder is useful for providing reliable transcendental
functions, consider the problem of calculating sin(1,000,000.5). The transcenden-
tal functions (like sin, cos, etc.) are computed by the 8087 using an approximation
that is good only when the argument is fairly small. Therefore, you can make use
of the fact that sin is periodic according to the relationship:

sin (x +2nw) = sin(x)

to reduce the argument to a small range. This is done by calculating the new
variable y as:

. X
y =remainder (E)

Now we know that 0 <y < 27 and that sin(x) = sin(y). The last equality holds only if
the remainder is exact and, unfortunately, on all machines except the 8087, it is
not.

Often the remainder is calculated as follows:

X

t= —
2w

y=t — (integer part of t)

The problem here is that t has been contaminated by roundoff error and, in fact, if
x is very large, t becomes an integer and y becomes zero. This “rounded” re-
mainder causes the periodic functions to lose their periodic properties. For exam-
ple, the common identities such as “cos?x +sin“x= 1" no longer hold. This is why
that remainder should be exact.

The remainder instruction produces an exact result because it performs its
operation by doing successive subtractions, much the same as we would do in
conventional pencil-and-paper long division. This could involve an extremely
large number of subtractions and tie the 8087 up for a relatively long time. If the
remainder instruction were allowed to complete all its subtractions without being
interrupted, a high priority interrupt routine might have to wait an unacceptakly
long time before gaining access to the 8087. For this reason FPREM is a partial re-

SPECIAL COMPUTATIONAL INSTRUCTIONS 101

mainder instruction; it does at most 64 subtractions and returns the result obtained
to that point even if there are more subtractions still to do. The condition-code bit
C2 is set to 1 if more subtractions are necessary and to 0 otherwise. Thus, the
following loop is necessary in order to calculate the complete remainder:

LOOP:
FPREM
if C2=1 go to LOOP

The number of subtractions was limited to 64 so the FPREM instruction would
never be slower than the FDIV instruction.

Note that after executing FPREM, three of the condition-code bits supposedly
reflect the least-significant three bits of the quotient (see table 4.3). This was in-
tended to simplify the task of reducing the argument of a function such as sin(x).
We would simply divide x by #/4 and then, depending on the octant that x is in,
compute either +sin, —sin, +cos, or —cos of either the remainder or m/4 minus
the remainder. The octant is obtained from the last three bits of the quotient,
hence the use of the condition-code bits.

However, it turned out to be very difficult to implement such condition-code
settings correctly, and nobody has been able to prove that the 8087's condition
codes do indeed return the correct octant in all cases (for less than 62 subtractions
it has been proven that the condition codes are correct). Furthermore, it's really not
essential that we know the octant since we could have reduced x by dividing by =,
then by 2 if necessary, and then by 2 again if still necessary. So what was thought
to be a useful feature early in the design of the 8087, was realized later not to be
necessary and is possibly not even implemented reliably. It's interesting to note
that none of Intel’s floating-point library routines use this feature.

Elementary Transcendental Instructions

The elementary transcendental instructions consist of two trigonometric in-
structions, two logarithmic instructions, and an exponential instruction. These in-
structions can be used to compute all the trigonometric, hyperbolic, logarithmic,
and exponential functions within a restricted range.

The reason for the restricted range on some instructions is to save microcode
space on the 8087 (microcode is a program stored within the 8087 that defines the
algorithms used by the processor). It required some special techniques to fit just
the restricted functions into the microcode. Thus, the 8087 performs what would
otherwise be the most time-consuming portion of the computation and leaves the
task of argument reduction to the user's program.

Trigonometric Instructions = All trigonometric and inverse trigonometric
functions can be computed from the elementary instructions FPTAN (tangent) and

102 THE 8087 PRIMER

FPATAN (arctan).

FPTAN computes two values, vy and x, from the stack-top value z where
y/x =tan(z). After executing FPTAN, z is removed from the top of the stack, and y
followed by x are then pushed on the stack.

The FPATAN instruction is the opposite of FPTAN. It calculates z = arc-
tan(y/x), where x is the stack-top value and y is next value on the stack. FPATAN
removes both y and x from the stack and then pushes z onto the stack.

The argument for FPTAN must lie in the range 0 <z < #/4. The operands for
FPATAN are assumed to obey the relationship 0<y<x. Note that the results
generated by FPTAN satisfy this relationship (since tan(z)=y/x<1 for z < n/4);
hence, FPATAN can use as arguments the results generated by FPTAN.

The argument range for FPTAN excludes the value zero. This was done to
simplify the microcode. Thus, tan(0) (or of any denormal for that matter) must be
detected by software and calculated as a special case. This presents no problems
since tan(z) = z for small z.

Both FPTAN and FPATAN are very accurate; their error is confined to a few
units in the last place of temporary-real format (i.e., at least 61 out of 64 bits are
correct). They are also fast; only about four times slower than divide. Because of
their speed and accuracy, these functions can be treated almost as if they were
primitive operations. FPTAN and FPATAN, along with FSQRT, form the basis of
all other trigonometric and inverse trigonometric functions as shown in table 6.2.

Table 6.2 Trigonometric Functions

A. Normal Trigonometric Functions

z = stack-top value prior to executing FPTAN
x,¥y = stack-top value and next value after dividing z by 2 and then executing FPTAN

2{y/x)
sin(z) =

[1 +{y/x)7]

[1=i{y/x}]
COS(Z) =

[T +(y/x)]

.)
tan(z/2) = —

X

X
cotfz/2) = —

SPECIAL COMPUTATIONAL INSTRUCTIONS

103

[T+ (y/x))
2(yix)

csclz) =

[T +(y/x)]
[1 = {y/x)?]

seclz) =

B. Inverse Trigonometric Functions

z = argument of desired inverse trigonometric function f

Xy = stack-top value and next value before executing FPATAN
s0 that resulting stack-top value is {(z)

rs ¥
arcsin{z) = arctan) =arctan (—
Ji1-2z)1 +2) X

f—= ¥
darccosiz) = 2* arctan =2* arctan (—

4% X
£
arctan(z) = arctan (?) =arctan)

1
aArccot(z) = arr:[an(-) =arctan (
L

sign (z) ¥
dArccsciz) = arctan _ - = arctan -
Jiz=1)z + 1) X

F—1) ¥
arcsec(z)=2* arctan =2* arctan | —
zZ+1 %

M| e

e

Note: These formulas must be used with care. The required argument reduction is not explicitly
stated and special arguments such as NAN, infinity, denormals, and zero must be dealt with

separately.

104 THE 8087 PRIMER

-

In the table, the trigonometric functions such as sin(z) are expressed in terms
of tan(z/2) rather than in terms of tan(z). It can be shown that computing sin(z) in
this manner greatly reduces the roundoff error. In fact, all the formulas appearing
in this table have been carefully chosen to reduce roundoff error as much as poss-
ible.

Note the subtle difference between computing trigonometric functions and in-
verse trigonometric functions. The former are computed by first executing the
FPTAN instruction on the desired argument (after reducing it to the required range)
and then performing arithmetic operations on the two results generated by the
FPTAN instruction. The latter are computed by first performing arithmetic opera-
tions on the desired argument and then executing the FPATAN instuction on the
two results generated by these arithmetic operations.

For example, sin(z) is computed by (1) placing z/2 on the top of the stack, (2)
executing FPTAN, thereby obtaining values called y and x on the top of the stack,
and (3) performing arithmetic operations to obtain 2(y/x)/[1 + (v/x)?]. Conversely,
arcsin(z) is computed by (1) performing arithmetic operations to obtain x which is
[(1=2z)(1 +2)]"? and y which is z itself, (2) placing v and x on the top of the stack,
and (3) executing FPATAN.

As stated above, the FPTAN instruction requires that its argument be less than
7/4. The process of turning a larger number into this range is called argument
reduction. In this case we can reduce a large argument by applying the identity
tan(x + n) =tan(x). In other words, if x > x, we first compute z=x mod =, and then
compute tan(x) instead of tan(z). Thus, although x can be any value, we only have
to be able to calculate tan(x) from 0 to . Also since tan(x + 7/2) = — cot(x), we can
reduce the interval to 0 to #/2. The identity tan(w/2 — x) =cot(x) where 0 <x < w/4
permits the required range to be reduced to 0 to /4.

All these identities are exact, but the computation of x mod = presents a major
problem. Since no commercial computer or minicomputer has a true floating-
point “mod” capability, the calculation of x mod = is usually done with a divide
and subtract; that is, x mod = is approximated by x/m — (integer part of x/w). This
means there will be roundoff error in the computation, even if extended precision
is used. Thus, not only is the function (tan, sin, etc.) calculated with roundoff error,
but so is the argument to the function.

Calculated (tan(x)) =tan*{x*) where * means rounding error

Consequently the calculated tan does not have true periodicity; thus, the
trigonometric identities are not even approximately satisfied.

As we have already seen, the 8087 has a true floating-point “mod” function
(FPREM) allowing x mod = to be calculated without roundoff error. You may ob-
ject that, since = is not exactly representable and must be represented by =*, we
still have a roundoff error in the argument reduction. It is true there is an error, but
it is not a roundoff error; rather it is a systematic error whose effect is simply to
change the period of the calculated tan to 7* instead of #. Since the calculated

SPECIAL COMPUTATIONAL INSTRUCTIONS 105

trigonometric functions are periodic and calculated to within a small roundoff er-
ror, the identities are satisfied to within a small roundoff error. (This is true as long
as w does not appear explicitly in the identity.) Therefore, by using temporary-real
precision and the “mod” function, the 8087 trigonometric functions remain ac-
curate and reliable.

Logarithmic Instructions = Two logarithmic instructions, FYL2X and
FYL2XP1, are provided on the 8087. They are calculated with a binary radix (that
is log,) since, on a binary machine like the 8087, implementing the instructions is
much simpler in radix 2 than in radix 10 or e. Logarithms with other radices can
be computed from the two instructions provided, as shown in table 6.3(A).

The first logarithmic instruction, FYL2X, takes two operands, x and y, where x
is on the stack top and y is next under x. The instruction replaces x and y with
y *log,(x). This instruction assumes that x > 0 (since the log function is defined only
for positive arguments) and y is any valid floating-point number. The factor y ap-
pears as part of the instruction because any practical use of log almost always in-
volves a multiplying factor. Examples illustrating such factors are:

log.(x) = y*log,(x) where y=log_(2)
log,,(x)=y*log,(x) where y=log,,(2)
x¥ = 2" log,txh

If the above instruction didn't include a multiplying factor, the multiplication
could be accomplished by following the logarithmic instruction with a multiplica-
tion instruction. The obvious advantages to a single instruction are decreased
execution time and decreased program size. A less obvious, but more important,
advantage is increased accuracy. The increased accuracy results because intern-
ally the factor log,(x) is calculated as accurately as possible to 67 bits, then
multiplied by y before being rounded to 64 bits. The three extra bits used here are
the bits usually used for rounding as discussed in chapter 2.

The implementation of the logarithmic instruction above shows an unusual
concern for accuracy. But this concern is justified. A goal in the design of the 8087
was to be able to calculate all the elementary functions on arguments in long-real
format and obtain a long-real result with an error of less than one unit in the last
place. This goal is one reason temporary-real format was provided for intermediate
results, The most difficult elementary function to compute that routinely appears
in high-level languages is x¥. We saw in chapter 2 that intermediate results must be
represented in a floating-point format with at least a 64-bit significand if we are to
be sure of the accuracy of x¥ in long-real format. But this is exactly the size of the
significand field in temporary-real format; thus, there is no margin for error. Conse-
quently, every extra bit of accuracy in the computation of y*log,(x) is precious.

The other logarithmic instruction, FYL2XP1, computes y*log,(1 +x). To
understand why such a function is useful, let’s consider interest-rate calculations.
Here we frequently encounter expressions of the form (1 +i)", where i is much

106 THE 8087 PRIMER

Table 6.3 Formula for Computing Logarithmic, Exponentiation, and Hyperbolic Functions

A. Logarithmic Functions
log,(x) = FYL2X({x)
log, (x) = log, (2)*log,(x) = FYL2X(log, (2),x) = FYL2ZX(FLDLN2,x)

log,,(x) =log, ,(2)*log,(x) = FYL2X(log, ,(2),x} = FYL2ZX(FLDLG2, x)

B. Exponentiation Functions
2*=(2"~1) + 1 =F2XM1(x} + 1
e =1 + (28— 1) =1 + F2XM1(x*log,le) =1 + F2XM1(x*FLDL2E)

10" =1 (22108110 _7) = 1 + F2XM1(x*log,00 _ 1 4 F2XM1(x*FLDL2T)

V=1 420108 _ 1) =1 + F2XM1(y*log,(x)) =1 + F2ZXM1(FYL2X{y,x))

C. Hyperbolic Functions

signix) et~
sinhix) = (e™=1) + .
2 e
1 1
coshix) = — | e + —
2 &
E,n"*-\l_ 1

tanhix) = sign(x) -

coth(x) = 1/tanh(x)
cschix) = 1/sinhix)

sechix) = 1/coshix)

SPECIAL COMPUTATIONAL INSTRUCTIONS 107

D. Inverse Hyperbolic Functions

arcsinh(x) =[sign(x)] [log (2)] [log,(1 + z)]=FYL2XP1(sign(x)*FLDLN2,z)

x|

1 / 1 \2
i \/“(F)

arccoshix) = [log (2)] [log,(1 +2)] + FYL2ZXP1(FLDLN2,z)

where z=|x| +

where z=x-1 + Jlix—'r]ltxﬂ]

and x = 1

arctanhi(x) = [sign(x}] [log (2)] [log,(1 +z)]

= FYLZXP1(FLDLNZ*signi{x},z)

2|x|
where z= ———
1— x|

and —1<x<1

arccothix) = arctanh(1/x)
arceschix) =arcsinh{1/x)

arcsechix)=arccoshi1/x)

E. Miscellaneous

The following function appears frequently in financial computations:

: =T :I1_ar'|_-l 9
(1 +2)™-1 _ 2™ _ _F2XM1FYLZXP1im.2) (for z non = zero)

£ i i

= m lfor z=0)

wherez > -1

Note: These formulas must be used with care. The required argument reduction is not explicitly
stated and special arguments such as NAN, infinity, denormals, and zero must ke dealt with
separately.

108 THE 8087 PRIMER

i

smaller than 1. Evaluating such an expression involves computing the log of 1 +1i.
But to add i to 1 before taking the log, the B087 would have to first denormalize |
(so that the binary points line up). This results in losing valuable bits of i as they are
shifted off the right end. Thus, if i, and i, are small but different numbers, the
calculated values log(1 +1i,) and log(1 +i,) could easily be the same. By using the
8087 function y*log,(1 +x), the value 1 + x is never actually formed; instead the
algorithm implicitly takes the 1 into account, and no bits of x are lost. Although
can be any number, x is required to lie in a restricted range, namely |x| <1 ﬂsz
This restriction saves microcode space and does not diminish the utility of the
function since it is needed only when x is small.

Exponential Instruction = The 8087 provides a single exponential instruction,
F2XM1. This instruction computes 2*— 1. It obtains its operand from the top-of-
stack register and replaces that operand with the computed result. The argument x
is restricted to 0 <x < 1/2.

The reason for providing such a function rather than providing 2* is similar to
the reason just given above, namely loss of precision when calculating 2* -1 for
small x by explicitly subtracting 1 from 2*. (The hyperbolic functions in table
6.3(C) illustrate the need for 2*—1 with small x.) On the other hand, if 2* is the
value desired, we can obtain this by simply adding 1 to the result of 2*- 1 with no
loss of precision.

We usually want either e* or 10* instead of 2*. The algorithms for computing
these exponential functions as well as the hyperbolic functions are given in table
6.3. Also present in this table is a miscellaneous function often appearing in finan-
cial computations. The formulas appearing in this table have been carefully
chosen to reduce roundoff error as much as possible.

The binary radix is used in the exponential instruction for the same reason it
was used in the logarithm instructions: because functions with a binary radix are
easier to implement on a binary machine. Exponents to other bases can be com-
puted using the given exponential instruction as shown in table 6.3(B).

The exponential instruction requires that x be in a particular range to save
space in the microcode. This poses no problem since an arbitrary x can be re-
duced to that range by applying the relation:

2%=(2)*(2)

where i is the nearest integer to x
and fis a fraction that is the difterence between x and i.

It follows that the magnitude of f is less than 1/2. Thus, we can calculate 2* -1 for
arbitrary x as follows:

1. Obtainiandffromi=FRNDINT(x) and f=x—1.
2a. If fis non-negative, evaluate 2'— 1 using F2XM1,

SPECIAL COMPUTATIONAL INSTRUCTIONS 109

2b. If fis negative, evaluate 2/-" -1 using F2XM1 and then obtain 2/- 1 from the
relation:

=0 _ 1

El—r'l

3. Ifi=0, we're finished. Otherwise, add 1 to the value of 2/—1 just obtained,
multiply by 2" using the FSCALE instruction, then subtract 1.

Thus, the instruction is applied on the operand f, and then i is inserted into
the exponent field of the result.

It's All Done with Mirrors = The 8087 transcendental instructions are im-
plemented using an argument reduction related to the CORDIC (COordinate Rota-
tion Dlgital Computer) algorithm. This algorithm is described in a paper by J.S.
Walther entitled “A Unified Algorithm for Elementary Functions,” published in the
Proceedings of the Spring 1971 Joint Computer Conference.

The algorithm relies upon a table of constants. The number of constants re-
quired by CORDIC type methods is equal to the number of bits in the result; in the
case of the 8087, that would mean 64 constants of 64 bits each. Since two distinct
calculations are involved (one for logarithmic functions and one for trigonometric
functions), the CORDIC would require 128 64-bit constants, which would
necessitate an 8192-bit memory on the 8087 chip.

Considering all the other logic required by the 8087 and the technology
available in 1978 (HMOS |), the number of constants had to be reduced
significantly if transcendental functions were to be included on the 8087. By
modifying the CORDIC, the number of bits needed were reduced to about 2000
with some compromise in speed, but very little in accuracy. These modifications
essentially consist of stopping the CORDIC early and using rational approxima-
tions at the end.

Summary

The 8087 is a very powerful and complex device. Besides offering all the stan-
dard capabilities of a floating-point erigine, it has several unique features. These in-
clude extended precision and correct rounding, fast and accurate elementary func-
tions and square root, ability to simulate multiple stacks, automatic mixed modes,
exact floating-point remainder, and automatic exception handling. However, the
8087 is more than a collection of features; it is an attempt to implement the spirit

110 THE 8087 PRIMER

of the |EEE floating-point standard faithfully, thereby facilitating reliable numerical
computations.

In the past three chapters we have explained the 8087 architecture and the ra-
tionale for it. We have seen how the 8087 was designed to make accurate, reliable
computations easy in most cases and possible in difficult cases. By using the ex-
tended precision provided, we can take double-precision operands and usually
return accurate double-precision results without extensive analysis of the com-
putation. With appropriately selected algorithms and judicious use of extended
precision, we can get results that are usually much better than in any other familiar
computing environment.

Now that you know what an BO87 is, it's time to learn how to write programs
for it. This is the topic of the following chapters.

	Screen Shot 2023-01-01 at 5.22.24 PM
	Screen Shot 2023-01-01 at 5.26.13 PM
	Screen Shot 2023-01-01 at 5.26.35 PM
	Screen Shot 2023-01-01 at 5.27.01 PM
	Screen Shot 2023-01-01 at 5.27.24 PM
	Screen Shot 2023-01-01 at 5.31.08 PM
	Screen Shot 2023-01-01 at 5.31.26 PM
	Screen Shot 2023-01-01 at 5.31.43 PM
	Screen Shot 2023-01-01 at 5.32.01 PM
	Screen Shot 2023-01-01 at 5.32.18 PM
	Screen Shot 2023-01-01 at 5.32.39 PM
	Screen Shot 2023-01-01 at 5.33.00 PM
	Screen Shot 2023-01-01 at 5.33.19 PM
	Screen Shot 2023-01-01 at 5.33.39 PM

