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The Theory of Electronic Semi-Conductors.

By A. H. Wison, Emmanuel College, Cambridge.

(Communicated by P. A. M. Dirac, F.R.S.—Received June 18, 1931.)

Introduction.

The application of quantum mechanics to the problem of metallic conduction
has cleared up many of the difficulties which were so apparent in the free electron
theories of Drude and Lorentz. Sommerfeld* assumed that the valency
electrons of the metallic atoms formed an electron gas which obeyed the Fermi-
Dirac statistics, instead of Maxwellian statistics, and, using in the main
classical ideas, showed how the difficulty of the specific heat would be removed.
He was, however, unable to determine the temperature dependence of the
resistance, as his formule contained a mean free path about which little could
be said.

F. Blocht took up the question of the mechanics of electrons in a metallic
lattice, and showed that if the lattice is perfect an electron can travel quite
freely through it. Therefore so long as the lattice is perfect the conductivity
is infinite, and it is only when we take into account the thermal motion and
the impurities that we obtain a finite value for the conductivity. On this
view all the electrons in a metal are free, and we cannot assume, as we do in
the classical theory, that only the valency electrons are free. This does not
give rise to any difficulty in the theory of metallic conduction, as the direct
proportionality between the conductivity and the number of free electrons no
longer holds when the Pauli principle is taken into account. If there is no
external electric field, the number of electrons moving in any direction is equal
to the number moving in the opposite direction. The action of a field is to
accelerate or retard the electrons, causing them to make transitions from one
set of energy levels to another. This can only happen if the final energy
levels are already unoccupied, and therefore only those electrons whose energies
are near the critical energy of the Fermi distribution can make transitions and
take part in conduction, as it is only in the neighbourhood of the critical energy
that the energy levels are partly filled and partly empty. These electrons are
few in number compared with the valency electrons, and are what should be

* ¢ 7, Physik,’ vol. 47, p. 1 (1928).
t ¢ Z. Physik,’ vol. 52, p. 555 (1928).
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called the conduction electrons. On the classical theory alone are the valency
electrons, the free electrons and the conduction electrons the same.

Bloch has shown that for very tightly bound electrons the energy levels of
the lowest states have the same distribution as for free electrons, the only
difference being that the constants have different meanings in the two cases.
This is not surprising if we rid ourselves of the false correlation between free
electrons and conduction electrons, and it merely means that electrons in a
metal have a dual aspect. For some phenomena the electrons behave as if
they were bound, and for others as if they were free, corresponding to the
particle and to the wave properties respectively of the electrons.

By applying these ideas Bloch arrives at a temperature dependence of the
conductivity* which is in very satisfactory agreement with the measurements.}
He finds that for high temperatures the resistance varies as T, the absolute
temperature, and for low temperatures as T5. Here, however, certain difficulties
arise. How are we to explain the non-conductivity of insulators and the
temperature dependence of the resistance of electronic semi-conductors ?
On the classical theory the answer is quite simple. We merely postulate that
there are no free electrons in an insulator, and that the number of free electrons
in a semi-conductor varies rapidly with temperature. When we use quantum
mechanics, we are no longer at liberty to take this easy way out, as all the
electrons in a perfect lattice are free to move through the lattice, and it would
seem at first sight that on Bloch’s theory all substances should have infinite
conductivity at absolute zero temperature. If this were a rigorous consequence
of the theory it would be a very serious objection against it, and it is therefore
necessary to see if we cannot find a place in the theory for insulators and semi-
conductors.

It is not possible to maintain that the difference between good and bad
conductors is one of degree only, the electrons in poor conductors being more
tightly bound than in metals, and giving rise to a smaller current. There
is an essential difference between a semi-conductor, such as germanium,
and a good conductor, such as silver, which must be accounted for by any
theory which attempts to deal with semi-conductors. In the first place there
is the effect of impurities, which always increase the resistance of good con-
ductors and generally decrease the resistance of poor conductors. Then there
is the effect of temperature, which is still more marked. The resistance of a
good conductor falls rapidly with falling temperature, while that of a poor

* ¢ Z. Physik,” vol. 59, p. 208 (1930).
1 E. Gruneisen, ‘ Leipziger Vortriage ’ (1930).
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conductor rises and becomes very large as the temperature approaches the
absolute zero.

‘We have already seen that on the classical theory there is a confusion between
free and conduction electrons, and it may be that we have allowed this con-
fusion to slip once more into the theory. We shall therefore examine it more
carefully. First of all we may ask how it is possible to obtain a model of an
insulator or a semi-conductor. To do this it is necessary to have a perfect
lattice in which all the electrons are free, and in which there are no conduction
electrons at the absolute zero. Now, if we confine ourselves to Sommerfeld’s
picture of electrons moving in a region of uniform potential, it is impossible
to obtain no conduction electrons. Fortunately, the model of a lattice is not
quite so simple, and actually the potential in which the electrons move is
periodic in three dimensions and not constant. The problem of an electron
moving in a one-dimensional periodic potential has been studied by several
authors,* and it appears that the energy levels break up into a number of
bands of allowed energies, separated by bands of disallowed energies, which
may be of considerable width. When we consider more than one dimension
the problem is not quite so simple, for although there are discontinuities in
the energy it is sometimes possible for the energy to take every value between
a minimum value and infinity. This introduces a new complexity which is of
importance for the theory of conduction. Leaving aside this complexity for
the moment, it is possible to see from the one-dimensional case how we can
have no conduction electrons at the absolute zero. Suppose the number of
electrons is just sufficient to fill up the lowest band of allowed energies when all
the electrons are in their lowest possible states. Then in the absence of an
external field there is, of course, no resultant current. If a field is applied, it
will be impossible on account of the Pauli principle for any electron to increase
its stream without making a transition to the second band of allowed energies.
This it will be unable to do provided the field is small enough, owing to the
finite energy difference between the two bands.

In this case, therefore, we have no conduction electrons, and we have the
rather curious result that not only is it possible to obtain conduction with
bound electrons, but it is also possible to obtain non-conduction with free

electrons.
When the temperature is different from zero there will be a few electrons in

* R. Peierls, ¢ Ann, Physik,” vol. 4, p. 121 (1930); P. M. Morse, ¢ Phys. Rev.,” vol. 35,
p- 1310 (1930) ; L. Brillouin, ‘ J. Physique,’ vol. 1, p. 377 (1930); R. Kronig and W. G.
Penney, ‘ Proc. Roy. Soc.,” A, vol. 130, p. 499 (1931).
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the second band and a few vacant places in the first band, and conduction can
take place. The increase in the number of conduction electrons with rise of
temperature will tend to increase the conductivity, while the excitation of the
thermal vibrations of the lattice will tend to decrease it. At low temperatures
the first effect must predominate, and so the resistance will have a negative
temperature coefficient. At higher temperatures the effect of the thermal
vibrations will be the more important, and the resistance will obey the normal
law. This is just what is observed for semi-conductors.* The problem has to
be formulated a little differently when we deal with three dimensions, but it
is’ possible to construct a model which reproduces the properties of semi-
conductors.

In the following sections these ideas are elaborated in some detail. We first
discuss the energy levels of electrons in a lattice and show that, although the
electrons are free in the sense that they can move from one atom of the lattice
to another, yet there exist closed sub-groups which do not necessarily correspond
to the closed sub-groups of the isolated atoms. Then the theory of the Fermi
distribution is modified slightly so as to take account of possible discontinuities
in the energy values, and applied to the problem of the paramagnetism of
semi-conductors. Finally, the temperature dependence of the electrical
resistance of semi-conductors is worked out.” The calculations are very rough,
and it is not pretended that anything more is done than to show that a place
can be found in the theory for insulators and semi-conductors. The question
as to why certain elements form metallic lattices, and others non-metallic
lattices, is a difficult one, and would require much more elaborate calculations
than are possible at the moment. At present only qualitative conditions can
be given. It is, however, highly satisfactory that the same model should
give the properties of both metallic conductors and semi-conductors.

The Motion of an Electron in a Lattice.

1. Asis usual in the discussion of this problem, we only deal with a simple
cubic crystal with lattice constant @. This means that we cannot properly
apply our results to metals, that is to say quantitatively, as no metal or semi-
metal has this crystal structure. However, any other assumption would
make the calculations much more complicated, and, as we are only interested
in general results, we may expect this simplifying assumption to give the broad
outlines of the phenomena. Only in discussing the finer details of conduction,
such as the anomalous thermoelectric and magnetic properties of certain

* Of. E. Gruneisen, “ Handbuch der Physik,” vol. 13, p. 60.
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metals, will it be necessary to include the effect of the actual crystal structure.
If it is possible to obtain a division of the elements into metals and non-
metals on the assumption of a cubic lattice, it is @ fortiort possible when more
complicated structures are considered.

Although the problem of the motion of an electron in a periodic field has
been treated at length by the authors mentioned above, it has been thought
advisable, on account of the importance of the results relative to the present
problem, to review the subject once more. HExact methods are not used,
perturbation methods being preferred as giving a much better insight into the
problem. Two methods of approximation are employed, one starting from:
entirely free electrons, and the other starting from tightly bound electrons,
the two methods giving very similar results. In this way it is possible to
obtain the characteristics of the energy levels not only of the valency electrons.
but also of the inner, core, electrons.

Nearly Free Electrons.

1.1. Tt is not convenient to consider a finite crystal, and we therefore suppose
an infinite crystal to be divided up into cubes whose sides are of length Ga,
where G is & large number. All these cubes are supposed to have identical
properties, which means that all the properties of the crystal have a
three-dimensional periodicity with period Ga. The potential has the smaller
period a.

Tet the mean value of the potential energy of an electron be V,. Then the

potential energy V can be expanded as a Fourier serie§
V=V,+ & 5 % Vel (1)
N = —0 fp= —W0 Ng= —D
where the axes are rectangular ones along the edges of the cube, and the
combination %, = ny ==ng =0 does not occur. As zero approximation
we consider an electron moving with the constant potential energy V,. The
wave function characterising the motion is given by
§(en oy + 0

0= (aG)™"e ; 2)
where the possible values of £, m, Care ;
/G0, £ 1, £2...). (3)
1 m is the mass of the electron, the corresponding energy values are
By=o (& +7+ )+ Vo (4)

o belng 12/(8r°ma?). (5)
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Treating the departure of the potential from uniformity as causing a small
perturbation, it is easily seen that the diagonal elements of the perturbing
energy are all zero, and that the non-diagonal elements (E4¢ | V | £"9'C’) are also
zero unless &', v, T differ from &, %, { respectively by multiples of 2r. These
non-diagonal elements are only of importance in the first approximation pro-
vided E, is nearly equal to K/, and in this case the unperturbed state is nearly
degenerate. Accordingly we put

Y=o+ Y pre (6)
and
E=}E,+E) + = )
The secular equation to determine ¢ is easily found to be
By —Ey)—e¢ E|V]E) =0
. E[V]E) § (By —Eg) —e
giving ,
=18, —Eg)P?+ E|V]|E)P (8)

This makes E a multivalued function of £, which is due to the fact that the
state given by (6) is a mixture of the (&, %, {) state and the (&', »', T') state.
It is convenient to have single valued functions, and we therefore adopt the
convention that E is an increasing function of each of &, n, ¢, which suffices to
fix E completely.

Consider fixed values of v and { lying between -4 =, and not being nearly
equal to either of these values. Then if the difference (E, — E,’) is to be small
it is necessary that m =1, { =17 and £ must be nearly 4 n. Putting
E = — u, then & must be given by & = — n — u, and then

(EnC | V [ E'T) = Vyqp.

Also
E0:V0‘|‘ m{(ﬂ_u)2+")2‘|‘ CZ}
and
. By =Vo+ of{r+w?+92 4¢3,
giving

B=Vo+ o+ u?+ 72 + ) + (a2 + Vi) 9)

On expanding the square root we have approximately

/22
E=Vy+mo—Vig— (T o) Lo+ (10
WVigo
by taking the negative sign, and

\

—V 2 2 [TP0? 2 2
E =V, + w20 + Vyo + w v—-——-l—(x))—f"o)(‘f) + ¢ (10B)
100

VOL. CXXXIIL.-—A. 2 H
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by taking the positive sign. The expression (104) is valid when w is positive,
and (10B) when « is negative, since this satisfies the convention that E is an
increasing function.

1f we plot the variable part of E against £, keeping v and { constant, we obtain
a curve of the type given below. At the points § = - = the energy is dis-
continuous, and in addition the derivative of E becomes zero. These dis-
continuities were first noticed by Peierls (loc. eit.), whose treatment we have
given here. It is often convenient to treat £ as a continuous variable. This
is equivalent to making G tend to infinity, and when there is no ambiguity
caused by this process we shall talk about & as if it were continuous.

E

Fre. 1.

1.11. It is obvious that there will be similar discontinuities whenever one
of £, %, { passes through a multiple of . In this way we get zones of energies,
which have been exhaustively studied by Brillouin (loc. eit.). The first zone
occurs when each of &, n, { lies between —m and =, giving G3 energy levels in
all. The second zone consists of six separate portions in which two of &, ), €
lie between -, while the third is either greater than = or less than —.
These six portions together give G energy values. The third and higher zones
are more complicated, and reference may be made to Brillouin’s paper.
They all have the property of comprising exactly G* energy levels.

As soon as we deal with more quantum numbers than one, there appears a
property which is not brought out in the figure, but which may be readily
seen by drawing a similar diagram for two independent variables. The highest
energy levels in the first zone are given by & = 47, v = =, { = 4=, all
of which have the same energy, while the lowest energy levels in the second
zone are given by £ =47, =0, {=0, and £ =0, n =L =, {=0 and
£=0,9=0,{=-+4mn Now there is no need for Ey, (2) to be greater than
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Epax (1) , where (1) and (2) denote that the energies belong to the first and
second zones respectively. Of course, Epi, (2) must be greater than E (x, 0, 0),
(1), but E (r, =, =) (1) is also greater than E (r, 0, 0) (1), and so Epyi, (2) may be
either greater or less than B, (2), depending on the magnitude of the dis-
continuities. In fact, for nearly free electrons the coefficients V, g, will
all be small, and in this case Ky, (2) will certainly be less than Hy,y (1),
the condition for this being that w?c is greater than V,,. The assumption
of nearly free electrons, therefore, leads to the result that the energy does not
show the forbidden ranges which appear in the one-dimensional case, the
discontinuities only playing a rble when we consider the energy as a function
of one quantum number, the other two being considered fixed.

Teghtly Bound Electrons.

1.2. We shall now consider the problem starting from the opposite limiting
case of tightly bound electrons. This has already been partly treated by Bloch
(loc. cit.). This method of treatment is more logical than that just given, in
that it enables the assumptions to be clearly seen, and, though at the moment
it is impossible to obtain any better or more detailed results from this model,
any further advance in the theory of conduction will have to be made by taking
into account the various effects here neglected.

Bloch has shown by a general argument that the wave function of an electron
in a cubic lattice must have the form

2,
= (kz + ly + m2)
Yaim = e ¥ Ui (TY2)s (11)

where K = aG; £, I, m are positive or negative integers, but not zero, and
U (2y2) is a periodic function of @, y, z with period a. It is not possible to
obtain a general formula for the corresponding energy levels.

If we suppose that the potential energy of an electron in the crystal is very
large and negative in the neighbourhood of each lattice point, and is elsewhere
nearly constant, it is possible to derive approximate formule for the energy
levels. As zero approximation we consider the electron to be in the neigh-
bourhood of a lattice point, and we neglect the influence of the other atoms.
The energy is then that of the free atom. This state is degenerate, as placing
the electron in a similar orbit round any other lattice point gives a state with
the same energy. The degeneracy is of order G3, and is removed when we
introduce the forces due to the neighbouring atoms. Here we meet a difficulty.
It is not possible even in the zero approximation to neglect entirely the inter-
actions of the electrons, as the Coulomb forces due to the nuclei would then

282
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give an infinite potential at every point. We must suppose that the lattice is
electrically neutral, and that the interactions of the electrons are partly taken
into account in some way by a ‘ self-consistent field,” so that the potential,
expressed as a sum over the lattice points, converges to a finite value. The
exchange forces between the electrons are, however, neglected, as it is only in
this case that the electrons can be treated independently of one another.
With these assumptions, together with the further one that the presence of
the neighbouring atoms causes an energy change small compared with the
energy differences between the various energy levels of the isolated atom, it
is possible to solve the problem.

Using Bloch’s notation, let the integers g¢;, g, ¢, characterise the various
lattice points, and let the potential energy of an electron due to one lattice
point be

Usgs (@y2) = U (& — 910, § — 9o, 2 — g5), (12)

which is a function of the distance of the electron from the lattice point only.
The potential energy of an electron in the crystal is then given by

V (w?/z) = E Uﬂlflzy:s (xyz), (13)

91Y2ffs = — R

-and the Schrédinger equation is

82
V3 T (B — V) =0, (14)
while the Schridinger equation for an isolated atom is
872
Vz(ﬁgﬂz% + %2”3 (E - UU1.‘72(/3) rﬁ.’/x.(h.‘/'a = 0. (15)

This last equation has various solutions which may or may not be degenerate,
and the subsequent work differs slightly in the two cases.

1.21. Tirst let us consider an s state, which is the only case treated by Bloch.
In this case ¢4, is spherically symmetrical. If E, is the corresponding
energy value, we solve equation (14) by setting

E = El + & and l.{) = Z Ag.949, 961119293‘ (16)

919213
The equations determining ¢, and the a’s to the first order are easily found to
be

K rK K
2 aﬂxgzﬂ’sj ‘. j (51 - U/y,ggga) (ﬁgxgz’h ¢h1h2h3 dw dy dz =0 (]‘7)
00

19203 0
for all integral values of ky, kg, kg, and where
U’Vl!h!/s = V - Uﬂ.\gaga'
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For tightly bound electrons we assume
j ¢!/19d/3 (ﬁhxhzh"dr = 8;‘: 82: 823’
and also since ¢ and U are both spherically symmetrical we put

r
jU 919293 ¢.(/10203 ¢hlh2h3 dT

equal to o, if g and % are the same, equal to B, if g and % refer to lattice points
which are nearest neighbours, and zero otherwise. The assumption of tightly
bound electrons means that o; and P; are essentially positive.

Equations (17) reduce to the triply infinite set

(81 — o) Aggug, + B (Fy41, gy 00+ Bpi-1, 00 32 + By a1, 04
+ agu 9:—1, 93 + aﬂn G2 g3+ 1 + aﬁ/n 92, 03—1) = 0' (]‘8)

There is in addition the condition that ¢ is periodic with period K. The
equations (18) are satisfied by

Tlm ,2_(";_’5 (kgy+1ys-+mgs)
919205 T ?
giving
10 2mi
. —_— (kg1 +1g2-+mys)
Yrrm = ) et Po.guas (19)
19205 = —©
and
2k 2rm
Iclm = E]_ + Oy — 2(31 (CO — —+ col G + Ccos T> . (20)

These results are only valid for values of %, I, m lying between 4~ 1G, higher
values merely giving repetitions.

1.22. We next consider a p state. Here the level is triply degenerate, but
it will not split up in a cubic crystal.* This is much more easily seen than in
Bethe’s paper if we use Cartesian co-ordinates instead of spherical polars.
We then see immediately that the independent wave functions of the p state
can be chosen to be af (v), yf (r) and zf (r), where f (r) is a function of 7 only,
and these three functions will give the same energy in a field with cubical
symmetry. In view of Bethe’s result we need only consider the levels derived
from one of these wave functions, the others being obvious from symmetry.

Let 35,0, = %, f (r,) be a wave function of the isolated atom corresponding
to the energy value E,. Then we solve equation (14) as before by

E=E;+e and =3 by g (164)

919295
* H. Bethe, ¢ Ann. Physik,” vol. 3, p. 133 (1929).
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obtaining a set of equations similar to (17). Here, however, the equations
involve more than two constants o and B, since y is not spherically symmetrical.
As before we set

’
J U 919205 910205 XPhahs dT

equal to oy if g and % refer to the same point. Among the other non-vanish-
ing integrals we must distinguish two types. Firstly the type

’
J U 919203 Xﬂlgzgs Xy1:y2+ 1,94 d‘l'-'

This we set equal to {,, which is essentially positive, since the only factor
which makes it differ in form from the integral for B, is x,2, which is positive.
Then there is the type

’
(U 010205 Xrgags Xr +1, gugs AT

Y

This we set equal to —y,, where v, is positive, since in the integrand there
occurs a factor z,, z,, 1. Little can be said about B, and v, except that they
are both positive and of the same order of magnitude. The equations corre-
sponding to (18) are

(€2 - “2) bylgag.x — Y2 (b91+1: 2 I3 + bgl—ly 93, 9’2)

+ ﬁ2 (b.(/ly gat+1, gy + b.’/n g2—1, 0 + bgu g2 g+ 1 + b(h) 9as 93—1) = 0. (]‘8A)
This is solved as before by

Tim Z—g} (ks +1g;+mgs)
. 010205 ’
giving

271:m> (21)

ok 2l
B, = By + a5 4 2v, cos-(l;—- — 2B, <cos %“"COSF .

This is valid for [ and m lying between -- 4G, and & lying between either 4G
and G or — 3G and — G. There are also two similar expressions obtained by
permuting %, I and m.

1.23. Similar results could also be obtained for d and f states, but the work
would be more complicated, not only on account of the larger degeneracy,
but also because the degeneracy is partly removed by the crystalline field.
For example, for d terms the harmonics may be taken to be zy, yz, 2, «* — y?
and y2— 22 The first three taken together will not split as they obviously
give the same energy in a cubic field, but there will be an energy difference
between these terms and the last two. As it is not the object of this paper to
investigate the properties of special structures any further than is necessary
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to explain the general outlines of semi-conduction, these questions will not be
further discussed here.
1.24. In the expressions for the energy levels put

£ — 2k __2nl 2rm

G T G
Then for small values of &, 4, { equation (20) becomes

Bee = By + oy — 68y + By (B2 -+ + £7),

which is of exactly the same form as (4) with B, instead of w. Also putting
£ =7 — u, and supposing w, v, { small, we have

Beye = By + oy — 2p; — B 4 By (n* + T3),

which is of the same form as (10a). We therefore conclude that the energy
levels derived from an s state correspond exactly to those in the first zone
of the free electron picture.

Further, treating » and { as small in the expression (21) and putting &==r+u,
we have approximately

Bey = By + ap — 4Ry — 2v, -+ v + Bo (F + 03),

which is of exactly the same form as (10B). We conclude that the energy
levels derived from p levels correspond to those in the second zone of the free
electron picture. We therefore see that the discontinuities in the energy
occur both for nearly free and for strongly bound electrons.

For our perturbation method to be valid it is necessary that the unperturbed
energy levels of the isolated atom should be far apart. Therefore if (20) gives
the states derived from a term ns, and (21) those derived from a term np
it is necessary that the energy difference between these two-systems should be
large. Now the greatest of the energies (20) is given by putting £ =n ===
and is E; 4 o -+ 68,, while the least of the energies (21) is given by putting

E=m, n=C=0 andis By+ oy— 4B, — 2vy.
‘We must therefore have ‘
By 4 oy — 485 — 2vy > By + oy + 685 (22)

In this case all the energies of the second zone lie above those of the first zone,
and there are forbidden ranges of the energy, in contradistinction to the case
of nearly free electrons, where, in spite of the discontinuities, the energy can
take all values from V to infinity.
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The Internal State of o Metal.

1.3. By using the results established above for the two limiting cases of
nearly free and of tightly bound electrons, it is possible to see qualitatively the
energy levels in a metal, even of the inner electrons, in so far as the exchange
forces can be neglected. This is a very serious restriction—how serious further
investigation must show.

The innermost electrons in a metal must be in levels derived from the 1s
state. The energy levels must therefore be given by a formula of the same
form as (20), there being G2 such levels in all. On account of the spin of the
electron, these levels are double and can accommodate 263 electrons, that is
two per atom, and 50 in a metal the 1s or K electrons will just fill up the lowest
allowed band of energies. The 1s level is peculiar in that the next higher state
is also an s level, and so the second band of allowed energies is also of the type
(20). There is no doubt that in all metals the K electrons are strongly bound,
and do not interfere with the 2s levels at all. They can therefore be omitted
entirely from the discussion. The groups other than the first are not peculiar
and it will be sufficient to discuss an element with (n — 1) completed groups,
but with the nth incomplete. '

The states derived from the ns level are of the type (20), and these are the
lowest states whether the electrons are nearly free or strongly bound. These
levels can accommodate 2G3 electrons. For the alkalis which have a single ns
electron we should expect that the G3 valency electrons should all go into this
level, half filling it. The alkaline earths having two ns electrons, we might
expect that their 2G3 valency electrons would just fill up the band of states
derived from the ns level. This is not necessarily true, since if the electrons
are nearly free the lowest levels derived from the np state have lower energy
than the highest levels derived from the ns state, as was pointed out in section
1.11. In this case not all the 2G3 levels in the first band would be filled, some
electrons being in the second band. 1f, on the other hand, the electrons are
strongly bound, then all the levels derived from the np state have higher
energies than those derived from the ns state, and in this case all the 2G®
valency electrons would just fill up the 2G3 levels of the first band. In the
first case the alkaline earths would be metals, and in the second case at most
semi-conductors. We thus see that it might be possible for the alkaline earths
to be non-metallic, while for the alkalis there is no such possibility. The fact
that the alkaline earths are metallic shows that their valency electrons must
be considered as nearly free, and that the first and second bands of energies


http://rspa.royalsocietypublishing.org/

Downloaded from rspa.royalsocietypublishing.org on July 23, 2014

Theory of Electronic Semi-Conductors. 471

overlap. It therefore appears that electrons which form a closed sub-group
in an atom need not necessarily do so in a metal.

The above discussion is sufficient to show the properties which are required
to make an element a semi-conductor. It is necessary that the electrons which
do not form a complete group should exactly fill up one of the bands of allowed
energies, and further that these electrons should be tightly bound. The first
condition is a qualitative one and involves the number of electrons per atom
being even. If the crystal structure were the simple cubic one which is
considered here, it would also be necessary that the number of electrons should
be just sufficient to complete a sub-group of the isolated atom, but this is not
necessary for more complicated structures, as in these the degeneracy of the
p terms is removed by the crystalline field. Thus, electrons which form a
closed sub-group in a metal do not necessarily do so in the isolated atom.
This is the converse of the statement at the end of the last paragraph. It is
to be noted that we define a closed group in a metal as consisting of the electrons
occupying all those levels which belong to a band of allowed energies, irrespective
of whether there are discontinuities or not, the only condition being that the
energy takes all values between its upper and lower bounds. The second of
the conditions for a semi-conductor is a quantitative one, and is the condition
expressed by the inequality (22). The further investigation of this condition
would necessitate the consideration of the actual crystal structure as well
as the atomic levels, and would require calculations which are impossible at
the moment.

To determine the properties of a semi-conductor we shall consider a cubic
lattice in which both the above conditions are satisfied. The model is a very
rough one and is much simplified, but ought to give the broad outlines of the
phenomena.

The Model of a Semi-Conductor.

2.1. We assume that we have a simple cubic lattice, consisting of atoms
which have just enough electrons to fill up one of the zones discussed above,
and that the electrons are tightly bound. For simplicity we shall only discuss
the case when each atom has two s electrons outside a closed group. To obtain
semi-conducting properties it is necessary to assume that all the energy levels
derived from the p terms lie higher than those derived from the s terms.

The 2G? levels derived from the s terms have energies given by

By = By + oy — 2, (cos € + cos 7 + cos ), (20)
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and the next terms are those derived from the p terms, having energies given
by

B¢y = By + ap + 2y, cos £ — 20, (cos 7 4 cos Q) 2L
and by two other expressions obtained by permuting &, %, and . The con-
dition (22) must also be satisfied, so

By 4oy — 4By — 2y, > By + oy + 684

At the absolute zero all the 2G® valency electrons will be in the 2G3 levels
given by (20), but at any higher temperature some of the electrons will be in
the upper levels. The number of electrons with quantum numbers lying between
(&, ©) and (& 4 d&, 0+ dn, { 4 d¥) is given by (2G3/8r%) n, (§10) df dn dL,
where 1, (£00) is the Fermi function and is given by
1
o (818) = g (23)
n ekT - 1

The energy E is given by (20) for values of &, v, { lying between 4+ =, and by
(21) when two of £, v, { lie between - = and the third lies either between 7
and 2w or between — 7 and — 2. The higher levels are of no interest in the
present discussion. Even with these simple forms for the energy levels the
subsequent calculations are very complicated. A great simplification is
introduced if we suppose B, =1, and we therefore assume this. The two
quantities are of the same order of magnitude and it would not be worth while
treating them as unequal unless we also took into account the correct crystal
structure of the semi-conductor. This assumption gives E a simple form in
the neighbourhood of the critical energy of the Fermi distribution, and in
this case alone has it so far been found possible to carry out the calculations
completely.

It is first necessary to determine the value of the constant A, which is fixed
by the number of electrons present. We set for convenience

By +oy + 68, =Wy,

By A4 0y — 4Ly — 2y, = W, (24)
and
log A = W /kT.

In order that the effect of the discontinuity may be observable at ordinary
temperatures it is necessary to assume that (W, — W;) is small compared

with B;. The electrons are therefore to be thought of as neither tightly bound
nor nearly free, but in an intermediate condition. For insulators (W, — W,) is
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not small compared with £, and the conductivity will only become appreciable
for exceedingly high temperatures.

In the ordinary theory of the Fermi distribution W is constant so long as
T lies below the temperature of degeneracy, which is some thousands of degrees.
Here, however, the theory is not so simple and W is constant only if T is not
large compared with (W, — W,). In this case it is easily seen that W, must
lie between W, and W, for only if this condition is satisfied are all the levels
in the first zone occupied at the absolute zero, and all those in the second zone
unoccupied. Ordinarily W is the null-point energy of the electrons, but this
is no longer necessarily true if there are bands of forbidden energies, and
if W, happens to be a forbidden energy the null-point energy is the highest
allowed energy less than W, If kT is large compared with (W, — W,)
the effect of the discontinuity is negligible and the substance behaves as a
metal. For a semi-conductor this temperature range usually lies below the
temperature of degeneracy. To determine W we have the equation

2G3=2_Cfr’ r A8 dn dt. (25)

3 E—W,
87: — v —0 e—_k'l‘ + 1

— 0
To evaluate the integral we split it up into parts. Consider first the contribu-
tion which is given by restricting all the variables of integration to lie between
4. The index of the exponential is then negative, and so the integrand is
nearly unity, the deviation from unity being greatest near the points (4=, -,
+m). The next contributions arise from restricting two of £, %, € to lie between
4, and the third to lie either between —m and —2r or between w and 2x.
Since there are three such ranges of integration there will be three equal
contributions. The remaining contributions are negligible for small values of
T. Equation (25) can therefore be written

e I

-7 - eTl‘—+1 — 2 -Wv—'ﬂe_lzl.‘-_{_.]
2 T L
[ el [ =0 09
™ —J T 6*1.,71‘— + 1

Taking the terms of the first integral together, the integrand is effectively
zero except in the neighbourhood of the eight points (--m, 4w, 4x). As the
expression for E given by (20) is periodic in &, v, { with period 2w, we may
replace the contributions from the regions in the neighbourhoods other than
that near (x, 7, ) by equivalent integrations in the neighbourhood of (r, , ),
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of course still using the expression (20) for the energy. Using new variables
defined by

E=m—u, =7 —09, {=n—w,
the integration takes place in a cube centre « = v = w = 0, the length of the
sides being 2r. For small values of u, v, w the energy is given by

E =W, — 8 (u® 4 v* + w?), (27)
and with this expression for the energy we may take the limits of integration

to be infinite with negligible error, as the integrand vanishes exponentially
for large values of the variables. The first integral therefore reduces to

. {ioj‘” r" du dv dw (28)

w e Wo= Wit B (s + 0% + W)} BT +1 ’

—0 o —

The integrand of the second integral is only different from zero near (—, 0, 0)
and that of the third integral near (r, 0, 0). By substituting & = — © — «,
N=2v {=wand £ =m -+ u, 4 =, { = w respectively, these two integrals
may be combined together in much the same way as for the first integral, and
they finally reduce to

® r’ r’ du dv dw

3 oo @ W Wo t Ba(ut 0tk wt)}ED || )

(29)

v —

Equating the sum of the expression (28) and (29) to zero gives an equation
for W,. It is impossible to obtain an explicit value for W, which is valid for
all values of T, but it is easy to do so if T is small. For other ranges of T the
evaluation is more difficult.

For small values of T we expand the denominators of the integrands and
retain only the first terms. This gives

Y W W, LW, W,
(B)™%e FTT =3 (By) e THT

or

Wo =4 (W -+ Wy) — 4T log 3 (B,/B)" (30)
The last term may be either positive or negative since ; < B,, the s electrons
being more tightly bound than the p electrons. In general this term is
negligible unless 4T is comparable with (W, — W,).

The Specific Heat of the Electrons.

2.2. The specific heat of the electron gas has been calculated by Sommerfeld
and by Bloch, the former using free electrons and the latter tightly bound
electrons. Bloch assumes that the variable part of the energy is given by

B = — 28 (cos £ 4 cos 7 - cos ¥),
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and finds that the specific heat is proportional to the temperature if T < T,
and falls offas T"2if T > T,, where T, is the temperature 28/k, the maximum
specific heat per gram-molecule of the metal being of the order R. For the
model we are treating here the temperature dependence will be rather different,
on account of the discontinuity in the energy, and for temperatures low com-
pared with (W, — W,)/k the specific heat must fall off exponentially to zero.

If we choose G® = L, Loschmidt’s number, the energy of the electrons per

- (]38

To evaluate this we split the integral up into parts, exactly as was done in the

gram-molecule of metal is

last section, and transform to the variables u, v, w. It is impossible to carry
out the calculation exactly so we discuss two limiting cases.

(1) We first of all assume that T is very small, so small that (W, — W) is
large compared with £T.

Consider the contribution to (31) coming from the first zone of allowed
energies. It is

2L r j" j” B du dv dw
83 B-W,
875 -7 -7 —-ne T +1
where
E =W, —63; 4+ 28, (cos u + cos v -+ cos w).

Since Wy > W, the index of the exponential is always large and negative,
and so the exponential term is small compared with unity. We may therefore

expand the denominator and take the first two terms only. The first term

gives
2L
83

The second term is more difficult to evaluate. We shall, however, only make

[”Edudvdw—~2L( W, — 66,).

a very small error if we expand the cosines, and, instead of integrating through

the cube, integrate through a sphere of the same volume. If, further, we

integrate through an infinite sphere we make negligible error since the integrand

vanishes exponentially. With these approximations the second term gives
o= W,

J (W, — By (w2 + 0 4+ w?}e "T(uzwuu)d dv dw,

87:3
which reduces to

. L\/TC JT\3/2 . @ 5/2} We—W,
87-52 { W]_( Bl> 391(\B1) e~ kT .
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The contribution to (31) coming from the second zone of allowed energies
is given by
6L ”’J’Edudvdw

87:3 B—W,

e kT 4]

where
B =W, + 6B, — 2B, (cos u -} cos v - cos w).

Since W, > W, the index of the exponential is always large and positive, and
so we need only retain the exponential term in the denominator and omit the
1. This gives on using the same approximations as before

3n/n {sz <kT>3/2 43, (kTYm\ W w,,'

8n? E Be.

Finally we have for U, after using (30) to combine the exponential terms,

= (v = Wy (B s, (BT}

U = 20 (W, — 6y) -+

(32)
We now make the approximation W, ==} (W; -+ W,), and, putting
k®, = W, — W,, and kT, = B,, we have for the specific heat

AU _ Ry/m TV [0, 00, -] %
O, =f0 = 1Y \T() () 2] e ® (33)

R being the gas constant.

(2) The second limiting case of interest occurs for values of T such that
(Wy — W) <KT < B;. In this case the calculations are not so easy to carry
out with any degree of accuracy, but it would seem a reasonable approximation
to expand the integrals in powers of ©,/T, and neglect all terms but the first.
This is equivalent to putting Wy = Wy = W,. A calculation almost identical
with the one above leads to the approximate result

B (P A e

the next term, involving ©,/T, being negative. This value is practically
identical with (33) for large values of T (<T), and it is probable that in a more
exact calculation the numerical factor in the bracket would be replaced by 2,
which would render the two expressions (33) and (334) identical for large values
of T. We therefore see that the specific heat increases steadily from zero
according to the exponential law (33) until T becomes of the same order as
©,. It then increases as T%2, there being no maximum in the curve. The order
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of magnitude of the specific heat is the same as that calculated by Sommerfeld,
and seems well below the limit of observation.

The Paramagnetism of the Electrons.

2.3. One of the first applications of the Fermi statistics was made by Pauli*
to explain the small constant paramagnetism of the alkalis. For semi-
conductors the paramagnetism will be constant at ordinary temperatures and
will decrease exponentially to zero as the temperature is lowered.

The paramagnetic susceptibility is due to the effect of an external magnetic
field in orienting the electrons, each electron possessing a magnetic moment of

one Bohr magneton,
eh

dreme’

Lo =

Under the influence of an external magnetic field H each electronic energy
level is split up into two, the energies of the states being E (EnZ) + poH.
Since the degeneracy of the electronic states is removed we can no longer use
(23) for the distribution function, and we must distinguish between the two
directions of spin. The number of electrons with quantum numbers lying

between (£, %, €) and (§ + d&, 1 + dx, { + d{) is now given by
(G3/873) mg (88, == woH) dE dy d,

where
1
ng (B8, 4 weH) = e
K@ ¥l 1

The parameter A has the same value as before to the first order in H. The
total magnetic moment is

1 1

) . ;
M = Lo e — g | dn &
2 G g o 4 dn % o
SmOHT L T 1 =
N rmie s

to the first order in H. We split the integral up into parts as before, and a
short calculation shows that the paramagnetic susceptibility « is given by

K =

vt/ (T = (35)
n2aPB; \Ty/ ’

provided T < @,, @ being the lattice constant.
* < 7, Physik,” vol. 41, p. 81 (1927).
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This is of the same order as the constant value found for the alkalis by

Pauli, and also by Bloch,* the latter obtaining
~ !
K (1/3@ .

It is doubtful whether there is any reliable experimental evidence with which
to test the formula (35), though for some substances, notably carbon, an
increase of diamagnetism with falling temperature has been observed, which
might be attributed to the falling off of the paramagnetism of the outer electrons,
the diamagnetism of the closed shells remaining constant.

The Caleulation of the Conductivity.

3. The combined influence of a constant electric field and of the thermal
motion of the lattice on the distribution of electrons in a metal has been studied
in great detail by Bloch in the papers mentioned above. In the main we shall
follow the same method here, but as we shall need to use some refinements
later, it has been thought advisable first to give Bloch’s calculations in a modified
form and afterwards to apply them to a semi-conductor.

The problem is to determine the form of the distribution function n(Ex%)
under the combined action of a constant electric field ¥, parallel to the z-axis,
and the thermal vibrations. We assume that the elastic vibrations of the
lattice are split up into their normal modes and that the vector displacement

of a typical lattice point is given by

e 3 Zwi(l Pl L)
. — o I
Yy, = ” J'E;" . jZ] Afrgry € G W Vf’g'h’j,
YR = =1

where V5 18 & unit vector giving the direction of the displacement, the
apywj being the normal co-ordinates, j = 1 giving the longitudinal vibrations
and j = 2, j = 3 the transverse. The corresponding frequencies are given by

Vignhi = ;‘;?x'\/(fz + g‘& + }"2): (36)

where 8, is the velocity of propagation and f == 2xnf’ /G, g = 2=g’ |G, h = 2=k’ [G.
By the introduction of these normal co-ordinates the problem is reduced to
the interaction of the valency electrons with a number of simple harmonic
oscillators characterised by the integers f', ¢', #', j. Bloch shows that if an
electron jumps from a state (£, , {) to a state (£, v/, {'), while the oscillator
(f, g, k) emits or absorbs a quantum of energy, then it is necessary that,

E—E=+4f (mod2n), (37)
* ¢ 7. Physik,” vol. 53, p. 216 (1929).
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with two similar conditions for ¢ and 4. He also shows that only the longi-
tudinal vibration is of importance, and we shall therefore omit § in future.

3.1. The alteration in the distribution function n(£n) due to the electric
field is given by

2raeF on
B (38)

and the alteration due to collisions with the lattice is given by*
Z Aggy [ (L —m) (N, + 1) — e (1 — ) N,
‘}‘Ef Ager[ne (1 — mg) Ny — mg (1 — mg) (N, + 1)1 (39)
Only one of each set of quantum numbers has been written explicitly, but this
will cause no confusion. The meaning of the various quantities is as follows.

RC? (f2 49+ 4 0 1 — cos 2t (B — By -+ hv)/h
8n2Map2v o (Eg — Eg + Av)? ’

Agyy = (40)

where M is the mass of the crystal cube, C is a quantity of the order of the
square of the reciprocal of the radius of the atom, and u = 8n?m/h%. Agy
only differs from Ay; by having (E; — By — hv) in the time factor instead
of (E; — Eg + hv). TFurther, the three conditions (37) must be satisfied.
The expression for N, varies somewhat with the assumptions we make. If
we assume that the lattice vibrations are always in thermal equilibrium—a state
of affairs which can be brought about by a minute quantity of impurity in the

crystal—then we have

1
.
ekl — 1

N, = (41)
Otherwise N, takes a slightly different form which has been discussed by
Peierls. This question is of little importance for semi-conductors and we

accordingly take N, to be given by (41). In this case it is sufficient to consider
transitions which satisfy

E—8=4f
n—n' =g . (374)
C—C =4h

The other transitions allowed by (37) would not change the temperature
dependence of the resistance, but would only affect its magnitude.
Under the combined influence of the electric field and of collisions with the

* R. Peierls, ¢ Ann. Physik,” vol. 4, p. 121 (1930), equation (12), corrected.
VOL. CXXXIIL—A, 21
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lattice, the distribution of electrons must be steady. We therefore obtain an
integral equation for n (£4) by equating to zero the sum of (38) and (39).
We try to solve this by putting

7 (E18) = mg (En8) + 7y (8nT), (42)

where ng (§1¢) is the Fermi distribution (23), and », is small and proportional
to ¥. We use the abbreviations

ES - \’Vo —

By hv
o — 0 frnd 3, ,,*i = L. -
= @ (43)

£T ’ N

Owing to the presence of the time factor, the expression for Ay is only
sensibly different from zero when e — ¢’ 4 # =0, and we may substitute

this value for = in any terms multiplying Agf. Similarly Ag is only
different from zero when ¢ — ¢’ — z = 0. We now take as our unknown

% (En8) = my (Enl) (e + 1) (e +- 1), (44)
and then, neglecting squares of F, we have

2nael Ony + 1

R ony _ b (0, -
T M T e T D e - o

- 1
-+ T":" A£§’f (e7s 1) (651 +1) (e — 1) {XE' “ Xﬁ}' (45)

It is important to note that changing & into &' changes the factor by which
(xz — 1e) is multiplied in the first term into the factor occurring in the second
term, and vice versa. The variables f, g and % do not occur explicitly in (45),
being given by (37a).

Now let us write the equation (42) for shortness in the following form

1 (Enl) & (En) — [ j[ K (B8, E0) 7 (En'C) dE d’ d¥

_ 2mael _% :

o BE (454)

We have here replaced the summation by an integration, which is allowable
as we may make £, 4, { continuous variables by allowing G to tend to infinity.
As remarked above, K(£, &) is symmetrical between the dashed and the
undashed letters, and from the form of (45) we must have

é (&) = | jj K (Ent, EC) dE7 dy dE. (46)
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To solve (454) is very difficult, and we have to make approximations which
will be better appreciated if we treat a special case first. The approximations
are not easy to justify mathematically, and rest rather on physical arguments.
Accordingly, in this section we treat the case of ordinary metals and assume
that the variable part of the energy is given by

= BE 7+ 1),
reserving the general case for consideration later.

The right-hand side of (454) involves £0n,/0E, that is & multiplied by a
factor which is symmetrical in &, v, {. This suggests that we try a function of
the same form for y. Further, in order that our expressions for Az, may
be correct, it is necessary to assume that the lattice vibrations are equivalent
to a small perturbation of the electronic motion. Actually, unless the tempera-
ture is exceedingly high, an electron only loses a very small fraction of its
energy or of its momentum in a collision, and we therefore suppose that
(8 — &")/% is small compared with unity. From these considerations we write
(454) in the form

s — | K (& 8) & e d dif a7
2raeF on, j ne—E& Pt g
=—— P | K¢ &) 2=y d .
o & &) s Edn dl. (47)
If we put the right-hand side of (47) equal to zero, the resulting homogeneous
equation has the solution ‘
xe=28
on account of (46). We therefore solve (47) by successive approximations,
putting
xe = o2& + o

where o is at present an arbitrary constant and y, is supposed small compared
with the first term. We then obtain the following equation for y,, omitting
terms of the order y (& — &)/’

e — | K (5 8) 2 a4t

— _ 2mael ong

o L o

. j K (5 £) (E — &) d2 dy 4.

The essential difference between this equation and (47) is that here the unknown
function only occurs on the left-hand side of the equation, and the corresponding
homogeneous equation can be solved exactly. In order that this equation

212
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may be soluble it is necessary that the right-hand side should be orthogonal to
the solution of the homogeneous equation obtained by transposing the left-
hand side. This condition gives an equation for «. If we take y,f: as a
new unknown, it is easily seen that the solution of the homogeneous transposed
equation is

Xee =E7%
and so the orthogonality condition is

2naeF (1 On, NE—E gt g g
-%——jgangmNK—FanK(&&)—7?—dimwﬁd€dndC 0. (48)

We therefore finally obtain an approximate solution of the form

_ o
 E0) = mo (10 + e

which is Bloch’s solution. The equation (48) for « differs slightly from that
given by Bloch, who did not formulate the orthogonality condition properly.
However, within the accuracy to which we are working the two equations give
the same final result.

3.11. We now evaluate the parameter o under the conditions which probably
obtain in the alkali metals, the energy being given by E = B(£2 + =2 -+ ().
The first term in (48) is

__ 2mael 28 | d€ dv dt
hORT ) @+ 1) (e +1)

and presents no difficulty. The sextuple integral is, however, extremely
difficult to calculate, mainly owing to the presence of the time factor. The
corresponding time factors which occur in dispersion or collision problems do
not cause any trouble because there are no relations such as (374) to be
satisfied, and a simple integration over E; suffices to eliminate the time factor.
Here v is not independent of £ and &', and this introduces a complication which
renders the evaluation of the sextuple integral a matter of some delicacy.

We first of all use polar co-ordinates p, 0, ¢ and ¢’, €', ¢’, so that we have
B2+ 4 = p? and &2 + 02 4 {2 = o2, the axis of § being 6 = 0. Then
instead of ¢’, 0’, ¢’ we use polar co-ordinates R, 9, » in the f, g, & space, and
finally instead of R we use the equivalent variable v, which is connected with,
R by equation (36),

(49)

The line joining (&, %, {) to the origin is taken as & = 0, and 9 is therefore the
angle between the direction of propagation of the incident electronic wave
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and that of the elastic vibration, the direction cosines being proportional to
(&, m, €) and to (f, g, &) respectively.
First let us consider the factor involving the time. It is

2r sin 2t (B — By 4= Av)/h __ 2w sin 2wty /h
h EE —_— E;.-‘/ :l—_- hv B h Y ’

where
,

202
y=20 (Li%;ivz e 4—3%9 cos «‘}> F hy.

If ¢ is large this expression oscillates very rapidly, and in any integral involving
it the only effective contributions will be from small values of y. We therefore
change variables from & to y, and in any expression which varies slowly we
put y = 0. Now

dy = — 47?&\19 sin & d%
and so

7sin 27t (B — By + Av)/h . J’s =7 § sin2nty/h
sin & dY = — dy.
«{o EE —_ E‘_g/ :I: hv $=0 4:7‘5@@\19 Yy 4

Further, putting z = 2nty/h the integral becomes

$3=0 o
b J’ szdz,

drafve Js=n 2

the upper limit of integration being

20,2
= (5 e

and the lower limit being

_ ont [ [4nPa® ,  dma > }
z__h{B( v Tvp Fhvy.

h2

If these limits of integration are of opposite sign, then for large ¢ the last integral
is effectively

j‘ sin 2 i,
o 2
that is 7, and if the limits are of the same sign the integral is zero. It is there-
fore necessary to consider the limits of integration carefully.
Taking first the upper sign for Av, which corresponds to the absorption of a
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“sound quantum ” by the electrons, we see that the upper limit becomes
negative if
hy? Bp

4228 wa’ 0)
and the lower limit becomes positive if

47:2a2ﬁ
These ranges are therefore to be excluded.

Taking next the lower sign for v, corresponding to an emission of a ““ sound

quantum,” we see that the upper limit is always positive, but that the lower
limit becomes positive if

sp  he?
wa  A4nPa?p’

V> (52)
This range is therefore to be excluded, as giving zero contribution. Further,
any other factors containing § are to be replaced by their values when y = 0,
that is when

hy Y
inaBp  bp

cos § = -+ (53)
We next carry out the integration over m, which presents no difficulty as
the only factor involving o is (£ — £')/£. From (374) we have
(2”€—£'da:___£{J cos 0,
o & p Jo cosf

where 0, is the angle which the line joining (p, 0, ¢) and (¢, 0', ') makes with
the line 6 = 0. The definition of & and © gives

dw,

cos 0; = cos 0 cos & - sin 0 sin & cos w.
and so we have

\”Z"Q—_i’dm__: _Roosd

= (54)
0 S I3

o/

By these integrations the sextuple integral has been reduced to the following
form, from which a constant multiplying factor has been omitted.

VEdv [ 8% % 1
[ dz dn dcj 1 I(” 47:2@25“/ I D +1)

+ < 2+4 2a2§ >( <4 1) (::er i 1)] ’ (55)

the limits of integration being determined by (50), (51) and (52). With these
limits of integration the integral is finite, as it must be, though, if we had taken
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the limits of integration for p to be 0 and oo, the integral would have been
logarithmically infinite at the lower limit. However, only small values of z
contribute appreciably and from this it also follows that only values of p in
the neighbourhood of the critical point of the Fermi distribution are effective,
as was to be expected on physical grounds. The integrand is, therefore, only
appreciable for small values of & and of ¢, and in this case the exact limits of
integration do not affect the result. We take v to vary from O to v, the
maximum Debye frequency, or equivalently we take x to vary from 0 to
®/T, where ® is the Debye characteristic temperature. ~The integral over
p need only be taken over a range including e = 0, sufficiently large for the
integrand to have become inappreciable. The equation (48) for a becomes

(%)39{[%‘1“” dcr’“’ 2o (G —(3) }<ee+1><e1—e—w+1)

+{<_> 2 +1(5)e }(e T (e ‘”+1)1—2I§'§f i

\©/ (e +1) (e +1)
(56)
The definitions of the constants are
(1
BEO \2ra,
and
_ 4depa®Mp2p < hy >5
M TaEe \ake) ®7)

Since only small values of = contribute effectively to the integral we may, in
terms involving both ¢ and z, expand in powers of  and invert the orders of
integration. The terms involving ¢ disappear, and on changing the variable
to E we obtain

<$>5 20([33/2[ dE J'@/T atde _ 2BF j v/ E dE

0/ x JE@E+DE"+1D] £—1 (€41 +1)

The ratio of the two E integrals is found to be W32 on using the formulee given

. (58)

by Sommerfeld, while the z integral is easily evaluated in the two limiting
cases of T very large or very small compared with ©.
For T > © we develop the integrand in powers of z, obtaining for o
_ 4o Wy
/BT ET
For T < O the integration may be taken to co with negligible error, and we
obtain

o ==

Fa <’@>5 W2
125+/6\T/) &T
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The distribution function therefore takes the form
0 (E) = oy (E10) — B & agg’ for T> 0, (594)
and
m(818) = o (En%) — 255 \T> ¥ for T<O, (59B)
where /
o (W
7\1_2<B) A (574)

This is equivalent to Bloch’s result, and gives a conductivity which varies as
T~ for low temperatures and as T~ for high temperatures.

3.2. We now consider the general case when we do not assume E to have
the simple form used in the last section. The solution of equation (45), which
is valid independent of the form assumed by E, is suggested by the way in
which we have written the expressions (59). Instead of (47) we use the follow-
ing equation, which reduces to (47) under the conditions assumed in section

3.1.
X Pe — jK(E, g )ggjgé xe 48 d’ d¥

_ 2nacF ony » OB0E — BB[OE ... .,
. [ o BT e e A (4Ta)

The argument follows exactly the same lines as before, a solution of the
equation with the right-hand side replaced by zero being

_E
“TE
We therefore solve (47a) by putting
Ye = E LN A

o being given by an orthogonality condition, which is easily found to be
2raeR j‘ 1 9ng g , n OE /0t — OE[0E’
dt dnd KE, &) —/—=—rr—=
g et [ RE ) HE
dE dn dC dE' dy/ dT' = 0. (48a)
3.21. It only remains to solve this equation for «’. In the general case it
is not possible to carry out the integrations as completely as above, but there
is little doubt that a similar result will be obtained. Here we shall carry out
the calculation for our model of a semi-conductor. We shall only treat the
case of low temperatures, as all theories give the same law for high tempera-
tures, and so the interesting region is that of low temperatures.
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Our model of a semi-conductor consists in having a large number of electrons
in the first zone of energy values, and a few electrons in the second, there being
a finite energy difference between the two zones. At low temperatures only
the thermal vibrations of small energy will be excited, and the probability of
the transition of an electron from the first to the second zone will be small.
In calculating the conductivity we may therefore neglect such transitions as
they form a very small fraction of the total number of transitions. Further
in evaluating (484) we restrict &, v,  and &', v/, ¢’ to lie between -, that is
in the first zone. If we restrict them to lie in the second zone we obtain a
value for «’ which is the same as the first one, as it must be, on account of the
relation (30).

As in section 2 the integrands are only effectively different from zero in the
neighbourhood of the points (-, 4=, +n). We therefore transform to the
variables, «, v, w used in section 2. The first term in (484) then becomes

__ 2maeF _L J’ du dv dw , (494)
h KT)(e+1)(e+1)
where

Fle=E—Wy=W, — W, — B, @+ 2+ u?). (Wy> Wy (60)

The treatment of the second term follows exactly the same lines as in the last
section and, omitting a constant multiplying factor, we again obtain the
expression (55). There is, however, a great difference, since here ¢ is always
negative and decreases as p increases, where %= w2 024 w2 Small
values of ¢ are therefore the most important, and so the exact limits of integra-
tion must be used. From (50), (51), (52) and from the fact that neither p
nor v can be negative we see that the expression (55) must be written

. r“ ld J’ (v — Bpo/ma) V2 dv
0y, ETDE T FDE@E =D

%(Fo*‘ﬂ)

- & o)
-+ 4 [ —dpj
~Pop 0

(v — bpo/ma) V3 dv
(€4 1) (e 4+ 1) (" — 1)

1‘% (p—po)

+4njm1dpj
Po 0

v

(v -+ bpg/ma) V3 dv (61)
+1DE+1)(—1)’

where pg = hb/4maB;. To carry the integrations further is not easy, and we

(8]

therefore make approximations which are valid when we use those numerical
values of the various constants which actually occur. If we put 5 = 105 cm.
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per second, ¢ = 1078 cm. and 3, = 1072 erg, p, comes out to be of the order
1073, Further, the integrand is negligible for values of ¢ which are much
greater than p;, where B;0,2 = kT. The value of g, is of the order 1072,/T,
and this may be taken as the maximum value of p which occurs in the v integrals.
The corresponding value of z(= hv/kT) is of the order T~* From these
numerical results we see that except for extremely small values of T of the
order of a fraction of a degree it is permissible to expand the integrand in
powers of z, and we therefore replace the factor (¢ — 1) by #. Also on account
of its smallness we put p, equal to zero, the resulting error being negligible.
We then have for (61)

2T (/_{’_\4 jho *do (62)
IIZ \TCQ 0 (86 + l) (6_6 + 1) ’
and so we have for o’ the equation
o KT [ o®do _F (w 0" de (63)
Wl ) D) ET g (e D e+ D)
where
, 2nMaepp? ’
On integration by parts we find
A B SPEY 65
“ =5 g T ®)
which gives for the distribution function
/6. \3/2 D
g (Et) — M (BT P
n(Ent) = noEnl) — 5= TN (p) 7 - (66)

3.92. To evaluate the conductivity we use the general result that the stream
of an electron is given by
_ 2rea OB (Erf) o
T P (67)
This has been proved by Bloch for tightly bound electrons by direct evaluation
of the stream, and by Peierls* for the case when uy,, (zyz), defined in equation
(11), does not vary rapidly with k, that is, for nearly free electrons. This
relation also holds in the neighbourhood of the discontinuities in the energy,
as may be seen by writing equation (6) in the form

0 0
§ = ey + eye
o coténla + ¢ eté—2mala
= ¢ibule (¢ |- ¢gm i),

* <Z. Physik,” vol. 53, p. 255 (1929).
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The expression in the bracket is u; (#) and is independent of %, so Peierls’
proof still holds.
The total current is

J, = j n (Enl) s, dE dn d,

and so depends on evaluating the expression

oE on
j % aao d% dv d. (68)

This we do by splitting up the integral in the usual way and considering the
contributions from the different regions.

Introducing the variables u, v, w used in section 2, 0E /0% for the first zone
becomes 2@,u and the corresponding contribution to the integral (68) is

— ‘2[31@0 %dudvdw,
J ou

or

_4B2 ‘ w? du dv dw

LT (e{w,—w,,—;e1 (Ut 02+ w) L ET +1) (e——{Wl-—Wu—ﬁ, (U2 422 4 w?)} BT 4 1)'

It we write kTe, = {; (u® + v% 4 w?) this becomes

_ 8n (kT2 [ %2 de,
3Bz Jo (et (Wom WIRT |- 1) (e~ o~ (Wom WIFT 17T)

_ Am (k1) J’°° Ve deg

Bll/z o et WomWOET | '

For small values of T we may omit the 1 in the denominator since Wy >W,,
obtaining

(69)

W,— W,

— 732 JT (BT/B,)V2e ™ BT (70)

The second zone gives a similar contribution, and the two may be combined
together by using (30) and we find

302 ] (7;?\)1/2@ X gz> el

Introducing the temperature ©, defined in section 2.2, the conductivity
is given by

c=o0p¢ T, (71)

=@

where o4 is a constant. This formula is only valid for T < @,. I T> 0,
the discontinuity is unimportant, the substance behaves as a metal and for
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sufficiently high temperatures must have ¢ inversely proportional to the
temperature.
Comparison with Expervment.

4. The experimental results on semi-conductors are not easy to interpret.
In the first place there are two main types of semi-conductors. The first
type consists of ionic conductors in which heavy ions are transported through
the crystal by a process akin to electrolysis. The second type consists of
purely electronic conductors, while there is a third class in which the current is
carried partly by ions and partly by electrons. The theory developed here
only applies to electronic conductors. Further, we have considered the crystal
to be atomic, and the theory must not be expected to apply to molecular
crystals without considerable modification. The greatest difficulty in the
interpretation arises, however, because there is no general agreement as to
which substances are to be classified as metals and which as semi-metals.
Gruneisen, in his article on conductivity in the “ Handbuch der Physik,”
cites a number of elements as semi-conductors. Unfortunately, the resistance
curves are often completely changed by the presence of small quantities of
impurities. For example, titanium is cited by Gruneisen as a semi-conductor,
and in certain states it shows a pronounced negative temperature coefficient,
whereas recent measurements have shown that titanium is a superconducter.
Germanium exhibits a very curious resistance curve with two minima, and
impure silicon shows several discontinuities in resistance, with the result
that silicon shows no minimum at ordinary temperatures. On the other
hand, Gudden* is inclined to the view that no pure substance is ever a
semi-conductor. This view is supported by the superconductivity of titanium
and by the fact that a positive temperature coefficient has been found for
silicon.t Recent measurements by Meissner] did not confirm the metallic
character of silicon, though this is almost .certainly due to the presence of
oxygen in his single crystal. From the experimental side, therefore, the
existence or non-existence of semi-conductors remains an open question, and
neither the measurements of specific heat nor those of susceptibility are
sufficiently accurate to supply additional evidence. Theoretically there is no
reason. why semi-conductors should not exist, the main difference between
semi-conductors and insulators being that for the former @, is so small that
the substance has a measurable conductivity at ordinary temperatures, while

* ©“ Ergebnisse der Exakten Naturwissenschaften,” vol. 3, p. 116 (1924).

T H.J. Seemann, ¢ Phys. Z.,” vol. 28, p. 765 (1927) and vol. 29, p. 94 (1928).
1 W. Meissner and B. Voigt, * Ann. Physik,’ vol. 7, pp. 761 and 892 (1930).
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for the latter ®, is extremely large. Experimentally, however, the only
substances which show undoubted semi-conducting properties are very
impure, and it may be that they have no intrinsic conductivity. If this is
so, the theory would have to be extended to take account of the effect of
impurities in increasing the conductivity of poor conductors.* Under the
circumstances the value of AW (= W, — W) cannot be fixed, not only because
of the doubtful nature of the experimental evidence, but also because the
formula for the resistance is not known over the whole range of temperature.
However, a minimum resistance often occurs at a few hundred degrees
absolute, and this must be due to AW and kT becoming of the same order.
AW is therefore usually a few hundredths of a volt, while it may be as much
as a few tenths of a volt. This seems quite reasonable, and indicates that,

though there are many points still to be cleared up, the theory is on the right
lines.

This work was carried out at the Institut fiir Theoretische Physik, Leipzig.
I wish to thank Professor Heisenberg for permitting me to work in his Institute,
and I am indebted to him and to Dr. Bloch for many interesting discussions
and criticisms.

* [Note added in proof.—It has been found possible to do this to a certain extent, and
the results wiil be published in a further paper.]
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