
United States Patent (19)
Palmer et al.

(54)

75

(73)
(21)
(22)

60

(51)
(52)
(58)

56)

PROGRAMMABLE BIDIRECTIONAL
SHIFTER

Inventors: John Palmer, Hillsboro, Oreg; Bruce
Ravenel, Sunnyvale, Calif.; Rafi
Nave, Kiriat Motzkia, Israel

Assignee:
Appl. No.:
Filed:

Intel Corporation, Santa Clara, Calif.
558,171
Dec. 5, 1983

Related U.S. Application Data
Continuation of Ser...No. 341,862, Jan. 22, 1982, aban
doned, which is a division of Ser. No. 129,995, Feb. 13,
1980, Pat. No. 4,338,675.

Int. Cl.......................... G06F1/00; G 11C 19/00
U.S. Cl. 364/900; 364/715
Field of Search ... 364/200 MS File, 900 MS File,

364/715
References Cited

U.S. PATENT DOCUMENTS

3,781,819 12/1973 Geng et al. 364/900
3,928,857 12/1975 Carter et al. 364/200
3,96,750 6/1976 Dao 364/715 X
4,023,023 5/1977 Bourrez et al. 364/200X
4,122,534 10/1978 Cesaratto 364/900

b.

11) Patent Number: 4,509,144
(45) Date of Patent: Apr. 2, 1985

4,149.263 4/1979 Prioste................................. 364/900
Primary Examiner-Jerry Smith
Assistant Examiner-Gary V. Harkcom
Attorney, Agent, or Firm-Blakely, Sokoloff, Taylor &
Zafman

57 ABSTRACT
A programmable bidirectional shifter is disclosed com
prised of a first bidirectional load and read interface
circuit selectively activated for left shifts, and a simi.
larly constituted second bidirectional load and interface
circuit which is selectively activated for right shifts.
The first interface circuit is coupled to a byte shift ma
trix while the second interface circuit is coupled to a bit
shift matrix. The byte shift matrix is arranged and con
figured to shift the input quantity by a multiple of bytes,
namely multiples of eight bits. The bit shift matrix is
similarly constituted to shift its input quantity by a se
lected number of bit locations up to seven consecutive
places. The bit and byte shift matrices are coupled to
allow bidirectional flow of signals therebetween. The
bit and byte matrix are controlled by a bit and byte shift
control circuit respectively which determines the num
ber of bytes and bit places each matrix will actually
shift.

1 Claim, 9 Drawing Figures

2

2

late aao aw
Aegyr Aead weeaayaa

Fra Avia
Ayari

re

7 sawma
Ayaan

sy

afe Asad
Aw dad awe

Warataea

bar

U.S. Patent Apr. 2, 1985 Sheet 1 of 7 4,509,144

YS --

s ||
M EE EH,

IHS
| IE

is

OOS R

&

KE)
EH

n trihar, S. a

U.S. Patent Apr. 2, 1985 Sheet 2 of 7 4,509,144

Cows7aw? Goms

- - - - - --
62 arod V, -, - ar/77/May/C

swap Awaves 23

3- Aetosa

A. 3. MacWhave
-------- -

72

loop Cow 7

eme Pagawf

4.2. COMM7e,

eeseam1a1aaa. A SAy/AT Counv7
say are

fact saya/ ovy Gas Gemeeayo
Asagay7 saya of7

C OAPsalmo

ap opefaamo

Bru/aev Aoetarree
para vavra eace

as

U.S. Patent Apr. 2, 1985 Sheet 3 of 7 4,509,144

g/77 say/AF
Ayage/

eye Ayy Oao AWA
AAFa7 APead Ay7aaaaaa

b &beta

Agawae?6E

Tia. 5.

- 123 X

(a 29 125
A. -

122- -leg
& O J. M.

tao/1

sayaya A, 7.
(or save reas ?or aware.)

U.S. Patent Apr. 2, 1985 Sheet 4 of 7 4,509,144

Za. 4

"or a" 16"
IO6

Vd *N
St 9 /
SN NYSN N

tea O N al 9i 2

Ne ..., NSS " ... a NSN N /i74

NSN at We yifa

N

S N.
into o N

U.S. Patent Apr. 2, 1985 Sheet 5 of 7 4,509,144

size- 1-fa. 6.

GMy7m OAMAFF aea.

4,509,144 Sheet 6 of 7 U.S. Patent Apr. 2, 1985

eye7 Weddoes

4,509,144
1

PROGRAMMABLE BIOIRECTIONAL SHIFTER

This is a continuation of application Ser, No. 341,862,
filed Jan. 22, 1982, abandoned, which is a division of
Ser. No. 129,995, Feb. 13, 1980, now U.S. Pat. No.
4,338,675.

BACKGROUND OF THE INVENTION:
1, Field of the Invention
The present invention relates to the field of numeric

data processors and in particular, relates to integrated
circuit, floating point numerical processors capable of
mixed precision calculations, mixed mode arithmetic
calculations and rounding operations.

2. Description of the Prior Art
Prior art arithmetic processors, particularly inte

grated circuit processors, are characterized by various
artifacts of inaccuracy, unreliability and lack of safety
during floating point calculations. For example, a typi
cal prior art, integrated circuit process is capable of
performing transcendental mathematical operations,
including square root, in such a manner that the result is
not only obtained relatively slowly, often only with
software assistance, but subject to the possibility of
multiple rounding errors in intermediate results leading
to an inaccurate final answer and with no internal mech
anism within the processor to either or correct the
rounding errors. In addition, prior art processors gener
ally cannot operate with mixed mode operands or can
do so only with the substantial risk of producing errone
ous results.
What is needed then is an arithmetic processor having

sufficient internal procision to make quick, accurate and
reliable calculations of single and double precision inte
gers and floating point quantities with internal means to
deal with rounding errors and other arithmetic excep
tions or special cases such as zero and infinity arithme
tic.

BRIEF SUMMARY OF THE INVENTION

The present invention includes a programmable bidi
rectional shifter which is comprised of a first bidirec
tional load and read interface circuit selectively acti
vated for left shifts, and a similarly constituted second
bidirectional load and interface circuit which is selec
tively activated for right shifts. The first interface cir
cuit is coupled to a byte shift matrix while the second
interface circuit is coupled to a bit shift matrix. The byte
shift matrix is arranged and configured to shift the input
quantity by a multiple of bytes, namely multiples of
eight bits. The bit shift matrix is similarly constituted to
shift its input quantity by a selected number of bit loca
tions up to seven consecutive places. The bit and byte
shift matrices are coupled to allow bidirectional flow of
signals therebetween. The bit and byte matrix are con
trolled by a bit and byte shift control circuit respec
tively which determines the number of bytes and bit
places each matrix will actually shift. By reason of this
combination of elements, a numeric quantity of virtually
arbitrary length may be selectively shifted by an arbi
trary number of bit places during a single clock cycle
and by the use of simple circuitry.
BRIEF DESCRIPTION OF THE DRAWINGS:

FIG. 1 is a block diagram schematically showing the
system and environment in which the numeric proces
sor of the present invention is used, namely in conjunc

10

5

20

25

30

35

40

45

50

55

60

65

2
tion with a central processing unit having access to
external peripherals and memory.
FIG. 2 is a simplified block diagram of the architec

ture of the numeric processor showing its division into
a bus interface unit and floating point execution unit.
FIG. 3 is a block diagram of a programmable shifter

included within the present invention wherein left and
right shifts of an arbitrary length may be made within a
single clock cycle.
FIG. 4 illustrates the byte matrix shifter portion of

the programmable shifter illustrated in FIG. 3.
FIG. 5 is a schematic diagram of a load interface unit

circuit used in the programmable shifter.
FIG. 6 is a schematic diagram of a read interface unit

utilized by the programmable shifter,
FIG. 7 is a simplified block diagram of the nano

machine portion of the floating point execution unit
wherein multiplication, division, modulo reduction and
square roots are implemented directly in hardware.
FIGS. 8a and 8b is a detailed block diagram illustrat

ing the entire floating point execution unit of the present
invention.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

I. General Discussion of Data and Numeric Repre
sentations

In order to understand the methodology and appara
tus of the present invention, consider first the basic
representational formats for numerical data which the
numeric processors must accommodate. According to
the present invention, the data structure consists of five
general data types: Teal long and short; integer long and
short; and BCD integer.

Additionally, there are a number of special numbers
which must be handled as exceptions. Plus and minus
zero form a special class as a result of their special na
ture in arithmetic operations. Similarly, plus and minus
infinity are used to represent positive and negative num
bers with a magnitude greater than that of the largest
representable number. A normalized number is defined
as a real number having all significant bits in the fraction
or significand. Denormalized numbers are those num
bers which have an exponent equal to that of the small
est representable normalized number, but which have
significands which are allowed to have leading zeros.
Finally, when no numeric result can be represented,
such as in the case of division of zero by zero, a "not a
number (NAN)" or "IND' can be provided. Thus,
underflow and overflow, rather than aborting the nu
merical operation when occurring, can be dealt with by
the use of plus and minus infinity, denormalized num
bers and NANs.

In the following description let P equals the sign bit;
E equals the exponents; S the significand or fractions;
and X the general numeric variable.

Consider first the specific definition of normalized
numbers in both short and long word storage formats,
i.e., in the format suitable for memory storage. The
range of the number 2-022sors (2-3-52) 21023 and is
characterized by a biased eleven bit exponent, E, which
is 1s Es 2046, which has a leading implicit one bit in a
significant followed by 52 expressly specified bits, Thus,
the interpretation of the long or double precision nor
malized number is x = (-1)P2E-1023("1 "--S 2-52)
where "1" is an implicit one.

4,509,144
3

By the same token, the definition of a short word or
single precision normalized number in memory is

thereby having a range of

2-126 scs (2-2-23)2127

and characterized by an eight bit biased exponent
ls ES 254. In this case, the significand begins with an
implicit leading 1 bit followed by 23 expressly specified
bits.
The normalized representation of an extended or file

format of the present invention is described in the pres
ently illustrated embodiment as a normalized number
having a 15 bit biased exponent with a 64-bit significand
characterized by explicit leading bit. In other words,
the file format is x=(-1).2E-16383(S 2-63) where
ls Es32766 and where E=215-1 is reserved for infi
nites, invalids and indefinites.

Plus and minus zero is characterized by a biased expo
nent and significand both having a zero value. Thus, in
the file format, the plus or minus zero is characterized
by the number having the smallest exponent e.g. zero,
and zeroes for the significand or by a number having a
corresponding zero flag tagged thereto.

Similarly, denormalized numbers in memory, which
are clustered about zero, have a range given by
2-126(2-23)s x s 2-126(1-2-23) in a single precision
and 2-10222-52sxs 2-1022(1-2-52) in double preci
sion.

Denormalized numbers in memory are characterized
in each case by a biased exponent equal to zero and
interpreted as x=(-1)(2-126) (S2-2) in single preci
sion and x = (-1) P(2 - 1022) (S2-52) in double precision.

In the file or extended format of the present invention
a denormalized number has the range (2-6)
2-16382s x s 2-16382 (1-2-63), is characterized by a
leading zero bit in the significand and is interpreted as
x=(-1)P2-16382(S 2-63)

Plus and minus infinity as described in the presently
illustrated embodiment is characterized by a number in
the single or double precision memory format as having
a binary exponent of all ones and zero significand. In the
file format, plus and minus infinity is characterized by
the most positive exponent representable and a signifi
cand, 1.000 . . . 0, with a corresponding invalid flag
tagged to the number.

Finally, a NAN or a "not a number' is defined in the
presently illustrated embodiment as having, in single or
double precision, all ones in the exponent and a nonzero
significand. In the file format, NAN similarly has the
most positive exponent representable and any signifi
cand not equal to 1.000 . . . 0 and, as before, a corre
sponding invalid flag tagged to the number. In such a
case, the use of an actual significand is left to the user.
Thus, it is possible that the value of the significand can
be used to initialize storage such that when the storage
is utilized by the user, these large magnitude NANs will
propagate through the arithmetic operations and indi
cate to the user that an error occurred and program
logic incorrectly accessed a nonutilized area of storage.
Similarly, a NAN generated by an arithmetic operation
and numeric data such as zero divided by a zero may be
used as a pointer by assignment of its significand to the
offending portion of code. Many other uses as well can

10

15

25

30

35

45

SO

55

65

4.
be devised for specially coding and employing signifi
cands in NANs.

In addition to the double and read normalized and
denormalized, and special cases described above, the
numeric processor of the present invention is capable of
handling integer word (16 bits) integer short (32 bits)
and integer long (64 bits) representations as well as 18
digit signed BCD integers.

II. General Introduction to the System Context of the
Numeric Processor of the Present Invention
The numerical floating point processor of the present

invention (hereinafter "the processor" or "FPU”) is a
high performance processor fabricated in an integrated
circuit package and with standard circuit technology
incorporating many features not available in any present
day floating point processor. The processor of the pres
ent embodiment is intended to be used in a multimaster
system as the arithmetical unit in support of a coproc
essing central processing unit (CPU). The processor
thus becomes a software transparent extension of the
CPU, thereby greatly improving system performance
beyond that achievable through other alternatives. As
described in a copending application entitled Apparatus
and Method for Cooperative and Concurrent Coproc
essing of Digital Information filed June 30, 1978, Ser.
No. 921,082, now U.S. Pat. No. 4,270,167, issued May
26, 1981, the processor is a concurrent, co-processing
unit with its corresponding CPU. While the processor is
executing a floating point instruction, its corresponding
CPU continues with the instruction stream, thereby
achieving overlapped operation with the processor.
Program throughput is thereby increased by opera
tional interleaving of the processor and CPU instruc
tions. Floating point instructions are decoded directly
from the CPU's instruction stream. When the floating
point instruction is decoded from the instruction queue
of the FPU and CPU, the floating point unit will exe
cute that instruction in parallel with the CPU which
continues with the instruction stream. If the CPU en
counters a second floating point instruction, it will
"mark time' until the processor has finished the first
floating point instruction.
The bifurcated nature of the processor can be appre

ciated if the operation of the processor in conjunction
with its CPU is briefly described. The FPU gains access
to the local bus by means of a single request grant pin.
The processor tracks the instruction queue of its corre
sponding CPU by monitoring the status inputs and
tracking the data in parallel with the CPU. When a
floating point instruction is fetched from the instruction
queue, CPU 20 will not execute it. In the case of a non
memory instruction, the CPU 20 ignores it totally and
proceeds with its other operations. In the case of an
instruction with a memory reference, CPU 20 will cal
culate the effective address using its addressing modes,
and will perform a dummy read, that is, a normal read
except that CPU 20 will not enter the data. Instead,
FPU 22 of the present invention, will capture the ad
dress of the operand during the first clock cycle and the
data during a subsequent clock cycle. After a floating
point instruction has been fetched, the FPU 22 can start
execution unless it requires more pieces of data. In this
latter case, the FPU will request the bus by the re
quest/grant handshake and fetch the rest of the operand
as though it were the central processor, CPU 20, itself,
by incrementing the address captured from the bus to
address the subsequent words of the operand. When

4,509,144
5

FPU 22 needs to store the results in memory, it will use
the address captured during the dummy read by CPU
20 to indicate the starting address of the operand in
memory. Again, it will request the buses and will write
into memory, incrementing the address after every 5
write. While FPU 22 is computing internally, CPU 20
has the buses and can proceed with whatever the pro
gram dictates. This is what is meant by co-processing
between FPU 22 and CPU 20.

Occasionally, synchronization between CPU 20 and 0
FPU 22 is required and CPU20 must wait for FPU 22
to finish before a subsequent floating point instruction
can be executed. A specific software instruction,
WAIT, is provided in the instruction set to cause CPU
20 to wait at the appropriate times. Similarly, when
FPU 22 desires to store information in memory, it must
make certain that it stored the information before CPU
20 tried to read it. Again, the synchronization is pro
vided by a software instruction which will cause CPU
20 to wait if FPU 22 has not yet performed the required
operation.
To accomplish this coprocessing FPU has a bus inter

face unit (BIU 30) shown in FIG. 2 which monitors and
tracks the activities on the local bus and the status of
CPU 20, and communicates with CPU 20, while the
arithmetic operations are independently proceeding
with the numerical processor's computation unit, float
ing point execution unit (FEU 32).
FIG. 1 diagramatically shows in simplified form a

CPU 20 concurrently coprocessing information in a
digital system with the processor of the present inven
tion, floating point unit (FPU) 22. As diagramatically
illustrated in FIG. 1, FPU 22 shares many of the exter
nal status and administrative function control pins with is
CPU20. For example, FPU 22 and CPU20 both oper
ate from clock 24 and are coupled through a local bus
26 to a system bus 28 by the same set of latches 29, bus
controllers 27 and transceivers 25. It is beyond the
scope of the present invention to detail the exact nature 40
and coordination within the local bus between CPU 20
and FPU 22, but details of this operation have been
disclosed on copending applications entitled "Appara
tus and Method For Cooperative and Concurrent Co
processing of Digital Information," filed June 30, 1978, 45
Ser. No. 921,082, now U.S. Pat. No. 4,270,167, issued
May 26, 1981; and "System Bus Arbitration and Cir
cuitry and Methodology," filed June 30, 1978, Ser. No.
921,083, now U.S. Pat. No. 4,257,095, issued Mar. 17,
1981. 50
The increased capability and reliability of FPU 22,

becomes apparent when considered in view of the sys
tem of FIG. 1 wherein the FPU is a concurrent and
coprocessing unit. The number of exceptions, interrupts
and software handling which are reduced and removed 55
from the arithmetic operations of FPU 22 necessarily
leaves the CPU20 and the entire system free to produc
tively proceed with processing of instructions without
being overburdened by or delayed by inadequate or
faulty arithmetic execution. 60
FIG. 2 illustrates in simplified diagramatic form the

basic internal architecture of FPU 22. FPU 22 includes
a bus interface unit (BIU) 20 and FEU 32 are interactive
and operate in a substantially independent, albeit coor
dinate fashion. This bifurcated internal architecture 65
FPU 22 allows BIU to continuously track the local
system bus status while execution of a floating point
instruction is concurrently in progress within FEU 32.

15

20

25

6
The function of BIU 30 is to track the local system

bus, to decode floating point instruction, maintain status
information and control the local bus when FPU 22 is
transferring data. The bus handshake protocol between
BIU 30 and CPU20 as described in copending applica
tions entitled "Apparatus and Method For Cooperative
and Concurrent Coprocessing of Digital Information,'
filed June 30, 1978, Ser. No. 921,082, now U.S. Pat. No.
4,270,167, issued May 26, 1981; and "System Bus Arbi
tration and Circuitry and Methodology,' filed June 30,
1978, Ser. No. 921,083, now U.S. Pat. No. 4,257,095,
issued Mar. 17, 1981. BIU/FEU formatter and data
interface unit 34 serves to handle the passing of com
rhand, operands and status between BIU 30 and FEU
32.
CPU20 and FPU 22 simultaneously maintain a queue

of prefetched instructions. Therefore, FPU 22 will si
multaneously decode a floating point instruction with
CPU20. Upon detection of a floating point instruction,
FPU 22 will gain control of the system bus and perform
any memory read or write cycles required. A 20 bit data
port 36 couples to BIU 30 to local bus 26. Coupled to
data pot 36 are a six byte instruction queue 38, a twenty
bit floating point instruction address register 40, a six
teen bit control register (CW)42, a sixteen bit status
register (SW)44, and a sixteen bit tag register (TW)46.
Additional logic registers and decoding circuitry 47 are
also included within BIU 30, in a manner well-known to
the art and as disclosed in the above referenced co
pending applications, to decode and provide the neces
sary administrative processing of instructions into and
from FPU 22 with respect to the local bus,

Floating point execution unit 32 is characterized by
an internal file format, eighty bits wide, diagramatically
shown in FIG. 2 as a 64 bit fraction bus 48 and a 16
exponent bus 49. All numerical quantities are converted
to this standard file length real number within FEU 32,
namely to a numeric quantity with a fifteen bit biased
exponent, a signed bit and a 63 bit fraction. All calcula
tions on the fractions within FEU 32 are performed to
67 bits of accuracy and then rounded as provided by
precision control settings as discussed below.
Coupled to fraction bus 48 is a file memory array

comprising a register file 50, eight registers deep, a
programmable shifter 52, a sticky bit detector and adder
54, a post or sun shifter 56, a skip shifter 58, a quotient
register 62, a multiplexed B register 64 and a constant
ROM 60 containing various constants used in calcula
tions of transcendental approximations. In addition, a
number of temporary registers 66 are included as may
be required in the mathematical operation and process
ing. Random control logic 68 is also included to provide
discrete control in response to microcoded instructions
in a manner well-known to the art. Logic circuit 68
includes a microcode engine for decoding the instruc
tions and includes a microcode ROM to store the micro
code program. The microcode program is not described
herein for the sake of brevity, but can be derived from
the definitions of the orthogonal instruction set de
scribed.
Consider the loading of numbers from memory into

FEU 32 in greater detail as illustrated in FIGS. 8a and
b. Data, for example, a 64-bit integer transferred by BIU
30 in 16 bit blocks is placed in one of the temporary
registers 66 and then loaded into sum register 80. The
next 16 bit block is placed in a temporary register 66,
but is shifted left by 16 bits in shifter 52 before being
loaded into sum register 80. The remaining two 16 bit

4,509,144
7

blocks are similarly loaded and shifted until the 64 bit
integer has been assembled in sum register 80, which is
still left with 16 leading zeros. Normalization can now
be implemented. Sum register 80 includes the following
components. Eight 8-input nor gates included in sum
register 80 have their inputs coupled to an internal sum
register and have their outputs coupled to a first coding
circuit which identifies how many of the bytes are all
zero. If all eight bytes are all zero, a zero indicator is
immediately activated. If 0-7 bytes are zero, the number
of all zero bytes is loaded in to leading zero counter 154.
Counter 154 in turn is coupled to shift output register
146 whose output is coupled to shift count true or re
verse detection circuit 166. The output of multiplexer
148 is used to control the number of shifts in program
mable shifter 52, thereby setting up of the contents of
sum register 80 to be shifted left by the number of all
zero bytes. Similarly, a second coding circuit has its
inputs coupled to the eight bit places of the highest
order byte of register 80. A three bit filed is similarly
loaded into counter 154, register 146 and multiplexer
148 to shift the contents of register 80 left by the remain
ing number of zero bit places in the leading byte. The
number of byte and bit shifts stored in counter 154 is
then coupled to exponent circuit 154 wherein a cor
rected exponent is generated. The normalized number
representing the integer is then stored in file 50.
Consider the normalization of a 32 bit real number in

file format. The 32 bit word from BIU is characterized
as consisting of word 1 comprising the 16 least signifi
cant bits and word 2 comprising the 16 most significant
bits. The value, 40, is loaded from an immediate micro
code literal according to microcode control. Table 158
is coupled to count register 146, with the result that the
shifted value for word 1 is stored in register 80, Word 2
is then placed in a register ASE, which then includes
from left to right, the sign, the exponent and the seven
most significant bits. Again, from an immediate micro
code literal a left shift of the contents of ASE by 57
places followed by a right shift of one and a forced one
being placed into the most significant bit position. The
contents of register ASE is then merged into register 80
by addition yielding a normalized real number, with an
explicit leading 1 bit in 80 bit file format. This exponent
of the memory real is coupled via exponent bus 49 to
exponent circuit 152 where it is tested or examined for
a special case exceptions, and converted to file format
exponent. The normalized fraction and file format expo
nent are then loaded into file 50.
Without detailing the operation, 18 digit BCD is also

translated into 80 bit file format using a series of multi
plications by 10 (addition of a single and triple left shift)
using Horner's rule as an implementary algorithm.

Conversion from file format to a selected data type is
implemented as follows: In the case of an integer, the
maximum number of the exponent representable in the
data format is read from exponent ROM 160 into expo
nent circuit 142. The difference, (d = max exponent
-exponent), between the exponent of the number to be
converted and the maximum number is generated under
microcode control and examined by circuit 152. If d is
less than zero, an overflow condition results and an
error flag is generated. If d is equal to zero an overflow
is indicated if the number to be converted is positive (by
our convention), or if negative, an overflow is gener
ated unless the fraction is 1.000 . . . 0 (again this the
largest negative number representable). Otherwise, the
number is considered void. If d is greater than zero,

10

15

20

25

45

SO

55

65

8
then the fraction is shifted right by d places as a result of
transfer of d from circuit 142, through line 144 to
counter 146. The denormalized function is then
rounded and ready to be sent out as an integer.
Conversion from file format real numbers to memory

is similarly implemented by exponent examination in
circuit 152 and rounding. The 64 bit number is register
80 is left shifted by a fixed number of places as deter
mined by table 158. For example, a single precision
number having a 23 bit significand is shifted 40 places
left. A guard (G), round (R), and sticky (S) bit are cal
culated as described from the remaining tail in register
80. The original number to be converted is copied from
file 50 and then shifted right by 23 bits with the GRS
bits appended to the right end. The most significant 1 bit
in file format is suppressed. The fraction can then be
rounded and stored in a working register together with
the converted exponent from circuit 152 for transfer
through BIU 30 to the user in 16 bit segments.

In the case of BCD integers the file formatted number
is divided by 10t. If the quotient is less than one, then
a quotient is denormalized by a number of bit places
equal to the absolute value of the exponent of the quo
tient, and a loop is entered whereby each BCD digit is
extracted by multiplying the quotient by ten and ex
tracting the four most significant bits to form each BCD
digit.
Operands received from and exterior memory are

preformatted to a sixteen bit word boundary and trans
ferred on a real time basis to FEU 32 through BIU/-
FEU interface 34. FEU 32 uses programmable shifter
52 to position the 16 bit quantities at adder 54 such that
successive additions from the fraction and exponent and
set tags which identify the type of operand. Control of
FEU 32 is provided by a microcode control engine or
control logic 68, which receives its instructions from
the registers in the BIU/FEU interface unit 34.
Once FEU 32 has performed the operations required

by the floating point instructions, it transfers the infor
mation regarding execution and/or error conditions to
status register 44 and tag register 46 from whence they
are relayed to the user. As previously stated, BIU/FEU
unit 34 passes command, operands and status signals
between BIU 30 and FEU 32.
Upon entry into FPU 22, each portion of an operand

is transferred through BIU 30 into a performatter within
the BIU/FEU interface unit 34, and then transferred to
FEU 32. Once in FEU 32 the operand is checked for
validity and repacked into the file format in which all
operations are calculated. The preformatter in BIU/-
FEU unit 34 allows the repacking to be a succession of
FEU unit additions such that the operand can be trans
ferred using back-to-back memory cycles. One of the
primary objects of BIU/FEU unit 34 is to allow the
numeric processor to interface with both word and byte
users which present information on both even and add
memory addresses. Circuitry adapted to provide this
type of service is described in the co-pending applica
tions entitled, "Apparatus and Method for providing
Byte and Word Compatible Information Transfer,'
Filed May 30, 1978, Ser. No. 910, 103. A continuation
application, Ser. No. 291,450 was filed Aug. 10, 1981,
which application was allowed Nov. 3, 1982. In any
case, information is uniformly provided to FEU 32 by
unit 34 as two byte words.
Programmable Shifter

4,509,144
9

The operation of FEU 32 requires various unique
circuits described below in detail.
Programmable shifter 52 of the present invention is

included within FEU 32 to provide left or right shifts in
the range of 0-63 bits in one clock cycle. Generally, this
type of shifting is required in data format conversions,
cordic approximations and denormalization operations.
Left and right shifts are achieved by a bidirections byte
shift matrix 90 and a bidirectional bit shift matrix 92
diagrammatically shown in FIG. 3. The number of
shifts required is decoded into the number of whole
bytes and fractional bits constituting the total required
number of shifts.
For example, in FIG. 3 a shift of 52 bits would in

clude 6 byte shifts and 4 additional bit shifts. The word
is loaded from FEU bus 48 either into a left or right
latch 94 or 96 respectively as required and then first
shifted by the fractional number of bits or the required
number of bytes, depending on whether the shift indi
cated is a left or right shift. For example, FIG.3 shows
a left load and right read interface circuit 94 which
serves both as the input for left loads and the output for
right shifts. Similarly, a right load and left read interface
circuit 96 is provided as a right shift input circuit and a
left shift output circuit. A byte shift count register 98
and decoder 100 drives byte shift matrix 90 while a
similar bit shift count register 102 and decoder 104
drives the bit shift matrix 92. Both registers 98 and 102
are three bits wide and drive similar shift matrices 92
and 90, Byte shift register 98 is decoded by decoder 100
to drive byte shift command lines labeled 0, 8, 16, 32 . .
48, and 56. Similarly, bit decoder 104 has as its output

eight discrete lines labeled as 0, 1, 2, ... 6, and 7.
FIG. 4 diagramatically illustrated byte shift matrix 90

and bit shift matrix 92. Only byte shift matrix 90 will be
illustrated for clarity, but bit shift matrix 92 is analo
gously constituted. The devices illustrated are bidirec
tional integrated circuit devices, and for the sake of
simplicity, the left hand nodes, Xi shall be considered
the input while the right hand nodes, Yishall be consid
ered the output, although the matrix is totally symmetri
cal and the opposite could also be true. In the illustrated
example, activation of the "O' decode line from decoder
100 activates bidirectional devices 106 which allows the
signal on nodes Xi to be transferred directly across the
nodes Y, thereby representing a zero shift. However, if the
decode line "8" is activated, bidirectional devices 108 are
each activated, thereby coupling node Xi to node Y--8.
Similarly, discrete decode line "16' will cause node X
to be coupled to node Yi -- 16 and so forth.
Ithe same manner, discrete control lines 0, 1, 2 . . .

from decoder 104 will cause shift devices similar to
those shown in FIG. 4 to cross-couple node Xi to node
Y-1 in case of activation of control line '1' and Xi to
X--2 in the case of control line '2' and so forth.

Both byte and bit matrix are precharged and are con
sidered in the present embodiment as being in an active
low logic condition. Therefore, when a number is
shifted to the left the vacated right bit positions will not
be coupled to the data source. Thus, the precharged
state of the byte or bit matrix will be read as logical
zeros. Similarly, zeros will be filled in the most signifi
cant bit positions in a right stuff.
The read and load circuitry can be understood by

considering in detail the circuitry of the bidirectional
right and left read interfaces 94 and 96. FIG, 5 illus
trates a typical unit circuit used as a load interface. A
data bit, bi, is coupled as an input to a bidirectional

10

15

25

30

35

40

45

50

55

60

65

10
device 120 whose gate is controlled by the logical prod
uct of a left or right shift command signal and a timing
clock, -1. If a shift is required, device 120 will go active
on clock -1, charging node N, which is the gate of
device 122, to either a logical zero or 1, depending upon
whether the data bit, bi, is 1 or 0. At a slightly delayed
time, the delayed right or left signal coupled to the gate
of device 124 will go active low thereby allowing node
Ai, to go high if node N is 0 or will pull node A if node
N is 1. The gate of transistor 126 is controlled by the
condition of node Ai and will, together with device 128,
provided an inverted output Xi with respect to A1. In
other words, Xi will be pulled low in the case that bi is
low or will be left precharged by device 128 if b is one.
FIG, 6 similarly illustrates a typical unit read inter

face circuit. The input is Zi from bit or byte matrix 90 or
92 is coupled to the input of transistor 130 whose gate is
controlled by a delayed shift left or shift right signal.
The signal present at Z is coupled to the input of in
verter circuit 132 whose output is coupled to inverter
circuit 134. The output of inverter circuit 134 in turn
has its output fed back to the input of inverter 132 to
form a feedback loop which is completed by the com
plement of the shift left or shift right signal through
feedback device 130. The output of the first inverter
stage 132 is coupled to the gate of device 136 which has
an input coupled to ground and its output coupled to
the bus node b. Device 136 is coupled to node bi
through device 138 whose gate is controlled either by
the read shift left or read shift right signal. Since the bus
is precharged, the 1 on Z is coupled as a 0 to the gate of
device 136 which allows bi to remain in its precharged,
logical high state. Otherwise, if Z is 0 device 136 is
conductive thereby pulling bi to ground as well. The
output Z is latched by the inverter combination of de
vices 132 and 134.

IV. Summary and Advantages of the Invention
Each of the above aspects of the invention, when

taken together, result in significant improvements in
integrated circuit numeric data processors. The numeric
processor of the present invention is fast enough for
many scientific and statistical calculations; accurate
enough for business and commercial computations;
precise enough for new applications like interval arith
metic; provides an unprecedented level of capability,
safety and reliability with high performance and low
cost. The numeric processor is primarily characterized
by the fact that all data types, long and short real, long
and short integer, compact BCD, and integer word are
converted to an internal file or temporary real format of
80 bits in length. The internal stack within the numeric
processor, the exponent and fraction buses, the arithme
tic unit, and all shifters and registers are designed to
operate with an 80 bit word, including three additional
rounding bits (GRS) and where appropriate, a tag bit.
The file format has an explicit leading bit in the signifi
cand and thus allows unnormalized as well as normal
ized arithmetic.

Various mathematical expressions, known for ap
proximating functions, such as the polynomial approxi
mation, Maclaurin series, successive divisions, and
Padeh approximations, are examined with the purpose
of determining how many elements in the series are
required in order to obtain less than a specified degree
of error, it is readily demonstrable that the only way in
which the number of elements in the series can be kept
within a reasonable bounds is to limit a domain of the

4,509,144
11

argument in the approximation series. After the result is
calculated, there must be some way in which the do
main is then built back up to encompass the original
domain of numbers which the numeric processor in
designed to handle.
Cordic approximations are well-known to the art and

the general approach is to reduce the argument to a
very small remainder to a very small remainder using
pseudo-divides, to create a series of pseudo-quotients.

12
count from counter 126 or its complement as may be
required and as is selectively provided by shift count
selection circuit 166. Without this combination of ele
ments, cordic approximations could not be implemented
in an integrated circuit chip of practical size or at suffi
cient speed and accuracy.
We claim:
1. A programmable bidirectional shifter for shifting a

plurality of bits a plurality of bit positions during a
The approximate value of the function of the remain- 10 single clock cycle comprising:
ders are then computed followed by reconstruction of
the function with the correct argument using pseudo
multiplications with the psu.edo-quotients. The algo
rithm of the cordic approximation are well-known,
somewhat complex and need not be repeated here. The
exact point to which the argument need to be reduced
will depend upon the accuracy desired, the mathemati
cal approximation used and the function to be calcu
lated. Microcode control applied (according to ordi
nary design considerations) is used to implement these
argument reductions and approximation calculations.
The pseudo-divisions and pseudo-multiplications are
implemented as loops using additions and substractions
employing mathematical constants from ROM 63 and
the operand or remainder function. Shifts are required
in the cordic algorithm which are controlled by the
loop count. Loop counter 162 is provided for this pur
pose and is coupled both to multiplexer 148 and to
ROM pointer logic 164 which in turn controls the read
out from ROM 63. Essential to the hardware implemen
tation of the cordic approximations is a flexible loading
into a programmable shifter from multiple sources. For
example, shifter 52 can be variably controlled through
multiplexer 148; by loop counter 162, which is loaded
from a microcode immediate field as well as the variable
loop count; by bit or byte portion of leading sero
counter 154; from any source coupled to fraction bus 48
through shift count register 126; from rounding parame
ter table 158 through register 126; and by both the shift

5

25

30

35

45

50

55

65

a selectively activated left load and right read inter
face circuit means for the loading of bits, which
have been input and are to be shifted left and the
reading of bits which have been shifted right which
are to be output;

a byte shift matrix coupled to said left load and right
read interface circuit means for performing a plu
rality of byte length shifts;

a bit shift matrix coupled to said byte shift matrix, for
performing a plurality of bit length shifts;

a selectively activated right load and left read inter
face circuit means coupled to said bit shift matrix
for the loading of bits which have been input and
are to be shifted right and the reading of bits which
have been shifted left and which are to be output;

a byte shift control circuit means coupled to said byte
shift matrix to control the number of left and right
byte shifts, said number of shifts being determined
by the number of bit portions to be shifted and the
number of bits per byte;

a bit shift control circuit means coupled to said bit
shift matrix to control the number of left and right
bit shifts, said number of shifts being determined by
the number of bit positions to be shifted and the
number of bits per byte;

whereby a left or right shift may be performed by said
shifter for a plurality of bits a plurality of bit posi
tions during a single clock cycle.

k t k

PATENT NO.

DATED

INVENTOR(S) :

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby corrected as shown below:

COLUMN

l

UNITED STATES PATENT AND TRADEMARK OFFICE
CERTIFICATE OF CORRECTION
4,509,144

: Apr.

LINE

28

62

62

63

64

65

23

35

l2

7

2, 1985
Palmer et al.

DESCRIPTION

Between the words "either or " please insert
--detect--.

After the word "number" please insert --is--.

Please delete

Please delete

Please delete

Please delete

Please delete

After the number "le," please insert --bit--.
Please delete

Please delete

Page l of 2

5 52 " (2-3)" and insert --(2-2)--.
" (BIU) 20" and insert -- (BIU) 30--.
"Coor-"

"dinate" and insert --coordinated--

"pot" and insert --port--.

"output" and insert --count--.
"is" and insert --in--.

UNITED STATES PATENT AND TRADEMARK OFFICE

CERTIFICATE OF CORRECTION
PATENT NO. : 4,509 l44 Page 2 of 2
DATED : Apr. 2, l985
NVENTOR(S) : Palmer et al.

It is certified that error appears in the above-identified patent and that said Letters Patent is hereby
corrected as shown below:

COLUMN LINE DESCRIPTION

8 l2 After the word "described" please insert
--below -- .

8 29 Please delete "and" and insert --an-- .

l O 9 After the word "A", second reference, please
insert --low--.

10 l2 Please delete "provided" and insert --provide--.

ll 4 Please delete "in" and insert ---is--.

ll 23 Please delete "substractions" and insert
--subtractions--.

eigned and sealed this
Twenty-ninth D 2 y of April 1986

SEAL)
Attest:

DONALD J. QUIGG

Attesting Officer Connissioner of Patents and Trademarks

