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Situations 
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Abstruct-This note deals with a different interpretation of 
the power decomposition proposed by Akagi and coauthors for 
distorted three-phase situations. This enables us to generalize 
the technique to single-phase systems and polyphase systems 
and also to include rigorously zero sequence currents and volt- 
ages. 

I .  INTRODUCTION 
OR single-phase power systems in sinusoidal situa- F tions, concepts such as active power, reactive power, 

active current, reactive current, power factor, etc., are 
well defined. Various attempts [1]-[4] have been pro- 
posed to generalize these concepts to the three-phase case 
with unbalanced and distorted currents and voltages. 

In their so-called pq-theory, Akagi et al .  [ 13 introduce 
the concept of instantaneous reactive power to generalize 
the classical reactive power concept for single-phase si- 
nusoidal systems to the three-phase nonsinusoidal situa- 
tion. Their concept is very interesting for practical pur- 
poses, in particular to analyze the instantaneous compen- 
sation of reactive power without energy storage. The 
concepts of the power components introduced by Akagi 
have been amply discussed by Ferrero and Superti-Furga 
[2]; they named them “Park powers” and derived many 
interesting new properties. 

However, the theory developed still raises some con- 
ceptual problems: 

the theory is only complete for three-phase systems 
without zero sequence currents and voltages; 
the single-phase situation cannot be derived from the 
three-phase case; 
there is no generalization to systems with more than 
three phases; such systems have been proposed for 
bulk power transmission [5]. 

In the present note it is shown how the concepts intro- 
duced by Akagi and coauthors [ l ]  can be reformulated. 
To make the paper more or less self-contained, the theory 
developed by Akagi is briefly recalled and discussed in 
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Section 11. In Section I11 another approach is given to de- 
rive the same concepts. In Section IV it is shown that the 
questions mentioned above are resolved by the proposed 
approach. 

11. A SUMMARY OF AKAGI AND NABAE’S POWER 
THEORY 

For three-phase voltages and currents without zero se- 
quence components, the a and /3 components are defined 
by 

1 
2 

-- 

d3 - 
2 

where v and i denote voltages and currents, and where a ,  
b, and c denote the three phases. The instantaneous active 
power is 

p( t )  = v,i, + v,& = v,i, + Vbib  + uric. (3 )  

The instantaneous imaginary power, introduced by 

(4) 

Akagi, is defined by 

q(t) = vai, - q i , .  

i: + ig + i :  = ii + i i  

It can readily be checked that the following hold: 

(5 )  

and also 

This shows that for a given voltage the energy loss in the 
transmission line is reduced if p( t )  and/or q(t)  decrease. 
Using compensators without energy storage, the instan- 
taneous power p( t )  cannot change, and hence mini- 
mum line losses are obtained for zero imaginary power. 
Akagi’s imaginary power concept hence exactly shows to 
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what extent compensators without energy storage can be 
used to reduce line losses. This result is precisely the ex- 
tremely interesting contribution realized by Akagi and his 
coauthors. 

Akagi et al .  [ l ]  then express the powers in the three 
phases as 

Pa(t) = Pap(t) + Paq(t1 

P b  ( t )  = Pbp ( t )  + Pbq ( t )  . (7) r PAt) = P c p ( 0  + P,(t) 

The first parts are proportional to p ( t ) ;  for the three 
phases they sum up to p ( t ) .  The second parts are propor- 
tional to q(t) and sum up to zero. In each phase the in- 
stantaneous power is split up into a real power component 
and an imaginary power component. Only the latter com- 
ponent can be affected by compensation without energy 
storage. The components paq, pbq, and pcq correspond to 
power transfer between the three phases. 

If zero sequence components are present, the corre- 
sponding powers 

are added to the above expressions by Akagi [ 11; nothing 
is said about the contribution to real and imaginary pow- 
ers due to zero sequence currents and voltages. However, 
it can easily be seen that the zero sequence currents and 
voltages can contribute to the real power as well as to the 
imaginary power (by considering, e.g., the interaction of 
zero sequence currents and positive sequence voltages). 
On the other hand, Ferrero and Superti-Furga [2] add 

Po = voio (9) 

to the instantaneous real power in each of the phases, but 
again do not discuss whether the zero sequence compo- 
nents should be taken into account for the imaginary 
power. 

The above brief discussion of the power theory intro- 
duced by Akagi and coauthors, shows the important con- 
tribution made by them, but also points to a number of 
conceptual problems. 

There is a one-to-one correspondence between the a 
and /3 components and the currents and voltages in 
the three phases; the powers p( t )  and q(t) can hence 
be expressed in a function of the currents and volt- 
ages in the three phases. The question thus arises 
whether the introduction of the a and /3 components 
is really necessary. 
The theory is only relevant for three-phase power 
systems. The single-phase case cannot be derived 
from it as a special case. Also the extension to sys- 
tems with more than three phases [5] is not straight- 
forward. 
The theory does not take properly into account the 
presence of zero sequence currents and voltages. 

111. A NEW INTERPRETATION OF pq-THEORY 
Let the number of phases be denoted by m. The instan- 

taneous currents and voltages in the m phases of the line 
are represented by the m-dimensional vectors i( t)  and v( f ) .  
The instantaneous power transmitted to the load is the 
scalar or internal product of these vectors: 

p(t)  = v(t)Ti(t)  (10) 

where the superscript T denotes matrix transposition. Let 
ip ( t )  be the orthogonal projection of the vector i( t)  on the 
vector v(t), with respect to the vector product vTi .  By 
definition, the vector ip( t )  is proportional to the vector 
v( t ) ,  and is such that 

v(rITi(t) = v(t)'i, ( t ) .  (11)  

Explicitly, 

v(tlTi(t) 
ip( t )  = ~ 

lv(t)I2 

or 

ip( t )  = - p(r )  v( t )  I v( t )  I 
where I I denotes the length of a vector, i .e.,  1vI2 = 
v T v .  Equation (12) can be derived from linear algebra by 
considering the projection of the vector i( t)  on the vector 
v ( t ) .  Moreover, one may readily check that (1  1 )  is satis- 
fied. The current 

i,(t) = i(t) - ip(t)  (14) 
is orthogonal to v(t), such that 

v(tlTiq(t) = 0. (15) 

Summarizing, the instantaneous current vector can be de- 
composed into two components: 

i(t) = ip( t )  + i,(t) (16) 

the instantaneous active current ip ( t ) ,  which is pro- 
portional to the voltage v ( t ) ,  and corresponds to the 
instantaneous power; 
the instantaneous nonactive (or reactive) current 
i , ( t ) ,  which does not contribute to power transfer. 

It is readily seen that these current components contain 
all information contained in the real and imaginary power 
components introduced by Akagi. The instantaneous real 
power is obviously equal to 

v( t )  ip (0. (17) 

The instantaneous imaginary power can be associated with 

For three-phase systems without zero sequence compo- 
nents (where the currents and voltages can be represented 
in a plane) a sign can be attributed to the quantity q(t). 
Indeed, then q(t)  can be associated with the cross product 
of the current and voltage vectors; this is a vector whose 
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length is given by the above expression and which is or- 
thogonal to the plane of the current and voltage vectors. 
The sign can be associated with the direction of that vec- 
tor with respect to that plane. For more general cases this 
sign interpretation is not possible. It is straightforward to 
check that i,(f) corresponds to the reactive current ob- 
tained by Akagi from the imaginary power defined by 
means of the a and @ components. 

Our claim is that it is not necessary to define the real 
and imaginary power components, but that it suffices to 
define the current components i,(t) and i , ( t )  (the vector 
or its length) to obtain the same results as obtained by 
Akagi. 

(i) From the definition it follows that 

Ii(t)l2 = liP(t)l2 + li,(0l2 

li(t)I2 = li,(t)I2 + Iib(t)I2 + li,(t)I2. 

(19) 
and for three phases 

(20) 
Moreover, 

and 

Hence (19) expresses exactly the same as (6): the line 
losses are proportional to the sum of the squares of p ( f )  
and q(t), or the sum of the squares of Iip(t)l and li,(f)l. 
We assume that the resistance in the neutral conductor is 
zero. To reduce the line losses as much as possible with- 
out altering the instantaneous power (or the instantaneous 
active current), that is, without using energy storage, the 
imaginary power q(t), or equivalently the instantaneous 
nonactive current i q ( f ) ,  should be annihilated. The mag- 
nitude of q(t) or the length of i , ( t )  characterizes the in- 
stantaneous line loss component which can be reduced by 
elements without energy storage. Note that (19) not only 
holds for three phases, but also for an arbitrary number 
of phases. 

(ii) For a two-phase system the decomposition (16) is 
exactly the same as the decomposition obtained by Akagi: 

(iii) For three-phase systems without zero sequence 
currents and voltages the decomposition of the three-phase 

current vector according to (16) yields exactly the same 
result as the concepts of real and imaginary power in 
Akagi's paper [ 11. In that paper the three-phase current is 
first transformed to (a, @)-components. Then these cur- 
rents are split up into active and nonactive components as 
in (23)-(26). Finally, the two-phase quantities are again 
transformed to three-phase quantities. An interesting fea- 
ture of this interpretation is that it clearly shows why the 
(a, @)-components are introduced. These components are 
not required for physical reasons; the (CY, @)-components 
enable us to derive in an elegant way the projection of the 
current vector on the voltage vector and the component of 
the current vector orthogonal to the current vector. In this 
analysis use is made of the fact that the transformation 
from (a ,  b ,  c)-components to (a, @)-components is or- 
thogonal. However, one should realize that the algorithm 
using (a, P)-components assumes that there are no zero 
sequence currents and voltages. 

IV. DISCUSSION 

1. The decomposition of the current vector into a com- 
ponent parallel to the voltage vector and a component or- 
thogonal to it, enables us to recover Akagi's results for 
three-phase systems without zero sequence components 
(three-wire systems). 

2. The decomposition proposed in the previous section 
is not restricted to three phases. It is valid for any number 
of phases: in this way Akagi's concept of compensation 
without energy storage can be extended to multiphase 
power systems [ 5 ] .  This is an interesting feature of the 
analysis of the present paper. As was pointed out in Sec- 
tion 11, Akagi's concept of instantaneous imaginary power 
is restricted to three-phase systems. The concept of non- 
active current however is valid for any number of phases. 

3 .  The single-phase case is also contained in the anal- 
ysis of Section 111. This feature distinguishes it from the 
analysis in the original work by Akagi. Indeed if i is a 
scalar, then clearly ip coincides with i, and i, does not 
exist. The line losses cannot be reduced by elements with- 
out energy storage. This is a well-known fact; neverthe- 
less, it is interesting to have it included in the theory for 
an arbitrary number of phases. 
4. The decomposition of the current, as well as the 

concepts of instantaneous real and imaginary powers in- 
troduced by Akagi, clearly show that compensation for 
line loss reduction comprises two aspects: 

(a) compensation without energy storage: this corre- 
sponds to reducing (i,(t)l or Iq(t)l, without altering the 
instanfaneous power transfer; 

(b) compensation with energy storage: this corre- 
sponds to reducing the average loss, without altering the 
average power transfer. In other words for a given voltage 
vector and given average active power 

l T  
P = - s p ( t )  dt 

T o  
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we want to modify i p ( t )  orp(t), such that the average loss 
or, equivalently 

f loT li&>lZ dt (28) 

is reduced as much as possible. This is the only aspect 
which is relevant for single-phase power transmission. 

Compensation aspect (a) is related to reducing power 
oscillations between phases, which do not correspond to 
oscillations of the total power transmitted from source to 
load. Compensation aspect (b) corresponds to reducing 
power oscillations between source and load; it is clear that 
this requires elements with energy storage, 

However, it should be emphasized that not every os- 
cillation of power between phases yields a contribution in 
the imaginary power q(t). If a balanced source and a bal- 
anced load are considered in sinusoidal steady state, then 
there is no oscillation in the power transmitted between 
source and load. There is oscillation of the power between 
phases: one part proportional to the active power and the 
other part proportional to the reactive power. The former 
part does not yield a contribution to the imaginary power, 
but only the latter part does. Since only the latter part can 
be reduced by compensation (with or without energy stor- 
age), it is justified that only this part contributes to the 
imaginary power. 

5 .  One should clearly distinguish the instantaneous ac- 
tive current, defined by (13), from the active current, as 
defined by Fryze [3]: 

where ))v(t)I) denotes the r.m.s. value, i.e. 

. t l T  

Note the difference between, on the one hand, I v(t) l ,  a 
time-dependent quantity corresponding to the length of the 
vector v(t), and, on the other hand, the r.m.s. value 
l I ~ ( t ) ( ( .  The instantaneous active current vector is a cur- 
rent which is at any time proportional to the voltage vec- 
tor and which corresponds to the same instantaneous ac- 
tive power as the actual current vector. The active current 
is a current vector with the same waveform as the voltage 
vector, which corresponds to the same average active 
power as the actual current vector. Reactive compensa- 
tion with energy storage makes it possible to reduce the 
line loss from the value corresponding to the current ip to 
the value corresponding to the current i,,,. 

6. The presence of zero sequence currents does not in- 
troduce any problems with respect to the concepts of Sec- 
tion 111. The zero sequence currents should, in general, 
partly be included in the instantaneous active current and 
partly in the nonactive current. In general, the zero se- 

Quence currents affect the instantaneous 
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active power as 
well as the instantaneous imaginary power. This is in con- 
trast with the discussion of zero sequence components by 
Akagi [l] and by Ferrero and Superti-Furga [2]. If, for 
example, there is a zero sequence current but not a zero 
sequence voltage, then the zero sequence current does not 
yield a contribution to the instantaneous active power. 
However, it yields a contribution to the nonactive current 
and hence to the imaginary power as defined by Akagi, 
since it yields an increase of the line losses. On the other 
hand, if there is a zero sequence current as well as a zero 
sequence voltage, they yield a contribution to the instan- 
taneous power transfer and should be included in the in- 
stantaneous active power. Indeed in the former case the 
zero sequence current is orthogonal to the voltage vector 
and is completely included in i,(t). In the latter case this 
is not so. 

7. It has been shown [6] that any sinusoidal three-phase 
current corresponding to zero average active power can 
be realized by means of linear reactive elements (with en- 
ergy storage). A question which remains to be addressed 
is which part of the current can be compensated by ele- 
ments without energy storage and which part by linear 
reactive elements with energy storage, in order to obtain 
minimal line currents and line losses. Also it is interesting 
to investigate which is the minimal energy storing capac- 
ity required. 

8. Czamecki [3], [4] proposes a decomposition of the 
line current into 

(a) the active current, given by (29), with the same 
waveform as the voltage which yields the average active 
power, and 

(b) various current components corresponding to zero 
average active power which can be attributed to different 
physical phenomena (unbalance, energy storage, scatter- 
ing, etc.). It would be interesting to analyze the relation- 
ships that exist between the current decomposition of Sec- 
tion I11 and Czamecki’s decomposition procedure. 

V. CONCLUSION 
In this paper it has been shown that the instantaneous 

real and imaginary powers introduced by Akagi et al. [l] 
can be interpreted nicely by a current decomposition. This 
viewpoint yields the following new features. 

The new interpretation is not only valid for three- 
phase power systems, but it can also be used in poly- 
phase power systems. Moreover, it contains the sin- 
gle-phase case as a special case. 
The new interpretation is well suited to take into ac- 
count zero sequence currents and voltages. 
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