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Faster Numerical Algorithms via Exception Handling 
James W. Demmel, Member, IEEE, and Xiaoye Li 

Abstract-An attractive paradigm for building fast numerical 
algorithms is the following: 1) try a fast but occasionally unstable 
algorithm, 2) test the accuracy of the computed answer, and 3) 
recompute the answer slowly and accurately in the unlikely event 
it is necessary. This is especially attractive on parallel machines 
where the fastest algorithms may be less stable than the best 
serial algorithms. Since unstable algorithms can overflow or cause 
other exceptions, exception handling is needed to implement this 
paradigm safely. To implement it efficiently, exception handling 
cannot be too slow. w e  illustrate this paradigm with numerical 
linear algebra algorithms from the LAPACK library. 

Index Terms- IEEE floating point arithmetic, exception han- 
dling, linear algebra, LAPACK, speedup, NaN’s, basic linear 
algebra subprograms. 

. I. INTRODUCTION 
WIDELY accepted design paradigm for computer hard- A ware is to execute the most common instructions as 

quickly as possible, and replace rarer instructions by sequences 
of more common ones. In this paper we explore the use 
of this paradigm in the design of numerical algorithms. We 
exploit the fact that there are numerical algorithms that run 
quickly and usually give the right answer as well as other, 
slower, algorithms that are always right. By “right answer” 
we mean that the algorithm is stable, or that it computes 
the exact answer for a problem that is a slight perturbation 
of its input [12]; this is all we can reasonably ask of most 
algorithms. To take advantage of the faster but occasionally 
unstable algorithms, we will use the following paradigm: 

(1) use the fast algorithm to compute an answer; this will 

(2) quickly and reliably assess the accuracy of the com- 

(3) in the unlikely event the answer is not accurate enough, 

The success of this approach depends on there being a large 
difference in speed between the fast and slow algorithms, on 

usually be done stably; 

puted answer; 

recompute it slowly but accurately. 
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being able to measure the accuracy of the answer quickly 
and reliably, and, most important, for us, on floating point 
exceptions not causing the unstable algorithm to abort or run 
very slowly. This last requirement means the system must 
either continue past exceptions and later permit the program 
to determine whether an exception occurred, or else support 
user-level trap handling. In this paper we will assume the first 
response to exceptions is available; this corresponds to the 
default behavior of IEEE standard floating point arithmetic 

Our numerical methods will be drawn from the LAPACK 
library of numerical linear algebra routines for high perfor- 
mance computers [2]. In particular, we will consider condition 
estimation (error bounding) for linear systems, computing 
eigenvectors of general complex matrices, the symmetric tridi- 
agonal eigenvalue problem, and the singular value decom- 
position. What the first two algorithms have in common 
is the need to solve triangular systems of linear equations 
which are possibly very ill-conditioned. Triangular system 
solving is one of the matrix operations found in the Basic 
Linear Algebra Subroutines, or BLAS [9], [lo], [18]. The 
BLAS, which include related operations like dot product, 
matrix-vector multiplication, and matrix-matrix multiplication, 
occur frequently in scientific computing. This has led to their 
standardization and widespread implementation. In particular, 
most high performance machines have highly optimized imple- 
mentations of the BLAS, and a good way to write portable high 
performance code is to express one’s algorithm as a sequence 
of calls to the BLAS. This has been done systematically in 
LAPACK for most of numerical linear algebra, leading to 
significant speedups on highly pipelined and parallel machines 
121. 

However, the linear systems arising in condition estimation 
and eigenvector computation are often ill-conditioned, which 
means that overhnderflow is not completely unlikely. Since 
the first distribution of LAPACK had to be portable to as many 
machines as possible, including those where all exceptions are 
fatal, it could not take advantage of the speed of the optimized 
BLAS, and instead used tests and scalings in inner loops to 
avoid computations that might cause exceptions. 

In this paper, we present algorithms for condition estimation 
and eigenvector computation that use the optimized BLAS, 
test flags to detect when exceptions occur, and recover when 
exceptions occur. We report performance results on a “fast” 
DECstation 5000 and a “slow” DECstation 5000 (both have 
a MIPS R3000 chip as CPU [17]), a Sun 4/260 (which has a 
SPARC chip as CPU [15]), a DEC Alpha [ 111, a CRAY-C90 
and a SPARCstation 10 with a Viking microprocessor. The 
“slow” DEC 5000 correctly implements IEEE arithmetic, but 

~31, [41. 
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does arithmetic with NaN's about 80 times slower than normal 
arithmetic: The "fast" DEC 5000 implements IEEE arithmetic 
incorrectly, when the operands involve denormals or NaN's, 
but does so at the same speed as normal arithmetic. Otherwise, 
the two DEC 5000 workstations are equally fast'. The CRAY 
does not have exception handling, but we can still compare 
speeds in the most common case where no exceptions occur 
to see what speedup there could be if exception handling were 
available. We measure the speedup as the ratio of the time 
spent by the old LAPACK routine to the time spent by our new 
routine. The speedups we obtained for condition estimation 
in the most common case where no exceptions occur were 
as follows. The speedups ranged from 1.43 to 6.50 on either 
DEC 5000, from 1.50 to 5.00 on the Sun, from 1.66 to 9.28 
on the DEC Alpha, and from 2.55 to 4.21 on the CRAY. 
Results for computing eigenvectors were about 1 .08. These 
are quite attractive speedups. They would be even higher on 
a machine where the optimized BLAS had been parallelized 
but the slower scaling code had not. 

In the rare case when exceptions did occur, the speed 
depended very strongly on whether the exception occurred 
early or late during the triangular solve, and on the speed of 
subsequent arithmetic with NaN (Not-a-Number) arguments. 
On some examples the speedup was as high as 5.41 on the 
fast DEC 5000, but up to 13 times slower on the slow DEC 
5000. This illustrates the price of implementing IEEE NaN 
arithmetic too slowly. 

We discuss the bisection algorithm for finding the eigenval- 
ues of symmetric tridiagonal matrices. The LAPACK SSTEBZ 
routine takes special care in the inner loop to avoid overflow 
or division by zero, whereas our algorithm takes advantage of 
infinity arithmetic defined in the IEEE standard. We report 
performance results on a SPARCstation IPX (which has a 
Weitek 8601 chip as FPU), as well as on a distributed memory 
multiprocessor-the CM-5. The speedups range from 1.14 to 
1.41. 

We also discuss a singular value decomposition algorithm 
used in the LAPACK routine SBDSQR, where the careful 
scaling code can be avoided by using exception handling. The 
speedups we have obtained on a CRAY Y-MP (EL/2-256) 
were between 1.21 and 1.39. 

The rest of this paper is organized as follows. Section I1 
describes our model of exception handling in more detail. 
Section I11 describes the algorithms for solving triangular 
systems both with and without exception handling. Section IV 
describes the condition estimation algorithms both with and 
without exception handling, and gives timing results. Section 
V does the same for eigenvector computations. Section VI 
compares the bisection algorithms for solving the symmetric 
tridiagonal eigenvalue problem both with and without excep- 
tion handling. Section VI1 describes the benefit from exception 
handling when computing singular values of a matrix. Section 
VIII draws lessons about the value of fast exception handling 
and fast arithmetic with NaN's and infinity symbols. Section 
IX suggests future research. 

'Normally a buggy workstation would be annoying, but in this case it 
permitted us to run experiments where only the speed of exception handling 
varied. 

TABLE I 
THE mEE STANDARD EXCEPTIONS AND THE DEFAULT VALUES 

Exception raised I Default value I Condition 

overflow 

underPo w 

division by zero 

invalid 

Inexact 

f w  

0, &2',," or denormals 

kcJ 

NaN 

round(x) 

e > emoz 

e < em," 

05 t (-w), 0 x w, 

z/O, with finite I # 0 

010, co /OD, etc. 

true result not representable 

11. EXCEFTION HANDLING 

In this section, we review how IEEE standard arithmetic 
handles exceptions, discuss how the relative speeds of its 
exception handling mechanisms affect algorithm design, and 
state the assumptions we have made about these speeds in 
this paper. We also briefly describe our exception handling 
interface on the DECstation 5000. 

The IEEE standard classifies exceptions into five categories: 
overjlow, unde$ow, division by zero, invalid operation, and 
inexact. Associated with each exception are a status flag and 
a trap. Each of the five exceptions will be signaled when 
detected. The signal entails setting a status flag, taking a trap, 
or possibly doing both. All the flags are "sticky," which means 
that after being raised they remain set until explicitly cleared. 
All flags can be tested, saved, restored, or altered explicitly 
by software. A trap should come under user control in the 
sense that the user should be able to specify a handler for 
it, although this capability is seldom implemented on current 
systems. The default response to these exceptions is to proceed 
without a trap and deliver to the destination an appropriate 
default value. The standard provides a clearly-defined default 
result for each possible exception. The default values and the 
conditions under which they are produced are summarized in 
Table I. Once produced, IEEE default behavior is for f r x ,  and 
NaN to propagate through the computation without producing 
further exceptions. 

According to the standard, the traps and sticky flags provide 
two different exception handling mechanisms. Their utility 
depends on how quickly and flexibly they permit exceptions to 
be handled. Since modem machines are heavily pipelined, it is 
typically very expensive or impossible to precisely interrupt an 
exceptional operation, branch to execute some other code, and 
later resume computation. Even without pipelining, operating 
system overhead may make trap handling very expensive. 
Even though no branching is strictly needed, merely testing 
sticky flags may be somewhat expensive, since pipelining 
may require a synchronization event in order to update them. 
Thus it appears fastest to use sticky flags instead of traps, 
and to test sticky flags as seldom as possible. On the other 
hand, infrequent testing of the sticky flags means possibly 
long stretches of arithmetic with f o o  or NaN as arguments. 
If default IEEE arithmetic with them is too slow compared 
to arithmetic with normalized floating point numbers, then it 
is clearly inadvisable to wait too long between tests of the 
sticky flags to decide whether alternate computations should 
be performed. In summary, the fastest algorithm depends on 
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1 
CPU denormd m NaN how measured 

MIPS R3000/3010 cc 

%low" (correct) 120x slower full speed 8Ox slower 

"fast" (buggy) "full speed" full speed "full speed" 

MIPS R4000/4010 12Ox slower full speed 3% slower cc 

Sun4/260 + Weitek 1164/5 8x slower full speed lox slower f77 

SPARC IPX + Weitek 86Qi 7x slower full speed 9x slower t77 

SuperSPARC (Viking) full speed full speed full speed f77 

PA-RISC 68x slower full meed 42x slower Cc 

985 

RS/6000 full speed full speed full speed cc 

387, 486, Pentium 

i860 

i s 0  

full speed full speed full speed manual 

868x slower 432x slower 411x slower cc 

fullspeed fullsued fullspeed manual 

I DEC Alpha I 690x slower I 343x slower I 457x slower 1 cc I 

-1 c 0 0 0 0  
0 - 1  c 0 0 0  
0 0 - 1  c 0 0  

0 0 - 1  c o  
0 0 0 -1 1- 

x = L-lb = 

*Returns the first argument for binary operations; = 0; status flag 
is not set.  

0 
0 
0 
0 

,O 2 

the relative speeds of 

conventional, unexceptional floating point arithmetic, 
arithmetic with Na"s and f o o  as arguments, 
testing sticky flags, and 
trap handling. 

In the extreme case, where everything except conventional, 
unexceptional floating point arithmetic is terribly slow, we are 
forced to test and scale to avoid all exceptions. This is the 
unfortunate situation we were in before the introduction of 
exception handling, and it would be an unpleasant irony if 
exception handling were rendered too unattractive to use by 
too slow an implementation. In this paper, we will design our 
algorithms assuming that user-defined trap handlers are not 
available, that testing sticky flags is expensive enough that 
it should be done infrequently, and that arithmetic with NaN 
and f o o  is reasonably fast. Our codes will in fact supply 
a way to measure the benefit one gets by making NaN and 
00 arithmetic fast. Table 11 shows the speed of arithmetic with 
denormalized numbers, 00 and NaN, compared to conventional 
arithmetic on some machines. Some of the table entries are 
measured from Fortran, some from C, while others are from 
the architecture manuals. The DEC Alpha can only implement 
IEEE defaults, including infinities, NaN's and denormals, by 
precise interrupts; this causes significant loss of speed as 
compared with the normal arithmetic. 

Our interface to the sticky flags is via subroutine calls, 
without special compiler support. We illustrate these interfaces 
briefly for one of our test machines, the DECstation 5000 
with the MIPS R3000 chip as CPU. On the DECstation 5000, 
the R3010 Floating-point Accelerator (FPA) operates as a 
coprocessor for the R3000 Processor chip, and extends the 
R3000's instruction set to perform floating point arithmetic 
operations. The FPA contains a 32-bit ControVStatus register, 
FCR31, that is designed for exception handling and can be 

reaawritten by instructions running in User Mode. The FCR3 1 
contains five Nonsticky Exception bits (one for each exception 
in Table I), which are appropriately set or cleared after 
every floating point operation. There are five corresponding 
Tr&pEnable bits used to enable a user level trap when an 
exception occurs. There are five corresponding Sticky bits 
to hold the accrued exception bits required by the IEEE 
standard for trap disabled operation. Unlike the nonsticky 
exception bits, the sticky bits are'never cleared as a side- 
effeet of any floating point operation; they can be cleared only 
by writing a new value into the ControVStatus register. The 
nonsticky exception bits might be used in other applications 
requiring finer grained exception handling, such as parallel 
prefix [6].  

In the algorithms developed in this paper we need only 
manipulate the trap enable bits (set them to zero to disable 
software traps) and the sticky bits. Procedure exceptionreset() 
clears the sticky flags associated with overflow, division by 
zero and invalid operations, and suppresses the exceptions 
accordingly. Function except() returns true if any or all of the 
overflow, division by zero and invalid sticky flags are raised. 

111. TRIANGULAR SYSTEM SOLVING 

We discuss two algorithms for solving triangular systems of 
equations. The first one is the simpler and faster of the two, and 
disregards the possibility of over/underflow. The second scales 
carefully to avoid over/underflow, and is the one currently 
used in LAPACK for condition estimation and eigenvector 
computation [ 11. 

We will solve Lx = b, where L is a lower triangular n- 
by-n matrix. We use the notation L(i : j, k : 1 )  to indicate 
the submatrix of L lying in rows i through j and columns 
k through E of L. Similarly, L( i ,k  : E )  is the same as 
L(i : i, k : I ) .  The following algorithm accesses L by columns. 

Algorithm I :  Solve a lower triangular system Lx = b. 
x(1 : n) = b ( l  : n) 
for i = 1 to n 

x ( i )  = x ( i ) /L ( i ,  i) 
x( i  + 1 : n) = z(i + 1 : n) - x ( i )  . L(i + 1 : n, i) 

endfor 
This is such a common operation that it has been stan- 

dardized as subroutine STRSV, one of the BLAS [9], [lo], 
[18]. Algorithm 1 can easily overflow even when the matrix 
L is well-scaled, i.e. all rows and columns are of equal and 
moderate length. For example, 
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where c = overflows in IEEE single precision, even 
though each row and column of L has largest entry 1 in 
magnitude, and no terribly small entries. Similarly, let L,(c) 
be the analogous n-by-n matrix with 0 < c < 1 in the second 
through n - 1-st elements along the main diagonal. This means 
that (L,( c>)-'[l, 0, . . . , 0IT = 11, c-l, c - ~ ,  . . . , c ~ - ~ ,  c ~ - ~ ] ~ .  

The second algorithm scales carefully to avoid overflow in 
Algorithm 1. The algorithm works by choosing a scale factor 
0 5 s 5 1 and solving Lx = s b  instead of Lx = b. A value 
s < 1 is chosen whenever the solution x would overflow. In 
case x would overflow even if s were the smallest positive 
floating point number, s is set to zero (for example, consider 
L27( with IEEE single precision in the above example). 
If some L(i ,  i) = 0 exactly, so that L is singular, the algorithm 
will set s = 0 and compute a nonzero vector x satisfying 
Lx = 0 instead. 

Here is a brief outline of the scaling algorithm; see [l] for 
details. Coarse bounds on the solution size are computed as fol- 
lows. The algorithm begins by computing c j  = Cr=j+l 1 Lij 1, 
Go = 1/ maxi Ib; I, a lower bound Gi on the values of x;:~ 
through x i 1  after step i of Algorithm 1: 

and finally a lower bound g on the reciprocal of the largest 
intermediate or final values computed anywhere in Algorithm 
1: 

g = min (Go, Gi-1 . min(1, ILiiI)) 
l< i<n  

Lower bounds on x i 1  are computed instead of upper bounds 
on x j  to avoid the possibility of overflow in the upper bounds. 

Let UN = 1/OV be smallest floating point number that can 
safely be inverted. If g 2 UN, this means the solution can 
be computed without danger of overflow, so we can simply 
call the BLAS. Otherwise, the algorithm makes a complicated 
series of tests and scalings as in Algorithm 2. 

Now we compare the costs of Algorithms 1 and 2. Algo- 
rithm l costs about n2 flops (floating point operations), half 
additions and half multiplies. There are also n divisions which 
are insignificant for large n. In the first step of Algorithm 2, 
computing the ci costs n2/2 + O(n) flops, half as much as 
Algorithm 1. In some of our applications, we expect to solve 
several systems with the same coefficient matrix, and so can 
reuse the c,; this amortizes the cost over several calls. In the 
best case, when g 2 UN, we then simply call STRSV. This 
makes the overall operation count about 1.5n2 (or n2 if we 
amortize). In the worst (and very rare) case, the inner loop of 
Algorithm 2 will scale at each step, increasing the operation 
count by about n2 again, for a total of 2.5n2 (or 2n2 if we 
amortize). Updating x,, costs another n2/2  data accesses 
and comparisons, which may or may not be cheaper than the 
same number of floating point operations. 

More important than these operation counts is that Algo- 
rithm 2 has many data dependent branches, which makes it 
harder to optimize on pipelined or parallel architectures than 
the much simpler Algorithm 1. This will be borne out by the 
results in later sections. 

Algorithm 2 is available as LAPACK subroutine SLATRS. 
This code handles upper and lower triangular matrices, permits 
solving with the input matrix or its transpose, and handles 
either general or unit triangular matrices. It is 300 lines 
long excluding comments. The Fortran implementation of the 
BLAS routine STRSV, which handles the same input options, 
is 159 lines long, excluding comments. For more details on 
SLATRS, see [I]. 
Algorithm 2: Solve a lower triangular system Lx = s b  with 

scale factor 0 5 s 5 1. 
Compute g and cl , .  . . , c,-l as described above 
if (g 2 UN) then 

else 
call the BLAS routine STRSV 

s = l  
~ ( l  : n) = b ( l  : n)  
xmax = mml<z<n Ix(i)l 
for i = 1 to n 

if (UN 5 \L(z,i)l < 1 and Ix(i)l > lL(i,i)l. OV) 
then 

scale= 1/lz(i)l 
s = s-scale; x( 1 : n)  = x( 1 : n).scale; 
x,,, = xma,.scale 

else if (0 > IL(i,i)l > UN and Ix(i)l > lL(i,z)l- 
OV) then 

scale= ((IL(i ,  i)l. OV )/Jz(i)J)/ max(1, c,) 
s = s-scale; x(1 : n) = x(1 : n).scale; 
x,,, = x,,.scale 

else if (L(i ,  i) = 0) then . . . compute a null vector 
x: Lx = 0 

s = 0  
x ( l :  n) = 0; x(2) = 1; x,, = 0 

end if 

if (Ix(i)l > 1 and c(i)  > (OV -x,,,)/\x(Z)[) then 
x(i) = x(i)/L(i, i) 

scale= 1 / (2 .  Ix(i)l) 
s = s x a l e ;  x(1 : n) = x(1 : n)male  

else if (Ix(i)l 5 1 and Ix(i)l . c( i )  > (OV -Xmax) )  

then 
scale= 1/2  
s = s.scale; x(1 : n) = x(1 : n).scaEe 

endif 
x ( i+  1 : n) = x ( i +  1 : n) - x ( i )  . L ( i +  1 : n,i) 
xmax = max,<j<n Ix(~')l 

endfor 
endif 

IV. CONDITION ESTIMATION 

In this section, we discuss how IEEE exception handling 
can be used to design a faster condition estimation algorithm. 
We compare first theoretically and then in practice the old 
algorithm used in LAPACK with our new algorithm. 

A. Algorithms 
When solving the n-by-n linear system Ax = b, we wish 

to compute a bound on the error Xcomputed - Strue. We 
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will measure the error using either the one-norm 11x111 = 
Ixii, or the infinity norm IIxlloo = maxi Ixil. Then the 

usual error bound [12] is 

where p ( n )  is a slowly growing function of n (usually about 
n), t is the machine precision, kl(A) is the condition number 
of A, and p is the pivot growth factor. The condition number 
is defined as kl(A) = llAll1 . I(A-lII1, where llBll1 
11iaxl<j5~ E:=’=, Jbi j l .  Since computing A-l costs more than 
solving A z  = b, we prefer to estimate IIA-llll inexpensively 
from A’s LU factorization; this is called condition estimation. 
Since llAll1 is easy to compute, we focus on estimating 
IIA-llll. The pivot growth may be defined as (other 
definitions are possible). This is close to unity except for 
pathological cases. 

In the LAPACK library [2 ] ,  a set of routines have been 
developed to estimate the reciprocal of the condition number 
kl(A). We estimate the reciprocal of kl(A),  which we call 
RCOND, to avoid overflow in kl(A).  The inputs to these 
routines include the factors L and U from the factorization 
A = LU and ((A((1. Higham’s modification [14] of Hager’s 
method [13] is used to estimate llA-llll. The algorithm is 
derived from a convex optimization approach, and is based 
on the observation that the maximal value of the function 
f(x) = IIBxII1/IIxII1 equals llBlll and is attained at one of 
the vectors ej, for j = 1,. . . ,a, where ej is the j th  column 
of the n-by-n identity matrix. 

Algorithm 3 [13]: This algorithm computes a lower bound 

Choose x with Ilx(11 = 1 (e.g., x := v) 
Repeat 

7 for llA-llll. 

solve Ay = x (by solving Lw = x and Uy = w 
using Algorithm 2) 
form < := sign(y) 
solve A T z = <  (by solving UTw=< and LTz = w 
using Algorithm 2) 
if llzlloo 5 zTz  then 

Y := 11Yl11 
quit 

else x := e?, for that j where I z j J  = llzllno 
The algorithm involves repeatedly solving upper or lower 

triangular systems until a certain stopping criterion is met. 
Due to the possibilities of overflow, division by zero, and 
invalid exceptions caused by the ill-conditioning or bad scaling 
of the linear systems, the LAPACK routine SGECON uses 
Algorithm 2 instead of Algorithm 1 to solve triangular systems 
like Lw = x, as discussed in Section 3. The details of the 
use of the scale factor s returned by Algorithm 2 are not 
shown; see routines SGECON and SLACON in LAPACK 
P I .  

Our goal is to avoid the slower Algorithm 2 by using 
exception handling to deal with these ill-conditioned or badly 
scaled matrices. Our algorithm only calls the BLAS routine 
STRSV, and has the property that overflow occurs only if the 
matrix is extremely ill-conditioned. In this case, which we 
detect using the sticky exception flags, we can immediately 

terminate with a well-deserved estimate RCOND = 0. Merely 
replacing the triangular solver used in Algorithm 3 by STRSV 
and inserting tests for overflow does not work, as can be Seen 
by choosing a moderately ill-conditioned matrix of norm near 
the underflow threshold; this will cause overflow while solving 
Uy = w even though A is only moderately ill-conditioned. 
Therefore, we have modified the logic of the algorithm as 
follows. Comments indicate the guaranteed lower bound on 
kl(A) if an exception leads to early termination. 

Algorithm 4: This algorithm estimates the reciprocal of 
kl(A) = l l~l l l l l~- l l l l .  

Let a = llAlll 
RCOND is the estimated reciprocal of condition 
number kl (A) 
Call exceptionreset() 
Choose x with 11x111 = 1 (e.g., z := 
Repeat 

solve Lw = x by calling STRSV 
if (except()) then RCOND := 0; quit /* kl(A) 2 

if (a  > 1) then 

( l , l , -~J)T ) 
7L 

OVJp */ 

if (IIwII, 2 OV/a)  then 
solve Uy = w by calling STRSV 
if (except()) then RCOND := 0; quit /* 

else y := y . a 
k1(A) >_ OV * I  

if (except()) then RCOND := 0; 
quit / * k l ( A )  2 OV */ 

else solve Uy = w . a by calling STRSV 
endif 

if (except()) then RCOND := 0; quit /* 
kl(A) 2 OV */ 

endif 

if (except()) then RCOND := 0; quit /* 
else solve Uy = w . a by calling STRSV 

kl(A) 2 OV */ 
endif 
form < := sign(y) 
solve U T w  = < . a by calling STRSV 
if (except()) then RCOND := 0; quit /* 

else solve LTz  = w by calling STRSV 

ov kl(A> 2 7 */ 

ov 2 7 *I 
endif 
if llzlloo I: zTz  then 

else x := e3,  where ( z j l  = (Iz(Ioo 
endif 

if (except()) then RCOND=O; quit /* kl(A) 

RCOND := 1/JJyl)1; quit 

The behavior of Algorithm 4 is described by the following: 
Lemma I: If Algorithm 4 stops early because of an ex- 

ception, then the “true rounded” reciprocal of the condition 
number satisfies RCOND 5 w, where p = is 
the pivot growth factor. 

Proofi In the algorithm, there are seven places where 
exceptions may occur. We will analyze them one by one. Note 
that x is chosen such that 11x111 = 1, and that 11<111 = n. - _ _  
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1) An exception occurs when computing L-lx. 
Since A = LU, L-l = UA-l, this implies 

ov I l l~- lxl l l  I ll~lIIIIA-llllll~lll 

Therefore, kl(A) 2 OV/p, i.e., RCOND 5 p/OV. 
2) An exception occurs when computing U-lL-'x with 

a > 1. Then 

so RCOND I l/OV. 

a > 1. Then 
3) An exception occurs when computing a.U-'L-'x with 

OV I l l~U-lL-lx[ l i  I kl(A), 

so RCOND 5 1/OV. 

a > 1 and IIL-'xlll < OV/a. Then 
4) An exception occurs when computing U-laL-lx, with 

OV 3 IIU-laL-lxlll 5 llA-ll\la = kl(A), 

so h ( A )  2 OV, i.e., RCOND I 1/OV. 

a I 1. Then 
5 )  An exception occurs when computing U-laL-lz  with 

OV I IIU-laL-lxlI1 I llA-lllla = kl(A), 

so kl(A) 2 OV, i.e., RCOND I 1/OV. 
6) An exception occurs when computing U-Ta<. 

Since AT = UTLT, UVT = LTA-T 1 and IIBTIll I 
nllBII1, we get 

ov I IIU-Taclll I IILTI1lIIA-Tlll~ll<lll 

I l l~Tll l.nllA-lII1~~.llcl l l  = IILTII1 n . h ( A ) . n  
I n3kl(A). 

Therefore, k l ( ~ )  2 9, i.e., RCOND I &. 

ov I IIL-TU-TaclI1 I IIA-TII1~lIcIII 

7) An exception occurs when computing L-TU-Ta[, so 

I nllA-lll1 . CY. n = n2kl(A). 

Therefore, RCOND I &. 
Combining the above seven cases, we have shown that 

In practice, any RCOND < E signals a system so ill- 
conditioned as to make the error bound in (1) as large as 
the solution itself or larger; this means the computed solution 
has no digits guaranteed correct. Since max n 3 9 p  << 6 unless 
either n or p is enormous (both of which Y so mean the error 
bound in (1) is enormous), there is no loss of information in 
stopping early with RCOND = 0. 

Algorithm 4 and Lemma 1 are applicable to any linear 
systems for which we do partial or complete pivoting dur- 
ing Gaussian elimination, for example, LAPACK routines 
SGECON, SGBCON and STRCON (see Section 4.2 for the 
descriptions of these routines), and their complex counterparts. 

RCOND I when an exception occurs. 0 

For symmetric positive definite matrices, where no pivoting 
is necessary, an analogous algorithm (e.g., SPOCON) was 
developed and analyzed, though omitted in this paper due to 
the limitation of the length. 

B. Numerical Results 

To compare the efficiencies of Algorithms 3 and 4, we 
rewrote sev'eral condition estimation routines in LAPACK 
using Algorithm 4, including SGECON for general dense ma- 
trices, SPOCON for dense symmetric positive definite matrices, 
SGBCON for general band matrices, and STRCON for triangular 
matrices, all in IEEE single precision. To compare the speed 
and the robustness of Algorithms 3 and 4, we generated 
various input matrices yielding unexceptional executions with 
or without invocation of the scalings inside Algorithm 2, as 
well as exceptional executions. The unexceptional inputs tell 
us the speedup in the most common case, and on machines 
like the CRAY measure the performance lost for lack of any 
exception handling. 

First, we ran Algorithms 3 and 4 on a suite of well- 
conditioned random matrices where no exceptions occur, and 
no scaling is necessary in Algorithm 2. This is by far the 
most common case in practice. The experiments were carried 
out on a DECstation 5000, a SUN 4060, a DEC Alpha, and 
a single processor CRAY-C90. The performance results are 
presented in Table 111. The numbers in the table are the ratios 
of the time spent by the old LAPACK routines using Algorithm 
3 to the time spent by the new routines using Algorithm 
4. These ratios measure the speedups attained via exception 
handling. The estimated condition numbers output by the two 
algorithms are always the same. For dense matrices or matrices 
with large bandwidth, as matrix dimension n increases, the 
time to service cache misses constitutes a larger portion of 
the execution time, resulting in decreased speedups. When 
we ran SGBCON with matrices of small bandwidth, such that 
the whole matrix fit in the cache, we observed even better 
speedups. 

Second, we compared Algorithms 3 and 4 on several 
intentionally ill-scaled linear systems for which some of the 
scalings inside Algorithm 2 have to be invoked, but whose 
condition numbers are still finite. For SGECON alone with 
matrices of sizes 100 to 500, we obtained speedups from 1.62 
to 3.33 on the DECstation 5000, and from 1.89 to 2.67 on the 
DEC Alpha. 

Third, to study the behavior and performance of the two 
algorithms when exceptions do occur, we generated a suite 
of ill-conditioned matrices that cause all possible exceptional 
paths in Algorithm 4 to be executed. Both Algorithms 3 and 
4 consistently deliver zero as the reciprocal condition number. 
For Algorithm 4, inside the triangular solve, the computation 
involves such numbers as NaN and f w .  Indeed, after an 
overflow produces fco, the most common situation is to 
subtract two infinities shortly thereafter, resulting in a NaN 
which then propagates through all succeeding operations. In 
other words, if there is one exceptional operation, the most 
common situation is to have a long succession of operations 
with NaN's. We compared the performance of the "fast" and 
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“fast” DEC 5000 speedup 

TABLE I11 
SPEEDUPS ON DEC 5000/SUN 4-260/DECALPHA/CFUY-C90 

No exceptions nor scaling occur. SBW stands for semi-bandwidth. 

Example 1 Example 2 Example 3 

2.15 2.32 2.00 

‘‘slow’’ DEC 5000 slowdown 11.67 13.49 9.00 

Matrix dimensions ire 500. 

“slow” DECstation 5000 on a set of such  problem^.^ Recall 
that the fast DECstation does NaN arithmetic (incorrectly) 
at the same speed as with conventional arguments, whereas 
the slow DECstation computes correctly but 80 times slower. 
Table IV gives the speeds for both DECstations. The slow 
DEC 5000 goes 18 to 30 times slower than the fast DEC 
5000. On some other examples, where only infinities but no 
Na”s occurred, the speedups ranged from 3.5 to 6.0 on both 
machines. Table IV also shows the speedups observed on 
a SPARCstation 10, where both 00 and NaN arithmetic are 
implemented correctly and with full speed. 

V. EIGENVECTOR COMPUTATION 
We now consider another opportunity to exploit IEEE 

exception handling. The problem is to compute eigenvectors 
of general complex matrices. This example, in contrast to 
early ones, requires recomputing the answer slowly after an 
exception occurs, as in our paradigm. 

Let A be an n-by-n complex matrix. If nonzero vectors 
v and u,  and a scalar A satisfy Av = Av and u*A = Xu* 
(* denotes conjugate transpose), then A is called an eigenvalue, 
and v and u* are called the right and left eigenvectors associ- 
ated with the eigenvalue A, respectively. In LAPACK, the task 
of computing eigenvalues and the associated eigenvectors is 
performed in the following stages (as in the routine CGEEV): 

mous ftp [7]. 
3The test matrices together with the software can be obtained via anony- 

1) A is reduced to upper Hessenberg form H, which is 
zero below the first subdiagonal. The reduction can be 
written H = Q*AQ with Q unitary [12]. 

2) H is reduced to Schur form T. The reduction can be 
written T = S*HS,  where T is an upper triangular 
matrix and S is unitary [12]. The eigenvalues are on the 
diagonal of T. 

3) CTREVC computes the eigenvectors of T.  Let V be 
the matrix whose columns are the right eigenvectors of 
T. Then S . V are the right eigenvectors of H, and 
Q . S . V are the right eigenvectors of A. Similarly, we 
can compute the left eigenvectors of A from those of T. 

Let us first examine the important stage of calculating the 
eigenvectors of an upper triangular matrix T .  The eigenvalues 
of T are i l l ,  t 2 2 ,  . . . , tnn. To find a right eigenvector v associ- 
ated with the eigenvalue tii, we need to solve the homogeneous 
equation (T - t i i1)v = 0, which can be partitioned into the 
block form 

[?il tii1 T12  T I 3  
0 
0 T33  - tiiI 

T 2 3  ] ’ E:] = o .  (2) 

By backward substitution, we have v 3  = 0, 212 = 1 and v 1  
satisfying the equation 

(3) 

Therefore, the problem is reduced to solving an upper 
triangular system (3) of dimension (i - 1)-by-(i - 1). To find 
all the n eigenvectors we need to solve triangular system (3) 
for i = 2, . . . , n. Since any scalar multiple of v is also an 
eigenvector of T, we always expect to obtain an answer by 
scaling the solution vector no matter how ill-conditioned or 
badly scaled the triangular system (3) is. For this purpose, 
CTREVC calls the triangular solve routine CLATRS instead of 
calling the triangular solver CTRSV in the BLAS. CLATRS 
is a complex counterpart of SLATRS as discussed in Section 
111, using Algorithm 2. In most common cases, however, the 
scaling unnecessarily introduces overhead. We reimplemented 
the part of CTREVC containing the triangular solve. When 
solving each equation (3), we first call CTRSV and test the 
exception flags. If exceptions occur, then we go back to call 
CLATRS. 

To study the efficiency of the modified CTREVC, we ran 
the old code and our new one on random upper triangular 
matrices of various sizes. We observed the speedups of from 
1.49 to 1.65 on the DECstation 5000, and from 1.38 to 1.46 on 
the Sun 4/260. In the case of overflow, each triangular solve 
is invoked twice, first using CTRSV yet throwing away the 
solutions, and second using CLATRS . Since CTRSV is about 
twice as fast as CLATRS (see Section 3), the performance loss 
is no more than 50% when a (rare) exception occurs. 

To see how the performance attained from CTREVC alone 
effects the performance of the whole process of computing 
eigenvectors of general complex matrices, we timed CTREVC 
in the context of CGEEV. It turns out that CTREVC amounts 
to about 20% of the total execution time of CGEEV. Therefore, 
we expect that the speed of the whole process can be increased 
by about 8%. 

(7‘11 - ti;I)vl = -T12 .  
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-a1 bl 
- 

bi  az bz 
bz '.. '.. 

* .  bn-1 

bn-1 an - 

may overflow. Whenever this occurs, default values f c c  are 
used to continue the computation. 

Algorithm 7 Computes the number of eigenvalues less than 
or equal to g. 
c = 0; 
t = l ;  
bo = 0; 
fo r i  = 0 to n - 1 

b?- 1 t = U , + l  - a - t; 
C = C + signbi t ( t ) ;  

endfor 
return C; 

S i g n b i  t(z) extracts the sign bit of a floating-point number 
z represented in the IEEE format. The returned value is either 
0 or 1 depending on whether z is positive or negative. The 
signbit($) can be computed quickly by logically shifting the 
sign bit of z to the rightmost bit position of a register, leaving 
zeros in all the other bits. 

The correctness of Algorithm 7 relies on the fact that 
arithmetic with f o o  and signed zeros f O  obeys certain rules 
defined by the IEEE standard. The merit of Algorithm 7 is that 
it replaces the two explicit conditional branches with a single 
straight-line statement, and this makes better use of floating- 
point pipelines. The only hardware requirement for Algorithm 
7 to attain good speed is the speed of infinity arithmetic. 

On a SPARCstation IPX, where infinity arithmetic is as 
fast as conventional arithmetic, we measured the speed of 
Algorithm 6 and 7 for various matrices of sizes ranging from 
100 to 1000. Algorithm 7 achieved speedups ranging from 
1.20 to 1.30 over Algorithm 6. We also compared the two 
bisection algorithms, using Algorithm 6 and 7 as the inner 
loops respectively, to find all eigenvalues. We were able to 
get speedups ranging from 1.14 to 1.24. This is due to the 
dominant role of the count  ( )  function in the bisection 
algorithm. 

We also did comparisons on a distributed memory mul- 
tiprocessor-the Thinking Machines CM-5 [ 191. Our CM- 
5 configuration contains 64 33-Mhz SPARC 2 processors, 
interconnected by a fat-tree network. Each processing node has 
8 Mbytes of local memory. Coordination and synchronization 
among processing nodes are achieved via explicitly passing 
messages. The floating-point arithmetic on the CM-5 conforms 
to IEEE standard, and infinity arithmetic is as fast as conven- 
tional arithmetic. Inderjit Dhillon et al. [8] have designed a 
parallel bisection algorithm on the CM-5, where the whole 
spectrum is divided into 64 subintervals, and each processing 
node is responsible for finding the eigenvalues within one 
subinterval. A dynamic load balancing scheme is incorporated 
when eigenvalues are not evenly distributed. 

In Table V, we report three types of speedup numbers from 
our experiments. T, (algo) stands for the running time of the 
algo on a single node of the CM-5; Tp (algo) stands for the 
running time of the algo on the 64 node CM-5. Thus, 
represents the parallel speedup of the algo. The two algonthms 
we compared are: LAPACKbisect that used Algorithm 6 to get 
the count value, and ZEEEbisect that used Algorithm 7 to get 
the count value. The last column demonstrates the speedup of 
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192 

1024 

~ 

99 1 

45 53 1.47 

61 61 1.25 

4096 

16384 

53 51 1.18 

1.18 - 

the parallel ZEEEbisect against the parallel LAPACKbisect. 
We see the speedups attained by using IEEE arithmetic ranges 
from 1.18 to 1.47. 

VII. SINGULAR VALUE DECOMFQSITION 

In this section we discuss using exception handling to speed 
up the computation of the singular value decomposition of a 
matrix [12]. This is an important linear algebra computation, 
with many applications. It consists of two phases. Phase 1, 
reduction to bidiagonal form (i.e. nonzero on the diagonal and 
first superdiagonal only), costs O(n3)  operations, where n is 
the matrix dimension. Phase 2, computing singular values of a 
bidiagonal matrix, costs just O(n2) operations. Nevertheless, 
Phase 2 can take much longer than Phase 1 on machines like 
the CRAY-C90 because Phase 1 is readily vectorized (or par- 
allelized), whereas Phase 2 consists of nonlinear recurrences 
which run at scalar speeds. For example, when n = 200, Phase 
1 does about 2.1 . lo7 floating point operations at a speed of 
594 Megaflops, for a time of 0.036 seconds, whereas Phase 2 
does 1.6 . lo6 floating point operations at a speed of just 6.9 
Megaflops, for a time of 0.23 seconds. Phase 2 takes longer 
than Phase 1 up to n M 1200. So in this section we will discuss 
using exception handling to accelerate Phase 2. Phase 2 is 
implemented by a slight modification of LAPACK subroutine 
SBDSQR [2], which we describe below. 

It suffices to consider one of the main loops in SBDSQR; 
the others are similar. In addition to 12 multiplies and 4 
addition, there are two uses of an operation we will call 
rot (f, g, cs, sn,  r). It takes f and g as inputs, and returns 
r = (f2 + g2) ' / ' ,  cs = f / r  and g/r as outputs. This simple 
formula is subject to failure or inaccuracy when either f or 
g is greater than the square root of the overflow threshold, or 
when both are little larger than the square root of the underflow 
threshold. Therefore, SBDSQR currently does a series of tests 
and scalings to avoid this failure. (The difference between 
SBDSQR and our routine is that our routine in-lines rot and 
uses a slightly different and move accurate scaling algorithm.) 
Almost all the time, these tests indicate no scaling is needed, 
but it is impossible to determine this without running through 
the whole loop. We compare the performance of two versions 
of SBDSQR , one which tests and scales as above, and another, 
which we will call SBDSQR-UNSAFE, which just uses simple 
single line formulas for T ,  cs and sn. We tested these two 
routines on a CRAY Y-MP (EW2-256). The speedups depend 
somewhat on the matrix. The test bidiagonal matrix A had 
entries of the form A+ = C"-* and A,,,+1 = A,,,, with 
dimensions ranging from 50 to 1OOO. With C = 1.0001, most 

speedups were between 1.28 and 1.39, with half over 1.35. 
With C = 1.044, most speedups were between 1.21 and 1.31. 

VIII. LESSONS FOR SYSTEM ARCHITECTS 
The most important lesson is that well-designed exception 

handling permits the most common cases, where no exceptions 
occur, to be implemented much more quickly. This alone 
makes exception handling worth implementing well. 

A trickier question is how fast exception handling must 
be implemented. There are three speeds at issue: the speed 
of NaN and infinity arithmetic, the speed of testing sticky 
flags, and the speed of trap handling. In principle, there is no 
reason NaN and infinity arithmetic should not be as fast as 
conventional arithmetic. The examples in section 4.2 showed 
that a slowdown in NaN arithmetic by a factor of 80 from 
conventional arithmetic slows down condition estimation by a 
factor of 18 to 30. 

Since exceptions are reasonably rare, these slowdowns 
generally affect only the worst case behavior of the algorithm. 
Depending on the application, this may or may not be impor- 
tant. If the worst case is important, it is important that system 
designers provide some method of fast exception handling, 
either NaN and infinity arithmetic, testing the sticky flags, or 
trap handling. Making all three very slow will force users 
to code to avoid all exceptions in the first place, the original 
unpleasant situation exception handling was designed to avoid. 

It is particularly important to have fast exception handling 
in a parallel computer for the following reason. The running 
time of a parallel algorithm is the running time of the slowest 
processor, and the probability of an exception occurring on at 
least one processor can be p times as great as on one processor, 
where p is the number of processors. 

IX. FUTURE WORK 
The design paradigm for numerical algorithms proposed in 

this paper is quite general and can be used to develop other 
numerical algorithms. These include rewriting the BLAS rou- 
tine SNRM2 to compute the Euclidean norm of a vector, and 
the LAPACK routine S H S E I N  (which now calls SLATRS) to 
compute the eigenvectors of a real upper Hessenberg matrix. 

In complex division, gradual underflow instead of flush 
to zero can guarantee a more accurate result, see [5]. This 
requires fast arithmetic with denormalized numbers. 

Floating point parallel prefix is a useful operation for vari- 
ous linear algebra problems. Its robust implementation with 
the protection against over/underflow requires fine grained 
detection and handling of exceptions [6]. 

Our final comment concerns the trade-off between the 
speed of NaN and infinity arithmetic and the granularity of 
testing for exceptions. Our current approach uses a very large 
granularity, since we test for exceptions only after a complete 
call to STRSV. For this approach to be fast, NaN and infinity 
arithmetic must be fast. On the other hand, a very fine grained 
approach would test for exceptions inside the inner loop, and 
so avoid doing useless NaN and infinity arithmetic. However, 
such frequent testing is clearly too expensive. A compromise 
would be to test for exceptions after one or several complete 

- -~ 
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iterations of the inner loop in STRSV. This would require re- 
implementing STRSV. This medium grained approach is less 
sensitive to the speed of NaN and infinity arithmetic. The effect 
of granularity on performance is worth exploration. 

The software described in this report is available from the 
authors [7]. 

ACKNOWLEDGMENT 

The authors wish to thank W. Kahan for his detailed 
criticism and comments. We also wish to thank Inderjit Dhillon 
for providing us the performance results of the bisection 
algorithms running on the CM-5. 

REFERENCES 

[13] W. W. Hager, “Condition estimators,” SIAM J.  Sci. Statist. Comput., 

[14] N. J. Higham, “Algorithm 674: FORTRAN codes for estimating the 
one-norm of a real or complex matrix, with applications to condition 
estimation,” ACM Trans. Math. Software, vol. 14, pp. 381-396, 1988. 

[ 151 SPARC Internatinal Inc. The SPARC Architecture Manual: Version 8. 
Englewood Cliffs, NJ: Prentice Hall, 1992. 

[ 161 W. Kahan, “Accurate eigenvalues of symmetric tridiagonal matrix,” 
Computer Sci. Dep., Tech. Rep. CS41, Stanford Univ., Stanford, CA, 
July 1966 (revised June 1968). 

[I71 G. Kane, MIPS Risc Architecture. Englewood Cliffs, NJ: Prentice Hall, 
1989. 

[18] C. Lawson, R. Hanson, D. Kincaid, and F. Krogh, “Basic linear algebra 
subprograms for Fortran usage,” ACM Tmns. Math. Sofhyare, vol. 5, 

V O ~ .  5 ,  pp. 311-316, 1984. 

pp.‘308-323, 1979. 

nical Summary, Cambridge MA, Oct. 1991. 
I191 Thinking Machines Corporation, The Connection Machine CM-5 Tech- 

[ l ]  E. Anderson, “Robust triangular solves for use in condition estima- 
tion,” Comput. Sci. Dep. Tech. Rep. CS-91-142, Univ. of Tennessee, 
Knoxville, 1991. (LAPACK Working Note #36). 

[2] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz, 
A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov, and D. 
Sorensen, LAPACK Users’ Guide, Release 1 .O. SIAM, Philadelphia, 
1992, pp. 235. 

[3] ANSIAEEE, New York, IEEE Standard for Binary Floating Point 
Arithmetic, Std 754-1985 ed., 1985. 

[4] ANSIIIEEE, New York. IEEE Standard for Raix Independent Floating 
Point Arithmetic, Std 854-1987 ed., 1987. 

[5] J. Demmel, ‘‘Underflow and the reliability of numerical software,” SIAM 
J. Sci. Statist. Comput., vol. 5, no. 4, pp. 887-919, Dec. 1984. 

[6] -, “Specifications for robust parallel prefix operations,” Technical 
Report, Thinking Machines Corp., 1992. 

[7] J. Demmel and X. Li, “Faster nw“ca1 algorithms via exception ban- 
dling,” in Proc. 11th Symp. Comput. Arithmetic, M. J. Irwin, E. Swartz- 
lander, and G. Jullien, Windsor, ON, Canada, June 2 9 - J ~ l ~  2 1993. 
IEEE Computer Society Press, available as al1.ps.Z via anonymous ftp 
from tr-ftp.cs.berkeley.edu, in directory pub/tech-reports/cs/csd-93-728; 
software is csd-93-728.shar.Z. 

181 I. S. Dhillon and J. W. Demmel. “A Darallel algorithm for the svmmetric 

James W. Demmel (M’86) received the Ph.D. 
degree in computer science from the University of 
California, Berkeley in 1983. 

He is currently a Professor of Mathematics and 
Computer Science at the University of Califor- 
nia, Berkeley. His research interests are in sci- 
entific computing, numerical linear algebra, and 
parallelism. 

Dr. Demmel is co-principal investigator in the 
LAF’ACK and SCALAF’ACK projects, which are 
linear algebra libraries for high performance com- 

puters. He won the 1993 J. H. Wilkinson Prize in Numerical Analysis and 
scientific computing, the SIAM SIAG B~~~ ~i~~~ Algebra paper prize in 
1991 (with W. Kahan) and again in 1988, the Fox Prize in Numerical Analysis 
in 1986, Presidential Young Investigator Award in 1986, and the Householder 
Award in 1984. He is a member of sIAM Council, the  RIA^^ science 
council, the joint AMS-SM committee on Applied Mathematics. 

[91 

. L  I 

tridiagonal eigenproblem and its implementation on the CM-5,” in 
progress, 1993. 
J. Dongarra, J. Du Croz, I. Duff, and S. Hammarling, “A set of level 
3 basic linear algebra subprograms,” ACM Trans. Math. Sojiware, vol. 
16, no. 1, pp. 1-17, Mar. 1990. 
J. Dongarra, J. Du Croz, S. Hammarling, and R. J. Hanson, “An extended 
set of FORTRAN basic linear algebra subroutines,” ACM Trans. Math. 
Software, vol. 1, no. 1, pp. 1-17, Mar. 1988. 
R. L. Sites, Ed., Alpha Architecture Reference Manual. Burlington, 
MA: Digital Press, 1992. 
G. Bolub and C. Van Loan, Matrix Computations, 2nd ed. Baltimore, 
MD: Johns Hopkins Univ. Press, 1989. 

Xiaoye Li received the M.S. degree in computer sci- 
ence and the M.A. degree in mathematics from Penn 
State University, and the B.S. degree in computer 
science from Tsinghua University in China. She is 
pursuing the Ph.D. degree in computer science at 
the University of California, Berkeley. 

She works on algorithms and software develop- 
ment for portable linear algebra library and scientific 
applications, targeted at various high performance 
machines. She is a member of the IEEE Computer 
Society and the ACM. 

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on June 04,2022 at 00:55:30 UTC from IEEE Xplore.  Restrictions apply. 

http://tr-ftp.cs.berkeley.edu

