
IEEE TRANSACTIONS ON COMPUTERS, VOL 43, NO. 8, AUGUST 1994 983

Faster Numerical Algorithms via Exception Handling
James W. Demmel, Member, IEEE, and Xiaoye Li

Abstract-An attractive paradigm for building fast numerical
algorithms is the following: 1) try a fast but occasionally unstable
algorithm, 2) test the accuracy of the computed answer, and 3)
recompute the answer slowly and accurately in the unlikely event
it is necessary. This is especially attractive on parallel machines
where the fastest algorithms may be less stable than the best
serial algorithms. Since unstable algorithms can overflow or cause
other exceptions, exception handling is needed to implement this
paradigm safely. To implement it efficiently, exception handling
cannot be too slow. w e illustrate this paradigm with numerical
linear algebra algorithms from the LAPACK library.

Index Terms- IEEE floating point arithmetic, exception han-
dling, linear algebra, LAPACK, speedup, NaN’s, basic linear
algebra subprograms.

. I. INTRODUCTION
WIDELY accepted design paradigm for computer hard- A ware is to execute the most common instructions as

quickly as possible, and replace rarer instructions by sequences
of more common ones. In this paper we explore the use
of this paradigm in the design of numerical algorithms. We
exploit the fact that there are numerical algorithms that run
quickly and usually give the right answer as well as other,
slower, algorithms that are always right. By “right answer”
we mean that the algorithm is stable, or that it computes
the exact answer for a problem that is a slight perturbation
of its input [12]; this is all we can reasonably ask of most
algorithms. To take advantage of the faster but occasionally
unstable algorithms, we will use the following paradigm:

(1) use the fast algorithm to compute an answer; this will

(2) quickly and reliably assess the accuracy of the com-

(3) in the unlikely event the answer is not accurate enough,

The success of this approach depends on there being a large
difference in speed between the fast and slow algorithms, on

usually be done stably;

puted answer;

recompute it slowly but accurately.

Manuscript received October 14, 1993; revised march 1, 1994. J. W. Dem-
me1 was supported by NSF grant ASC-9005933, DARPA contract DAAL03-
91-C-0047 via a subcontract from the University of Tennessee (administered
by ARO), and DARPA grant DM28E04120 via a subcontract from Argonne
National Laboratory. X. Li was supported by the National Science Foundation
under award number ASC-9005933, and by Subcontract ORA4466.02 to the
University of Tennessee (Defense Advanced Research Projects Administration
contract number DAALO3-91-C-0047). This work is an expanded version of
a paper published in the Proc. 11th Symp. Compur. Arithmetic, Windsor, ON
Canada, June 29-July 2, 1993, 01993, IEEE.

J. W. Demmel is with the Computer Science Division and Mathematics
Department, University of California. Berkeley, CA 94720 USA; e-mail:
demmel @cs.berkeley.edu.

X. Li is with the Computer Science Division, University of California,
Berkeley, CA 94720 USA; e-mail: xiaoye@cs.berkeley.edu.

IEEE Log Number 9403194.

being able to measure the accuracy of the answer quickly
and reliably, and, most important, for us, on floating point
exceptions not causing the unstable algorithm to abort or run
very slowly. This last requirement means the system must
either continue past exceptions and later permit the program
to determine whether an exception occurred, or else support
user-level trap handling. In this paper we will assume the first
response to exceptions is available; this corresponds to the
default behavior of IEEE standard floating point arithmetic

Our numerical methods will be drawn from the LAPACK
library of numerical linear algebra routines for high perfor-
mance computers [2]. In particular, we will consider condition
estimation (error bounding) for linear systems, computing
eigenvectors of general complex matrices, the symmetric tridi-
agonal eigenvalue problem, and the singular value decom-
position. What the first two algorithms have in common
is the need to solve triangular systems of linear equations
which are possibly very ill-conditioned. Triangular system
solving is one of the matrix operations found in the Basic
Linear Algebra Subroutines, or BLAS [9], [lo], [18]. The
BLAS, which include related operations like dot product,
matrix-vector multiplication, and matrix-matrix multiplication,
occur frequently in scientific computing. This has led to their
standardization and widespread implementation. In particular,
most high performance machines have highly optimized imple-
mentations of the BLAS, and a good way to write portable high
performance code is to express one’s algorithm as a sequence
of calls to the BLAS. This has been done systematically in
LAPACK for most of numerical linear algebra, leading to
significant speedups on highly pipelined and parallel machines
121.

However, the linear systems arising in condition estimation
and eigenvector computation are often ill-conditioned, which
means that overhnderflow is not completely unlikely. Since
the first distribution of LAPACK had to be portable to as many
machines as possible, including those where all exceptions are
fatal, it could not take advantage of the speed of the optimized
BLAS, and instead used tests and scalings in inner loops to
avoid computations that might cause exceptions.

In this paper, we present algorithms for condition estimation
and eigenvector computation that use the optimized BLAS,
test flags to detect when exceptions occur, and recover when
exceptions occur. We report performance results on a “fast”
DECstation 5000 and a “slow” DECstation 5000 (both have
a MIPS R3000 chip as CPU [17]), a Sun 4/260 (which has a
SPARC chip as CPU [15]), a DEC Alpha [111, a CRAY-C90
and a SPARCstation 10 with a Viking microprocessor. The
“slow” DEC 5000 correctly implements IEEE arithmetic, but

~31, [41.

0018-9430/94$04.00 0 1994 IEEE

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on June 04,2022 at 00:55:30 UTC from IEEE Xplore. Restrictions apply.

mailto:cs.berkeley.edu
mailto:xiaoye@cs.berkeley.edu

984 IEEE TRANSACTIONS ON COMPUTERS, VOL. 43, NO. 8, AUGUST 1994

does arithmetic with NaN's about 80 times slower than normal
arithmetic: The "fast" DEC 5000 implements IEEE arithmetic
incorrectly, when the operands involve denormals or NaN's,
but does so at the same speed as normal arithmetic. Otherwise,
the two DEC 5000 workstations are equally fast'. The CRAY
does not have exception handling, but we can still compare
speeds in the most common case where no exceptions occur
to see what speedup there could be if exception handling were
available. We measure the speedup as the ratio of the time
spent by the old LAPACK routine to the time spent by our new
routine. The speedups we obtained for condition estimation
in the most common case where no exceptions occur were
as follows. The speedups ranged from 1.43 to 6.50 on either
DEC 5000, from 1.50 to 5.00 on the Sun, from 1.66 to 9.28
on the DEC Alpha, and from 2.55 to 4.21 on the CRAY.
Results for computing eigenvectors were about 1 .08. These
are quite attractive speedups. They would be even higher on
a machine where the optimized BLAS had been parallelized
but the slower scaling code had not.

In the rare case when exceptions did occur, the speed
depended very strongly on whether the exception occurred
early or late during the triangular solve, and on the speed of
subsequent arithmetic with NaN (Not-a-Number) arguments.
On some examples the speedup was as high as 5.41 on the
fast DEC 5000, but up to 13 times slower on the slow DEC
5000. This illustrates the price of implementing IEEE NaN
arithmetic too slowly.

We discuss the bisection algorithm for finding the eigenval-
ues of symmetric tridiagonal matrices. The LAPACK SSTEBZ
routine takes special care in the inner loop to avoid overflow
or division by zero, whereas our algorithm takes advantage of
infinity arithmetic defined in the IEEE standard. We report
performance results on a SPARCstation IPX (which has a
Weitek 8601 chip as FPU), as well as on a distributed memory
multiprocessor-the CM-5. The speedups range from 1.14 to
1.41.

We also discuss a singular value decomposition algorithm
used in the LAPACK routine SBDSQR, where the careful
scaling code can be avoided by using exception handling. The
speedups we have obtained on a CRAY Y-MP (EL/2-256)
were between 1.21 and 1.39.

The rest of this paper is organized as follows. Section I1
describes our model of exception handling in more detail.
Section I11 describes the algorithms for solving triangular
systems both with and without exception handling. Section IV
describes the condition estimation algorithms both with and
without exception handling, and gives timing results. Section
V does the same for eigenvector computations. Section VI
compares the bisection algorithms for solving the symmetric
tridiagonal eigenvalue problem both with and without excep-
tion handling. Section VI1 describes the benefit from exception
handling when computing singular values of a matrix. Section
VIII draws lessons about the value of fast exception handling
and fast arithmetic with NaN's and infinity symbols. Section
IX suggests future research.

'Normally a buggy workstation would be annoying, but in this case it
permitted us to run experiments where only the speed of exception handling
varied.

TABLE I
THE mEE STANDARD EXCEPTIONS AND THE DEFAULT VALUES

Exception raised I Default value I Condition

overflow

underPo w

division by zero

invalid

Inexact

f w

0, &2',," or denormals

kcJ

NaN

round(x)

e > emoz

e < em,"

05 t (-w), 0 x w,

z/O, with finite I # 0

010, co /OD, etc.

true result not representable

11. EXCEFTION HANDLING

In this section, we review how IEEE standard arithmetic
handles exceptions, discuss how the relative speeds of its
exception handling mechanisms affect algorithm design, and
state the assumptions we have made about these speeds in
this paper. We also briefly describe our exception handling
interface on the DECstation 5000.

The IEEE standard classifies exceptions into five categories:
overjlow, unde$ow, division by zero, invalid operation, and
inexact. Associated with each exception are a status flag and
a trap. Each of the five exceptions will be signaled when
detected. The signal entails setting a status flag, taking a trap,
or possibly doing both. All the flags are "sticky," which means
that after being raised they remain set until explicitly cleared.
All flags can be tested, saved, restored, or altered explicitly
by software. A trap should come under user control in the
sense that the user should be able to specify a handler for
it, although this capability is seldom implemented on current
systems. The default response to these exceptions is to proceed
without a trap and deliver to the destination an appropriate
default value. The standard provides a clearly-defined default
result for each possible exception. The default values and the
conditions under which they are produced are summarized in
Table I. Once produced, IEEE default behavior is for f r x , and
NaN to propagate through the computation without producing
further exceptions.

According to the standard, the traps and sticky flags provide
two different exception handling mechanisms. Their utility
depends on how quickly and flexibly they permit exceptions to
be handled. Since modem machines are heavily pipelined, it is
typically very expensive or impossible to precisely interrupt an
exceptional operation, branch to execute some other code, and
later resume computation. Even without pipelining, operating
system overhead may make trap handling very expensive.
Even though no branching is strictly needed, merely testing
sticky flags may be somewhat expensive, since pipelining
may require a synchronization event in order to update them.
Thus it appears fastest to use sticky flags instead of traps,
and to test sticky flags as seldom as possible. On the other
hand, infrequent testing of the sticky flags means possibly
long stretches of arithmetic with f o o or NaN as arguments.
If default IEEE arithmetic with them is too slow compared
to arithmetic with normalized floating point numbers, then it
is clearly inadvisable to wait too long between tests of the
sticky flags to decide whether alternate computations should
be performed. In summary, the fastest algorithm depends on

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on June 04,2022 at 00:55:30 UTC from IEEE Xplore. Restrictions apply.

DEMMEL AND LI: FASTER NUMERICAL ALGORITHMS VIA EXCEPTlON HANDLING

1
CPU denormd m NaN how measured

MIPS R3000/3010 cc

%low" (correct) 120x slower full speed 8Ox slower

"fast" (buggy) "full speed" full speed "full speed"

MIPS R4000/4010 12Ox slower full speed 3% slower cc

Sun4/260 + Weitek 1164/5 8x slower full speed lox slower f77

SPARC IPX + Weitek 86Qi 7x slower full speed 9x slower t77

SuperSPARC (Viking) full speed full speed full speed f77

PA-RISC 68x slower full meed 42x slower Cc

985

RS/6000 full speed full speed full speed cc

387, 486, Pentium

i860

i s 0

full speed full speed full speed manual

868x slower 432x slower 411x slower cc

fullspeed fullsued fullspeed manual

I DEC Alpha I 690x slower I 343x slower I 457x slower 1 cc I

-1 c 0 0 0 0
0 - 1 c 0 0 0
0 0 - 1 c 0 0

0 0 - 1 c o
0 0 0 -1 1-

x = L-lb =

*Returns the first argument for binary operations; = 0; status flag
is not set.

0
0
0
0

,O 2

the relative speeds of

conventional, unexceptional floating point arithmetic,
arithmetic with Na"s and f o o as arguments,
testing sticky flags, and
trap handling.

In the extreme case, where everything except conventional,
unexceptional floating point arithmetic is terribly slow, we are
forced to test and scale to avoid all exceptions. This is the
unfortunate situation we were in before the introduction of
exception handling, and it would be an unpleasant irony if
exception handling were rendered too unattractive to use by
too slow an implementation. In this paper, we will design our
algorithms assuming that user-defined trap handlers are not
available, that testing sticky flags is expensive enough that
it should be done infrequently, and that arithmetic with NaN
and f o o is reasonably fast. Our codes will in fact supply
a way to measure the benefit one gets by making NaN and
00 arithmetic fast. Table 11 shows the speed of arithmetic with
denormalized numbers, 00 and NaN, compared to conventional
arithmetic on some machines. Some of the table entries are
measured from Fortran, some from C, while others are from
the architecture manuals. The DEC Alpha can only implement
IEEE defaults, including infinities, NaN's and denormals, by
precise interrupts; this causes significant loss of speed as
compared with the normal arithmetic.

Our interface to the sticky flags is via subroutine calls,
without special compiler support. We illustrate these interfaces
briefly for one of our test machines, the DECstation 5000
with the MIPS R3000 chip as CPU. On the DECstation 5000,
the R3010 Floating-point Accelerator (FPA) operates as a
coprocessor for the R3000 Processor chip, and extends the
R3000's instruction set to perform floating point arithmetic
operations. The FPA contains a 32-bit ControVStatus register,
FCR31, that is designed for exception handling and can be

reaawritten by instructions running in User Mode. The FCR3 1
contains five Nonsticky Exception bits (one for each exception
in Table I), which are appropriately set or cleared after
every floating point operation. There are five corresponding
Tr&pEnable bits used to enable a user level trap when an
exception occurs. There are five corresponding Sticky bits
to hold the accrued exception bits required by the IEEE
standard for trap disabled operation. Unlike the nonsticky
exception bits, the sticky bits are'never cleared as a side-
effeet of any floating point operation; they can be cleared only
by writing a new value into the ControVStatus register. The
nonsticky exception bits might be used in other applications
requiring finer grained exception handling, such as parallel
prefix [6].

In the algorithms developed in this paper we need only
manipulate the trap enable bits (set them to zero to disable
software traps) and the sticky bits. Procedure exceptionreset()
clears the sticky flags associated with overflow, division by
zero and invalid operations, and suppresses the exceptions
accordingly. Function except() returns true if any or all of the
overflow, division by zero and invalid sticky flags are raised.

111. TRIANGULAR SYSTEM SOLVING

We discuss two algorithms for solving triangular systems of
equations. The first one is the simpler and faster of the two, and
disregards the possibility of over/underflow. The second scales
carefully to avoid over/underflow, and is the one currently
used in LAPACK for condition estimation and eigenvector
computation [11.

We will solve Lx = b, where L is a lower triangular n-
by-n matrix. We use the notation L(i : j, k : 1) to indicate
the submatrix of L lying in rows i through j and columns
k through E of L. Similarly, L(i ,k : E) is the same as
L(i : i, k : I) . The following algorithm accesses L by columns.

Algorithm I : Solve a lower triangular system Lx = b.
x(1 : n) = b (l : n)
for i = 1 to n

x (i) = x (i) /L (i , i)
x(i + 1 : n) = z(i + 1 : n) - x (i) . L(i + 1 : n, i)

endfor
This is such a common operation that it has been stan-

dardized as subroutine STRSV, one of the BLAS [9], [lo],
[18]. Algorithm 1 can easily overflow even when the matrix
L is well-scaled, i.e. all rows and columns are of equal and
moderate length. For example,

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on June 04,2022 at 00:55:30 UTC from IEEE Xplore. Restrictions apply.

986 IEEE TRANSACTIONS ON COMPUTERS, VOL. 43, NO. 8, AUGUST 1994

where c = overflows in IEEE single precision, even
though each row and column of L has largest entry 1 in
magnitude, and no terribly small entries. Similarly, let L,(c)
be the analogous n-by-n matrix with 0 < c < 1 in the second
through n - 1-st elements along the main diagonal. This means
that (L,(c>)-'[l, 0, . . . , 0IT = 11, c-l, c - ~ , . . . , c ~ - ~ , c ~ - ~] ~ .

The second algorithm scales carefully to avoid overflow in
Algorithm 1. The algorithm works by choosing a scale factor
0 5 s 5 1 and solving Lx = s b instead of Lx = b. A value
s < 1 is chosen whenever the solution x would overflow. In
case x would overflow even if s were the smallest positive
floating point number, s is set to zero (for example, consider
L27(with IEEE single precision in the above example).
If some L(i , i) = 0 exactly, so that L is singular, the algorithm
will set s = 0 and compute a nonzero vector x satisfying
Lx = 0 instead.

Here is a brief outline of the scaling algorithm; see [l] for
details. Coarse bounds on the solution size are computed as fol-
lows. The algorithm begins by computing c j = Cr=j+l 1 Lij 1,
Go = 1/ maxi Ib; I, a lower bound Gi on the values of x;:~
through x i 1 after step i of Algorithm 1:

and finally a lower bound g on the reciprocal of the largest
intermediate or final values computed anywhere in Algorithm
1:

g = min (Go, Gi-1 . min(1, ILiiI))
l< i<n

Lower bounds on x i 1 are computed instead of upper bounds
on x j to avoid the possibility of overflow in the upper bounds.

Let UN = 1/OV be smallest floating point number that can
safely be inverted. If g 2 UN, this means the solution can
be computed without danger of overflow, so we can simply
call the BLAS. Otherwise, the algorithm makes a complicated
series of tests and scalings as in Algorithm 2.

Now we compare the costs of Algorithms 1 and 2. Algo-
rithm l costs about n2 flops (floating point operations), half
additions and half multiplies. There are also n divisions which
are insignificant for large n. In the first step of Algorithm 2,
computing the ci costs n2/2 + O(n) flops, half as much as
Algorithm 1. In some of our applications, we expect to solve
several systems with the same coefficient matrix, and so can
reuse the c,; this amortizes the cost over several calls. In the
best case, when g 2 UN, we then simply call STRSV. This
makes the overall operation count about 1.5n2 (or n2 if we
amortize). In the worst (and very rare) case, the inner loop of
Algorithm 2 will scale at each step, increasing the operation
count by about n2 again, for a total of 2.5n2 (or 2n2 if we
amortize). Updating x,, costs another n2/2 data accesses
and comparisons, which may or may not be cheaper than the
same number of floating point operations.

More important than these operation counts is that Algo-
rithm 2 has many data dependent branches, which makes it
harder to optimize on pipelined or parallel architectures than
the much simpler Algorithm 1. This will be borne out by the
results in later sections.

Algorithm 2 is available as LAPACK subroutine SLATRS.
This code handles upper and lower triangular matrices, permits
solving with the input matrix or its transpose, and handles
either general or unit triangular matrices. It is 300 lines
long excluding comments. The Fortran implementation of the
BLAS routine STRSV, which handles the same input options,
is 159 lines long, excluding comments. For more details on
SLATRS, see [I].
Algorithm 2: Solve a lower triangular system Lx = s b with

scale factor 0 5 s 5 1.
Compute g and cl , . . . , c,-l as described above
if (g 2 UN) then

else
call the BLAS routine STRSV

s = l
~ (l : n) = b (l : n)
xmax = mml<z<n Ix(i)l
for i = 1 to n

if (UN 5 \L(z,i)l < 1 and Ix(i)l > lL(i,i)l. OV)
then

scale= 1/lz(i)l
s = s-scale; x(1 : n) = x(1 : n).scale;
x,,, = xma,.scale

else if (0 > IL(i,i)l > UN and Ix(i)l > lL(i,z)l-
OV) then

scale= ((IL(i , i)l. OV)/Jz(i)J)/ max(1, c,)
s = s-scale; x(1 : n) = x(1 : n).scale;
x,,, = x,,.scale

else if (L(i , i) = 0) then . . . compute a null vector
x: Lx = 0

s = 0
x (l : n) = 0; x(2) = 1; x,, = 0

end if

if (Ix(i)l > 1 and c(i) > (OV -x,,,)/\x(Z)[) then
x(i) = x(i)/L(i, i)

scale= 1 / (2 . Ix(i)l)
s = s x a l e ; x(1 : n) = x(1 : n)male

else if (Ix(i)l 5 1 and Ix(i)l . c(i) > (OV -Xmax))

then
scale= 1/2
s = s.scale; x(1 : n) = x(1 : n).scaEe

endif
x (i+ 1 : n) = x (i + 1 : n) - x (i) . L (i + 1 : n,i)
xmax = max,<j<n Ix(~')l

endfor
endif

IV. CONDITION ESTIMATION

In this section, we discuss how IEEE exception handling
can be used to design a faster condition estimation algorithm.
We compare first theoretically and then in practice the old
algorithm used in LAPACK with our new algorithm.

A. Algorithms
When solving the n-by-n linear system Ax = b, we wish

to compute a bound on the error Xcomputed - Strue. We

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on June 04,2022 at 00:55:30 UTC from IEEE Xplore. Restrictions apply.

DEMMEL AND LI: FASTER NUMERICAL ALGORITHMS VIA EXCEPTION HANDLING

will measure the error using either the one-norm 11x111 =
Ixii, or the infinity norm IIxlloo = maxi Ixil. Then the

usual error bound [12] is

where p (n) is a slowly growing function of n (usually about
n), t is the machine precision, kl(A) is the condition number
of A, and p is the pivot growth factor. The condition number
is defined as kl(A) = llAll1 . I(A-lII1, where llBll1
11iaxl<j5~ E:=’=, Jbi j l . Since computing A-l costs more than
solving A z = b, we prefer to estimate IIA-llll inexpensively
from A’s LU factorization; this is called condition estimation.
Since llAll1 is easy to compute, we focus on estimating
IIA-llll. The pivot growth may be defined as (other
definitions are possible). This is close to unity except for
pathological cases.

In the LAPACK library [2] , a set of routines have been
developed to estimate the reciprocal of the condition number
kl(A). We estimate the reciprocal of kl(A), which we call
RCOND, to avoid overflow in kl(A). The inputs to these
routines include the factors L and U from the factorization
A = LU and ((A((1. Higham’s modification [14] of Hager’s
method [13] is used to estimate llA-llll. The algorithm is
derived from a convex optimization approach, and is based
on the observation that the maximal value of the function
f(x) = IIBxII1/IIxII1 equals llBlll and is attained at one of
the vectors ej, for j = 1,. . . ,a, where ej is the j th column
of the n-by-n identity matrix.

Algorithm 3 [13]: This algorithm computes a lower bound

Choose x with Ilx(11 = 1 (e.g., x := v)
Repeat

7 for llA-llll.

solve Ay = x (by solving Lw = x and Uy = w
using Algorithm 2)
form < := sign(y)
solve A T z = < (by solving UTw=< and LTz = w
using Algorithm 2)
if llzlloo 5 zTz then

Y := 11Yl11
quit

else x := e?, for that j where I z j J = llzllno
The algorithm involves repeatedly solving upper or lower

triangular systems until a certain stopping criterion is met.
Due to the possibilities of overflow, division by zero, and
invalid exceptions caused by the ill-conditioning or bad scaling
of the linear systems, the LAPACK routine SGECON uses
Algorithm 2 instead of Algorithm 1 to solve triangular systems
like Lw = x, as discussed in Section 3. The details of the
use of the scale factor s returned by Algorithm 2 are not
shown; see routines SGECON and SLACON in LAPACK
P I .

Our goal is to avoid the slower Algorithm 2 by using
exception handling to deal with these ill-conditioned or badly
scaled matrices. Our algorithm only calls the BLAS routine
STRSV, and has the property that overflow occurs only if the
matrix is extremely ill-conditioned. In this case, which we
detect using the sticky exception flags, we can immediately

terminate with a well-deserved estimate RCOND = 0. Merely
replacing the triangular solver used in Algorithm 3 by STRSV
and inserting tests for overflow does not work, as can be Seen
by choosing a moderately ill-conditioned matrix of norm near
the underflow threshold; this will cause overflow while solving
Uy = w even though A is only moderately ill-conditioned.
Therefore, we have modified the logic of the algorithm as
follows. Comments indicate the guaranteed lower bound on
kl(A) if an exception leads to early termination.

Algorithm 4: This algorithm estimates the reciprocal of
kl(A) = l l~l l l l l~- l l l l .

Let a = llAlll
RCOND is the estimated reciprocal of condition
number kl (A)
Call exceptionreset()
Choose x with 11x111 = 1 (e.g., z :=
Repeat

solve Lw = x by calling STRSV
if (except()) then RCOND := 0; quit /* kl(A) 2

if (a > 1) then

(l , l , -~J)T)
7L

OVJp */

if (IIwII, 2 OV/a) then
solve Uy = w by calling STRSV
if (except()) then RCOND := 0; quit /*

else y := y . a
k1(A) >_ OV * I

if (except()) then RCOND := 0;
quit / * k l (A) 2 OV */

else solve Uy = w . a by calling STRSV
endif

if (except()) then RCOND := 0; quit /*
kl(A) 2 OV */

endif

if (except()) then RCOND := 0; quit /*
else solve Uy = w . a by calling STRSV

kl(A) 2 OV */
endif
form < := sign(y)
solve U T w = < . a by calling STRSV
if (except()) then RCOND := 0; quit /*

else solve LTz = w by calling STRSV

ov kl(A> 2 7 */

ov 2 7 *I
endif
if llzlloo I: zTz then

else x := e3, where (z j l = (Iz(Ioo
endif

if (except()) then RCOND=O; quit /* kl(A)

RCOND := 1/JJyl)1; quit

The behavior of Algorithm 4 is described by the following:
Lemma I: If Algorithm 4 stops early because of an ex-

ception, then the “true rounded” reciprocal of the condition
number satisfies RCOND 5 w, where p = is
the pivot growth factor.

Proofi In the algorithm, there are seven places where
exceptions may occur. We will analyze them one by one. Note
that x is chosen such that 11x111 = 1, and that 11<111 = n. - _ _

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on June 04,2022 at 00:55:30 UTC from IEEE Xplore. Restrictions apply.

988 IEEE TRANSACTIONS ON COMPUTERS, VOL. 43. NO. 8, AUGUST 1994

1) An exception occurs when computing L-lx.
Since A = LU, L-l = UA-l, this implies

ov I l l~- lxl l l I ll~lIIIIA-llllll~lll

Therefore, kl(A) 2 OV/p, i.e., RCOND 5 p/OV.
2) An exception occurs when computing U-lL-'x with

a > 1. Then

so RCOND I l/OV.

a > 1. Then
3) An exception occurs when computing a.U-'L-'x with

OV I l l~U-lL-lx[l i I kl(A),

so RCOND 5 1/OV.

a > 1 and IIL-'xlll < OV/a. Then
4) An exception occurs when computing U-laL-lx, with

OV 3 IIU-laL-lxlll 5 llA-ll\la = kl(A),

so h (A) 2 OV, i.e., RCOND I 1/OV.

a I 1. Then
5) An exception occurs when computing U-laL-lz with

OV I IIU-laL-lxlI1 I llA-lllla = kl(A),

so kl(A) 2 OV, i.e., RCOND I 1/OV.
6) An exception occurs when computing U-Ta<.

Since AT = UTLT, UVT = LTA-T 1 and IIBTIll I
nllBII1, we get

ov I IIU-Taclll I IILTI1lIIA-Tlll~ll<lll

I l l~Tll l.nllA-lII1~~.llcl l l = IILTII1 n . h (A) . n
I n3kl(A).

Therefore, k l (~) 2 9, i.e., RCOND I &.

ov I IIL-TU-TaclI1 I IIA-TII1~lIcIII

7) An exception occurs when computing L-TU-Ta[, so

I nllA-lll1 . CY. n = n2kl(A).

Therefore, RCOND I &.
Combining the above seven cases, we have shown that

In practice, any RCOND < E signals a system so ill-
conditioned as to make the error bound in (1) as large as
the solution itself or larger; this means the computed solution
has no digits guaranteed correct. Since max n 3 9 p << 6 unless
either n or p is enormous (both of which Y so mean the error
bound in (1) is enormous), there is no loss of information in
stopping early with RCOND = 0.

Algorithm 4 and Lemma 1 are applicable to any linear
systems for which we do partial or complete pivoting dur-
ing Gaussian elimination, for example, LAPACK routines
SGECON, SGBCON and STRCON (see Section 4.2 for the
descriptions of these routines), and their complex counterparts.

RCOND I when an exception occurs. 0

For symmetric positive definite matrices, where no pivoting
is necessary, an analogous algorithm (e.g., SPOCON) was
developed and analyzed, though omitted in this paper due to
the limitation of the length.

B. Numerical Results

To compare the efficiencies of Algorithms 3 and 4, we
rewrote sev'eral condition estimation routines in LAPACK
using Algorithm 4, including SGECON for general dense ma-
trices, SPOCON for dense symmetric positive definite matrices,
SGBCON for general band matrices, and STRCON for triangular
matrices, all in IEEE single precision. To compare the speed
and the robustness of Algorithms 3 and 4, we generated
various input matrices yielding unexceptional executions with
or without invocation of the scalings inside Algorithm 2, as
well as exceptional executions. The unexceptional inputs tell
us the speedup in the most common case, and on machines
like the CRAY measure the performance lost for lack of any
exception handling.

First, we ran Algorithms 3 and 4 on a suite of well-
conditioned random matrices where no exceptions occur, and
no scaling is necessary in Algorithm 2. This is by far the
most common case in practice. The experiments were carried
out on a DECstation 5000, a SUN 4060, a DEC Alpha, and
a single processor CRAY-C90. The performance results are
presented in Table 111. The numbers in the table are the ratios
of the time spent by the old LAPACK routines using Algorithm
3 to the time spent by the new routines using Algorithm
4. These ratios measure the speedups attained via exception
handling. The estimated condition numbers output by the two
algorithms are always the same. For dense matrices or matrices
with large bandwidth, as matrix dimension n increases, the
time to service cache misses constitutes a larger portion of
the execution time, resulting in decreased speedups. When
we ran SGBCON with matrices of small bandwidth, such that
the whole matrix fit in the cache, we observed even better
speedups.

Second, we compared Algorithms 3 and 4 on several
intentionally ill-scaled linear systems for which some of the
scalings inside Algorithm 2 have to be invoked, but whose
condition numbers are still finite. For SGECON alone with
matrices of sizes 100 to 500, we obtained speedups from 1.62
to 3.33 on the DECstation 5000, and from 1.89 to 2.67 on the
DEC Alpha.

Third, to study the behavior and performance of the two
algorithms when exceptions do occur, we generated a suite
of ill-conditioned matrices that cause all possible exceptional
paths in Algorithm 4 to be executed. Both Algorithms 3 and
4 consistently deliver zero as the reciprocal condition number.
For Algorithm 4, inside the triangular solve, the computation
involves such numbers as NaN and f w . Indeed, after an
overflow produces fco, the most common situation is to
subtract two infinities shortly thereafter, resulting in a NaN
which then propagates through all succeeding operations. In
other words, if there is one exceptional operation, the most
common situation is to have a long succession of operations
with NaN's. We compared the performance of the "fast" and

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on June 04,2022 at 00:55:30 UTC from IEEE Xplore. Restrictions apply.

DEMMEL AND LI: FASTER NUMERICAL ALGORITHMS VIA EXCEPTION HANDLING 989

“fast” DEC 5000 speedup

TABLE I11
SPEEDUPS ON DEC 5000/SUN 4-260/DECALPHA/CFUY-C90

No exceptions nor scaling occur. SBW stands for semi-bandwidth.

Example 1 Example 2 Example 3

2.15 2.32 2.00

‘‘slow’’ DEC 5000 slowdown 11.67 13.49 9.00

Matrix dimensions ire 500.

“slow” DECstation 5000 on a set of such problem^.^ Recall
that the fast DECstation does NaN arithmetic (incorrectly)
at the same speed as with conventional arguments, whereas
the slow DECstation computes correctly but 80 times slower.
Table IV gives the speeds for both DECstations. The slow
DEC 5000 goes 18 to 30 times slower than the fast DEC
5000. On some other examples, where only infinities but no
Na”s occurred, the speedups ranged from 3.5 to 6.0 on both
machines. Table IV also shows the speedups observed on
a SPARCstation 10, where both 00 and NaN arithmetic are
implemented correctly and with full speed.

V. EIGENVECTOR COMPUTATION
We now consider another opportunity to exploit IEEE

exception handling. The problem is to compute eigenvectors
of general complex matrices. This example, in contrast to
early ones, requires recomputing the answer slowly after an
exception occurs, as in our paradigm.

Let A be an n-by-n complex matrix. If nonzero vectors
v and u, and a scalar A satisfy Av = Av and u*A = Xu*
(* denotes conjugate transpose), then A is called an eigenvalue,
and v and u* are called the right and left eigenvectors associ-
ated with the eigenvalue A, respectively. In LAPACK, the task
of computing eigenvalues and the associated eigenvectors is
performed in the following stages (as in the routine CGEEV):

mous ftp [7].
3The test matrices together with the software can be obtained via anony-

1) A is reduced to upper Hessenberg form H, which is
zero below the first subdiagonal. The reduction can be
written H = Q*AQ with Q unitary [12].

2) H is reduced to Schur form T. The reduction can be
written T = S*HS, where T is an upper triangular
matrix and S is unitary [12]. The eigenvalues are on the
diagonal of T.

3) CTREVC computes the eigenvectors of T. Let V be
the matrix whose columns are the right eigenvectors of
T. Then S . V are the right eigenvectors of H, and
Q . S . V are the right eigenvectors of A. Similarly, we
can compute the left eigenvectors of A from those of T.

Let us first examine the important stage of calculating the
eigenvectors of an upper triangular matrix T . The eigenvalues
of T are i l l , t 2 2 , . . . , tnn. To find a right eigenvector v associ-
ated with the eigenvalue tii, we need to solve the homogeneous
equation (T - t i i1)v = 0, which can be partitioned into the
block form

[?il tii1 T12 T I 3
0
0 T33 - tiiI

T 2 3] ’ E:] = o . (2)

By backward substitution, we have v 3 = 0, 212 = 1 and v 1
satisfying the equation

(3)

Therefore, the problem is reduced to solving an upper
triangular system (3) of dimension (i - 1)-by-(i - 1). To find
all the n eigenvectors we need to solve triangular system (3)
for i = 2, . . . , n. Since any scalar multiple of v is also an
eigenvector of T, we always expect to obtain an answer by
scaling the solution vector no matter how ill-conditioned or
badly scaled the triangular system (3) is. For this purpose,
CTREVC calls the triangular solve routine CLATRS instead of
calling the triangular solver CTRSV in the BLAS. CLATRS
is a complex counterpart of SLATRS as discussed in Section
111, using Algorithm 2. In most common cases, however, the
scaling unnecessarily introduces overhead. We reimplemented
the part of CTREVC containing the triangular solve. When
solving each equation (3), we first call CTRSV and test the
exception flags. If exceptions occur, then we go back to call
CLATRS.

To study the efficiency of the modified CTREVC, we ran
the old code and our new one on random upper triangular
matrices of various sizes. We observed the speedups of from
1.49 to 1.65 on the DECstation 5000, and from 1.38 to 1.46 on
the Sun 4/260. In the case of overflow, each triangular solve
is invoked twice, first using CTRSV yet throwing away the
solutions, and second using CLATRS . Since CTRSV is about
twice as fast as CLATRS (see Section 3), the performance loss
is no more than 50% when a (rare) exception occurs.

To see how the performance attained from CTREVC alone
effects the performance of the whole process of computing
eigenvectors of general complex matrices, we timed CTREVC
in the context of CGEEV. It turns out that CTREVC amounts
to about 20% of the total execution time of CGEEV. Therefore,
we expect that the speed of the whole process can be increased
by about 8%.

(7‘11 - ti;I)vl = -T12 .

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on June 04,2022 at 00:55:30 UTC from IEEE Xplore. Restrictions apply.

T =

IEEE TRANSACTIONS ON COMPUTERS, VOL. 43, NO. 8, AUGUST 1994

-a1 bl
-

bi az bz
bz '.. '..

* . bn-1

bn-1 an -

may overflow. Whenever this occurs, default values f c c are
used to continue the computation.

Algorithm 7 Computes the number of eigenvalues less than
or equal to g.
c = 0;
t = l ;
bo = 0;
fo r i = 0 to n - 1

b?- 1 t = U , + l - a - t;
C = C + signbi t (t) ;

endfor
return C;

S i g n b i t(z) extracts the sign bit of a floating-point number
z represented in the IEEE format. The returned value is either
0 or 1 depending on whether z is positive or negative. The
signbit($) can be computed quickly by logically shifting the
sign bit of z to the rightmost bit position of a register, leaving
zeros in all the other bits.

The correctness of Algorithm 7 relies on the fact that
arithmetic with f o o and signed zeros f O obeys certain rules
defined by the IEEE standard. The merit of Algorithm 7 is that
it replaces the two explicit conditional branches with a single
straight-line statement, and this makes better use of floating-
point pipelines. The only hardware requirement for Algorithm
7 to attain good speed is the speed of infinity arithmetic.

On a SPARCstation IPX, where infinity arithmetic is as
fast as conventional arithmetic, we measured the speed of
Algorithm 6 and 7 for various matrices of sizes ranging from
100 to 1000. Algorithm 7 achieved speedups ranging from
1.20 to 1.30 over Algorithm 6. We also compared the two
bisection algorithms, using Algorithm 6 and 7 as the inner
loops respectively, to find all eigenvalues. We were able to
get speedups ranging from 1.14 to 1.24. This is due to the
dominant role of the count () function in the bisection
algorithm.

We also did comparisons on a distributed memory mul-
tiprocessor-the Thinking Machines CM-5 [191. Our CM-
5 configuration contains 64 33-Mhz SPARC 2 processors,
interconnected by a fat-tree network. Each processing node has
8 Mbytes of local memory. Coordination and synchronization
among processing nodes are achieved via explicitly passing
messages. The floating-point arithmetic on the CM-5 conforms
to IEEE standard, and infinity arithmetic is as fast as conven-
tional arithmetic. Inderjit Dhillon et al. [8] have designed a
parallel bisection algorithm on the CM-5, where the whole
spectrum is divided into 64 subintervals, and each processing
node is responsible for finding the eigenvalues within one
subinterval. A dynamic load balancing scheme is incorporated
when eigenvalues are not evenly distributed.

In Table V, we report three types of speedup numbers from
our experiments. T, (algo) stands for the running time of the
algo on a single node of the CM-5; Tp (algo) stands for the
running time of the algo on the 64 node CM-5. Thus,
represents the parallel speedup of the algo. The two algonthms
we compared are: LAPACKbisect that used Algorithm 6 to get
the count value, and ZEEEbisect that used Algorithm 7 to get
the count value. The last column demonstrates the speedup of

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on June 04,2022 at 00:55:30 UTC from IEEE Xplore. Restrictions apply.

DEMMEL AND LI: FASTER NUMERICAL ALGORITHMS VIA EXCEPTION HANDLING

192

1024

~

99 1

45 53 1.47

61 61 1.25

4096

16384

53 51 1.18

1.18 -

the parallel ZEEEbisect against the parallel LAPACKbisect.
We see the speedups attained by using IEEE arithmetic ranges
from 1.18 to 1.47.

VII. SINGULAR VALUE DECOMFQSITION

In this section we discuss using exception handling to speed
up the computation of the singular value decomposition of a
matrix [12]. This is an important linear algebra computation,
with many applications. It consists of two phases. Phase 1,
reduction to bidiagonal form (i.e. nonzero on the diagonal and
first superdiagonal only), costs O(n3) operations, where n is
the matrix dimension. Phase 2, computing singular values of a
bidiagonal matrix, costs just O(n2) operations. Nevertheless,
Phase 2 can take much longer than Phase 1 on machines like
the CRAY-C90 because Phase 1 is readily vectorized (or par-
allelized), whereas Phase 2 consists of nonlinear recurrences
which run at scalar speeds. For example, when n = 200, Phase
1 does about 2.1 . lo7 floating point operations at a speed of
594 Megaflops, for a time of 0.036 seconds, whereas Phase 2
does 1.6 . lo6 floating point operations at a speed of just 6.9
Megaflops, for a time of 0.23 seconds. Phase 2 takes longer
than Phase 1 up to n M 1200. So in this section we will discuss
using exception handling to accelerate Phase 2. Phase 2 is
implemented by a slight modification of LAPACK subroutine
SBDSQR [2], which we describe below.

It suffices to consider one of the main loops in SBDSQR;
the others are similar. In addition to 12 multiplies and 4
addition, there are two uses of an operation we will call
rot (f, g, cs, sn, r). It takes f and g as inputs, and returns
r = (f2 + g2) ' / ' , cs = f / r and g/r as outputs. This simple
formula is subject to failure or inaccuracy when either f or
g is greater than the square root of the overflow threshold, or
when both are little larger than the square root of the underflow
threshold. Therefore, SBDSQR currently does a series of tests
and scalings to avoid this failure. (The difference between
SBDSQR and our routine is that our routine in-lines rot and
uses a slightly different and move accurate scaling algorithm.)
Almost all the time, these tests indicate no scaling is needed,
but it is impossible to determine this without running through
the whole loop. We compare the performance of two versions
of SBDSQR , one which tests and scales as above, and another,
which we will call SBDSQR-UNSAFE, which just uses simple
single line formulas for T , cs and sn. We tested these two
routines on a CRAY Y-MP (EW2-256). The speedups depend
somewhat on the matrix. The test bidiagonal matrix A had
entries of the form A+ = C"-* and A,,,+1 = A,,,, with
dimensions ranging from 50 to 1OOO. With C = 1.0001, most

speedups were between 1.28 and 1.39, with half over 1.35.
With C = 1.044, most speedups were between 1.21 and 1.31.

VIII. LESSONS FOR SYSTEM ARCHITECTS
The most important lesson is that well-designed exception

handling permits the most common cases, where no exceptions
occur, to be implemented much more quickly. This alone
makes exception handling worth implementing well.

A trickier question is how fast exception handling must
be implemented. There are three speeds at issue: the speed
of NaN and infinity arithmetic, the speed of testing sticky
flags, and the speed of trap handling. In principle, there is no
reason NaN and infinity arithmetic should not be as fast as
conventional arithmetic. The examples in section 4.2 showed
that a slowdown in NaN arithmetic by a factor of 80 from
conventional arithmetic slows down condition estimation by a
factor of 18 to 30.

Since exceptions are reasonably rare, these slowdowns
generally affect only the worst case behavior of the algorithm.
Depending on the application, this may or may not be impor-
tant. If the worst case is important, it is important that system
designers provide some method of fast exception handling,
either NaN and infinity arithmetic, testing the sticky flags, or
trap handling. Making all three very slow will force users
to code to avoid all exceptions in the first place, the original
unpleasant situation exception handling was designed to avoid.

It is particularly important to have fast exception handling
in a parallel computer for the following reason. The running
time of a parallel algorithm is the running time of the slowest
processor, and the probability of an exception occurring on at
least one processor can be p times as great as on one processor,
where p is the number of processors.

IX. FUTURE WORK
The design paradigm for numerical algorithms proposed in

this paper is quite general and can be used to develop other
numerical algorithms. These include rewriting the BLAS rou-
tine SNRM2 to compute the Euclidean norm of a vector, and
the LAPACK routine S H S E I N (which now calls SLATRS) to
compute the eigenvectors of a real upper Hessenberg matrix.

In complex division, gradual underflow instead of flush
to zero can guarantee a more accurate result, see [5]. This
requires fast arithmetic with denormalized numbers.

Floating point parallel prefix is a useful operation for vari-
ous linear algebra problems. Its robust implementation with
the protection against over/underflow requires fine grained
detection and handling of exceptions [6].

Our final comment concerns the trade-off between the
speed of NaN and infinity arithmetic and the granularity of
testing for exceptions. Our current approach uses a very large
granularity, since we test for exceptions only after a complete
call to STRSV. For this approach to be fast, NaN and infinity
arithmetic must be fast. On the other hand, a very fine grained
approach would test for exceptions inside the inner loop, and
so avoid doing useless NaN and infinity arithmetic. However,
such frequent testing is clearly too expensive. A compromise
would be to test for exceptions after one or several complete

- -~

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on June 04,2022 at 00:55:30 UTC from IEEE Xplore. Restrictions apply.

992 IEEE TRANSACTIONS ON COMPUTERS, VOL. 43, NO. 8, AUGUST 1994

1

iterations of the inner loop in STRSV. This would require re-
implementing STRSV. This medium grained approach is less
sensitive to the speed of NaN and infinity arithmetic. The effect
of granularity on performance is worth exploration.

The software described in this report is available from the
authors [7].

ACKNOWLEDGMENT

The authors wish to thank W. Kahan for his detailed
criticism and comments. We also wish to thank Inderjit Dhillon
for providing us the performance results of the bisection
algorithms running on the CM-5.

REFERENCES

[13] W. W. Hager, “Condition estimators,” SIAM J. Sci. Statist. Comput.,

[14] N. J. Higham, “Algorithm 674: FORTRAN codes for estimating the
one-norm of a real or complex matrix, with applications to condition
estimation,” ACM Trans. Math. Software, vol. 14, pp. 381-396, 1988.

[151 SPARC Internatinal Inc. The SPARC Architecture Manual: Version 8.
Englewood Cliffs, NJ: Prentice Hall, 1992.

[161 W. Kahan, “Accurate eigenvalues of symmetric tridiagonal matrix,”
Computer Sci. Dep., Tech. Rep. CS41, Stanford Univ., Stanford, CA,
July 1966 (revised June 1968).

[I71 G. Kane, MIPS Risc Architecture. Englewood Cliffs, NJ: Prentice Hall,
1989.

[18] C. Lawson, R. Hanson, D. Kincaid, and F. Krogh, “Basic linear algebra
subprograms for Fortran usage,” ACM Tmns. Math. Sofhyare, vol. 5,

V O ~ . 5 , pp. 311-316, 1984.

pp.‘308-323, 1979.

nical Summary, Cambridge MA, Oct. 1991.
I191 Thinking Machines Corporation, The Connection Machine CM-5 Tech-

[l] E. Anderson, “Robust triangular solves for use in condition estima-
tion,” Comput. Sci. Dep. Tech. Rep. CS-91-142, Univ. of Tennessee,
Knoxville, 1991. (LAPACK Working Note #36).

[2] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz,
A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov, and D.
Sorensen, LAPACK Users’ Guide, Release 1 .O. SIAM, Philadelphia,
1992, pp. 235.

[3] ANSIAEEE, New York, IEEE Standard for Binary Floating Point
Arithmetic, Std 754-1985 ed., 1985.

[4] ANSIIIEEE, New York. IEEE Standard for Raix Independent Floating
Point Arithmetic, Std 854-1987 ed., 1987.

[5] J. Demmel, ‘‘Underflow and the reliability of numerical software,” SIAM
J. Sci. Statist. Comput., vol. 5, no. 4, pp. 887-919, Dec. 1984.

[6] -, “Specifications for robust parallel prefix operations,” Technical
Report, Thinking Machines Corp., 1992.

[7] J. Demmel and X. Li, “Faster nw“ca1 algorithms via exception ban-
dling,” in Proc. 11th Symp. Comput. Arithmetic, M. J. Irwin, E. Swartz-
lander, and G. Jullien, Windsor, ON, Canada, June 2 9 - J ~ l ~ 2 1993.
IEEE Computer Society Press, available as al1.ps.Z via anonymous ftp
from tr-ftp.cs.berkeley.edu, in directory pub/tech-reports/cs/csd-93-728;
software is csd-93-728.shar.Z.

181 I. S. Dhillon and J. W. Demmel. “A Darallel algorithm for the svmmetric

James W. Demmel (M’86) received the Ph.D.
degree in computer science from the University of
California, Berkeley in 1983.

He is currently a Professor of Mathematics and
Computer Science at the University of Califor-
nia, Berkeley. His research interests are in sci-
entific computing, numerical linear algebra, and
parallelism.

Dr. Demmel is co-principal investigator in the
LAF’ACK and SCALAF’ACK projects, which are
linear algebra libraries for high performance com-

puters. He won the 1993 J. H. Wilkinson Prize in Numerical Analysis and
scientific computing, the SIAM SIAG B~~~ ~i~~~ Algebra paper prize in
1991 (with W. Kahan) and again in 1988, the Fox Prize in Numerical Analysis
in 1986, Presidential Young Investigator Award in 1986, and the Householder
Award in 1984. He is a member of sIAM Council, the RIA^^ science
council, the joint AMS-SM committee on Applied Mathematics.

[91

. L I

tridiagonal eigenproblem and its implementation on the CM-5,” in
progress, 1993.
J. Dongarra, J. Du Croz, I. Duff, and S. Hammarling, “A set of level
3 basic linear algebra subprograms,” ACM Trans. Math. Sojiware, vol.
16, no. 1, pp. 1-17, Mar. 1990.
J. Dongarra, J. Du Croz, S. Hammarling, and R. J. Hanson, “An extended
set of FORTRAN basic linear algebra subroutines,” ACM Trans. Math.
Software, vol. 1, no. 1, pp. 1-17, Mar. 1988.
R. L. Sites, Ed., Alpha Architecture Reference Manual. Burlington,
MA: Digital Press, 1992.
G. Bolub and C. Van Loan, Matrix Computations, 2nd ed. Baltimore,
MD: Johns Hopkins Univ. Press, 1989.

Xiaoye Li received the M.S. degree in computer sci-
ence and the M.A. degree in mathematics from Penn
State University, and the B.S. degree in computer
science from Tsinghua University in China. She is
pursuing the Ph.D. degree in computer science at
the University of California, Berkeley.

She works on algorithms and software develop-
ment for portable linear algebra library and scientific
applications, targeted at various high performance
machines. She is a member of the IEEE Computer
Society and the ACM.

Authorized licensed use limited to: Univ of Calif Berkeley. Downloaded on June 04,2022 at 00:55:30 UTC from IEEE Xplore. Restrictions apply.

http://tr-ftp.cs.berkeley.edu

