
Computer history, restoring vintage computers, IC reverse engineering, and whatever

Ken Shirri�'s blogKen Shirri�'s blog

Extracting ROM constants from the
8087 math coprocessor's die
Intel introduced the 8087 chip in 1980 to improve floating-point
performance on the 8086 and 8088 processors, and it was
used with the original IBM PC. Since early microprocessors
operated only on integers, arithmetic with floating-point
numbers was slow and transcendental operations such as
arctangent or logarithms were even worse. Adding the 8087
co-processor chip to a system made floating-point operations
up to 100 times faster.

I opened up an 8087 chip and took photos with a microscope.
The photo below shows the chip's tiny silicon die. Around the
edges of the chip, tiny bond wires connect the chip to the 40
external pins. The labels show the main functional blocks,
based on my reverse engineering. By examining the chip
closely, various constants can be read out of the chip's ROM,
numbers such as pi that the chip uses in its calculations.

Get new posts by

email:

Subscribe

Enter your email

About Ken Shirriff

Contact

Inside the
Apple-1's
unusual
MOS clock
driver chip

Reverse-
engineering
a mysterious
Univac
computer

board

Reverse-
engineering
the LM185
voltage
reference

chip and its bandgap
reference

Inside the
Apple-1's
shift-register
memory

Simulating the IBM
360/50 mainframe from

Popular Posts

http://www.righto.com/
http://www.righto.com/2015/12/creating-high-resolution-integrated.html
http://www.righto.com/p/about-ken-shirriff.html
http://www.righto.com/2022/03/inside-apple-1s-unusual-mos-clock.html
http://www.righto.com/2022/04/reverse-engineering-mysterious-univac.html
http://www.righto.com/2022/04/reverse-engineering-lm185-voltage.html
http://www.righto.com/2022/04/inside-apple-1s-shift-register-memory.html
http://www.righto.com/2022/03/inside-apple-1s-unusual-mos-clock.html
http://www.righto.com/2022/04/reverse-engineering-mysterious-univac.html
http://www.righto.com/2022/04/reverse-engineering-lm185-voltage.html
http://www.righto.com/2022/04/inside-apple-1s-shift-register-memory.html
http://www.righto.com/2022/01/ibm360model50.html

Die of the Intel 8087 floating point unit chip, with main functional blocks
labeled. The constant ROM is outlined in green. Click for a larger image.

The top half of the chip contains the control circuitry.
Performing a floating-point instruction might require 1000
steps; the 8087 used microcode to specify these steps. The
die photo above shows the "engine" that ran the microcode
program; it is basically a simple CPU. Next to it is the large
ROM that holds the microcode.

The bottom half of the die holds the circuitry that processes
floating-point numbers. A floating-point number consists of a
fraction (also called significand or mantissa), an exponent, and
a sign bit. (For a base-10 analogy, in the number 6.02×1023,
6.02 is the fraction and 23 is the exponent.) The chip has
separate circuitry to process the fraction and the exponent in
parallel. The fraction processing circuitry supports 67-bit
values, a 64-bit fraction with three extra bits for accuracy. From

its
microcode

Apple
iPhone
charger
teardown:
quality in a

tiny expensive package

Macbook
charger
teardown:
The
surprising

complexity inside Apple's
power adapter

A Multi-
Protocol
Infrared
Remote
Library for

the Arduino

Search

Search This Blog

http://static.righto.com/images/8087-constants/constants-labeled.jpg
http://www.righto.com/2022/01/ibm360model50.html
http://www.righto.com/2012/05/apple-iphone-charger-teardown-quality.html
http://www.righto.com/2015/11/macbook-charger-teardown-surprising.html
http://www.righto.com/2009/08/multi-protocol-infrared-remote-library.html
http://www.righto.com/2022/01/ibm360model50.html
http://www.righto.com/2012/05/apple-iphone-charger-teardown-quality.html
http://www.righto.com/2015/11/macbook-charger-teardown-surprising.html
http://www.righto.com/2009/08/multi-protocol-infrared-remote-library.html

left to right, the fraction circuitry consists of a constant ROM, a
shifter, adder/subtracters, and the register stack. The constant
ROM (highlighted in green) is the subject of this post.

The 8087 operated as a co-processor with the 8086 processor.
When the 8086 encountered a special floating-point
instruction, the processor ignored it and let the 8087 execute
the instruction in parallel. 1 I won't explain in detail how the
8087 works internally, but as an overview, floating-point
operations are implemented using integer adds/subtracts and
shifts. To add or subtract two floating-point numbers, the 8087
shifts the numbers until the binary points (i.e. the decimal
points but in binary) line up, and then adds or subtracts the
fraction. Multiplication, division, and square root are performed
through repeated shifts and adds or subtracts. Transcendental
operations (tan, arctan, log, power) use CORDIC algorithms,
which use shifts and adds of special constants for efficient
computation.

This post describes the ROM that holds constants (not to be
confused with the larger, four-level microcode ROM. 2) The
constant ROM holds the constants (such as pi, ln(2), and
sqrt(2)) that the 8087 needs for its computations. The photo
below shows part of the constant ROM. The metal layer has
been removed to show the silicon underneath. The pinkish
regions are silicon doped to have different properties, while the
reddish and greenish lines are polysilicon, a special type of
silicon wiring layered on top. Note the regular grid structure of
the ROM. The ROM consists of two columns of transistors,
holding the bits. To explain how the ROM works, I'll start by
explaining how a transistor works.

Implementation of the ROM

© 2022 Best Buy

6502 8085 8086
alto analog Apollo apple
arc arduino arm

bitcoin
chips

electronics

ibm ibm1401 intel ir
math

power supply
random reverse-
engineering

snark space
teardown

Labels

8008 8087

beaglebone c#

calculator css dx7

f# fpga
fractals genome haskell html5

ipv6 java
javascript oscilloscope
photo

sheevaplug
spanish synth
theory unicode Z-80

https://en.wikipedia.org/wiki/CORDIC
http://www.righto.com/2018/09/two-bits-per-transistor-high-density.html
http://www.righto.com/search/label/6502
http://www.righto.com/search/label/8085
http://www.righto.com/search/label/8086
http://www.righto.com/search/label/alto
http://www.righto.com/search/label/analog
http://www.righto.com/search/label/Apollo
http://www.righto.com/search/label/apple
http://www.righto.com/search/label/arc
http://www.righto.com/search/label/arduino
http://www.righto.com/search/label/arm
http://www.righto.com/search/label/bitcoin
http://www.righto.com/search/label/chips
http://www.righto.com/search/label/electronics
http://www.righto.com/search/label/ibm
http://www.righto.com/search/label/ibm1401
http://www.righto.com/search/label/intel
http://www.righto.com/search/label/ir
http://www.righto.com/search/label/math
http://www.righto.com/search/label/power%20supply
http://www.righto.com/search/label/random
http://www.righto.com/search/label/reverse-engineering
http://www.righto.com/search/label/snark
http://www.righto.com/search/label/space
http://www.righto.com/search/label/teardown
http://www.righto.com/search/label/8008
http://www.righto.com/search/label/8087
http://www.righto.com/search/label/beaglebone
http://www.righto.com/search/label/c%23
http://www.righto.com/search/label/calculator
http://www.righto.com/search/label/css
http://www.righto.com/search/label/dx7
http://www.righto.com/search/label/f%23
http://www.righto.com/search/label/fpga
http://www.righto.com/search/label/fractals
http://www.righto.com/search/label/genome
http://www.righto.com/search/label/haskell
http://www.righto.com/search/label/html5
http://www.righto.com/search/label/ipv6
http://www.righto.com/search/label/java
http://www.righto.com/search/label/javascript
http://www.righto.com/search/label/oscilloscope
http://www.righto.com/search/label/photo
http://www.righto.com/search/label/sheevaplug
http://www.righto.com/search/label/spanish
http://www.righto.com/search/label/synth
http://www.righto.com/search/label/theory
http://www.righto.com/search/label/unicode
http://www.righto.com/search/label/Z-80

Part of the constant ROM, with the metal layer removed. The three columns of
larger transistors are used to select between rows.

High-density integrated circuits in the 1970s were usually built
from a type of transistor known as NMOS. (Modern computers
are built from CMOS, which consists of NMOS transistors
along with opposite-polarity PMOS transistors.) The diagram
below shows the structure of an NMOS transistor. An
integrated circuit is constructed from a silicon substrate, with
transistors built on it. Regions of the silicon are doped with
impurities to create "diffusion" regions with desired electrical
properties. The transistor can be viewed as a switch, allowing
current to flow between two diffusion regions called the source
and drain. The transistor is controlled by the gate, made of a
special type of silicon called polysilicon. Applying voltage to the
gate lets current flow between the source and drain, which is
otherwise blocked. The die of the 8087 is fairly complex, with
about 40,000 of these transistors. 3

► ► 2022 (10)

► ► 2021 (26)

▼ ▼ 2020 (33)

► ► December (2)

► ► November (3)

► ► October (2)

► ► September (4)

► ► August (5)

► ► July (2)

► ► June (3)

▼ ▼ May (4)
Die analysis of the

8087 math
coprocessor's fast
b...

Extracting ROM
constants from the

Blog Archive

http://static.righto.com/images/8087-constants/rom-overview.jpg
javascript:void(0)
http://www.righto.com/2022/
javascript:void(0)
http://www.righto.com/2021/
javascript:void(0)
http://www.righto.com/2020/
javascript:void(0)
http://www.righto.com/2020/12/
javascript:void(0)
http://www.righto.com/2020/11/
javascript:void(0)
http://www.righto.com/2020/10/
javascript:void(0)
http://www.righto.com/2020/09/
javascript:void(0)
http://www.righto.com/2020/08/
javascript:void(0)
http://www.righto.com/2020/07/
javascript:void(0)
http://www.righto.com/2020/06/
javascript:void(0)
http://www.righto.com/2020/05/
http://www.righto.com/2020/05/die-analysis-of-8087-math-coprocessors.html
http://www.righto.com/2020/05/extracting-rom-constants-from-8087-math.html

Structure of a MOSFET as implemented in an integrated circuit.

Zooming in on the ROM shows the individual transistors. The
pinkish regions are the doped silicon, forming transistor
sources and drains. The vertical polysilicon select lines form
the gates of the transistors. The indicated silicon regions are
connected to ground, pulling one side of each transistor low.
The circles are connections called vias between the silicon and
the metal lines above. (The metal lines have been removed;
the orange line shows the position of one.)

A portion of the constant ROM. Each select line selects a particular constant.
Transistors are indicated by the yellow symbols. An X indicates a missing
transistor, corresponding to a 0 bit. The orange line indicates the position of a
metal wire. (The metal layer was dissolved for this picture.)

The important feature of the ROM is that some of the
transistors are missing, the first one in the upper row, and two
marked with X in the lower row. Bits are programmed into the
ROM by changing the silicon doping pattern, creating
transistors or leaving insulating regions. Each transistor or
missing transistor represents one bit. When a select line is
activated, all the transistors in that column will turn on, pulling
the corresponding output lines low. But if the transistor is
missing from a selected position, the corresponding output line
will remain high. Thus, a value is read from the ROM by

8087 math coproc...

Tiny transformer
inside: Decapping
an isolated pow...

Reverse-engineering
the audio amplifier
chip in th...

► ► April (2)

► ► March (5)

► ► January (1)

► ► 2019 (18)

► ► 2018 (17)

► ► 2017 (21)

► ► 2016 (34)

► ► 2015 (12)

► ► 2014 (13)

► ► 2013 (24)

► ► 2012 (10)

► ► 2011 (11)

► ► 2010 (22)

► ► 2009 (22)

► ► 2008 (27)

http://static.righto.com/images/8087-constants/mosfet.png
http://static.righto.com/images/8087-constants/rom-structure-labeled.jpg
http://www.righto.com/2020/05/extracting-rom-constants-from-8087-math.html
http://www.righto.com/2020/05/tiny-transformer-inside-decapping.html
http://www.righto.com/2020/05/reverse-engineering-audio-chip-in.html
javascript:void(0)
http://www.righto.com/2020/04/
javascript:void(0)
http://www.righto.com/2020/03/
javascript:void(0)
http://www.righto.com/2020/01/
javascript:void(0)
http://www.righto.com/2019/
javascript:void(0)
http://www.righto.com/2018/
javascript:void(0)
http://www.righto.com/2017/
javascript:void(0)
http://www.righto.com/2016/
javascript:void(0)
http://www.righto.com/2015/
javascript:void(0)
http://www.righto.com/2014/
javascript:void(0)
http://www.righto.com/2013/
javascript:void(0)
http://www.righto.com/2012/
javascript:void(0)
http://www.righto.com/2011/
javascript:void(0)
http://www.righto.com/2010/
javascript:void(0)
http://www.righto.com/2009/
javascript:void(0)
http://www.righto.com/2008/

activating a select line, reading that ROM value onto the output
lines.

The constant ROM has 134 rows of 21 columns. 5 Under a
microscope, the bit pattern of the ROM is visible and can be
extracted. 4 How to interpret the raw bits is not obvious, though.
The first question is if a transistor (versus a gap) indicates a 0
or a 1. (It turns out that a transistor indicates a 1 bit.) The next
issue is how to map the 134×21 grid of bits into values. 6

The chip's data path consists of 67 horizontal rows, so it
seemed pretty clear that the 134 rows in the ROM
corresponded to two sets of 67-bit constants. I extracted one
set of constants for the odd rows and one for the even rows,
but the values didn't make any sense. After more thought, I
determined that the rows do not alternate but are arranged in a
repeating "ABBA" pattern. 7 Using this pattern yielded a bunch
of recognizable constants, including pi and 1. Bits from those
constants are shown in the diagram below. (In this photo, a 1
bit appears as a green stripe, while a 0 bit appears as a red
stripe.) In binary, pi is 11.001001... and this value is visible in
the upper labeled bits. The bottom value is the constant 1. 8

Bit values labeled in the constant ROM. The top bits are the first part of pi,
while the lower bits are the constant 1, This diagram has been rotated 90
degrees compared to the other diagrams. The unlabeled bits form other
constants.

The next difficulty in interpretation is that this ROM holds just
the fractional parts of the numbers, not the exponents. (I
haven't found the separate exponent ROM yet.) I
experimented with various exponents until I got values that
were sensible numbers. Some were straightforward: for
instance, the constant 1.204120 yielded log10(2) when the

exponent 2-2 was used. Others were harder, 9 such as

Contents of the ROM

http://static.righto.com/images/8087-constants/bits-labeled.jpg

1.734723. Eventually, I figured out that 1.734723×259 is
1018. 10

The complete table of constants is in the footnotes. 11

Physically, the constants are arranged in three groups. The
first group is values that the user can load (1, pi, log210, log2e,

log102, and ln 2) 12 along with values used internally (1018,
ln(2)/3, 3*log2(e), log2(e), and sqrt(2)). The second group is
sixteen arctan constants, and the third is fourteen log2
constants. The last two groups of constants are used to
compute transcendental functions using the CORDIC
algorithm, which I will discuss next.

The constants in the ROM reveal some details about the
algorithms used by the 8087. The ROM contains 16 arctangent
values, the arctans of 2-n. It also contains 14 log values, the
base-2 logs of (1+2-n). These may seem like unusual values,
but they are used in an efficient algorithm called CORDIC,
which was invented in 1958.

The basic idea of CORDIC is to compute tangent and
arctangent by breaking down an angle into smaller angles, and
rotating a vector by these angles. The trick is that by carefully
choosing the smaller angles, each rotation can be computed
with efficient shifts and adds instead of trig functions.
Specifically, suppose we want to find tan(z). We can break z
into a sum of smaller angles: z ≈ {atan(2-1) or 0} + {atan(2-2) or
0} + {atan(2-3) or 0} + ... + {atan(2-16) or 0}. Now, rotating a
vector by, say atan(2-2), can be done by multiplying by 2-2 and
adding. The key thing is that multiplying by 2-2 is just a fast bit
shift. Putting this all together, computing tan(z) can be done by
comparing z with the atan constants, and then doing 16 cycles
of additions and shifts, which are fast to perform in hardware. 13

To make the algorithm work, the atan constants are
precomputed and stored in the constant ROM. 14

Computing the base-2 log and base-2 exponential also use
CORDIC algorithms, with the associated logarithmic constants.
The key observation is that multiplying by (1 + 2-n) can be
done quickly with a shift and addition. By multiplying one side
of the equation by the sequence of values, and adding the
corresponding log constants to the other side, the log or
exponential can be computed. 15

The 8087's support for transcendental functions is more limited
than you might expect. It only supports tangent and
arctangent, not sine or cosine; the user must apply trig

The CORDIC algorithms

https://en.wikipedia.org/wiki/CORDIC

identities to compute sine or cosine. Logs and exponentials
only support base 2; for base 10 or base e, the user must
apply the appropriate scale factor. At the time, the 8087
pushed the limits of what could fit on a chip, so the instruction
set was limited to the essentials.

The 8087 is a complex chip and at first it looks like a hopeless
maze of circuitry. But much of it can be understood with careful
study. It contains 42 constants in a ROM, and the values of
these constants can be extracted under a microscope. Some
of the constants (such as pi) are expected, while others (such
as ln(2)/3) are more puzzling. Many of the constants are used
for computing the tangent, arctangent, log, and power
functions, using fast CORDIC algorithms.

Die photo of the 8087 with the metal layer removed. Click for a larger image.

Even though Intel's 8087 floating point unit chip was
introduced 40 years ago, it still has a large influence today. It
spawned the IEEE 754 floating-point standard used for most

Conclusion

http://static.righto.com/images/8087-constants/stripped-big.jpg

modern floating-point arithmetic, and the 8087's instructions
remain a part of the x86 processors used in most computers.

For more information on the 8087, see my other articles: the
two-bit-per-transistor ROM and the substrate bias generator. I
announce my latest blog posts on Twitter, so follow me
@kenshirriff for future articles. I also have an RSS feed.

1. The interaction between the 8086 processor and the
8087 floating point unit is somewhat tricky; I'll discuss
some highlights. The simplified view is that the 8087
watches the 8086's instruction stream, and executes any
instructions that are 8087 instructions. The complication
is that the 8086 has an instruction prefetch buffer, so the
instruction being fetched isn't the one being executed.
Thus, the 8087 duplicates the 8086's prefetch buffer (or
the 8088's smaller prefetch buffer), so it knows that the
8086 is doing. (A Twitter thread discusses this in detail.)
Another complication is the complex addressing modes
used by the 8086, which use registers inside the 8086.
The 8087 can't perform these addressing modes since it
doesn't have access to the 8086 registers. Instead, when
the 8086 sees an 8087 instruction, it does a memory
fetch from the addressed location and ignores the result.
Meanwhile, the 8087 grabs the address off the bus so it
can use the address if it needs it. If there is no 8087
present, you might expect a trap, but that's not what
happens. Instead, for a system without an 8087, the
linker rewrites the 8087 instructions, replacing them with
subroutine calls to the emulation library. ↩

2. The 8087's microcode ROM is built with an unusual
technique that stores two bits per transistor. It does this
by using three different transistor sizes or no transistor in
each position. The four possibilities at each position
represent two bits. This complex technique was
necessary in order to fit the large ROM onto the 8087
die. I wrote a blog post with more details. The constant
ROM, in comparison, is built using standard
techniques. ↩

3. Sources provide inconsistent values for the number of
transistors in the 8087: Intel claims 40,000 transistors
while Wikipedia claims 45,000. The discrepancy could be
due to different ways of counting transistors. In particular,
since the number of transistors in a ROM, PLA or similar
structure depends on the data stored in it, sources often
count "potential" transistors rather than the number of

Notes and references

http://www.righto.com/2018/09/two-bits-per-transistor-high-density.html
https://www.righto.com/2018/08/inside-die-of-intels-8087-coprocessor.html
https://twitter.com/kenshirriff
http://www.righto.com/feeds/posts/default
https://twitter.com/cr1901/status/1261706041848365057
http://www.righto.com/2018/09/two-bits-per-transistor-high-density.html
https://www.intel.com/content/dam/www/public/us/en/documents/case-studies/floating-point-case-study.pdf
https://en.wikipedia.org/wiki/Intel_8087

physical transistors. Other discrepancies can be due to
whether or not pull-up transistors are counted and if
high-current drivers are counted as multiple transistors in
parallel or one large transistor. ↩

4. Instead of copying bits from the ROM by hand, I made a
simple JavaScript program to help me read out the ROM.
I clicked on the ROM image to indicate each transistor,
and the program produced the corresponding pattern of
0's and 1's. ↩

5. The ROM has 134 rows of 21 bits, except there is a 6×6
chunk missing from the upper left. Thus, the physical
size is of the constant ROM is 2946 bits.

The upper-left corner of the constant ROM, showing the missing 6×6
section.

Because of the ROM layout, this missing section means
that the first 12 constants are 64 bits long, rather than 67
bits. These are the non-CORDIC constants, which
apparently don't require the extra bits for accuracy. ↩

6. There are two ways to determine the encoding of the
bits. The first is to trace out the circuitry that reads from
the ROM and examine how the data is used. The second
is to look for patterns in the raw data, and determine
what makes sense for an encoding. Since the 8087 is
very complex, I wanted to avoid a full reverse-
engineering to understand the constants and I used the
second approach. ↩

7. The organization of the rows follows the pattern
ABBAABBAABBA..., where "A" rows hold bits for one set
of constants and "B" rows hold bits for the second set of
constants. This layout was probably used instead of

http://static.righto.com/images/8087-constants/corner.jpg

alternating rows ("ABAB") because one connection can
drive two neighboring selection transistors. That is, each
"AA" or "BB" group can be selected with one wire. ↩

8. A bit more trial-and-error was necessary to pull the
values out of the ROM. I determined three key factors.
First, the bits started at the bottom of the ROM, going up.
Second, a transistor indicated a 1, rather than a 0. Third,
the constants did not have an implicit 1 bit at the
beginning. (In other words, the constant format does not
match the external data format used by the 8087.) ↩

9. Some of the exponents were tricky to determine. I used
brute force for some of them, seeing if any exponent
would yield the log or power of some number. One of the
hardest numbers to figure out was ln(2)/3; I'm not sure
why this value is important. ↩

10. Why does the 8087 contain the constant 1018? Probably
because the 8087 supports a packed BCD datatype
holding 18 digits, so it can hold up to 1018. ↩

11. The following table summarizes the contents of the
constant ROM. The "meaning" column is my
interpretation of the number.

Constant Decimal value Meaning

1.204120×2 0.3010300 log (2)
1.386294×2 0.6931472 ln(2)
1.442695×2 1.4426950 log (e)
1.570796×2 3.1415927 Pi
1.000000×2 1.0000000 1
1.660964×2 3.3219281 log (10)
1.734723×2 1.000e+18 10
1.734723×2 1.000e+18 10
1.848392×2 0.2310491 ln(2)/3
1.082021×2 4.3280851 3*log (e)
1.442695×2 1.4426950 log (e)
1.414214×2 1.4142136 sqrt(2)
1.570796×2 0.7853982 atan(2)
1.854590×2 0.4636476 atan(2)
2.000000×2 0.0000610 atan(2)
2.000000×2 0.0000305 atan(2)
1.959829×2 0.2449787 atan(2)
1.989680×2 0.1243550 atan(2)
2.000000×2 0.0002441 atan(2)
2.000000×2 0.0001221 atan(2)
1.997402×2 0.0624188 atan(2)
1.999349×2 0.0312398 atan(2)
1.999999×2 0.0009766 atan(2)

-2
10

-1

0
2

1

0

1
2

59 18

59 18

-3

2
2

0
2

0

-1 0

-2 -1

-15 -14

-16 -15

-3 -2

-4 -3

-13 -12

-14 -13

-5 -4

-6 -5

-11 -10

2.000000×2 0.0004883 atan(2)
1.999837×2 0.0156237 atan(2)
1.999959×2 0.0078123 atan(2)
1.999990×2 0.0039062 atan(2)
1.999997×2 0.0019531 atan(2)
1.441288×2 0.0028150 log (1+2)
1.439885×2 0.0056245 log (1+2)
1.437089×2 0.0112273 log (1+2)
1.431540×2 0.0223678 log (1+2)
1.442343×2 0.0007043 log (1+2)
1.441991×2 0.0014082 log (1+2)
1.420612×2 0.0443941 log (1+2)
1.399405×2 0.0874628 log (1+2)
1.442607×2 0.0001761 log (1+2)
1.442519×2 0.0003522 log (1+2)
1.359400×2 0.1699250 log (1+2)
1.287712×2 0.3219281 log (1+2)
1.442673×2 0.0000440 log (1+2)
1.442651×2 0.0000881 log (1+2)

It's clear from the CORDIC constants that the values in
the ROM are not physically stored in order, i.e.
sequential rows are not addressed in order. I'm not sure
why 1018 appears twice; probably one exponent is
different. The binary exponents are not in the ROM that I
examined, so I had to estimate them. ↩

12. The 8087 provides seven instructions to load constants
directly. The instructions FDLZ, FLD1, FLDPI,

FLD2T, FLD2E, FLDLG2, and FLDLN2 load onto
the stack the constants 0, 1, pi, log210, log2e, log102,
and ln 2, respectively. Apart from 0, these constants can
be found in the ROM. ↩

13. The 8087's CORDIC algorithm is described in
Implementation of transcendental functions on a
numerics processor. I wrote sample tangent code based
on that description here. There are also a couple of
multiplications and divisions in the 8087's full tan
algorithm. It uses a simple rational approximation of
tangent on the "leftover" angle, giving it a bit more
accuracy than straight CORDIC. ↩

14. Computing the arctangent of an angle uses an algorithm
that is similar to the tangent algorithm, but in reverse: as
rotations are performed, the angles (from the constant
ROM) are summed up to yield the resulting angle. ↩

-12 -11
-7 -6

-8 -7

-9 -8

-10 -9

-9
2

-9

-8
2

-8

-7
2

-7

-6
2

-6

-11
2

-11

-10
2

-10

-5
2

-5

-4
2

-4

-13
2

-13

-12
2

-12

-3
2

-3

-2
2

-2

-15
2

-15

-14
2

-14

https://en.wikipedia.org/wiki/X86_instruction_listings#Original_8087_instructions
https://www.sciencedirect.com/science/article/abs/pii/0165607483901515
https://gist.github.com/shirriff/caf8405ba9c2ff269c3e8440414b2c54

Labels: 8087, chips, electronics, reverse-engineering

15. I couldn't find documentation on the 8087's log and
exponent algorithms. I think the algorithms are very
similar to the ones on this page, except the 8087 uses
base 2 instead of base e. I'm a bit puzzled why the 8087
doesn't need the constant log2(1 + 2-1), which is used by
that algorithm. ↩

9 comments:
Richard said...

Another interesting job.

It is impressive to know that he is able to open and study
all the secrets within the CI and that they are hardly found
in books.

It is a unique and impressive work that details with
excellent clarity and helps with existing doubts.

These circuits accompanied my adolescence and I
always classified it as magic and I was always trying to
understand how it was produced.

Thank you one more time.

May 18, 2020 at 5:25 PM

MartyMacGyver said...

May 19, 2020 at 10:28 PM

MartyMacGyver said...

Long time reader, first time poster here!

There seem to be inverse pairs present, particularly

log2(e) == log(e)/log(2)
ln(2) == log(2)/log(e)

and

ln(2)/3 == log(2)/log(e) * 1/3
3*log2(e) == log(e)/log(2) * 3

The latter might appear to serve the same purpose as the
former, but combining them, if x == 7, e^x = 2^(7*log2(e))

This comment has been removed by the author.

https://www.blogger.com/email-post.g?blogID=6264947694886887540&postID=4155433669180791319
http://www.righto.com/search/label/8087
http://www.righto.com/search/label/chips
http://www.righto.com/search/label/electronics
http://www.righto.com/search/label/reverse-engineering
https://www.quinapalus.com/efunc.html
https://www.blogger.com/share-post.g?blogID=6264947694886887540&postID=4155433669180791319&target=email
https://www.blogger.com/share-post.g?blogID=6264947694886887540&postID=4155433669180791319&target=blog
https://www.blogger.com/share-post.g?blogID=6264947694886887540&postID=4155433669180791319&target=twitter
https://www.blogger.com/share-post.g?blogID=6264947694886887540&postID=4155433669180791319&target=facebook
https://www.blogger.com/share-post.g?blogID=6264947694886887540&postID=4155433669180791319&target=pinterest
https://www.blogger.com/profile/16961829638621596618
http://www.righto.com/2020/05/extracting-rom-constants-from-8087-math.html?showComment=1589847929144#c2125624803254817423
https://www.blogger.com/profile/18408169471010499741
http://www.righto.com/2020/05/extracting-rom-constants-from-8087-math.html?showComment=1589952503312#c7358378183258914779
https://www.blogger.com/profile/18408169471010499741
https://www.blogger.com/profile/16961829638621596618
https://www.blogger.com/profile/18408169471010499741
https://www.blogger.com/profile/18408169471010499741

or 2^(3*log2(e)+3*log2(e)+log2(e)).

Perhaps this pre-calculation of the log constants
multiplied/divided by 3 preserves greater precision and/or
reduces cycle time, as one can decompose such
calculations into a sequence of additions/subtractions and
binary shifts rather than more costly odd-numbered
multiplications and divisions?

Edit: Actually, to be exact these appear to be "nice
numbers" to use the term mentioned in the Quinapalus
page you linked to... and that would explain the absence
of log2(3/2) as these serve a similar purpose.

May 19, 2020 at 10:39 PM

CuriousMarc said...

And I was proud of myself playing baby Ken S. with my
little power supply reverse engineering. This is just a
whole other level. Congrats Master Ken.

May 24, 2020 at 10:37 PM

Pane said...

Hi Ken,
Thank you for such deep analyse – as always interesting.
I am still amazed what you can do in reverse engineering.
I was blown out when I first read about HP35 ROM optical
disassembly by Petr Monta
(http://www.pmonta.com/calculators/hp-35/).
Not to take any credit away it must have been similar
reverse engineering techniques to yours used when 8080
chip was cloned by many and it might be interesting to
compare the chips. If there is any interest I might try to
get hold of MHB8080 produced in former Czechoslovakia
(http://www.teslakatalog.cz/MHB8080A.html).
I appreciate you keep educating all of us, thank you.
KR
Pavel

June 9, 2020 at 11:32 AM

Anonymous said...

It's possible that the exponents are encoded in the chip's
microcode instructions, much like multiplication can be
encoded in assembly instructions.

For example, a compiler can turn:
mult a, 18

into:
shl a, 1

http://www.righto.com/2020/05/extracting-rom-constants-from-8087-math.html?showComment=1589953193429#c8812551124499094000
https://www.blogger.com/profile/00156668067084301696
http://www.righto.com/2020/05/extracting-rom-constants-from-8087-math.html?showComment=1590385028220#c8449107221575203456
https://www.blogger.com/profile/12120664044006188394
http://www.righto.com/2020/05/extracting-rom-constants-from-8087-math.html?showComment=1591727535338#c5380634990294743362
https://www.blogger.com/profile/00156668067084301696
https://www.blogger.com/profile/12120664044006188394

mov a, b
shl a, 3
add a, b

which is transforming a * 18 to (a * 16 + a * 2).

Another possibility is that they found a way to "store" the
values inside existing values. For example, if you have to
store the data 0x42ABF170 and also the data 0xABF1,
you can just re-use the first piece of data and hardcode in
your algorithm to load it, shift left by 8, then shift right by
16.

June 13, 2020 at 2:31 AM

Dave said...

I think I have the reason there is ln(2)/3 in the ROM, it is
used in the FX2M1 instruction. 2^x = e^(ln(2)x) = 1 +
ln(2)x + ((ln(2)x)^2)/2!....

Thus for 2^x - 1 we have the series below:-

2^x -1 = ln(2)x + ((ln(2)x)^2)/2 + ((ln(2)x)^3)/3! +
((ln(2)x)^4)/4!....

this can be rearranged as follows to reduce the number of
multiplies

2^x -1 = ln(2)x (1 + ln(2)x/2 (1 + ln(2)x/3 (1 + ln(2)x/4 (1 +
ln(2)x/5))))

all of the constants required can be generated using
FLD1, FCHS, FSCALE, ln(2)/3

e.g. 0.5 = FSCALE(FLD1, -1.0, 0.25 = FSCALE(FLD1, -2)
etc
ln(2) / 3 is in the 8087 ROM
ln(2) / 6 is FSCALE(LN2DIV3, -1.0)
the constant 1 / 7 = 0.14285714 is a bit more tricky,
possibly 1 / (FSCALE(FLD1, 3) - FLD1)
not really sure how many terms the 8087 uses, it might
finish before the 1 / 7 term
which might account for the restricted range of the
argument

Still puzzled by 3*log2(e)

January 23, 2021 at 6:58 AM

Anonymous said...

nice

http://www.righto.com/2020/05/extracting-rom-constants-from-8087-math.html?showComment=1592040691964#c9217840677306305638
http://www.righto.com/2020/05/extracting-rom-constants-from-8087-math.html?showComment=1611413927539#c1222833940840000732

Newer Post Older PostHome

Post a Comment

February 3, 2021 at 1:49 AM

Anonymous said...

One of my favorite posts so far, which is a high bar to
begin with. :)

Regarding the fact that 10^18 appears twice in the
constant ROM, I noticed that log2(e) appears twice as
well. You mentioned this yourself (unwittingly, maybe?) in
the following sentence:

"The first group is values that the user can load (1, pi,
log210, log2e, log102, and ln 2)12 along with values used
internally (1018, ln(2)/3, 3*log2(e), log2(e), and sqrt(2))."

At first I thought that maybe log2e is meant to be read as
log(2e), where log could stand for base 10, making it
different from log2(e). However, your table in the footnote
clearly shows that they're the same. I have close to zero
expertise in this stuff, I just thought that maybe this could
be some kind of useful hint.

November 29, 2021 at 6:24 AM

http://www.righto.com/2020/05/die-analysis-of-8087-math-coprocessors.html
http://www.righto.com/2020/05/tiny-transformer-inside-decapping.html
http://www.righto.com/
https://www.blogger.com/comment.g?blogID=6264947694886887540&postID=4155433669180791319
http://www.righto.com/2020/05/extracting-rom-constants-from-8087-math.html?showComment=1612345754761#c7129342581253383513
http://www.righto.com/2020/05/extracting-rom-constants-from-8087-math.html?showComment=1638195851976#c6925161186374239012

