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THICKNESS VIBRATION OF PIEZOELECTRIC
OSCILLATING CRYSTAL.

By Issac KOGA.

Tokyo University of En;;ineering.
(Received June 10, 1932.)

1. Introduction.

" For several years since, it is well known that in the natural vibration
of piezoelectric oscillating crystal, there is a certain period proportional only
to the thickness, but, as far as we are aware, no concrete explanation for
the mode of vibration corresponding to this period and how this period is
connected to the physical constants of the medium. The present paper
shows that such a kind of vibration, named ‘¢ Thickness Vibration” for
brevity, is due to the standing wave produced by interference of plane
waves incident to and reflected from the plane boundary surfaces of the
medium, and verifies the theoretical results by several examplgs.

2. Equations of Motions in Crystalline Media.

We must first emphasize that to solve the thickness vibration of a
very thin crystal plate it is very important to notice that the period of
vibration is practically dependent upon but the thickness of the plate, that
is, independent upon the extent of the major surfaces of the plate; this
fact shows that the free vibration of such a kind is what can be realized if
the major surfaces of the plate extend to infinity.

Now the free vibration is, in general, a result of an occurrence of a
standing wave in the medium, and this standing wave is produced by the
interference of two similar waves propagating in the opposite directions,
that is, the interference of waves incident to and reflected from the boundary
surfaces of the medium.

Such is the case, the free vibration of thin crystal plate having two
parallel plane boundary surfaces is due to the interference of plane waves
incident to and reflected from those boundary plane surfaces of the medium.
In other words, in the thickness vibration of the crystal plate bounded by
the two infinite parallel planes the displacement at any point in the medium
is dependent only upon the distance from a boundary surface and the



158 L. Koea. [Vol. 2,

time. Therefore if the direction cosines of a normal to the two parallel

plane bo_undary surfaces be [, m, n referred to the rectangular coordinate

axes , ¥, 2, each component of displacement », v, w at any point is always
a function of s and ¢ only, where

s=lr+my+nz. (1)
Thus the general equations of motions in a crystalline medium,
2,
20X, + 0X, + oX, o™

2 oy | o e’
2,
oY, + 2y, + oY, =pav~ : (2)

ox oy oz o
oz, oz oZ, S*w

£ + v + LI ,
oz oy oz £ ot

where X =11yt €128y + C1afug + Criye + Crar+ Crefy » 3\
Xy= Cg16an+ Cogfyy + Cosas + coiey; + Coslont+ Couy »
¢ = O . = v o = 0¥
% T Ym0
ow . v ou  Ow dv , ou
Cyy=—1+ €= ——+ Coy=—+—
¥ oy o % oz Y 2 oy
p—density of the medium, /

reduce to the very simple forms:

0? o
o (P2u+ PQv+ PR'w)=p ¥ ,
& (PQu+ Qv+ QRw)=p2", ! (4)
o8 o
o* w
ﬁ(PRu +QRv+ Rw)=p Y
where P=lc, +me,+ neg
Q=lc,+me;+ne,, ¢ . (5)
R=lcg+me,+ ncy,
in which ¢;, ¢; .v... have no quantitative meaning, but in P? PQ ...... a
is to be replaced by ¢, ¢, by ¢y and 50 on, ¢y, €1y vueens being the adiabatic

elastic constants. N
Now let & be the displacement in the direction 4, g, v, then

E=Autpm+yvw. (6)
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If 2, s, v and ¢ be so chosen that the relations
AP + pPQ +vPR=lc,
APQ+ 1Q* +QR=ypc, (7)
APR+ QR +vR =vc,
hold, then multiplying the three equations of (4) by 4, g, v, and adding
together, we have in the most compact form :

7 _ ¢ %

[}

o _—F o ®)

Eliminating 4, g, v between the three equations of (7), we have
Pi—¢c PQ PR =0, 9)
PR @—c QR

PR QR Ri—c¢

a cubic equation determining ¢; let its roots, which are proved to be
necessarily real and positive,”” be ¢, ¢;, ¢;. When ¢; is substituted in any
two of the foregoing equations, the ratios of A:y:v can be derived; let
them be denoted by A;: g : v, and suppose the corresponding value of £ to
be £,; with similar expressions for the other values of ¢. Then &, &, and
&, are always proved to be perpendicular to each others.

The solution of (8) is a very simple matter. To determine the normal
mode of vibration we must assume that & varies as a harmonic function
of the time ¢

£ oc e, (10)
then as a function of s, £ must satisfy

o e, 1)

ds? ¢

of which the complete integral is

£==4 cos (ap~/£)+B sin (sp~/—e—) ) (12)
c ¢
where 4 and B are independent of s.
Now when both boundary surfaces are free from tractions,

d_6=0 at 8=0 and 8=la, (13)
ds

we get B=0 and si-n(apJ—”—):O, (14)
¢

1) Lord KeLviN: Baltimore Lectures, London 1904.
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from which P =L~/L, o (15)

q being intergral.
Accordingly, the normal mode of vibration is given by equation of a form

E=4cos (qﬂ—z—) - ¢t (16)

where A is an arbitrary constant, which may be determined in the usual
manner, when the initial value of & is given.

It is well known that we can excite one or more of the free thickness
vibrations by applying an alternating electric field of suitable frequency in
the direction normal to the boundary surfaces of crystal, provided the
crystal plate is prepared so that it is piezoelectrically active; and also that
it is sometimes possible to sustain a continuous oscillation by properly
employing the thermionic tube circuit, the easeness of maintaining being
considerably dependent upon the medium and the orientation of the
boundary 'surfaces.

re

Fig., 1.
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3. Thickness Vibration of Quartz Plate,

»

Of the piezoelectric crystals, quartz is the most familiar to high
frequency engineers, so that we may first verify the theory by this medium.
In the quartz, if the co-ordinate axes be chosen as in Fig. 1, the adiabatic
elastic constants® and density are as follows:

Cp O C3 Oy 0
ey ey —¢y O
¢y O 0
ey O
Cys Cl
11).(6’11"‘612)
= 85.45 x 10" dynes/em?, ep= 7.26 % 10* dynes/cm?,

= 105.67 % 10" dynes/cm?, ;== 1487 x 10" dynes/em? ,

¢u= 57.09 x 10¥ dynes/cm?, ~— ¢,,=16.87 x 10" dynes/cm?®,

p=2.654 grams/cm?,

(17)

[= IR e B e R )

(18)

therefore in the general expression (9) to determine the values of ¢
PPy, + 3m¥(eyy — eyg) + ey + 2mncy, ,
Q@ =3en~ Cra) + My, + My — 2mney
R == (P m)ey, +nieq .
PQ=2nley + FIm(ey, + ¢y) s
QR=(P - m2)ch +mnfe + €y) 5

' (19)

PR=2lme,, + nl(cm +44) « }
By the way, the relations between applied electric fields and strains are:
Cyp== s By 8= — Ay, E, ,
= — Ok, , €= —2d,E, o
yz'“' dMEx 3 . , (20)

d,;=6.45 x 10~ C.G.8. units,
—dy=1.45 % 10% C.G.S. units,

(1) If a quartz crystal be cut by two planes perpendicular to the axis
z to obtain a so-called X-cut or Curie-cut quartz oscillating crystal designated
by X in Fig. 1, since the dlrectlon cosines of normal to the major surfaces
is seen to be chosen as:

2) W. Voier: Lehrbuch der Kristallphysik. 1928 s, 754 u. 789,
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=1, m=n=0, ’(21)
six quantities of (19) reduce to

Pl=¢,, PQ=0,

@=3(cu—"Cw), QR=c¢,, (22)

Ri=cy, - PR=0.

Introducing these quantities into (9), we get

¢,=¢;;=85.45 x 10" dynes/cm?,

€y 3= %(Cu —C)+ %0;4 Fv {i(cu —Cp)— '%Cu}z +ei (23)
¢, =28.98 x 10" dynes/em? ,
¢3=67.22 x 10” dynes/cm?,

and from (7), K
Ah=1, m=v=0,
4,=0, 1,=0.857, v,=0.515, (24)
dy=0, fpa=-—0515, ,=0857.

The normal modes of vibrations are given by the following equations:

— 1 . pint

§=Acos (qn ; ) v,

where §i=u, (25)
£,=0.85Tv+0.515w,
&= —0.515v + 0.857Tw ,

while the electric field in the direction z cannot excite but the displace-
ment v as is seen from (20), so that the frequency of vibration is

P =9 [ -9 %0.284 x 10° cycles/sec. , (26)
27 2aY p a

and the mode of vibrations is
u=A cos (qﬂi) . etP 27
a

that is, the pure longitudinal vibration along the normal to the boundary
surfaces.

As an experimental example, a quartz oscillating crystal 0.0922 x 2.610
X 2.684 cm?® (the normal to the major surfaces inclines 7/ to the axis z)
has the fundamental frequencx ‘of thickness vibration 3.10 x 10° cycles/sec.,
from which we get )
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2 1 00922x3.10x 10°=1 % 0.286 x 10° cycles/sec. , (28)

2r a a

which is seen to be very mnear upon the theoretical result.
(2) In Y-cut quartz plate designated by Y in Fig. 1, the direction
cosines of normal to the major surfaces are chosen as

m=1, l=n=0, (29)
hence six quantities of (19) become
P‘l:é(cu - Clz) , PR=0,
P=cy, QR= —cy, (30)
Ri=c,, PR=0.
Introducing these quantities into (9), we get
6,=3(ey — €15)=39.10 x 10® dynes/em?,
€y Cs=3(Cy, +Cy) v z(en— ey P+,
¢;=93.31 x 10" dynes/cm?®,
¢;=49.23 x 10% dynes/cm?

(31)

and from (7),
A=1, u=vy=0,
=0, p,=-0907, v,=-0422, (32)
=0, p;=0422, y,= —0.907 .

The normal modes of vibrations are given by

= l . e
E=Acos (qn’ . ) e,
where &=u,
g,= —0.907v —0.422w ,
£,=0.4220-0.907w ,

(33)

of which &, and &, cannot be excited piezoelectrically by the electric field
in the direction of y axis as is clear from (20), so that the displacement
is given by

u=A cos (qrr%) .7, (34)

which shows that the wibration is of pure shear as is pointed out by
Prof. Dr. Cady.®»

3) W. G. Capy: A shear mode of crystal vibration (abstract) Phys. Rev. Vol. 29,
p. 617, 1927,
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The frequency of vibration is

" ~/ fu=C% -9 40,192 x 10° cycles/sec. , (35)
2 a 2p a ’

while in the experiment by a sample 0.1909 x 3.200 x 3.304 em?® (the normal

" to the major surfaces inclines 6’ to the axis y) the fundamental frequency

of thickness vibration is 1.02 x 10° cycles/sec., that is

_;L=l x 0.1909 x 1.02 x 10°=L x 0.195 x 10° cycles/sec., (36)
T a a

which is also seen to be very near upon the theoretical result (35).

(3) In quartz plate cut parallel to a surface of positive rhombohedron
designated by r in Fig. 1 (say R-cut plate?), the vibration is observed to
be extremely vigorous and the third harmonic vibration (9=3) can often
be sustained by Pierce circuit,” in which an oscillating crystal plate is
placed between grid and filament of a three electrode thermionic tube.

In this case the direction cosines of normal to the major surfaces are:

2.200
V'3

as shown in Fig. 2, hence six quantities of (19) become

(37)

where ’ g=arctan

=0, m= —sgin §, n=cos§, }

P2=3(cyy—cyp) sin®d + ¢, c0s?9 — ¢,y 8i0 28,
Q* =cy, sin®g + ¢, 05’ +¢y, sin 20,
Ri=c,, 8in’*f + ¢4 cos* ,
PQ=0,
QR= —c¢, sin* ) —(c;s+c,)sinfcosd,
PR=0. J

, (38)

Introducing these into (9), we get

ey =1%(ey — ¢pp) 8in%0 + ¢,, cos’f —c,, 5in 20 =62.39 x 10" dynes/cm? ,
¢,=41.10 x 10 dynes/cm? ' (39) .
€,=92.78 x 10 dynes/em?,

and from (7),

4) I. Koca: R-cut quartz oscillating crystal plate and the harmonic vibration.—
Supplementary Issue, Jour. LE.E. Japan, pp. 170-172, April, 1932.

5) G. W. Pierce: Piezoelectric crystal resonators and crystal oscillators applied to
the precision calibration of wave-meters—Proc. A.A.A.8. Vol. 59, pp. 81-106, 1923.
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21=1 ) #1=V1=O,
=0, j=-—0818, 1,=—0575, (40)
23=O 3 #3= —0.575 3 V3=O.818 .

The normal modes of vibrations are given by

‘ a

where Ei=u,
£&,=-0.818v-0.575w,
>53= —0.575v0+0.818w,

of which &, and £; cannot be excited piezoelectrically by the electric field
along yz plane as is seen from (20), so that the displacement is given by

(41)

—ysin §+2zcos @ )-e"", (42)

u=A cos (qfr
v a

which shows that the mode of vibration is of pure shear.. The frequency
of vibration is

P g [ 9 =19 %0242 x 10° cycles/sec. , (43)

2t 2a™ p a
while in the experiment by a sample 0.1002 x 2.592 x 2.762 cm?® (the
major surfaces inclines within 1’ to a surface of positive rhombohedron r)
the fundamental frequency of thickness vibration is 2.47 x 10° cycles/sec.,
that is

%:l x 0.1002 x 2.47 x 10°=—L x 0.247 x 10° cycles/sec., (44)
T a a

which is also seen to be very near upon the theoretical result (43).
There have been published several papers® upon the excitation of
harmonic vibrations of a quartz oscillating crystal as a resonator, but as far

a8 we are aware, none has yet succeeded to sustain harmonic vibration, and

that in the thickness vibration, of crystal itself as an oscillator, while the
present crystal plate can often be sustained its vibrations of the first and
third harmonic separately by the Pierce circuit above-mentioned. Fig. 3
shows the characteristic features of the oscillator. The higher frequency of
vibration is easily observed by heterodyne frequency meter to be just three
times that of the lower.

6) E. GikBe und A. SceEEIBE: Sichtbarmachung von hochfrequenten Longitudi-
nalschwingungen piezoelektrischer Kristallstacbe, ZS. f. Phys, Bd. 33, s. 335, 1925. etc.



Thickness Vibration of Piezoelectric Oscillating Crystal. 167

No. 2]

‘¢ 31

0012 0007 00b) 008 ool . 008 007 .00 0
B np uw i L
- al P D \\ ‘
|| \\ / ,
/ / |
\ ayo]d /
0 _ S LR easkiny Buryoyrsg
‘\ho Hg ___ o «:o_wm £ \ oo
I / ywooS ‘LoS 13POW g
4— \ U2 WWD)|ju-ouDY | UOISIM o_.ou" —
Arp 00ST W u.LL 0051 = \ g
oD g V-10z-X0 g
Jasuapuo’) ..;W MM”. . ».mw.o..& '
5 o orpey {4208 /
N 007
N T N fr
// /
//
4 bsli N L LY
(] .$vu¢ I by /
BN L




168 I. KoGa. _ [Vol. 2,

Examples of. dimentional proportions” which are suited for the third
harmonic vibrations are :

Dimensions (cm3) Approx. Frequency of Vibrations (cycles/sec.)
0.052 x 2,26 x 2.84 4.80 x 10° and 4.80x10°%x 3
0.069 x 2.24 x 2.56 3.55 x 108 and 3.55x10°x3
0.093 x 2.56 x 2.57 2.66 x 10° and 2.66x108x 3
0.114 x 2.09 x 2.70 2.17x 10° and 2.17x10°x 3
0.155 x 247 x 2.81 1.59 x 108 and 1.59x108x 3
0.185x 2.77 x 2.98 1.34 x 10 and 1.34x10°%x 3

(Inclinations of the major surfaces to a surface of positive rhombo-
hedron » are generally not greater than 107).

(45)

(4) If the boundary surfaces are parallel to a surface of negative
rhombohedron designated by + in Fig. 1, (say R’-cut plate) normal modes
and frequencies of vibrations can be studied quite similarly as in the previous
case, the only difference being the reversal of the sign of ¢ in Fig. 2.
Thus

¢;=}(cyy, — 1) 8In%G + ¢4 cos’@+ ¢y, 8in 20=29.59 x 10" dynes/cm?®, (46)
and

P -9 /919 x0.167 x 10° cycles/sec. (47)
27 2a™Y p a
The displacement
u=A cos (qﬂ_y_slﬂﬂ_-lﬂ o (48)
a

gives a pure shear vibration.

From the experiment with a sample 0.0765 x 2.76 x 3.19 cm® (the major
surfaces inclines 5 to a surface of negative rhombohedron ") the frequency
of vibration is 2.20 x 10° cycles/sec., that is

2£.=l x 0.0765 x 2.20 x 10°=—L x 0.168 x 10° cycles/sec., (49)
T a a

which is very near upon the theoretical results (47).

It is seen above that the frequency of vibration measured as a piezo-
electric oscillating crystal is always little higher than that calculated from
elastic constants. This small difference must be, to a certain extent, due
to the finiteness of the boundary surfaces of plate, but it is not overlooked
that the frequency of pure mechanical vibration is different from that as a

7) 1. Koca: Note on the Piezoelectric Quartz Oscillating Crystal regarded from the
Principle of Similitude—Journ. I. E. E. Japan, Supplementary Issue, pp 27-28, April, 1931 ;
Proc. I.R.E. Vol. 19, No. 6, pp. 1022-1023, June, 1931.
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piezoelectric oscillating crystal. In fact, when crystal plate is excited to
‘vibrate with its natural vibration, the equivalent elastic constants become
slightly greater than that which is determined elasto-statically. For example,
by strain e,,, besides the stress ¢,e,,, the polarization of ee,, is produced,
g, being the piezoelectric constant, so that the crystal, being acted by the
electric field of 4me e, /K, where K is the dielectric constant, gives the stress
4nsle. /K, which adds to the above-mentioned stress ¢e,. Consequently
the resultant adiabatic elastic constant ¢}, becomes

47 x (4.77 x 104
85.45 x 10° x 4.5

ch=cn+ 47;‘:1 =Cu{1+ }=011(1+0~OO74) (50)

In other words, to replace a
quartz oscillating crystal by an
equivalent electrical network,® we
must, as shown in Fig. 4, consider
C,, which represents the capacity of
the quartz as a mere dielectric,
parallel to the series resonance circuit
Ly, C,, R, representing the mechanical
vibrating system. Such is the case,
we can easily understand that the

EL.

electrically measured mnatural fre-

C.
R.

C

!

quency of vibration determined by
Ly Cy, C, is always higher than
that determined by L, C,. The ratio
C,/C, is, in general, not greater than
1/100.

4. Thickness Vibration of
Tourmaline Plate.

Tourmaline is not yet widely
used as piezoelectric  oscillating Fig. 4.
crystal, and we have no occasion to
investigate by fine crystal, but we can foresee the normal modes and fre-
quencies of vibrations in the first approximation.
The adiabatic elastic constants referred to the co-ordinate axes shown

8) D. W. Dye: Piezoelectric quartz resonator and equivalent electrical circuit—
Proc. Phys. Soc., Vol. 38, pp. 399457, 19286,
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in Fig. 5 are composed of the same scheme ‘ z
with (17), therefore the general expression
to determine the values of ¢ is the same with
that of quartz. The numerical values of
adiabatic elastic constants® and density are

€1 =270.17 x 10" dynes/ecm? ,

7
[ W

¢=160.69 x 10® dynes/cm?,

cu= 66.71 x 10" dynes/ecm?, * .——_;-/

cp= 69.06 x 10" dynes/cm?, r (51) . 8/

¢s= 8.83x 10® dynes/cm?, § \&7
—e= 7.75 x 10" dynes/cm?, Fig. 5.

and ©=3.100 grams/cm® say.

By the way, the relations between electric fields and strains are:

Cop= — dz-zEy +dyE, , Cys= dlﬁEy ’
6= duE,+dyE,, =  dyk.,
Cas= dyE, , by ™ — 2dﬂE= ) (52)

—dp=0.69 x 10~% C.G.S. units, dy= 0.74 x 1078 C.G.S. units,
d,,=5.78 x 1078 C.G.8. units, dis=11.04 x 1078 C.G.S. units.

(1) If a plate is cut by two planes perpendicular to the principal

axis, the direction cosines of normal are

l=m=0, n=1, (53)
six quantities of (19) reduce to

Pi=q¢,, PR=0,

Q=c,, QR=0, (54)

Ri=cy, "PR=0.

Introducing these quantities into (9), we get

6, =C=Ccy= 66.71 x 10" dynes/cm?, } (55)
€y =€33=160.69 x 10" dynes/cm?,

and from (7),
M=1, #H=v=0,
=1, o W=/ly=0, (56)
v3=1 N ).3=‘l13=0 .

The normal modes of vibrations are
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E=Acos (qn‘i) et
a
where &=u, (57)
53— v,
€3=w )

of which w can only be excited piezoelectrically by the electric field along
the axis 2z, as is seen from (52). Accordingly the vibration is of pure
longitudinal. The corresponding frequency of vibration is

P _ 4 /% _.940.360 x 10° cycles/sec. (58)
2r 2¢™ p a ‘

(2) If a plate is cut by two planes perpendicular to the axis xz all the

theoretical results are quite similar to that of X-cut quartz plate. Thus
=¢,=270.17 x 10" dynes/cm?,
¢, =102.25 x 10* dynes/cm?, (59)
¢ = 65.03 x 10" dynes/em?®,
h=1, m=»=0,
=0, p,=0977, v,=—0.213, (60)
=0, p=-0213, v,=-0977.

The normal modes of vibrations are

E=A4 cos (qﬂi) .
where §i=u, ’
£,=0.977v—-0.213w,
&=—0.2130-0.977Tw,

(61)

while the electric field in the direction z cannot excite the displacement £,
and can hardly excite £, as is seen from (52), and the period of &, and
g, are:

P -2 /% -9 x0.287x 10° cycles/sec. , (62)
2r  2a™ p a

L -9 /% =9 x0.229 x 10° cycles/sec. (63)
2 2a™Y p a
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5. Conclusions.

1. . The thickness vibration of a thin piezoelectric crystal plate is due
to the standing wave produced by the interference of plane waves incident
to and reflected from the major plane boundary surfaces of the plate.

2. There are three normal modes in the thickness vibration, and
corresponding frequencies are given in the first approximation by a re-
presentative formula:

P _q /¢ 15
2r 2a™ p ’ (15)
where g—any integer,

a—thickness of the plate,
p—density of the medium,
and ¢ is a root of the cubic equation
PP_c PR PR |=0, 9’
PR @—c QR
PR QR Ri—¢
where P=le,+mes +ncy,
Q=lcg+me,+ne, ,
R=les+me,+ ne, ,
in which ¢, ¢,...... have no quantitative meaning, but in P, PQ,...... el is
to be replaced by ¢, ¢c; by ¢, and 80 on, ¢y, €1z eeuen- being the adiabatic
elastic constants.
Especially in Quartz and Tourmaline,
Pr="Deyy + 3m¥(eyy — ¢13) + My + 2mmey, ,
@ =30(cyy — e1g) +mPeyy 10, —2mmey, , |
R= (P4 mP)ey,+ n¥ey |
PQ=2nle,, + 3Im(cy; +¢y)
QR= (P — m*)cy,+mn{cz+cy) ,
PR=2lme,, +nl(cys+¢yy) . » )
3. These three normal modes of vibration may or may not be sustained
piezoelectrically according to .the orientation of the major surfaces.

4. The fundamental frequency and mode of thickness vibration of
quartz and tourmaline oscillating crystals are:

(19)
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Mode of
Cutting Fundamental Frequency of Vibration Vibration
. 1 _ ,—5 Longitu-
( X-cut %1/ culP dinal
1 -

s | Y-cut —/ (en—cw)/2p Shear

R 2a

]

| R-cut 2ia1/ {3(cy; —¢y,) 8iN%0 + ¢, cOS%G — ¢y, 8in 20} /p Shear

*R'-cut —21—1/ {&(c1y—¢;5) 5I0%0 +¢,4 cOS*0 + ¢, 5in 20} /o Shear
a .

Tourmaline

1 — . Longitu-
Zeat v ealp dinal
where f=arctan 2.200 _ (387)

V'3

5. Electrically measured natural frequency of thickness vibration is
always little higher than that calculated by the formula (15).

6. Adiabatic elastic constants of piezoelectric crystals are able to be
determined in the first approximation by the measurement of frequencies
of thickness vibrations of thin plates prepared with given crystals.

7. Many authors have employed the formula

p_a [E
27 24 p

(E: Young’s modulus)

for the frequency of longitudinal vibration of a thin plate, but it is obvious
that this formula is only true provided the length a of the medium is
sufficiently long compared with the dimensions of the cross section, and
not valid for the thickness vibration as is also easily verified by numerical
evaluation.

8. Harmonic vibration of quartz oscillating crystal plate can some-
times be maintained in the Pierce circuit.

9. It must be remembered that in our treatment the boundary
surfaces are assumed to extend to infinity, so that the various complexities
in frequency and mode of vibration observed by many authors do not enter
into the discussion.
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