
Chapter 2

Floating Point Arithmetic

From 1946–1948 a great deal of quite detailed coding was done.

The subroutines for floating-point arithmetic were . . .

produced by Alway and myself in 1947 . . .

They were almost certainly the earliest floating-point subroutines.

— J. H. WILKINSON, Turing’s Work at the National Physical Laboratory . . . (1980)

MATLAB’s creator Cleve Moler used to advise foreign visitors

not to miss the country’s two most awesome spectacles:

the Grand Canyon, and meetings of IEEE p754.

— MICHAEL L. OVERTON, Numerical Computing

with IEEE Floating Point Arithmetic (2001)

Arithmetic on Cray computers is interesting because it is driven by a

motivation for the highest possible floating-point performance . . .

Addition on Cray computers does not have a guard digit,

and multiplication is even less accurate than addition . . .

At least Cray computers serve to keep numerical analysts on their toes!

— DAVID GOLDBERG5, Computer Arithmetic (1996)

It is rather conventional to obtain a “realistic” estimate

of the possible overall error due to k roundoffs,

when k is fairly large,

by replacing k by
√
k in an expression for (or an estimate of)

the maximum resultant error.

— F. B. HILDEBRAND, Introduction to Numerical Analysis (1974)

5In Hennessy and Patterson [562, , §A.12].

35

Copyright (c) SIAM 2002

36 Floating Point Arithmetic

2.1. Floating Point Number System

A floating point number system F ⊂ R is a subset of the real numbers whose
elements have the form

y = ±m× βe−t. (2.1)

The system F is characterized by four integer parameters:

• the base β (sometimes called the radix),

• the precision t, and

• the exponent range emin ≤ e ≤ emax.

The significand 6 m is an integer satisfying 0 ≤ m ≤ βt − 1. To ensure a unique
representation for each nonzero y ∈ F it is assumed that m ≥ βt−1 if y 6= 0, so that
the system is normalized. The number 0 is a special case in that it does not have
a normalized representation. The range of the nonzero floating point numbers in
F is given by βemin−1 ≤ |y| ≤ βemax(1 − β−t). Values of the parameters for some
machines of historical interest are given in Table 2.1 (the unit roundoff u is defined
on page 38).

Note that an alternative (and more common) way of expressing y is

y = ±βe

(
d1

β
+
d2

β2
+ · · ·+ dt

βt

)
= ±βe × .d1d2 . . . dt, (2.2)

where each digit di satisfies 0 ≤ di ≤ β − 1, and d1 6= 0 for normalized numbers.
We prefer the more concise representation (2.1), which we usually find easier to
work with. This “nonpositional” representation has pedagogical advantages, being
entirely integer based and therefore simpler to grasp. In the representation (2.2),
d1 is called the most significant digit and dt the least significant digit.

It is important to realize that the floating point numbers are not equally spaced.
If β = 2, t = 3, emin = −1, and emax = 3 then the nonnegative floating point
numbers are

0, 0.25, 0.3125, 0.3750, 0.4375, 0.5, 0.625, 0.750, 0.875,
1.0, 1.25, 1.50, 1.75, 2.0, 2.5, 3.0, 3.5, 4.0, 5.0, 6.0, 7.0.

They can be represented pictorially as follows:

.

0 0.5 1.0 2.0 3.0 4.0 5.0 6.0 7.0

6The significand is often called the mantissa, but strictly speaking the term mantissa should
be used only in conjunction with logarithms.

Copyright (c) SIAM 2002

2.1 Floating Point Number System 37

Table 2.1. Floating point arithmetic parameters.

Machine and arithmetic β t emin emax u

Cray-1 single 2 48 −8192 8191 4 × 10−15

Cray-1 double 2 96 −8192 8191 1 × 10−29

DEC VAX G format, double 2 53 −1023 1023 1 × 10−16

DEC VAX D format, double 2 56 −127 127 1 × 10−17

HP 28 and 48G calculators 10 12 −499 499 5 × 10−12

IBM 3090 single 16 6 −64 63 5 × 10−7

IBM 3090 double 16 14 −64 63 1 × 10−16

IBM 3090 extended 16 28 −64 63 2 × 10−33

IEEE single 2 24 −125 128 6 × 10−8

IEEE double 2 53 −1021 1024 1 × 10−16

IEEE extended (typical) 2 64 −16381 16384 5 × 10−20

Notice that the spacing of the floating point numbers jumps by a factor 2 at
each power of 2. The spacing can be characterized in terms of machine epsilon,
which is the distance ǫM from 1.0 to the next larger floating point number. Clearly,
ǫM = β1−t, and this is the spacing of the floating point numbers between 1.0 and
β; the spacing of the numbers between 1.0 and 1/β is β−t = ǫM/β. The spacing
at an arbitrary x ∈ F is estimated by the following lemma.

Lemma 2.1. The spacing between a normalized floating point number x and an

adjacent normalized floating point number is at least β−1ǫM |x| and at most ǫM |x|.

Proof. See Problem 2.2.

The system F can be extended by including subnormal numbers (also known
as denormalized numbers), which, in the notation of (2.1), are the numbers

y = ±m× βemin−t, 0 < m < βt−1,

which have the minimum exponent and are not normalized (equivalently, in (2.2)
e = emin and the most significant digit d1 = 0). The subnormal numbers have fewer
digits of precision than the normalized numbers. The smallest positive normalized
floating point number is λ = βemin−1 while the smallest positive subnormal number
is µ = βemin−t = λǫM . The subnormal numbers fill the gap between λ and 0 and
are equally spaced, with spacing the same as that of the numbers of F between
λ and βλ, namely λǫM = βemin−t. For example, in the system illustrated above
with β = 2, t = 3, emin = −1, and emax = 3, we have λ = 2−2 and µ = 2−4, the
subnormal numbers are

0.0625, 0.125, 0.1875,

and the complete number system can be represented as

Copyright (c) SIAM 2002

38 Floating Point Arithmetic

.

0 0.5 1.0 2.0 3.0 4.0 5.0 6.0 7.0

Let G ⊂ R denote all real numbers of the form (2.1) with no restriction on the
exponent e. If x ∈ R then fl(x) denotes an element of G nearest to x, and the
transformation x→ fl(x) is called rounding. There are several ways to break ties
when x is equidistant from two floating point numbers, including taking fl(x) to
be the number of larger magnitude (round away from zero) or the one with an
even last digit dt (round to even); the latter rule enjoys impeccable statistics [160,
]. For more on tie-breaking strategies see the Notes and References. Note
that rounding is monotonic: x ≥ y implies fl(x) ≥ fl(y).

Although we have defined fl as a mapping onto G, we are only interested
in the cases where it produces a result in F . We say that fl(x) overflows if
|fl(x)| > max{ |y| : y ∈ F } and underflows if 0 < |fl(x)| < min{ |y| : 0 6= y ∈ F }.
When subnormal numbers are included in F , underflow is said to be gradual .

The following result shows that every real number x lying in the range of F can
be approximated by an element of F with a relative error no larger than u = 1

2β
1−t.

The quantity u is called the unit roundoff. It is the most useful quantity associated
with F and is ubiquitous in the world of rounding error analysis.

Theorem 2.2. If x ∈ R lies in the range of F then

fl(x) = x(1 + δ), |δ| < u. (2.3)

Proof. We can assume that x > 0. Writing the real number x in the form

x = µ× βe−t, βt−1 ≤ µ < βt,

we see that x lies between the adjacent floating point numbers y1 = ⌊µ⌋βe−t and
y2 = ⌈µ⌉βe−t. (Strictly, if ⌈µ⌉ = βt then the floating point representation (2.1) of
y2 is ⌈µ⌉/β · βe−t+1.) Thus fl(x) = y1 or y2 and we have

|fl(x)− x| ≤ |y2 − y1|
2

≤ βe−t

2
.

Hence ∣∣∣∣
fl(x)− x

x

∣∣∣∣ ≤
1
2β

e−t

µ× βe−t
≤ 1

2
β1−t = u.

The last inequality is strict unless µ = βt−1, in which case x = fl(x), and hence
the inequality of the theorem is strict.

Theorem 2.2 says that fl(x) is equal to x multiplied by a factor very close to
1. The representation 1 + δ for the factor is the standard choice, but it is not the
only possibility. For example, we could write the factor as eα, with a bound on
|α| a little less than u (cf. the rp notation in §3.4).

The following modified version of this theorem can also be useful.

Copyright (c) SIAM 2002

2.1 Floating Point Number System 39

Theorem 2.3. If x ∈ R lies in the range of F then

fl(x) =
x

1 + δ
, |δ| ≤ u.

Proof. See Problem 2.4.

The widely used IEEE standard arithmetic (described in §2.3) has β = 2 and
supports two precisions. Single precision has t = 24, emin = −125, emax = 128, and
u = 2−24 ≈ 5.96× 10−8. Double precision has t = 53, emin = −1021, emax = 1024,
and u = 2−53 ≈ 1.11× 10−16. IEEE arithmetic uses round to even.

It is easy to see that

x =

(
βt−1 +

1

2

)
× βe ⇒

∣∣∣∣
fl(x)− x

x

∣∣∣∣ ≈
1

2
β1−t,

x =

(
βt − 1

2

)
× βe ⇒

∣∣∣∣
fl(x)− x

x

∣∣∣∣ ≈
1

2
β−t.

Hence, while the relative error in representing x is bounded by 1
2β

1−t (as it must
be, by Theorem 2.2), the relative error varies with x by as much as a factor β.
This phenomenon is called wobbling precision and is one of the reasons why small
bases (in particular, β = 2) are favoured. The effect of wobbling precision is
clearly displayed in Figure 2.1, which plots machine numbers x versus the relative
distance from x to the next larger machine number, for 1 ≤ x ≤ 16 in IEEE
single precision arithmetic. In this plot, the relative distances range from about
2−23 ≈ 1.19× 10−7 just to the right of a power of 2 to about 2−24 ≈ 5.96× 10−8

just to the left of a power of 2 (see Lemma 2.1).
The notion of ulp, or “unit in last place”, is sometimes used when describing

the accuracy of a floating point result. One ulp of the normalized floating point
number y = ±βe × .d1d2 . . . dt is ulp(y) = βe × .00 . . . 01 = βe−t. If x is any real
number we can say that y and x agree to |y−x|/ulp(y) ulps in y. This measure of
accuracy “wobbles” when y changes from a power of β to the next smaller floating
point number, since ulp(y) decreases by a factor β.

In MATLAB the permanent variable eps represents the machine epsilon, ǫM
(not the unit roundoff as is sometimes thought), while realmax and realmin

represent the largest positive and smallest positive normalized floating point num-
ber, respectively. On a machine using IEEE standard double precision arithmetic
MATLAB returns

>> eps

ans =

2.2204e-016

>> realmax

ans =

1.7977e+308

>> realmin

ans =

2.2251e-308

Copyright (c) SIAM 2002

40 Floating Point Arithmetic

1 2 4 8 16
5

6

7

8

9

10

11

12

13
x 10

−8

x

Figure 2.1. Relative distance from x to the next larger machine number (β = 2, t = 24),
displaying wobbling precision.

2.2. Model of Arithmetic

To carry out rounding error analysis of an algorithm we need to make some assump-
tions about the accuracy of the basic arithmetic operations. The most common
assumptions are embodied in the following model, in which x, y ∈ F :

Standard model

fl(x op y) = (x op y)(1 + δ), |δ| ≤ u, op = +,−, ∗, /. (2.4)

It is normal to assume that (2.4) holds also for the square root operation.
Note that now we are using fl(·) with an argument that is an arithmetic

expression to denote the computed value of that expression. The model says that
the computed value of xopy is “as good as” the rounded exact answer, in the sense
that the relative error bound is the same in both cases. However, the model does
not require that δ = 0 when x op y ∈ F—a condition which obviously does hold
for the rounded exact answer—so the model does not capture all the features we
might require of floating point arithmetic. This model is valid for most computers,
and, in particular, holds for IEEE standard arithmetic. Cases in which the model
is not valid are described in §2.4.

The following modification of (2.4) can also be used (cf. Theorem 2.3):

fl(x op y) =
x op y

1 + δ
, |δ| ≤ u. (2.5)

Copyright (c) SIAM 2002

2.3 IEEE Arithmetic 41

All the error analysis in this book is carried out under the model (2.4), some-
times making use of (2.5). Most results proved using the standard model remain
true with the weaker model (2.6) described below, possibly subject to slight in-
creases in the constants. We identify problems for which the choice of model
significantly affects the results that can be proved.

2.3. IEEE Arithmetic

IEEE standard 754, published in 1985 [655, ], defines a binary floating point
arithmetic system. It is the result of several years’ work by a working group of a
subcommittee of the IEEE Computer Society Computer Standards Committee.

Among the design principles of the standard were that it should encourage
experts to develop robust, efficient, and portable numerical programs, enable the
handling of arithmetic exceptions, and provide for the development of transcen-
dental functions and very high precision arithmetic.

The standard specifies floating point number formats, the results of the basic
floating point operations and comparisons, rounding modes, floating point excep-
tions and their handling, and conversion between different arithmetic formats.
Square root is included as a basic operation. The standard says nothing about
exponentiation or transcendental functions such as exp and cos.

Two main floating point formats are defined:

Type Size Significand Exponent Unit roundoff Range

Single 32 bits 23+1 bits 8 bits 2−24 ≈ 5.96× 10−8 10±38

Double 64 bits 52+1 bits 11 bits 2−53 ≈ 1.11× 10−16 10±308

In both formats one bit is reserved as a sign bit. Since the floating point numbers
are normalized, the most significant bit is always 1 and is not stored (except for the
denormalized numbers described below). This hidden bit accounts for the “+1” in
the table.

The standard specifies that all arithmetic operations are to be performed as if
they were first calculated to infinite precision and then rounded according to one
of four modes. The default rounding mode is to round to the nearest representable
number, with rounding to even (zero least significant bit) in the case of a tie. With
this default mode, the model (2.4) is obviously satisfied. Note that computing with
a single guard bit (see §2.4) will not always give the same answer as computing
the exact result and then rounding. But the use of a second guard bit and a third
sticky bit (the logical OR of all succeeding bits) enables the rounded exact result
to be computed. Rounding to plus or minus infinity is also supported by the
standard; this facilitates the implementation of interval arithmetic. The fourth
supported mode is rounding to zero (truncation, or chopping).

IEEE arithmetic is a closed system: every arithmetic operation produces a
result, whether it is mathematically expected or not, and exceptional operations
raise a signal. The default results are shown in Table 2.2. The default response
to an exception is to set a flag and continue, but it is also possible to take a trap
(pass control to a trap handler).

A NaN is a special bit pattern that cannot be generated in the course of unex-
ceptional operations because it has a reserved exponent field. Since the significand

Copyright (c) SIAM 2002

42 Floating Point Arithmetic

Table 2.2. IEEE arithmetic exceptions and default results.

Exception type Example Default result

Invalid operation 0/0, 0 ×∞,
√
−1 NaN (Not a Number)

Overflow ±∞
Divide by zero Finite nonzero/0 ±∞
Underflow Subnormal numbers
Inexact Whenever fl(x op y) 6= x op y Correctly rounded result

is arbitrary, subject to being nonzero, a NaN can have something about its prove-
nance encoded in it, and this information can be used for retrospective diagnostics.
A NaN is generated by operations such as 0/0, 0×∞, ∞/∞, (+∞) + (−∞), and√
−1. One creative use of the NaN is to denote uninitialized or missing data.

Arithmetic operations involving a NaN return a NaN as the answer. A NaN com-
pares as unordered and unequal with everything including itself (a NaN can be
tested with the predicate x 6= x or with the IEEE recommended function isnan,
if provided).

Zero is represented by a zero exponent field and a zero significand, with the
sign bit providing distinct representations for +0 and −0. The standard defines
comparisons so that +0 = −0. Signed zeros provide an elegant way to handle
branch cuts in complex arithmetic; for details, see Kahan [694, ].

The infinity symbol is represented by a zero significand and the same exponent
field as a NaN; the sign bit distinguishes between ±∞. The infinity symbol obeys
the usual mathematical conventions regarding infinity, such as ∞ + ∞ = ∞,
(−1)×∞ = −∞, and (finite)/∞ = 0.

The standard requires subnormal numbers to be represented, instead of being
flushed to zero as in many systems. This support of gradual underflow makes it
easier to write reliable numerical software; see Demmel [308, ].

The standard may be implemented in hardware or software. The first hardware
implementation was the Intel 8087 floating point coprocessor, which was produced
in 1981 and implements an early draft of the standard (the 8087 very nearly
conforms to the present standard). This chip, together with its bigger and more
recent brothers the Intel 80287, 80387, 80486 and the Pentium series, is used
in IBM PC compatibles (the 80486DX and Pentiums are general-purpose chips
that incorporate a floating point coprocessor). Virtually all modern processors
implement IEEE arithmetic.

The IEEE standard defines minimum requirements for two extended number
formats: single extended and double extended. The double extended format has
at least 79 bits, with at least 63 bits in the significand and at least 15 in the
exponent; it therefore surpasses the double format in both precision and range,
having unit roundoff u ≤ 5.42× 10−20 and range at least 10±4932. The purpose of
the extended precision formats is not to provide for higher precision computation
per se, but to enable double precision results to be computed more reliably (by
avoiding intermediate overflow and underflow) and more accurately (by reducing
the effect of cancellation) than would otherwise be possible. In particular, extended

Copyright (c) SIAM 2002

2.4 Aberrant Arithmetics 43

precision makes it easier to write accurate routines to evaluate the elementary
functions, as explained by Hough [640, ].

A double extended format of 80 bits is supported by the Intel chips mentioned
above and the Motorola 680x0 chips (used on early Apple Macintoshes); these
chips, in fact, normally do all their floating point arithmetic in 80-bit arithmetic
(even for arguments of the single or double format). However, double extended is
not supported by Sun SPARCstations or machines that use the PowerPC or DEC
Alpha chips. Furthermore, the extended format (when available) is supported
little by compilers and packages such as Mathematica and Maple. Kahan [698,
] notes that “What you do not use, you are destined to lose”, and encourages
the development of benchmarks to measure accuracy and related attributes. He
also explains that

For now the 10-byte Extended format is a tolerable compromise be-
tween the value of extra-precise arithmetic and the price of imple-
menting it to run fast; very soon two more bytes of precision will
become tolerable, and ultimately a 16-byte format . . . That kind of
gradual evolution towards wider precision was already in view when
IEEE Standard 754 for Floating-Point Arithmetic was framed.

A possible side effect of the use of an extended format is the phenomenon
of double rounding, whereby a result computed “as if to infinite precision” (as
specified by the standard) is rounded first to the extended format and then to the
destination format. Double rounding (which is allowed by the standard) can give a
different result from that obtained by rounding directly to the destination format,
and so can lead to subtle differences between the results obtained with different
implementations of IEEE arithmetic (see Problem 2.9).

An IEEE Standard 854, which generalizes the binary standard 754, was pub-
lished in 1987 [656, ]. It is a standard for floating point arithmetic that is
independent of word length and base (although in fact only bases 2 and 10 are
provided in the standard, since the drafting committee “could find no valid tech-
nical reason for allowing other radices, and found several reasons for not allowing
them” [251, ]). Base 10 IEEE 854 arithmetic is implemented in the HP-71B
calculator.

2.4. Aberrant Arithmetics

In the past, not all computer floating point arithmetics adhered to the model
(2.4). The most common reason for noncompliance with the model was that the
arithmetic lacked a guard digit in subtraction. The role of a guard digit is easily
explained with a simple example.

Consider a floating point arithmetic system with base β = 2 and t = 3 digits in
the significand. Subtracting from 1.0 the next smaller floating number, we have,
in binary notation,

21 × 0.100−
20 × 0.111

−→ 21 × 0.100−
21 × 0.0111

21 × 0.0001 = 2−2 × 0.100

Copyright (c) SIAM 2002

44 Floating Point Arithmetic

Notice that to do the subtraction we had to line up the binary points, thereby
unnormalizing the second number and using, temporarily, a fourth digit in the
significand, known as a guard digit. Some old machines did not have a guard digit.
Without a guard digit in our example we would compute as follows, assuming the
extra digits are simply discarded:

21 × 0.100−
20 × 0.111

−→ 21 × 0.100−
21 × 0.011 (last digit dropped)

21 × 0.001 = 2−1 × 0.100

The computed answer is too big by a factor 2 and so has relative error 1! For
machines without a guard digit it is not true that

fl(x ± y) = (x± y)(1 + δ), |δ| ≤ u,

but it is true that

fl(x ± y) = x(1 + α)± y(1 + β), αβ = 0, |α|+ |β| ≤ u.

Our model of floating point arithmetic becomes

No guard digit model

fl(x ± y) = x(1 + α)± y(1 + β), |α|, |β| ≤ u, (2.6a)

fl(x op y) = (x op y)(1 + δ), |δ| ≤ u, op = ∗, /, (2.6b)

where we have stated a weaker condition on α and β that is generally easier to
work with.

Notable examples of machines that lacked guard digits are several models of
Cray computers (Cray 1, 2, X-MP, Y-MP, and C90). On these computers subtract-
ing any power of 2 from the next smaller floating point number gives an answer
that is either a factor of 2 too large (as in the example above—e.g., Cray X-MP
or Y-MP) or is zero (Cray 2). In 1992 Cray announced that it would produce
systems that use IEEE standard double precision arithmetic by 1995.

The lack of a guard digit is a serious drawback. It causes many algorithms
that would otherwise work perfectly to fail some of the time, including Kahan’s
version of Heron’s formula in the next section and compensated summation (see
§4.3). Throughout the book we assume a guard digit is used, unless otherwise
stated.

Kahan has made these interesting historical comments about guard digits [696,
]:

CRAYs are not the first machines to compute differences blighted by
lack of a guard digit. The earliest IBM ’360s, from 1964 to 1967,
subtracted and multiplied without a hexadecimal guard digit until
SHARE, the IBM mainframe user group, discovered why the conse-
quential anomalies were intolerable and so compelled a guard digit to
be retrofitted. The earliest Hewlett-Packard financial calculator, the
HP-80, had a similar problem. Even now, many a calculator (but not
Hewlett-Packard’s) lacks a guard digit.

Copyright (c) SIAM 2002

2.5 Exact Subtraction 45

2.5. Exact Subtraction

It is an interesting and sometimes important fact that floating point subtraction
is exact if the numbers being subtracted are sufficiently close. The following result
about exact subtraction holds for any base β.

Theorem 2.4 (Ferguson). If x and y are floating point numbers for which e(x−
y) ≤ min(e(x), e(y)), where e(x) denotes the exponent of x in its normalized float-

ing point representation, then fl(x−y) = x−y (assuming x−y does not underflow).

Proof. From the condition of the theorem the exponents of x and y differ by
at most 1. If the exponents are the same then fl(x − y) is computed exactly, so
suppose the exponents differ by 1, which can happen only when x and y have the
same sign. Scale and interchange x and y if necessary so that β−1 ≤ y < 1 ≤ x < β,
where β is the base. Now x is represented in base β as x1.x2 . . . xt and the exact
difference z = x− y is of the form

x1.x2 . . . xt −
0.y1 . . . yt−1yt

z1.z2 . . . ztzt+1

But e(x − y) ≤ e(y) and y < 1, so z1 = 0. The algorithm for computing z forms
z1.z2 . . . zt+1 and then rounds to t digits; since z has at most t significant digits
this rounding introduces no error, and thus z is computed exactly.

The next result is a corollary of the previous one but is more well known. It
is worth stating as a separate theorem because the conditions of the theorem are
so elegant and easy to check (being independent of the base), and because this
weaker theorem is sufficient for many purposes.

Theorem 2.5 (Sterbenz). If x and y are floating point numbers with y/2 ≤ x ≤
2y then fl(x− y) = x− y (assuming x− y does not underflow).

With gradual underflow, the condition “assuming x − y does not underflow”
can be removed from Theorems 2.4 and 2.5 (see Problem 2.19).

Theorem 2.5 is vital in proving that certain special algorithms work. A good
example involves Heron’s formula for the area A of a triangle with sides of length
a, b, and c:

A =
√
s(s− a)(s− b)(s− c), s = (a+ b+ c)/2.

This formula is inaccurate for needle-shaped triangles: if a ≈ b+ c then s ≈ a and
the term s− a suffers severe cancellation. A way around this difficulty, devised by
Kahan, is to rename a, b, and c so that a ≥ b ≥ c and then evaluate

A =
1

4

√(
a+ (b+ c)

)(
c− (a− b)

)(
c+ (a− b)

)(
a+ (b− c)

)
. (2.7)

The parentheses are essential! Kahan has shown that this formula gives the area
with a relative error bounded by a modest multiple of the unit roundoff [496, ,
Thm. 3], [692, ], [701, ], [702, ] (see Problem 2.23). If a guard digit
is not used in subtraction, however, the computed result can be very inaccurate.

Copyright (c) SIAM 2002

46 Floating Point Arithmetic

2.6. Fused Multiply-Add Operation

Some computers have a fused multiply-add (FMA) operation that enables a floating
point multiplication followed by an addition or subtraction, x ∗ y + z or x ∗ y − z,
to be performed as though it were a single floating point operation. An FMA
operation therefore commits just one rounding error:

fl(x± y ∗ z) = (x± y ∗ z)(1 + δ), |δ| ≤ u.
The Intel IA-64 architecture, as first implemented on the Intel Itanium chip,

has an FMA instruction [273, ], as did the IBM RISC System/6000 and IBM
Power PC before it. The Itanium’s FMA instruction enables a multiply and an
addition to be performed in the same number of cycles as one multiplication or
addition, so it is advantageous for speed as well as accuracy.

An FMA is a welcome capability in that it enables the number of rounding
errors in many algorithms to be approximately halved. Indeed, by using FMAs an
inner product xTy between two n-vectors can be computed with just n rounding
errors instead of the usual 2n − 1, and any algorithm whose dominant operation
is an inner product benefits accordingly.

Opportunities to exploit an FMA are frequent. Consider, for example, New-
ton’s method for solving f(x) = a− 1/x = 0. The method is

xk+1 = xk −
f(xk)

f ′(xk)
= xk −

a− 1/xk

x−2
k

= xk + (1− xka)xk,

and its quadratic convergence can be seen from 1 − xk+1a = (1 − xka)2. This
method was used on early computers to implement reciprocation in terms of mul-
tiplication and thence division as a/b = a ∗ (1/b) [551, ], [1222, ], and
this technique is still in use [714, ]. Since the computation of xk+1 from xk

can be expressed as two multiply-adds, the method is attractive when an FMA is
available; an FMA also has the advantage of enabling a correctly rounded quotient
to be achieved more easily [562, , §A.7]. The floating point divide algorithms
for the IA-64 architecture use this Newton-based approach [273, ].

An FMA makes it possible to compute an exact representation of the product
of two floating point numbers x and y: by computing â = fl(xy) and b̂ = fl(xy−â)

with two FMAs, â + b̂ ≡ xy (see Problem 2.26). Furthermore, clever use of an
FMA enables highly accurate computation of, for example, the determinant of a
2× 2 matrix (see Problem 2.27).

However, the presence of an FMA introduces some tricky programming lan-
guage issues [700, ]. If a programmer writes a*d + c*b how is this expression
to be compiled for a machine with an FMA? There are three possibilities—two
using the FMA and one without it—and they can all yield different answers. An
example of where this question is particularly important is the product of complex
numbers

(x+ iy)∗(x+ iy) = x2 + y2 + i(xy − yx).

The product is obviously real, and the right-hand side evaluates as real in IEEE
arithmetic, but if an FMA is employed in evaluating xy− yx then a nonreal result
will generally be obtained.

Copyright (c) SIAM 2002

2.7 Choice of Base and Distribution of Numbers 47

In the course of solving the quadratic ax2 − 2bx + c = 0 for x, the expression√
b2 − ac must be computed. Can the discriminant under the square root evaluate

to a negative number when b2 ≥ ac? In correctly rounded arithmetic the answer is
no: the monotonicity of rounding implies fl(b2)−fl(ac) ≥ 0 and the floating point
subtraction of these incurs a small relative error and hence produces a nonnegative
result. However, evaluation as fl(fl(b2)−ac) using an FMA can produce a negative
result (for example, if b2 = ac and fl(b2) < b2).

In conclusion, as Kahan [700, ] puts it, “[FMAs] should not be used indis-
criminately”. Unfortunately, compiler writers, in their efforts to obtain maximum
performance, may not give programmers the capability to inhibit FMAs in those
subexpressions where their use can have undesirable effects.

2.7. Choice of Base and Distribution of Numbers

What base β is best for a floating point number system? Most modern computers
use base 2. Most hand-held calculators use base 10, since it makes the calculator
easier for the user to understand (how would you explain to a naive user that 0.1 is
not exactly representable on a base 2 calculator?). IBM mainframes traditionally
have used base 16. Even base 3 has been tried—in an experimental machine called
SETUN, built at Moscow State University in the late 1950s [1208, ].

Several criteria can be used to guide the choice of base. One is the impact
of wobbling precision: as we saw at the end of §2.1, the spread of representation
errors is smallest for small bases. Another possibility is to measure the worst-
case representation error or the mean square representation error. The latter
quantity depends on the assumed distribution of the numbers that are represented.
Brent [160, ] shows that for the logarithmic distribution the worst-case error
and the mean square error are both minimal for (normalized) base 2, provided
that the most significant bit is not stored explicitly.

The logarithmic distribution is defined by the property that the proportion of
base β numbers with leading significant digit n is

logβ(n+ 1)− logβ n = logβ

(
1 +

1

n

)
.

It appears that in practice real numbers are logarithmically distributed. In 1938,
Benford [102, ] noticed, as had Newcomb [889, ] before him, that the early
pages of logarithm tables showed greater signs of wear than the later ones. (He was
studying dirty books!) This prompted him to carry out a survey of 20,229 “real-
life” numbers, whose decimal representations he found matched the logarithmic
distribution closely.

The observed logarithmic distribution of leading significant digits has not been
fully explained. Some proposed explanations are based on the assumption that
the actual distribution is scale invariant, but this assumption is equivalent to
the observation to be explained [1170, ]. Barlow [67, ], [68, ], [70,
] and Turner [1169, ], [1170, ] give useful insight by showing that if
uniformly distributed numbers are multiplied together, then the resulting distri-
bution converges to the logarithmic one; see also Boyle [157, ]. Furthermore,
it is an interesting result that the leading significant digits of the numbers qk,

Copyright (c) SIAM 2002

48 Floating Point Arithmetic

k = 0, 1, 2, . . . , are logarithmically distributed if q is positive and is not a rational
power of 10; when q = 2 and the digit is 7 this is Gelfand’s problem [939, ,
pp. 50–51].

The nature of the logarithmic distribution is striking. For decimal numbers,
the digits 1 to 9 are not equally likely to be a leading significant digit. The
probabilities are as follows:

1 2 3 4 5 6 7 8 9
0.301 0.176 0.125 0.097 0.079 0.067 0.058 0.051 0.046

As an example, here is the leading significant digit distribution for the elements of
the inverse of one random 100× 100 matrix from the normal N(0, 1) distribution:

1 2 3 4 5 6 7 8 9
0.334 0.163 0.100 0.087 0.077 0.070 0.063 0.056 0.051

For an entertaining survey of work on the distribution of leading significant digits
see Raimi [968, ] (and also the popular article [967, ]).

2.8. Statistical Distribution of Rounding Errors

Most rounding error analyses, including all the ones in this book, are designed to
produce worst-case bounds for the error. The analyses ignore the signs of rounding
errors and are often the result of many applications of the triangle inequality and
the submultiplicative inequality. Consequently, although the bounds may well
give much insight into a method, they tend to be pessimistic if regarded as error
estimates.

Statistical statements about the effect of rounding on a numerical process
can be obtained from statistical analysis coupled with probabilistic models of the
rounding errors. For example, a well-known rule of thumb is that a more realistic
error estimate for a numerical method is obtained by replacing the dimension-
dependent constants in a rounding error bound by their square root; thus if the
bound is f(n)u, the rule of thumb says that the error is typically of order

√
f(n)u

(see, for example, Wilkinson [1232, , pp. 26, 102]). This rule of thumb can be
supported by assuming that the rounding errors are independent random variables
and applying the central limit theorem. Statistical analysis of rounding errors goes
back to one of the first papers on rounding error analysis, by Goldstine and von
Neumann [501, ].

As we noted in §1.17, rounding errors are not random. See Problem 2.10 for an
example of how two rounding errors cancel in one particular class of computations.
Forsythe [424, ] points out that rounding errors do not necessarily behave like
independent random variables and proposes a random form of rounding (intended
for computer testing) to which statistical analysis is applicable.

Henrici [564, ], [565, ], [566, ] assumes models for rounding er-
rors and then derives the probability distribution of the overall error, mainly in
the context of difference methods for differential equations. Hull and Swenson
[650, ] give an insightful discussion of probabilistic models, pointing out that
“There is no claim that ordinary rounding and chopping are random processes, or
that successive errors are independent. The question to be decided is whether or

Copyright (c) SIAM 2002

2.9 Alternative Number Systems 49

not these particular probabilistic models of the processes will adequately describe
what actually happens” (see also the ensuing note by Henrici [567, ]). Kahan
[699, ] notes that “The fact that rounding errors are neither random nor un-
correlated will not in itself preclude the possibility of modelling them usefully by
uncorrelated random variables. What will jeopardize the utility of such models is
their failure to mimic important properties that actual rounding errors possess.”
In the last sentence Kahan is referring to results such as Theorem 2.5.

Several authors have investigated the distribution of rounding errors under the
assumption that the significands of the operands are from a logarithmic distribu-
tion and for different modes of rounding; see Barlow and Bareiss [72, ] and
the references therein.

Other work concerned with statistical modelling of rounding errors includes
that of Tienari [1137, ] and Linnainmaa [789, ]; see also the discussion of
the CESTAC and PRECISE systems in §26.5.

2.9. Alternative Number Systems

The floating point format is not the only means for representing numbers in finite
precision arithmetic. Various alternatives have been proposed, though none has
achieved widespread use.

A particularly elegant system is the “level index arithmetic” of Clenshaw,
Olver, and Turner, in which a number x > 1 is represented by ξ = l + f , where
f ∈ [0, 1] and

x = ee··
·e

f

, or f = ln(ln(. . . (lnx) . . .)),

where the exponentiation or logarithm is performed l times (l is the “level”). If
0 < x < 1, then x is represented by the reciprocal of the representation for 1/x.
An obvious feature of the level index system is that it can represent much larger
and smaller numbers than the floating point system, for similar word lengths. A
price to be paid is that as the size of the number increases the precision with
which it is represented shrinks. If l is sufficiently large then adjacent level index
numbers are so far apart that even their exponents in base 10 differ. For very
readable introductions to level index arithmetic see Clenshaw and Olver [240,
] and Turner [1171, ], and for more details see Clenshaw, Olver, and
Turner [241, ]. Level index arithmetic is somewhat controversial in that there
is disagreement about its advantages and disadvantages with respect to floating
point arithmetic; see Demmel [310, ]. A number system involving levels has
also been proposed by Matsui and Iri [826, ]; in their system, the number of
bits allocated to the significand and exponent is allowed to vary (within a fixed
word size).

Other number systems include those of Swartzlander and Alexopolous [1115,
], Matula and Kornerup [831, ], and Hamada [539, ]. For sum-
maries of alternatives to floating point arithmetic see the section “Alternatives to
Floating-Point—Some Candidates”, in [241, ], and Knuth [744, , Chap. 4].

Copyright (c) SIAM 2002

50 Floating Point Arithmetic

2.10. Elementary Functions

The term elementary functions refers to the base 2, e and 10 logarithms and
exponentials, and the trigonometric and hyperbolic functions and their inverses.
These functions are much harder to implement than the elementary operations
+,−, ∗, / and square root and, as noted earlier, the IEEE arithmetic standard
does not have anything to say about elementary functions.

In the past, elementary function libraries were of variable quality, but with in-
creased demand for high-quality floating point arithmetic, the ability now to build
on IEEE standard elementary operations, and continuing research into elementary
function evaluation, the quality of algorithms and libraries is improving.

Ideally, we would like the computed value of an elementary function at a ma-
chine number to be the correctly rounded result. The tablemaker’s dilemma (see
§1.2) casts doubt on whether this goal is achievable. However, Lindemann’s result
that the exponential of a nonzero algebraic number cannot be algebraic implies
that the exponential of a nonzero machine number cannot be a machine number
or half-way between two machine numbers. Therefore for a given machine number
x and precision t there is a finite m so that computing m digits of ex is sufficient
to determine ex correctly rounded to t digits. Similar arguments apply to the
other elementary functions, and so the tablemaker’s dilemma does not occur in
the context of floating point arithmetic [778, ]. In extensive computations,
Lefèvre, Muller, and Tisserand [778, ], [777, ] have determined the max-
imum value of m over all double precision IEEE arithmetic numbers (t = 53) for
each of the elementary functions. They find that m is usually close to 2t = 106.
This knowledge of the worst-case m makes the goal of correctly rounded results
achievable.

Other desirable properties of computed elementary functions are preservation
of monotonicity (e.g., x < y ⇒ ex < ey), preservation of symmetries (e.g.,
sin(x) = − sin(−x)), and preservation of mathematical relations and identities
(e.g., sin(x) ∈ [−1, 1] and cos2(x)+sin2(x) = 1). Unfortunately, these requirements
can conflict. Lefèvre, Muller, and Tisserand [778, ] note that in IEEE single
precision arithmetic the machine number closest to arctan(230) is slightly greater
than π/2, so a correctly rounded approximation to arctan(230) necessarily violates
the requirement that arctan(x) ∈ [−π/2, π/2].

Describing methods for evaluating elementary functions is outside the scope of
this book. Details can be found in the excellent book by Muller [876, ], which
is the best overall reference for this topic. Algorithms for evaluating elementary
functions in IEEE arithmetic are developed by Tang [1121, ], [1123, ],
[1125, ], Gal and Bachelis [451, ], and Ziv [1285, ]. Tang [1124,
] gives a very readable description of table lookup algorithms for evaluating
elementary functions, which are used in a number of current chips and libraries.

Algorithms for evaluating complex elementary functions that exploit excep-
tion handling and assume the availability of algorithms for the real elementary
functions are presented by Hull, Fairgrieve, and Tang [649, ]. For details of
how elementary functions are evaluated on many of today’s pocket calculators see
Schelin [1016, ], as well as Muller [876, ].

Copyright (c) SIAM 2002

2.11 Accuracy Tests 51

Table 2.3. Test arithmetics.

Hardware Software |3 × (4/3 − 1) − 1| a

Casio fx-140 (≈ 1979) 1 × 10−9

Casio fx-992VB (≈ 1990) 1 × 10−13

HP 48G (1993) 1 × 10−11

Sharp EL-5020 (1994) 0.0b

Pentium III MATLAB 6.1 (2001) 2.2 . . .× 10−16

486DX WATFOR-77c V3.0 (1988) 2.2 . . .× 10−16

486DX FTN 90d (1993) 2.2 . . .× 10−16

486DX MS-DOS QBasic 1.1 1.1 . . .× 10−19 e

aIntegers in the test expression are typed as real constants 3.0, etc., for the Fortran
tests.

b1 × 10−9 if 4/3 is stored and recalled from memory.
cWATCOM Systems Inc.
dSalford Software/Numerical Algorithms Group, Version 1.2.
e2.2 . . . × 10−16 if 4/3 is stored and recalled from a variable.

2.11. Accuracy Tests

How can you test the accuracy of the floating point arithmetic on a computer or
pocket calculator? There is no easy way, though a few software packages are avail-
able to help with the tasks in specific programming languages (see §27.6). There
are, however, a few quick and easy tests that may reveal weaknesses. The following
list is far from comprehensive and good performance on these tests does not imply
that an arithmetic is correct. Results from the tests are given in Tables 2.4–2.5
for the selected floating point arithmetics described in Table 2.3, with incorrect
digits in boldface and underlined. Double precision was used for the compiled
languages. The last column of Table 2.3 gives an estimate of the unit roundoff
(see Problem 2.14). The estimate produced by QBasic indicates that the compiler
used extended precision in evaluating the estimate.

1. (Cody [249, ]) Evaluate sin(22) = −8.8513 0929 0403 8759 2169× 10−3

(shown correct to 21 digits). This is a difficult test for the range reduction
used in the sine evaluation (which brings the argument within the range
[−π/2, π/2], and which necessarily uses an approximate value of π), since 22
is close to an integer multiple of π.

2. (Cody [249, ]) Evaluate 2.5125 = 5.5271 4787 5260 4445 6025 × 1049

(shown correct to 21 digits). One way to evaluate z = xy is as z =
exp(y log x). But to obtain z correct to within a few ulps it is not suffi-
cient to compute exp and log correct to within a few ulps; in other words,
the composition of two functions evaluated to high accuracy is not necessarily
obtained to the same accuracy. To examine this particular case, write

w := y log x, z = exp(w).

If w → w + ∆w then z → z + ∆z, where z + ∆z = exp(w + ∆w) =

Copyright (c) SIAM 2002

52 Floating Point Arithmetic

Table 2.4. Sine test.

Machine sin(22)

Exact −8.8513 0929 0403 8759 × 10−3

Casio fx-140 −8.8513 62 × 10−3

Casio fx-992VB −8.8513 0929 096 × 10−3

HP 48G −8.8513 0929 040 × 10−3

Sharp EL-5020 −8.8513 0915 4 × 10−3

MATLAB 6.1 −8.8513 0929 0403 876 × 10−3

WATFOR-77 −8.8513 0929 0403 880 × 10−3

FTN 90 −8.8513 0929 0403 876 × 10−3

QBasic −8.8513 0929 0403 876 × 10−3

Table 2.5. Exponentation test. No entry for last column means same value as previous
column.

Machine 2.5125 exp(125 log(2.5))

Exact 5.5271 4787 5260 4446 × 1049 5.5271 4787 5260 4446 × 1049

Casio fx-140 5.5271 477 × 1049 5.5271 463 × 1049

Casio fx-992VB 5.5271 4787 526 × 1049

HP 48G 5.5271 4787 526 × 1049 5.5271 4787 377 × 1049

Sharp EL-5020 5.5271 4787 3 × 1049 5.5271 4796 2 × 1049

MATLAB 6.1 5.5271 4787 5260 444 × 1049 5.5271 4787 5260 459 × 1049

WATFOR-77 5.5271 4787 5260 450 × 1049 5.5271 4787 5260 460 × 1049

FTN 90 5.5271 4787 5260 445 × 1049 5.5271 4787 5260 459 × 1049

QBasic 5.5271 4787 5260 444 × 1049

exp(w) exp(∆w) ≈ exp(w)(1 + ∆w), so ∆z/z ≈ ∆w. In other words, the
relative error of z depends on the absolute error of w and hence on the size
of w. To obtain z correct to within a few ulps it is necessary to use extra
precision in calculating the logarithm and exponential [256, , Chap. 7].

3. (Karpinski [715, ]) A simple test for the presence of a guard digit on a
pocket calculator is to evaluate the expressions

9/27 ∗ 3− 1, 9/27 ∗ 3− 0.5− 0.5,

which are given in a form that can be typed directly into most four-function
calculators. If the results are equal then a guard digit is present. Otherwise
there is probably no guard digit (we cannot be completely sure from this
simple test). To test for a guard digit on a computer it is best to run one of
the diagnostic codes described in §27.5.

2.12. Notes and References

The classic reference on floating point arithmetic, and on all aspects of rounding er-
ror analysis, is Wilkinson’s Rounding Errors in Algebraic Processes (REAP) [1232,

Copyright (c) SIAM 2002

2.12 Notes and References 53

]. Wilkinson was uniquely qualified to write such a book, for not only was
he the leading expert in rounding error analysis, but he was one of the architects
and builders of the Automatic Computing Engine (ACE) at the National Physical
Laboratory [1226, ]. The Pilot (prototype) ACE first operated in May 1950,
and an engineered version was later sold commercially as the DEUCE Computer
by the English Electric Company. Wilkinson and his colleagues were probably
the first to write subroutines for floating point arithmetic, and this enabled them
to accumulate practical experience of floating point arithmetic much earlier than
anyone else [395, ], [1243, ].

In REAP, Wilkinson gives equal consideration to fixed point and floating point
arithmetic. In fixed point arithmetic, all numbers are constrained to lie in a range
such as [−1, 1], as if the exponent were frozen in the floating point representation
(2.1). Preliminary analysis and the introduction of scale factors during the com-
putation are needed to keep numbers in the permitted range. We consider only
floating point arithmetic in this book. REAP, together with Wilkinson’s second
book, The Algebraic Eigenvalue Problem (AEP) [1233, ], has been immensely
influential in the areas of floating point arithmetic and rounding error analysis.

Wilkinson’s books were preceded by the paper “Error Analysis of Floating-
Point Computation” [1228, ], in which he presents the model (2.4) for floating
point arithmetic and applies the model to several algorithms for the eigenvalue
problem. This paper has hardly dated and is still well worth reading.

Another classic book devoted entirely to floating point arithmetic is Sterbenz’s
Floating-Point Computation [1062, ]. It contains a thorough treatment of low-
level details of floating point arithmetic, with particular reference to IBM 360 and
IBM 7090 machines. It also contains a good chapter on rounding error analysis
and an interesting collection of exercises. R. W. Hamming has said of this book,
“Nobody should ever have to know that much about floating-point arithmetic.
But I’m afraid sometimes you might” [942, ]. Although Sterbenz’s book is
now dated in some respects, it remains a useful reference.

A third important reference on floating point arithmetic is Knuth’s Seminu-

merical Algorithms [744, , Sec. 4.2], from his Art of Computer Programming

series. Knuth’s lucid presentation includes historical comments and challenging
exercises (with solutions).

The first analysis of floating point arithmetic was given by Samelson and
Bauer [1009, ]. Later in the same decade Carr [205, ] gave a detailed
discussion of error bounds for the basic arithmetic operations.

An up-to-date and very readable reference on floating point arithmetic is the
survey paper by Goldberg [496, ], which includes a detailed discussion of IEEE
arithmetic. A less mathematical, more hardware-oriented discussion can be found
in the appendix “Computer Arithmetic” written by Goldberg that appears in the
book on computer architecture by Hennessy and Patterson [562, ].

A fascinating historical perspective on the development of computer floating
point arithmetics, including background to the development of the IEEE standard,
can be found in the textbook by Patterson and Hennessy [929, , §4.12].

The idea of representing floating point numbers in the form (2.1) is found, for
example, in the work of Forsythe [428, ], Matula [830, ], and Dekker [302,
].

Copyright (c) SIAM 2002

54 Floating Point Arithmetic

An alternative definition of fl(x) is the nearest y ∈ G satisfying |y| ≤ |x|.
This operation is called chopping, and does not satisfy our definition of rounding.
Chopped arithmetic is used in the IBM/370 floating point system.

The difference between chopping and rounding (to nearest) is highlighted by a
discrepancy in the index of the Vancouver Stock Exchange in the early 1980s [963,
]. The exchange established an index in January 1982, with the initial value of
1000. By November 1983 the index had been hitting lows in the 520s, despite the
exchange apparently performing well. The index was recorded to three decimal
places and it was discovered that the computer program calculating the index
was chopping instead of rounding to produce the final value. Since the index was
recalculated thousands of times a day, each time with a nonpositive final error, the
bias introduced by chopping became significant. Upon recalculation with rounding
the index almost doubled!

When there is a tie in rounding, two possible strategies are to round to the
number with an even last digit and to round to the one with an odd last digit.
Both are stable forms of rounding in the sense that

fl
((

((x+ y)− y) + y
)
− y
)

= fl
(
(x+ y)− y

)
,

as shown by Reiser and Knuth [982, ], [744, , Sec. 4.2.2, Thm. D]. For
other rules, such as round away from zero, repeated subtraction and addition
of the same number can yield an increasing sequence, a phenomenon known as
drift. For bases 2 and 10 rounding to even is preferred to rounding to odd. After
rounding to even a subsequent rounding to one less place does not involve a tie.
Thus we have the rounding sequence 2.445, 2.44, 2.4 with round to even, but
2.445, 2.45, 2.5 with round to odd. For base 2, round to even causes computations
to produce integers more often [706, ] as a consequence of producing a zero
least significant bit. Rounding to even in the case of ties seems to have first been
suggested by Scarborough in the first edition (1930) of [1014, ]. Hunt [651,
] notes that in the presentation of meteorological temperature measurements
round to odd is used as a tie-breaking strategy, and he comments that this may
be to avoid the temperatures 0.5◦C and 32.5◦F being rounding down and the
incorrect impression being given that it is freezing.

Predictions based on the growth in the size of mathematical models solved as
the memory and speed of computers increase suggest that floating point arithmetic
with unit roundoff u ≈ 10−32 will be needed for some applications on future
supercomputers [57, ].

The model (2.4) does not fully describe any floating point arithmetic. It is
merely a tool for error analysis—one that has been remarkably successful in view
of our current understanding of the numerical behaviour of algorithms. There
have been various attempts to devise formal models of floating point arithmetic,
by specifying sets of axioms in terms of which error analysis can be performed.
Some attempts are discussed in §27.7.4. No model yet proposed has been truly
successful. Priest [955, ] conjectures that the task of “encapsulating all that
we wish to know about floating point arithmetic in a single set of axioms” is
impossible, and he gives some motivation for this conjecture.

Under the model (2.4), floating point arithmetic is not associative with respect
to any of the four basic operations: (a op b) op c 6= a op (b op c), op = +,−, ∗, /,

Copyright (c) SIAM 2002

2.12 Notes and References 55

where a op b := fl(a op b). Nevertheless, floating point arithmetic enjoys some
algebraic structure, and it is possible to carry out error analysis in the “ op
algebra”. Fortunately, it was recognized by Wilkinson and others in the 1950s
that this laboured approach is unnecessarily complicated, and that it is much
better to work with the exact equations satisfied by the computed quantities. As
Parlett [925, ] notes, though, “There have appeared a number of ponderous
tomes that do manage to abstract the computer’s numbers into a formal structure
and burden us with more jargon.”

A draft proposal of IEEE Standard 754 is defined and described in [657, ].
That article, together with others in the same issue of the journal Computer,
provides a very readable description of IEEE arithmetic. In particular, an excellent
discussion of gradual underflow is given by Coonen [270, ]. A draft proposal
of IEEE Standard 854 is presented, with discussion, in [253, ].

W. M. Kahan of the University of California at Berkeley received the 1989
ACM Turing Award for his contributions to computer architecture and numerical
analysis, and in particular for his work on IEEE floating point arithmetic standards
754 and 854. For interesting comments by Kahan on the development of IEEE
arithmetic and other floating point matters, see [1029, ], [1251, ],

An interesting examination of the implications of the IEEE standard for high-
level languages such as Fortran is given by Fateman [405, ]. Topics discussed
include trap handling and how to exploit NaNs. For an overview of hardware
implementations of IEEE arithmetic, and software support for it, see Cody [251,
].

Producing a fast and correct implementation of IEEE arithmetic is a difficult
task. Correctness is especially important for a microprocessor (as opposed to a
software) implementation, because of the logistical difficulties of correcting errors
when they are found. In late 1994, much publicity was generated by the discovery
of a flaw in the floating point divide instruction of Intel’s Pentium chip. Because
of some missing entries in a lookup table on the chip, the FPDIV instruction could
give as few as four correct significant decimal digits for double precision floating
point arguments with certain special bit patterns [1036, ], [380, ]. The
flaw had been discovered by Intel in the summer of 1994 during ongoing testing of
the Pentium processor, but it had not been publically announced. In October 1994,
a mathematician doing research into prime numbers independently discovered the
flaw and reported it to the user community. Largely because of the way in which
Intel responded to the discovery of the flaw, the story was reported in national
newspapers (e.g., the New York Times [816, ]) and generated voluminous
discussion on Internet newsgroups (notably comp.sys.intel). Intel corrected
the bug in 1994 and, several weeks after the bug was first reported, offered to
replace faulty chips. For a very readable account of the Pentium FPDIV bug
story, see Moler [866, ]. To emphasize that bugs in implementations of floating
point arithmetic are far from rare, we mention that the Calculator application in
Microsoft Windows 3.1 evaluates fl(2.01− 2.00) = 0.0.

Computer chip designs can be tested in two main ways: by software simulations
and by applying formal verification techniques. Formal verification aims to prove
mathematically that the chip design is correct, and this approach has been in use
by chip manufacturers for some time [491, ]. Some relevant references are

Copyright (c) SIAM 2002

56 Floating Point Arithmetic

Barrett [79, ] for the Inmos T800 (or Shepherd and Wilson [1037, ] for
a more informal overview), and Moore, Lynch, and Kaufmann [871, ] and
Russinoff [1003, ] for AMD processors.

For low-level details of computer arithmetic several textbooks are available.
We mention only the recent and very thorough book by Parhami [921, ].

The floating point operation op (op = +,−, ∗, or /) is monotonic if fl(a op b) ≤
fl(c op d) whenever a, b, c, and d are floating point numbers for which a op b ≤
c op d and neither fl(a op b) nor fl(c op d) overflows. IEEE arithmetic is mono-
tonic, as is any correctly rounded arithmetic. Monotonic arithmetic is important
in the bisection algorithm for finding the eigenvalues of a symmetric tridiagonal
matrix; see Demmel, Dhillon, and Ren [320, ], who give rigorous correctness
proofs of some bisection implementations in floating point arithmetic. Ferguson
and Brightman [410, ] derive conditions that ensure that an approximation
to a monotonic function preserves the monotonicity on a set of floating point
numbers.

On computers of the 1950s, (fixed point) multiplication was slower than (fixed
point) addition by up to an order of magnitude [773, , Apps. 2, 3]. For
most modern computers it is a rule of thumb that a floating point addition and
multiplication take about the same amount of time, while a floating point division
is 2–10 times slower, and a square root operation (in hardware) is 1–2 times slower
than a division.

During the design of the IBM 7030, Sweeney [1116, ] collected statistics
on the floating point additions carried out by selected application programs on
an IBM 704. He found that 11% of all instructions traced were floating point
additions. Details were recorded of the shifting needed to align floating point
numbers prior to addition, and the results were used in the design of the shifter
on the IBM 7030.

The word bit , meaning binary digit, first appeared in print in a 1948 paper of
Claude E. Shannon, but the term was apparently coined by John W. Tukey [1160,
]. The word byte, meaning a group of (usually eight) bits, did not appear in
print until 1959 [173, ].

The earliest reference we know for Theorem 2.5 is Sterbenz [1062, , Thm.
4.3.1]. Theorem 2.4 is due to Ferguson [409, ], who proves a more general
version of the theorem that allows for trailing zero digits in x and y. A variation
in which the condition is 0 ≤ y ≤ x ≤ y + βe, where e = min{ j : βj ≥ y }, is
stated by Ziv [1285, ] and can be proved in a similar way.

For more on the choice of base, see Cody [255, ] and Kuki and Cody [754,
]. Buchholz’s paper Fingers or Fists? [172, ] on binary versus decimal
representation of numbers on a computer deserves mention for its clever title,
though the content is only of historical interest.

The model (2.4) ignores the possibility of underflow and overflow. To take
underflow into account the model must be modified to

fl(x op y) = (x op y)(1 + δ) + η, op = +,−, ∗, /. (2.8)

As before, |δ| ≤ u. If underflow is gradual, as in IEEE arithmetic, then |η| ≤
1
2β

emin−t = λu, which is half the spacing between the subnormal numbers (λ =
βemin−1 is the smallest positive normalized floating point number); if underflows

Copyright (c) SIAM 2002

Problems 57

are flushed to zero then |η| ≤ λ. Only one of δ and η is nonzero: δ if no underflow
occurs, otherwise η. With gradual underflow the absolute error of an underflowed
result is no greater than the smallest (bound for the) absolute error that arises
from an operation fl(x op y) in which the arguments and result are normalized.
Moreover, with gradual underflow we can take η = 0 for op = +,− (see Prob-
lem 2.19). For more details, and a thorough discussion of how error analysis of
standard algorithms is affected by using the model (2.8), see the perceptive paper
by Demmel [308, ]. Another relevant reference is Neumaier [884, ].

Hauser [553, ] gives a thorough and very readable treatment of exception
handling, covering underflow, overflow, indeterminate or undefined cases, and their
support in software.

An important problem not considered in this chapter is the conversion of num-
bers between decimal and binary representations. These conversions are needed
whenever numbers are read into a computer or printed out. They tend to be
taken for granted, but if not done carefully they can lead to puzzling behaviour,
such as a number read in as 0.1 being printed out as 0.099 . . . 9. To be precise,
the problems of interest are (a) convert a number represented in decimal nota-
tion to the best binary floating point representation of a given precision, and (b)
given a binary floating point number, print a correctly rounded decimal represen-
tation, either to a given number of significant digits or to the smallest number of
significant digits that allows the number to be re-read without loss of accuracy.
Algorithms for solving these problems are given by Clinger [247, ] and Steele
and White [1060, ]; Gay [470, ] gives some improvements to the algo-
rithms and C code implementing them. Precise requirements for binary–decimal
conversion are specified in the IEEE arithmetic standard. A program for testing
the correctness of binary–decimal conversion routines is described by Paxson [930,
]. Early references on base conversion are Goldberg [497, ] and Matula
[829, ], [830, ]. It is interesting to note that, in Fortran or C, where the
output format for a “print” statement can be precisely specified, most compilers
will, for an (in)appropriate choice of format, print a decimal string that contains
many more significant digits than are determined by the floating point number
whose value is being represented.

Other authors who have analysed various aspects of floating (and fixed) point
arithmetic include Diamond [339, ], Urabe [1174, ], and Feldstein, Good-
man, and co-authors [510, ], [407, ], [511, ], [408, ]. For a survey
of computer arithmetic up until 1976 that includes a number of references not
given here, see Garner [460, ].

Problems

The exercise had warmed my blood,

and I was beginning to enjoy myself amazingly.

— JOHN BUCHAN, The Thirty-Nine Steps (1915)

2.1. How many normalized numbers and how many subnormal numbers are there
in the system F defined in (2.1) with emin ≤ e ≤ emax? What are the figures for
IEEE single and double precision (base 2)?

Copyright (c) SIAM 2002

58 Floating Point Arithmetic

2.2. Prove Lemma 2.1.

2.3. In IEEE arithmetic how many double precision numbers are there between
any two adjacent nonzero single precision numbers?

2.4. Prove Theorem 2.3.

2.5. Show that

0.1 =

∞∑

i=1

(2−4i + 2−4i−1)

and deduce that 0.1 has the base 2 representation 0.0001100 (repeating last 4
bits). Let x̂ = fl(0.1) be the rounded version of 0.1 obtained in binary IEEE
single precision arithmetic (u = 2−24). Show that (x− x̂)/x = − 1

4u.

2.6. What is the largest integer p such that all integers in the interval [−p, p] are
exactly representable in IEEE double precision arithmetic? What is the corre-
sponding p for IEEE single precision arithmetic?

2.7. Which of the following statements is true in IEEE arithmetic, assuming that
a and b are normalized floating point numbers and that no exception occurs in the
stated operations?

1. fl(a op b) = fl(b op a), op = +, ∗.
2. fl(b− a) = −fl(a− b).
3. fl(a+ a) = fl(2 ∗ a).

4. fl(0.5 ∗ a) = fl(a/2).

5. fl((a+ b) + c) = fl(a+ (b+ c)).

6. a ≤ fl((a+ b)/2) ≤ b, given that a ≤ b.

2.8. Show that the inequalities a ≤ fl((a+ b)/2) ≤ b, where a and b are floating
point numbers with a ≤ b, can be violated in base 10 arithmetic. Show that
a ≤ fl(a+ (b− a)/2) ≤ b in base β arithmetic, for any β.

2.9. What is the result of the computation
√

1− 2−53 in IEEE double precision
arithmetic, with and without double rounding from an extended format with a
64-bit significand?

2.10. A theorem of Kahan [496, , Thm. 7] says that if β = 2 and the arith-
metic rounds as specified in the IEEE standard, then for integers m and n with
|m| < 2t−1 and n = 2i + 2j (some i, j), fl((m/n) ∗ n) = m. Thus, for example,
fl((1/3)∗3) = 1 (even though fl(1/3) 6= 1/3). The sequence of allowable n begins
1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 16, 17, 18, 20, so Kahan’s theorem covers many common
cases. Test the theorem on your computer.

2.11. Investigate the leading significant digit distribution for numbers obtained
as follows.

1. kn, n = 0: 1000 for k = 2 and 3.

2. n!, n = 1: 1000.

Copyright (c) SIAM 2002

Problems 59

3. The eigenvalues of a random symmetric matrix.

4. Physical constants from published tables.

5. From the front page of the London Times or the New York Times.

(Note that in writing a program for the first case you can form the powers of 2 or
3 in order, following each multiplication by a division by 10, as necessary, to keep
the result in the range [1, 10]. Similarly for the second case.)

2.12. (Edelman [379, ]) Let x be a floating point number in IEEE double
precision arithmetic satisfying 1 ≤ x < 2. Show that fl(x ∗ (1/x)) is either 1 or
1− ǫ/2, where ǫ = 2−52 (the machine epsilon).

2.13. (Edelman [379, ]) Consider IEEE double precision arithmetic. Find the
smallest positive integer j such that fl(x ∗ (1/x)) 6= 1, where x = 1 + jǫ, with
ǫ = 2−52 (the machine epsilon).

2.14. Kahan has stated that “an (over-)estimate of u can be obtained for almost
any machine by computing |3 × (4/3 − 1) − 1| using rounded floating-point for
every operation”. Test this estimate against u on any machines available to you.

2.15. What is 00 in IEEE arithmetic?

2.16. Evaluate these expressions in any IEEE arithmetic environment available
to you. Are the values returned what you would expect? (None of the results is
specified by the IEEE standard.)

1. 1∞.

2. 2∞.

3. exp(∞), exp(−∞).

4. sign(NaN), sign(−NaN).

5. NaN0.

6. ∞0.

7. 1NaN.

8. log(∞), log(−∞), log(0).

2.17. Let xmax denote the largest representable number in IEEE single or double
precision arithmetic. In what circumstances does 2xmax not overflow?

2.18. Can Theorem 2.4 be strengthened to say that fl(x−y) is computed exactly
whenever the exponents of x ≥ 0 and y ≥ 0 differ by at most 1?

2.19. (Hauser [553, ]) Show that with gradual underflow, if x and y are
floating point numbers and fl(x± y) underflows then fl(x± y) = x± y.

2.20. Two requirements that we might ask of a routine for computing
√
x in

floating point arithmetic are that the identities
√
x2 = |x| and (

√
x)2 = |x| be

satisfied. Which, if either, of these is a reasonable requirement?

2.21. Are there any floating point values of x and y (excepting values both 0, or
so huge or tiny as to cause overflow or underflow) for which the computed value

of x/
√
x2 + y2 exceeds 1?

Copyright (c) SIAM 2002

60 Floating Point Arithmetic

2.22. (Kahan) A natural way to compute the maximum of two numbers x and y
is with the code

% max(x, y)
if x > y then

max = x
else

max = y
end

Does this code always produce the expected answer in IEEE arithmetic?

2.23. Prove that Kahan’s formula (2.7) computes the area of a triangle accurately.
(Hint: you will need one invocation of Theorem 2.5.)

2.24. (Kahan) Describe the result of the computation y = (x+x)−x on a binary
machine with a guard digit and one without a guard digit.

2.25. (Kahan) Let f(x) =
(
((x− 0.5) + x)− 0.5

)
+ x. Show that if f is evaluated

as shown in single or double precision binary IEEE arithmetic then f(x) 6= 0 for
all floating point numbers x.

2.26. Show that if x and y are floating point numbers and â = fl(xy) and b̂ =

fl(xy − â) are computed using fused multiply-add operations, then â+ b̂ ≡ xy.

2.27. (Kahan) Show that with the use of a fused multiply-add operation the al-
gorithm

w = bc
e = w − bc
x = (ad− w) + e

computes x = det(
[

a
c

b
d

]
) with high relative accuracy.

2.28. Suppose we have an iterative algorithm for computing z = x/y. Derive a
convergence test that terminates the iteration (only) when full accuracy has been
achieved. Assume the use of IEEE arithmetic with gradual underflow (use (2.8)).

Copyright (c) SIAM 2002

