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Giant radio pulses (GRPs) are sporadic bursts emitted by some pulsars that last a few microseconds
and are hundreds to thousands of times brighter than regular pulses from these sources. The only
GRP-associated emission outside of radio wavelengths is from the Crab Pulsar, where optical emission is
enhanced by a few percentage points during GRPs. We observed the Crab Pulsar simultaneously at x-ray
and radio wavelengths, finding enhancement of the x-ray emission by 3.8 ± 0.7% (a 5.4s detection)
coinciding with GRPs. This implies that the total emitted energy from GRPs is tens to hundreds of times
higher than previously known. We discuss the implications for the pulsar emission mechanism and
extragalactic fast radio bursts.

S
pinning neutron stars emit periodic ra-
dio pulses from their magnetospheres,
which can be observed as a pulsar. The
radio pulses are emitted by a coherent
mechanism (1). Some pulsars also show

optical, x-ray, and gamma-ray pulses, which
are usually interpreted using incoherent emis-
sion mechanisms. Giant radio pulses (GRPs)
are a form of sporadic pulsar emission that
have radio fluences at least an order of mag-
nitude higher than those of regular pulses
and are of unknown origin (2, 3). GRPs have a
power-law intensity distribution, unlike regu-
lar pulses, which have log-normal or exponen-
tial intensity distributions (4).
GRPs are bright, sometimes exceeding a

megajansky (MJy,where 1 Jy = 10–26Wm-2Hz–1)
for a few nanoseconds to microseconds (5).
This is sufficient to detect each GRP during a
single stellar rotation. GRPs from young neu-
tron stars have been proposed as the origin of

fast radio bursts (FRBs), short-duration radio
transients at cosmological distances (6, 7). A
nearby counterpart has provided evidence for
this association (8, 9) and for a connection
between coherent and incoherent processes in
the neutron star magnetosphere (10). Although
GRPs are not the leading explanation for FRBs,
the broadband characteristics of GRPs provide
information on coherent radio emission in neu-
tron star magnetospheres that may be relevant
to FRBs.
GRPs have been detected from only a small

fraction of pulsars (11, 12). The pulsar in the
Crab Nebula, known as the Crab Pulsar (PSR
B0531+21), was initially discovered by its GRPs
(13). Regular periodic emission from the Crab
Pulsar occurs from low-frequency radio waves
to high-energy gamma rays. At 2 GHz (S-band),
the GRP emission occurs at two rotational
phases: the main pulse (MP) and the inter-
pulse (IP), with a phase separation of 0.4 cycles.

Sporadic GRPs occur both at the MP and IP of
the average radio pulse, with each individual
GRP lasting for a much narrower interval
(~3 × 10–4 in phase) than the regular pulse.
Previous studies have searched for a corre-

lation between radio giant pulses and higher
energy emission [table S1; (14)]. The radio flux
of GRPs is two to three orders of magnitude
higher than regular pulses, and such a large
enhancement does not occur at other wave-
lengths. An enhancement of ~3% (7.8s signif-
icance) is known in the optical band (650 to
700 nm) (15) and has been independently con-
firmed (16). X-ray and gamma-ray observations
have not detected any statistically significant
correlations (14).
We searched for enhancement in x-rays

during GRPs from the Crab Pulsar using the
Neutron star Interior Composition Explorer
(NICER) x-ray observatory mounted on the
International Space Station (17).NICER has an
effective collecting area of 1900 cm2 at 1.5 keV,
time resolution <100 ns, and flexible schedul-
ing. Since launch in 2017, we have monitored
the Crab Pulsar withNICER for calibration and
scientific purposes. The total average count rate
of the Crab Pulsar and Crab Nebula combined
is 1.1 × 104 counts s–1 in the 0.3- to 10-keV band
(~370 counts per spin cycle), which is below
NICER’s maximum throughput of ~3.8 × 104

counts s–1, and thus the data are nearly un-
affected by pileup, dead-time, and data-transfer
losses. The constant emission from the Crab
Nebula (1.03 × 104 counts s–1) was subtracted
before analyzing the GRPs. We also observed
the Crab Pulsar with two radio telescopes in
Japan: the 34-m radio telescope of the Kashima
Space Technology Center (18) and the 64-m
radio dish of the Usuda Deep Space Center,
both operating at 2 GHz [tables S2 to S5
and figs. S1 to S8; (14)]. In 2017–2019, we coor-
dinated 15 NICER observations concurrently
with either theUsuda orKashima observatories
[tables S2 and S6; (14)]. We extracted a total
of 126 ks of exposure with simultaneous radio
and x-ray coverage (14). The arrival time of
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each x-ray photonwas converted to barycentric
dynamical time. Figure 1A shows themeasured
x-ray pulse profile in bins of 132 ms. The x-ray
MP peak precedes the average radio profile by
the rotation phase Df ≅ 0.01 (~300 ms), con-
sistentwith previous observations (19).Movie S1
shows how this profile accumulated as a func-
tion of exposure.
During the concurrent coverage, we detected

~2.49 × 104 and ~1.75 × 103 GRPs at theMP and
IP phases of f = 0.9917 to 1.0083 and f =
1.3944 to 1.4111, respectively (hereafter MP-
GRPs and IP-GRPs, respectively). The occur-
rence rates of MP-GRPs and IP-GRPs at the
S-band are 0.67% (24,851 cycles) and 0.047%
(1,749 cycles), respectively, of the observed
3,731,830 pulsar rotations. Figure 1A shows
the phase distribution of the GRPs. We defined
our GRP samples as those pulses with signal-
to-noise ratio exceeding 5.0s, which corre-
sponds to a fluence of ≳103 Jy ms [fig. S8 (14)].
The occurrence phases and fractions of the
MP- and IP-GRPs are consistent with past
measurements (20, 21).

We combined the x-ray photons in three bins,
corresponding to pulsar rotation cycles where
MP-GRPs, IP-GRPs, or neither occurred. These
are hereafter referred to asMP-GRP-associated,
IP-GRP-associated, or non-GRP-associated x-ray
events, respectively. Figure 1B compares the
MP-GRP-associated x-ray profile with the non-
GRP-associated profile. TheMP-GRP-associated
x-ray profile shows an enhancement around
the phase of the MP, with characteristics sim-
ilar to those of the previously reported optical
enhancement (15, 16). Within the pulse phase
interval f = 0.985 to 0.997 [the same width
as the optical measurement (16), taking into
account the observed phase shift between
the x-ray and optical bands (22)], theMP-GRP-
associated x-ray profile shows an enhancement
by 3.8T0.7% over the non-GRP-associated
profile. We performed the same analysis for
IP-GRP-associated x-rays, but did not find statis-
tically significant enhancement, deriving a 3s
upper limit of 10% at f = 1.378 to 1.402 rota-
tional phase (14). Hereafter, we focus on the
MP-GRP-associated case.

To evaluate the statistical significance of
this enhancement, we generated synthetic
x-ray samples that have no correlation with
MP-GRPs, taking into account the look else-
where effect (23). We randomly selected x-ray
events with the same number of cycles as the
MP-associated ones (24,826 cycles) from the
non-GRP-associated sample. We repeatedly
generated 1000 synthetic control samples and
made a histogram of simulated enhancements
(14). This histogramhas aGaussian distribution
with mean –0.02% and SD 0.70%. Therefore,
the significance of our measured enhance-
ment is 3.8%/0.70% = 5.4s. Figure 2 shows the
growth curves of the detection significance
and the x-ray enhancement rate as a func-
tion of the accumulated numbers ofMP-GRP-
associated cycles. The curves show the expected
monotonic increase in significance, propor-
tional to the square root of the number of the
MP-GRP-associated cycles, and a consistent
x-ray enhancement rate. We also confirmed
this detection with a lag analysis (14). We did
not detect any spectral changes (at the MP)
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Fig. 1. X-ray and optical pulse profiles of the
Crab Pulsar compared with GRPs. (A) The 0.3-
to 10.0-keV profile (black histogram) observed
with NICER in 2017–2019 (left axis). The profile
was generated with 250 phase bins per spin
period, includes the contribution from the Crab
Nebula, and is normalized by the total number of
pulsar spin cycles. Two pulse cycles are shown
for clarity. The phase distribution of GRPs is shown
in blue, as measured in our 2.2- to 2.3-GHz radio
data from the Usuda and Kashima observatories
(right axis). (B) A zoomed view of gray-shaded
area of (A). Black and red circle symbols
connected with solid lines show the x-ray profiles
without and with GRP association, respectively,
with error bars indicating the 1s statistical
uncertainties (error bars of the black circle
and gray triangle points are too small to be
visible). The blue histogram shows the GRP
occurrence distribution [identical to (A)]. The faint
dashed lines (black and red triangle symbols)
show the optical profiles without and
with GRP association, respectively, normalized
by an arbitrary scaling (16).
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between the GRP-associated and the non-
GRP-associated profiles, only an increase in
normalization corresponding to the GRP en-
hancement (14).
The total number of x-ray photons concur-

rent with radio observations in our analysis
was 1.4 × 109 counts, about three orders of
magnitude higher than previous x-ray studies
[e.g., (3, 21)]. Figure 3 compares our detection
of the x-ray enhancement of MP-GRPs with
previous multiwavelength studies [table S1;
(14)]. Our detection of a 3.8% x-ray enhance-
ment is consistent with the upper limits of
~10% obtained in previous studies and similar
to the measured 3.2 ± 0.5% optical enhance-
ment (16). The pulse phase where this x-ray
excess appears, f = 0.985 to 0.997, is also con-
sistent with the reported enhancement phase
(f = 0.987 to 0.999) at optical wavelengths
(16). This implies that the MP-GRP-associated
higher-energy component extends from optical
to x-rays without a change in the pulse phase
or a spectral cutoff compared with the average
regular pulse. The x-ray flux of the regular
pulsed emission (~4.43 × 10–9 ergs s–1 cm–2 in
0.3 to 10 keV) is ~1000 and ~107 times higher
than those of the optical pulses [~4.6 × 10–12

ergs s–1 cm–2 at 5500 Å (24)] and regular radio
pulses [~1.7 × 10–16 ergs s–1 cm–2 at 2 GHz (25)],
respectively. Assuming the same enhancement
rate (~4%) in both the optical and x-ray bands
implies one to two orders ofmagnitude higher
total energy (both flux and fluence) emitted
from GRP-associated events than the value
derived from the radio and optical data only.

If the x-ray enhancement derived by aver-
aging over ~300 ms (Fig. 1) consists of mul-
tiple short pulses similar to GRP pulses (a
typical duration of ~15 ms for each GRP, eval-
uated as fluence divided by the individual
peak flux), the peak x-ray flux could be much
higher (~20 times) than the averaged enhance-
ment flux.
These results constrain the GRP emission

mechanism. The same degree of enhancements
(~4%) between the optical and x-rays indicates
that the GRP-associated high-energy radiation
has the same spectral energy distribution as
that of regular pulses. Thus, the energy dis-
tribution of GRP-emitting particles is similar
to those of particles emitting regular pulses,
which result from particle acceleration in the
pulsar magnetosphere or a thin corrugated
plasma flow at the equatorial plane (a current
sheet). The x-ray emission associatedwithGRPs
implies that the radio emission efficiency is
≲1%, consistent with a magnetic reconnection
model (26).
A previously proposed model of GRP high-

energy radiation invokes a temporal increase
in particle number density in the emitting
region (27). The difference in enhancement
between the radio (several orders of magni-
tude) and optical/x-ray bands (~4%) is then
attributed to incoherent (x-ray and optical)
emissions being proportional to the particle
number, whereas coherent (radio) emission
is proportional to the particle number squared
(see the supplementary text). Other proposed
mechanisms are emission from high-energy

particles in the plasma blobs (plasmoids) gen-
erated by magnetic reconnection (26) or from
the resonant absorption of radio photons by
x-ray emitting particles (28) (14).
Bright GRPs from young and energetic pul-

sars or magnetars have been proposed as low-
energy analogs of FRBs (7), but this proposal
has been disputed (29). The proposal relies on
the unknown GRP radio emission efficiency h
relative to the spin-down luminosity. Even in
the case of an extremely high efficiency (h ~ 1),
the spin-down time scale for FRB sources are
shorter than 100 years (29, 30). If FRBs are
accompanied by x-ray emission increases sim-
ilar to Crab GRPs, then the spin-down rate
wouldbe enhancedby a factor of 1/hwith h << 1.
This would cause rapid radio flux decay, which
is inconsistentwith observations of the repeat-
ing FRB 121102 (31). Our results therefore dis-
favor the proposed connection between GRPs
and repeating FRBs.
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as a function of the
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MP-GRPs. Data accumu-
lation was performed
chronologically, i.e., each
data point represents
all the NICER data up to
that epoch. The horizontal
blue dot-dashed line is
the 5s detection
significance level, and the
red dashed curve is
the best-fitting model: the
square root of the cycle
number. (B) Same as
(A) but for the degree of
x-ray enhancement. The
horizontal dashed line
shows the 3.8% enhance-
ment ratio derived from the entire dataset. Error bars are statistical 1s uncertainties.
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and >0.1, respectively. For our observed radio
enhancements with Kashima and Usuda, the
detection threshold is shown with the magenta
upward arrow.
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