AD=A117 985 CALIFORNEA UN!V BERKELEY DEPY OF MATHEMATICS 9/2 "
THE NEAR ORTHOGONALITY OF SYNTAX: SEMANTICS, AND DIAGNOSTICS IN-°ETC(U)
1982 W KAHANe. J T COONEN NO 001“-76-C-001

UNCLASSIFIED

e e

THE RELATIONSHIP BETWEEN NUMERICAL COMPUTATION
AND PROGRAMMING LANGUAGES, J.K. Reid (editor)
North-Holland Publishing Company

© IFIP, 1982

The Near Orthogonality of Syntax, Semantics, anD ‘ ‘
Diagnostics in Numerical Programming Environme!

:

m
m
O
-
m

¥. Kahan and Jerome T. Coonen

Mathematics Department
University of California
Berkeley, California 84720

USA. “__E ’;3

We can improve numerical programming by recognizing that three aspects of the
computing environment belong Lo intellectually separate compartments. ‘One is the
syntax of the language, be it Ada, C, Fortran or Pascal, which gives legitimacy to
various expressions without completely specifying their meaning. Another might be
calied ‘“arithmetic semantics™. It concerns the diverse values produced by

,;.:54 different computers for the same expression in a given language, including the

Y9

values delivered after exceptions like over/underflow. The third compartment in-
cludes diagnostic aids, like error flags and messages; these too can be specified in
language-independent ways. However imperfect, this decoupling should spell out
for all concerned the nature of arithmetic responsibilities to be borne by hardware
designers, by compiler writers and by operating system programmers.

“Another of the great advantages of using the axiomatic
approach is that axioms offer a simple and flexible technigque for
leaving certain aspects of a language wundefined, for
example...accuracy of floating point... This is absolutely essen-
tial for standardization purposes...”

- C. A. R. Hoare (1989)

Prolessor Hoare's attitude toward floating point semantics refiects the anarchy
that befell commercial floating point hardware early in the 19680's [1], and wor-
sened in the 70's. That anarchy confounded attempts to characterize all floating
point arithmetics in one intellectually manageable way. Now there is hope for the
1980's. A new standard for binary floating point arithmetic has been proposed
belore the IEEE Computer Society, and a radix-independent sequel is in the works.
Since the binary standard has been adopted by a broad range of computer
manufacturers, including much of the microprocessor industry, we expect numeri-
cal programs to behave more nearly uniformly across different computers, and
perhaps across different languages as well. A drait of the binary standard, along
rith several supporting papers, may be found in the March 1981 issue of Computer
2-5)

Sterting in the 1960's programming language designers came to be the
arbiters of most aspects of the programming environment. With control of the pro-
grammers' vocabulary, language designers could control fundamental features
such as the number of numeric data types available and the extent of run time
exception handling. The language even limited the numeric values available by
constraining the literals in the source text. This is not to say that languege
designers acted capriciously. They were disinclined to mention any capability not
available on all computers. In this respect computer architects have laid a heavy
hand on the compuling environment. Languages must reflect the least common
denominator of available features, and so they tend to vague oversimplifications
where floating point is concerned. An extreme case is the new language Ada which,
by incorporating W. Stan Brown's very general model for floating point computation
(8], pretends that the difference between one computer's arithmetic and another's
is merely a matter of a few environmental parameters. But sometimes the

82 08 03 vag

o e R AR e s T e

‘D€ FILE copy

e

104 W. Kahan and J.T. Coonen

programmer must know his machine’s arithmetic to the last detail, especially when
trying to circumvent limitations in range or precision. These deteils, dangling
between languege designers and computer architects, too often receive short shrift
from both. Tying up these loose ends would improve the computing environment

0f course the computing environment inviles numerous improvements, to
graphics, file handling, database management and others, as well as floating point
and languages. But enhancements to which high-level languages deny access are
enhancements destined to die. Those of us working on the proposed IEEE floating
point standards have had to face this problem. We believe the solution is a proper
division of labor, rather than grand attempts to improve too many aspects of the
computing environment simultaneously; the latter way would require impractical
coordination. For example, to encourage independent development of program-
ming languages and floating point hardware, we propose that language (syntactic)
issues be decoupled from arithmetic (semantic) issues to the extent possible. We
present our view of the interplay between syntax, semantics, and diagnostics as
parts of the computing environment, and discuss how they interface with each
other. Given an adequate interface discipline, we hope that responsibility for these
parts can be divided among language designers, numerical analysts, systems pro-
grammers, and others. In the past this division has been unclear. Unfortunately,
when everybody is responsible, or when nobody is responsible, then everybody can
be irresponsible.

Portability

We regard the programming language as just one layer of the computing
environment, dissenting from a more traditional view that the language is the
environment. What does this mean for program portability? Until very recently,
portability of numerical programs was considered to be a quality of source code
that could be compiled and run successfully without change on a variety of com-
puters. The issues appeared largely syntactic. For example, programs like the
PFORT verifier [7] were developed to check Foriran codes for adherence to a stan-
dard for "‘portable Fortran'’, their principal task being to weed out various quirks
of dialect. Nowadays, we acknowledge that the portability issues go deeper than
differences among Fortran dialects. They entail the (semantic) subtleties of
over/underflow and rounding that, if ignored, can cause ostensibly portable pro-
grams that function beautifully on one machine to fail on another. Programming
languages that lack the vocabulary required to address these issues aren’t very
helpful here. If we cannot ''mention’’ these issues how can we resolve them?

Ideally, the variation of floating point arithmetic from one machine to another
should be describable with a few parameters [8] which portable programs could
determine through system-dependent environmental inquiries [8]. This scheme
works satisfactorily for many programs that do not depend critically upon the finer
points of the arithmetic. However, any such parameterization must be based upon
an abstract model encompassing simultaneously all current arithmetic engines,
some of them disconcertingly anomalous [1, 10]. To insist that this model underlie
portable programming is to dump upon programmers the onus to discover and
defend against all mishaps the model permits, some of them mere artifacts of gen-
erality. This in turn would burden programs with copious tests against subtle (and
certainly machine-dependent) thresholds to avoid problems with idiosyncratic
rounding and over/underflow phenomena. A programmer who shirks his responsi-
bility to produce robust code obliges the user of his program, possibly another pro-
grammer, to unravel a more tangled web. Ultimately, the buck may be passed to
users who find either their programs or their computers to be inexplicably unreli-
able. We doubt that any semantic analog of the PFORT verifier will ever be able lo
test for robust independence of the underlying arithmetic. Computer arithmetics
are too diverse to allow every potentially useful numerical algorithm to be pro-
grammed straightforwardly in a fashion formally independent of the underlying

o

¥

The Near Orthogonality of Syntax 105

machine.

Portability at the source code level is nice when inexpensive. When not, we are
content with ‘'{ransportability’’, whereby algorithms can be moved from one
environment io another by routine text conversion, possibly with some aid from
automation. An algorithm may depend critically upon the underlying arithmetic
semantics and upon a system’s ability to communicate error reports between sub-
programs. !t is transportable to the extent that the dependencies can be commun-
icated in natural language using mathematical terms, if not in Fortran. We are not
advocating yet another programming language. We prefer that programmers
accompany their codes with some documentation that explains, and can even be
used to verify, how the program handles its interactions with the underlying sys-
tem. Because computing environments are so diverse, we expect some algorithms
to be transportable to only a few systems, not all; this does not undermine the
notion of transportability. Essential to transportability is a manageable corpus of
information about

* syntax — the programming language o be used,

* semantics — the arithmetic of the underlying computer, including the run-time
libraries of functions like cos(), and

¢ diagnostics — the system’s facilities for error reporting and handling,

preferably no more than can fit on a short bookshelf, and yet enough to cover a
wide range of manufacturers’ equipments.

Syntax

In this paper, syntaz refers to the expressions in a language —~ which ones are
legitimate and how they are parsed. Issues relevant to numerical calculations
include the number of data formats available, how they combine to form arrays and
structures, and the order of evaluation in unparenthesized expressions. Langusges
vary greatly in their provision of numeric data formats, usually called “types’.
Both Basic and APL have just one numeric type, which is to be used for both integer
and floating point calculations; Pascal and Algol 80 have just one real type. Fortran
and C have single and double types, although in C all floating expressions are of
type double. PL/I programmers may specily the precision of their floating point
variables, though they typically map into the single and double types supported by
the underlying system. The new language Ada provides syntactic ''packages” in
which floating types may be defined to correspond to the host system's facilities,
but its strong Lyping prohibits mixing of different user-defined types in expressions
without explicit coercions, even if the underlying hardware types are the same.

Expression evaluation is just as varied. For example, in
1.0 + /2

most compilers would recognize the 3 and 2 as integers. Their ratio would be
evaluated as the real 1.5 or truncated integer 1 depending upon the strength of the
1.0 to coerce their types. Different Fortran compilers have disagreed in this situa-
tion. In Ada such an expression would be illegal unless the 3 and 2 were written
with decimal points to indicate that they were real literals. What aboul the
unparenthesized expression

A*B+C 7

Most languages, like Fortran, evaluate it as if it were written (4°B) + C, but APL
evaluates A x B + C as if it were written A x (B+C). The situation gets more com-
plicated when relational and boolean operators are involved. In Pascal, the attempt
to simplity the language by keeping the number of levels of operator precedence
small led to some surprises for programmers. For example, because the conjunc-
tion N has greater precedence than <, the expression

S s

L%

— - —

-—

106 W. Kahan and J.T. Coonen

T<y Ny<z ,

used for checking bounds on the variable y, has the bizarre interpretation
(z<ynyli<ez

which is illegal because of the appearance of the real ¥ as an operand to n.

Perhaps the widest syntactic liberties are taken by standard C compilers.
Expressions of the form

a+bdb+c |

where a, b, and ¢ may be subexpressions, are evaluated in an order determined at
compile time according to the complexity of @, &, and ¢. This is so regardless of
parentheses such as

(@ +b)+¢

Such a convention is disastrous in floating point where, say, (a+b) cancels to a
small residual to be added into the accumulation ¢. In such cases all accuracy may
be lost it (4+¢) is evaluated first at the compiler's whim. The cautious program-
mer who writes

(x —05)-05

to defend against a machine’s lack of a guard digit during subtraction will always
be vulnerable, if not to a C compiler then to an optimizer that collapses the expres-
sion into the algebraically, though not numerically, equivalent form (z - 1.0).

To jump the gun a bit, it is clear {from the examples above that synfax con-
strains semantics. Syntax also constrains programmers who, C compilers notwith-
standing, are well advised to preclude any ambiguity in expression evaluation by
inserting parentheses liberally.

Semantics

We concentrate here on arithmetic semantics. That is, after an expression has
been parsed — so the computer knows which operations to perform — what does its
evaluation yield? Floating point semantics depends vitally on the underlying arith-
metic engine. The initiated reader realizes that this is where the real headaches
set in. For example, on machines such as programmable calculators where the
fundamental constants 7 and e are available in a few strokes, we might expect

(mxe) — (e xn)

to evaluate to 0.0 since, semantically, we expect multiplication to be commutative
despite roundoff. Unfortunately, even this simple statement is not universally true.
Different Texas Instruments calculators yield different tiny values for the expres-
sion above; and it's not just a matter of machine size and economy, for early edi-
tions of the Cray-I supercomputer exhibited similar noncommutativity.

Another well-known example of murky semantics is the expression
X - (1.ox X}

which is exactly X rather than 0.0 for sufficiently tiny nonzero values X on Cray
and CDC computers. On these machines (1.0xX) flushes to 0.0 for those tiny X. On
some other machines that lacked a guard digit for multiplication, the expression
abave was nonzerc whenever X's last significant digit was odd!

Hardware-related anomalies like these seem to predominate in any serious
treatment of arithmetic semantics. Such distractions are what led Professor Hoare
to despair about floating point in high-level languages. We will not dig further into
the lore of arithmetic anomalies. Interested readers can find an introduction in
[1]. The technical report {10] studies the overall impact of anomalies and com-
pares two approaches to improvement.

na

The Near Orthogonality of Syntax 107

Arithmetic semantics is not restricted to simple operations. In languages like
Basic that include matrix operations, assignments like

MAT X = INV(4) * B

are allowed. As users might expect, most implementations evaluate (47')*B
(approximately), following the strict mathematical interpretation of the formula.
However, more robust systems by Tektronix and Hewlett-Packard use Gaussian
elimination to solve the linear system AX = B for X, thereby obtaining a usually
more accurate X that is guaranteed to have a residual 5 ~ AX small compared
with |B| + |A|-{X|. If A is close enough to singular, the subexpression /NV(4)
may be valid or not depending upon good or bad luck with rounding errors ~ on all
machines except the Hewlett-Packard HP 85. All machines solve (4 + 84)X = F
with A4 comparable to roundoff in A though possibly differing from column to
column of X. The HP B85 further constrains A4 to guarantee that (4 + 84)~! exists.
Thus it has no “'SINGULAR MATRIX" diagnostic. Consequently, a program using
inverse iteration to compute eigenvectors always succeeds on the HP 85 but on
ather machines is certain to fail for some innocuous data. Is such a program, using
& standard technique, portable or not? Who is to blame if it is not?

Arithmetic exceptions such as over/underfiow and division by zero fit into our
informal notion of semantics when they are given “values’’. We take this view in
spile of a current trend among authors to consider exceptions under a separate
heading pragmatics. This trend is understandable, given the variety of exception
handling schemes across different hardware. Consider for example the expression
0.0/0.0 . When they are to continue calculation (i.e. without a trap) CDC, DEC
PDP/VAX-11, and proposed IEEE standard machines stuff a non-numeric error sym-
bol in the destination field. This symbol is then propagated through further opera-
tions. Most other machines just stop, {forcing program termination. At least one
will store the “‘answer” 1.0.

Dividing zero by itself i= usually bad news within a program, so the diversity of
disasters that arise on verious machines is not too surprising. A quite different
situation arises with the exponentiation operator in YX. Since this is part of the
syntax of several languages, for example Fortran, Basic, and Ada, responsibility for
its semantics has been taken by language implementors. Of the many problems
that arise we will consider just one: what is the domain of ¥*¥ when both X and Y
are real variables? Consider the simple case (—3.0)>9, which is:

-27.0 ...on very good machines,
—~26.999...9 ...on good machines,
TERMINATION ...on bad machines,
undefined ...on cop-outs,
+27.0 ...on very bad machines.

Why this bizarre diversity of semantics? Although for arbitrary X the expression Y¥
may have no real value when Y is negative, the particular case above is benign
because X has an integer value 3.0. Thus restricting the domain of Y to nonnega-
tive numbers is unnecessarily punitive. We recommend that, should X be a floating
point Fortran variable with a nonzero integer value,

Y ¢ X = Y **INT(X) .

This cannot hurt Fortran users, but will help the Basic programmer (and the
conversion of programs from Basic) because most implementations of Basic, with
just one numeric data type, cennot distinguish the real 3.0 from the integer 3 in
the exponent. This recommendation costs extra only when Y is negative. On the
other hand, it Y is 0.0 we distinguish Y%9, which is an error, from Y° = 1.0 which
mathematics makes obligatory. Note that none of these issues are language issues,
though until now they have been settled by language implementors. Ideally, these
responsibilities should be lifted from language designers and implementors, and

e A 1 B A s T LT

A v B e,

| st

Ae

o

————

et

108 W. Kahan and J.T. Coonen

borne by people like the members of IFIP Working Group 2.5.

The point of this digression into the murk of pragmatics was to indicate that
the current situation in exception handling is the result of a host of design flaws
rather than inherent difficulties. We object to the connotation "'pragmatics’ car-
ries with it of acquiescence to inevitable hazards. We prefer to capture all seman-
tics, including the anomalies, under one heading even if this entails a different
semantics for each different implementation of arithmetic. This exposes rather
than corupounds a bad situation.

A notably clean and complete arithmetic semantics is provided by the pro-
posed binary floating point standard. The IEEE subcommitiee responsible for the
proposal set out to specify the result of every operation, balancing safety against
utility when execution must continue after an exception. Even a cursory glance at
the proposal indicates the extent to which exception handling motivated the
design:
* Sigyned = for overflow and division by 0.0.

* Signed 0.0 to interact with +e, e.g. +1.0/ ~0.0 = —co.
* NaN - not a number — symbols for invalid results like 0.0/0.0 and V=3.

* Dencrmalized numbers —~ unnormalized and with the format's minimum
exponent ~ to better approximate underflowed values.

* Sticky flags for all exceptions.
* Optional user traps for alternative exception handling.

These features promote comprehensible semantics for *'standard”” programming
systems.

Diagnostics

After syntax and semantics, the third aspect of the numerical programming
environment is the set of execution time diagno$tic aids. They may be roughly
divided into anticipatory and retrospective aids, and according to whether they find
use during debugging or during (robust) production use.

The principal anii~: . >ry debugging aid is the breakpoint for control flow and,
when the hardware permits, for data too. Some systems can monitor control or
data flow according to compiler directives inserted in a program. Retrospective
debugging aids include the familiar warnings and termination eulogies, as well as
the more voluminous memory dumps and control tracebacks. Systems with sticky
error flags can list those still standing when execution stops — in a sense they sig-
nal unrequited events.

For the production program that would be robust, and perhaps even portable,
the situation is not so clear. Because most current systems provide neither excep-
tion flags (such side effects are anathema to some language designers) nor error
recovery, & program — if it is not to stop ignominiously on unusual data — must
include precautionary tests to avoid zero denominators and negative radicands,
and tests against tiny, but carefully chosen, thresholds to ward off the effects of
underfliow to zero. The lack of flags can force the use of explicit error indicators in
subprogram argument lists to communicate exception conditions. The languages
Basic, PL/I, and Ada allow {or anticipatory exception handlers (e.g. ON <condition>
... in PL/I) but do not allow the exception handler to discover anything about the
exception beyond a rough category into which it has been lumped, thereby making
an automatic response by the program very cumbersome.

Another variety of anticipatory diagnostic aid is available through an option in
the proposed fioating point standard. It is essentially an extension of the PL/I
“on-condition’’ except that it is outside any current language syntax. This feature,
which might be called trap-with-menu, allows tie programmer to preselect from a
small list of responses an alternative to the default response. By devising the menu

o o 0RO T R X s e

B e

[. L N

"y

[

LY 2

e -

Hete 1 s

=
¥

‘_‘. (o kN

The Near Orthogonality of Syntax 109

carefully, we should be able Lo give the user sufficient flexibility without having to
cope with a voluminous floating point ‘‘state’” at the time of the exception.

The Syntactic—Semantic Interface

From the point of view of the numerical analyst, the semantic content of pro-
gramming languages is given by the following list.

* What are the numeric types, and what is their range and precision?

* Which numeric types are assigned io anonymous variables like intermediate
expressions, converted literals, arguments passed by value,...?

¢ Which numeric literals are allowed, and are they interpreted differently in the
source code than the 10 stream?

* Which basic arithmetic operations are availavle, and what is in the library of
scientific functions?

* Is there a well-understood vocabulary reserved for the concepts and functions
we need, and defended against collision with user-defined names?

* What happens when exceptions arise? How can error reports be communicated
between subprograms?

¢ Is there a way to alter the default options (for, say, rounding or handling of
underflow) by means of global flags?

These are among the knottiest issues in numerical computation. But, to a large
extent, they can be freed from the more conventional language issues and thus
resolved within the numerical community. Only questions about data types and the
change of control flow on exceptions are necessarily tied to language syntax.

Consider a hypothetical language with only skeletal numerical features.
Assume that integer types and arithmetic and character strings are “fully’’ sup-
ported. The language supports single and double real variables, pointers to them,
and allows real variables to be embedded in arrays und structures. There is also
provision for functions returning real values, and for real parameters passed either
by value or reference. But the only operation on real types is assignment of a sin-
gle value to a single variable, and of a double value to a double variable.

To be useful numerically, this hypothetical language wouid require a support
library providing the basic arithmetic operations as well as the usual comptement
of elementary functions. But because each operation more complicated than a
straight copymg of bits would result only from an explicit function call, the pro-
grammer would in principle have complete control of the arithmetic semantics (by
choosing & suitable library). As an example, consider the evaluation of the inner
product of the single arrays z[) and y[] using a double variable for the intermedi-
ate accumulation to minimize roundoft:

double_precision femp_sum,
temp_sum := DOUBLE_LITERAL("0.0");
foriini.ndo
temp_sum := DOUBLE_SUM(temp__sum,
SINGLE.TO_DOUBLE-PRODUCT(z{i], ¥[1])); od
inner_product := DOUBLE_TO_SINGLE(temp_sum);

Even this simple example exposes many of the questions that arise in numerical
programs. Would the constant 0.0 require a special notation (such as 0.0D0) to be
assigned to a double variable? In a more conventional rendition of the program the
inner loop would involve a statement of the form

temp_sum = temp_sum + z[i}*y[i};
Would the product be rounded to single precision before the accumulation into
temp_sum, destroying the advantage of double precision?

—

110 W. Kahan and J.T. Coonen

Semantic Packages

The skeleton language above may be unambiguous, but it is clearly much too
cumbersome for calculations involving complicated expressions. What we must do
is bridge the gap belween the handy syntactic expression z[i]®%[i] and the
semantically well-defined

SINGLE_TO_DOUBLE._PRODUCT(={i], y[i]) .
We propose to do this through so-called semantic packages.

It may be a sign of progress that the new language Ada comes very close to
suiting our needs. Although Ada incorporates the Erown model for arithmetic by
providing a set of predefined attributes for each real iype available to the program-
mer, this is in general insufficient for programs that would be robust. More impor-
tant for us, Ada allows the overloading and redefinition of the infix operators +, —,
etc. and in s6 doing provides the explicit connection between the operators and the
real hardware functions they represent. The semantic packages, corresponding
directly to the (syntactic) packages construct in Ada, could contain exact
specifications of the arithmetic functions (which are actually implemented in
hardware). Thus there would be a semantic package for each basic architecture,
for example IBM 370, DEC PDP/VAX-11, and the proposed IEFE binary standard.
Some semantic packages could be more general, encompassing several mechines
whose arithmetic is similar enough that a few environmental inquiries supply all
the distinction that is necessary for a wide range of applications. For example, one
such package might include IBM 370, Amdak), Data General MV /8000, HP 3000, DEC
PDP/VAX-11 and PDP-10, relegating Tl, CDC 6000, Cray 1 to another.

Our attempt to force the gritty details of arithmetic semantics upon program-
mers may dismay readers who embrace the modern trend to elevate the program-
ming environment above machine details. Such an attempt is made within Ada, by
means of a small set of predefined attributes associated with each real type. We
have already explained that this is not euough; :ometimes the program that would
be robust must respond to machine peculiaritiss that dely simple parameteriza-
tion. The report [10] on why we need a standard contains several examples.

An effort to ‘'package’ arithmetic semantics within various programming
languages may seem impossible. For example, the details of floating point, espe-
cially in the proposed IEEE standards, involve global flags to indicate errors, and
modes to determine how arithmetic be done. In Fortran, such state variables may
be defined as local data within the standard library functions whose job is te test
and alter the flags, although the actual implementation involves collusion with the
hardware flags. This is not a complete formalization, since Fortran provides no way
to describe the connection between the flags and the arithmetic operations.
Current trends in language design eschew error flags as side effects of the arith-
metic operations (functions). Modes and flags seem to violate the principle that all
causes and effects of expression evaluation should be visible within that expression.
Perhaps surprisingly, Ada again provides us with the desired facility — but without
excessive or expensive generality. In accordance with the Steeiman requirements
of the United States Department of Defense, Ada permits side effects " limited to
own variabies of encapsulations’”. This is exactly our intention in using semantic
packages to describe arithmetic.

Optimization

Any treatment of floating point semantics must deal with thal favorite whip-
ping boy, the code optimizer. We considered a most extreme example above, in
which C compilers would calculate floating sums like

(a+bd)+c ,

without regard to the parentheses, in whatever order makes best use of the regis-
ter file. This is simply a mistake in the language design.

AN

R,

T

3n

The Near Orthogonality of Syniax 111

Not all anomalies are so clear-cut. Some questions arise when, as in architec-
tures suggested by the proposed IEEE standard, extended registers with exira pre-
cision and range beyond both single and double types are used as intermediate
accumulators. Consider the typical code sequence

z:=a*d;
y:=z/¢c;

in which all variables are assumed to be of type single. If (a*b) were computed in
an extended register, should that value or the single value = be used in the evalua-
tion of ¥y? Efficiency dictates the former, saving one register load and lessening
the risk of spurious over/underflow. Buil common sense dictates the latter, so that
what the programmer sees is what the programmer gets.

A similar situation arises in inner product calculations of the type discussed
above. Consider the loop

double_precision temp._sum;
temp_sum = 0.0;
foriin 1..n do
temp._sum := temp_sum + z{i]*y[i]; od
inner_product .= lemp_sum,;

in which, like the earlier example, all variables are single except for the double
temp_sum. The fully “oplimized” compiler might run this loop with just two
extended registers, one Lo compute the products z{t]*y[7] and one to accumulate
temp_sum, thereby avoiding (n—1) register loads and stores by simply keeping
temp_sum in a register. Alas, the programmer asked for a double precision inter-
mediate, not extended, so such optimization is precluded.

The moral of these examples is that declared types must be honored. Also, the
type assigned by the compiler to anonymous variables must be deducible syntacti-
cally, or, better, it should be under the programmer's conirol. The alleged optimi-
zations above were disparaged because named variables were replaced surrepti-
tiously by extended counterparts that happened lo be in registers. This is not to
say thal extended evaluation is unhealthy; on the contrary, extended temporaries
can reduce the risk of spurious over/underflow or serious rounding errors, and
therefore should be used for anonymous variables. But the advantage of extended
is lost if languages prevent programmers from requesting it for declared tem-
poraries. The expression

temp_sum + z[i)*y[i)

in the loop above would best be computed entirely in extended before the store
into temp_sum. These facilities for extended expression evaluation are not unique
to the proposed IEEE standard; the benefits of wide accumulation were realized in
the earliest days of computing. The Fortran 77 standard includes some intention-
ally vague language about expression evaluation in order not to prohibit extended
intermediates, and the Ada standard, which seems to avoid some problems by
strict typing and requirements for explicit type conversions in programs, uses a
so-called universal_real type (at least as wide as all supported real types) for the
evaluation of literal expressions at compile time.

The use of an extended type for anonymous variables is prone to one class of
problems. When real values or expressions may be passed by value to subprograms
there may be a conflict between the implicit type of the expression and the
declared type of the targel formal parameter. This problemn arises in current
implementations of the language C, which supports both single and double types
but specifies that all real expressions are of type double. Suppose that a C pro-
gram contains the statement

——
112 W. Kahan and J.T. Coonen
y:=fla%h/c):
where all variables are of type float (single) and the function f() is defined by
float f(z)
float z;

How can the type of the expression (a* /c) be double while the type of the formal
parameter z is float? C resolves the discrepancy by silently countermanding the
declaration of # and replacing float by double. Once again, what you see is not
what you get. This use of wider intermediates, exploiting the PDP-11 floating point
architecture, is exactly analogous to one use of extended registers. Though it is
efficient and straightforward to irnplement, i is not acceptable.

Conclusion

We have cited examples to show that progress in numerical computing has
been slowed by questionable decisions in the design of computing languages and
systems. We have suggested a rough division into three categories, syntax, seman-
ties and diagnostics, so that the difficult issues could be resolved by those most
qualified ~ and most profoundly impacted. IFIP Working Group 2.5 might well take
responsibility for the interfaces with semantics. Ideally their efforts will lead to
fully specified environments for which reliable numerical software can be derived,
possibly automatically, from algorithms expressed in a mathematical form if not
already in a programming language. Programming then becomes a three phase
translation involving the language (syntax) to be used, the underlying arithmetic
engine (semantics), and the host system (diagnostics). We acknowledge that these
categories are not completely independent, and that the boundaries between them
cannot be drawn precisely, at least not yet. Nonetheless, we remain convinced that
those boundaries must be drawn if we are to bring the required expertise to bear
on the current morass.

Acknowledgement

This report was developed and originally typeset on a computer system funded
by the U. S. Department of Energy, Contract DE-AM03-76SF00034, Project Agree-
ment DE-AS03-79ER10358. The authors also acknowledge the financial support of
the Office of Naval Research, Contract N00014-76-C-0013.

Reterences
{1] Kahan, W., “A Survey of Error Analysis,'’ in: mformation Processing 71,
(North-Holland, Amsterdam, 1972) 1214-1239.

[2] A Proposed Standard for Binary Floating-Point Arithmetic,” Draft 8.0 of IEEE
Task P754, with an introduction by D. Stevenson, Computer, 14, no. 3, March
(1981) 51-82.

[3] Cody, W.J., “*Analysis of Proposals for the Floating-Point Standard,” Computer,
14, no. 3, March (1981) 63-68.

[4] Hough, David, “‘Applications of the Proposed IEEE 754 Standard to Floating-
Point Arithmetic,”” Computer, 14, no. 3, March (1981) 70-74.

[5] Coonen, Jerome T., "‘Underflow and the Denormalized Numbers,'* Computer, 14,
no. 3, March (1981) 75-87.

[8) Brown, W. S, “'A Simple Bul Realistic Model of Floating-Point Computation,’ to
appear in ACM Transactions on Mathematical Software, 1881.

[?] Ryder, B. G., "“The PFORT Verifier", Software — Practice and Ezperience, 4
(1674) 359-377.

[8] Sterbenz, P. H., Floating-Point (ommputation (Prentice-Hall, Englewood Cliffs,
N.J., 1974).

3
o
2
-

P Cee -~

The Near Orthogonality of Svatax 13

[9] Brown, W.S. and S | Feldman, "Environment Parameters and Basic Functions
for Floating-Point Computation.”” ACM Transactions on Mathematical
Software, 6 (1980) 510-523

[10]Kahan, W., “Why do we need a standard for floating point arithmetic?", Techni-
cal Report, University of California, Berkejey, CA, 84720, February (1981).

PRERSCRT R S

e e

114 W. Kahan and J.T. Coonen

DISCUSSION

Summary by discussant (Brown)

Professor W. Kahan observed that Yanguage syntax, arithmetic semantics,
and execution-time diagnostics are approximately independent features of the
numerical programming environment. Furthermore, he suggested that standards
for arithmetic semantics and execution-time diagnostics can and should be
specified by experts in those areas in a language-dependent form,

Boyle What precision should be used in the evaluation of an expression?

Kahan In the absence of explicit instructions from the programmer, ! favor

the "scan for widest” rule. Look at all the corstituents of the expression, and
choose the widest precision that occurs. Then evaluate the expression using

the chosen precision for all operations and for all intermediate values. In the
case of an assignment statement, the Teft hand side should be included in the
scan, and the value of the expression should be rounded, if necessary, to the
precision of the left hand side before the assignment is performed.

Hull 1 think the “scan for widest” rule is too rigid. There are times when
T want to specify the precision of operations independently of the operands.

Kahan I agree, and a numerically-oriented language should enable you to do so.

Hull Unfortunately, the usual functional notation for this is quite
cumbersome, and I think we should seek language facilities (e.g., precision
blocks) that are better suited to the purpose. (For further discussion, see
Hull's paper elsewhere in this volume).

Sedgwick The "scan for widest" rule prohibits the analysis of subexpressions
Yndependently of each other.

Smith What precision should be used in the evaluation of a subexpression that
occurs as an argument of a function?

Kahan Apply the “scan for widest" rule to the subexpression, and include the
corresponding formal parameter of the function if its precision is available.

Reid Because of the vast number of programmers who are accustomed to other
ruTes, we should impose a new rule only if there is good cause. Here I believe
there is. The "scan for widest" rule will often lead to better results, and
will rarely if ever cause unpleasant surprises.

Waite I believe that "syntax", "pragmatics", and "semantics", respectively, are
the words normally used for the three concepts that you discussed.

Feldman In practice, the compartmentalization that you want isn't really
possible. For example, it is difficult to know at what level to put out messages
for run-time exceptions,

Meissner 1 agree that "language designers" (such as X3J3) should welcome
guidance from numerical analysts in areas such as those described in this
presentation.

When we discuss the subject of coercion of subexpressions, the semantics
of integer division tends to "overwhelm" the other issues. The guidance needed
from the numerical viewpoint is on those other issues - I hape it will be
possible to get this guidance separately from the concerns about integer
division.

e e

The Near Orthogonality of Syvntax 115

Comment (E. Hehner)

Hehner Yesterday Professor Kahan characterized a difference between himself
and Stan Brown by saying that Brown sees the world as it is, whereas he (Kahan)
sees it as it could be. In reply to Tom Hull, however, Kahan said that Hull,
by beginning with the language, is defining a new world, whereas he (Kahan)
Tives in the world of existing machines: The opposite difference.

Like Bill Waite, I would object to Kahan's use of the word "semantics”;
I too prefer to put the peculiarities of machine arithmetic under the heading
"pragmatics". 1 agree that the Tanguage designer should be relieved of such
considerations, but perhaps for a different reason. There are many ways that
an implementation of a language is incomplete. This is not a pejorative;
all interesting languages are infinite, and all implementations are finite. The
language designer does not say what happens when a recursion stack overflows,
or a program contains too many nested .({{s, or too many statements. He should
design a language with a clean, mathematically expressed semantics, and leave
the problems of implementation 1imits to others. 1 put arithmetic in the same
category; its semantics is well-known to mathematicians. Someone has to be
concerned with the fact that machine arithmetic is not the mathematical
arithmetic, but subject to space Timitations, just as someone must say what
happens when an arvay is too large. But at first, the Tanguage designer should
design a clear language free of these problems, and only later should someone
(perhaps the same person under a different hat) consider them,

Accession For

Tu71S GRA&I §
niIC TAB

Unannounced O

Justificatio

By
Distributiqn[Aﬂ
"Availability Codgs
" hpvail and/or
Dist ! Special

|2/

VoA e Yl e

