
United States Patent (19)
Palmer et al.

(54) NUMERIC DATA PROCESSOR
(75)

(73)
(21)
22
(51)

(52)

(58)

56

Inventors:

Assignee:

Appl. No.:
Fed:

John F. Palmer, Hillsboro, Oreg;
Bruce W. Ravenel, Sunnyvale, Calif.;
Rafi Nave, Kiriat Motzkia, Israel
Intel Corporation, Santa Clara, Calif.

120,995

Feb. 13, 1980

Int. Cl.', G06F 7/48; G06F 9/00;

U.S. C. 364/748; 364/200;
364/737; 364/745

Field of Search 364/200, 736, 737, 745,

3,434,114
3,594,565
3,603,934
3,871,578
3,905,025
4,021,655

364/748

References Cited

U.S. PATENT DOCUMENTS

3/1969
7/1971
9/1971
3/1975
9/1975
5/1977

Arulpragasam et al........ 364/745 X
Ragen 364/745
Heath, Jr. et al. 364/737 X
Van De Goor et al. 364/748
Davis et al. 364/200
Healey et al. 364/20OX

Primary Examiner-Jerry Smith

11) 4,338,675
(45) Jul. 6, 1982

Attorney, Agent, or Firn-Blakely, Sokoloff, Taylor &
Zafman

(57) ABSTRACT
A floating point, integrated, arithmetic circuit is orga
nized around a file format having a floating point nu
meric domain exceeding that of any single or double
precision floating point numbers, long or short integer
words or BCD data upon which it must operate. As a
result the circuit has a greater reliability, range and
precision than ever previously achieved without entail
ing additional circuit complexity. Reliability is further
enhanced by a systematic three bit rounding field, and
by including means for detecting every error or excep
tion condition with an optional expected response pro
vided thereto by hardware. As a result of such organiza
tion, an unexpected increase of capacity is achieved
wherein transcendental functions can be computed to
tally in hardware, and whereby mixed mode arithmetic
can be implemented without difficulty. The numeric
processor also includes a programmable shifter capable
of arbitrary numbers of bit and byte shifts in a single
clock cycle, as well as an arithmetic unit capable of
implementing multiplication, division, modulo reduc
tion and square roots directly in hardware,

10 Claims, 9 Drawing Figures

4,338,675 Jul. 6, 1982 Sheet 1 of 7 U.S. Patent

|

©??77O, ZAVO O GYogy
| swe,|

--

±3

×

U.S. Patent Jul. 6, 1982 Sheet 2 of 7 4,338,675

1-fa. 2.

COWS7am7 poms

- - - - - --
Guoz/aav7 Ayoe, Vs,

ar/77/Marve
a 9. active

62

e --------
63

64

seaf AZ. COMW75

eaegabas syna COM7
safe?

At it Aay say/A7 of - Gas GEWEAFO
easay saya

eas

U.S. Patent Jul. 6, 1982 Sheet 3 of 7 4,338,675

be bey

Zia. 3.
AAAF7 LCAO award

a/6A77 Aaayo W7 areaCat

A/GA/7 OAO AWA
Aaar Araap fav7aaaace

be ees

eaCAM4.6

Tia. 5.

- /23 X.

(oa 2.9 125
A. -

& o- - --
tao/

5A/A77 A, savazza
(or sAvara g) Co-eye76)

4,338,675 Sheet 4 of 7 U.S. Patent Jul. 6, 1982

Za. 4

ÄÄ (), y

Yn ||||||)(|||| |||||||)(|||||
N S

NYNYS
N
Ø Ø

4. - - - - - - ------ «?.

+ - - - - -? + $§
?. Q

–––––– – – – +
*) >3

U.S. Patent Jul. 6, 1982 Sheet 5 of 7 4,338,675

ago— -/33 1ia. 6.

sart Ayay//awa
COW7aO.

42

4,338,675 Sheet 6 of 7 Jul. 6, 1982 U.S. Patent

4,338,675
1.

NUMERIC DATA PROCESSOR

TABLE OF CONTENTS

BACKGROUND OF THE INVENTION
1. Field of the Invention
2. Description of Prior Art

BRIEF SUMMARY OF THE INVENTION
BRIEF DESCRIPTION OF THE DRAWINGS
DETALED DESCRIPTION OF THE PRE
FERRED EMBODIMENT
I. General Discussion of Data and Numeric Repre

sentations
II. General Introduction to the System Context of the
Numeric Processor of the Present Invention

III. Arithmetic Operations of the Numeric Processor
A. Multiplication
B. Division
C. Modulus Arithmetic
D. Square Root
E. Rounding Apparatus and Methodology
F. Programmable Shifter

IV. Architecture and Organization of the Floating
Point Execution Unit
A. General Discussion
B. Handling of Denormalized and Unnormalized
Numbers

C. Signed Zero and Infinity Generation and Han
dling

V. Summary And Advantages of the Invention
CLAIMS
TABLE 1.
TABLE 2

BACKGROUND OF THE INVENTION

1. Field of the Invention
The present invention relates to the field of numeric

data processors and in particular, relates to integrated
circuit, floating point numerical processors capable of
mixed precision calculations, mixed mode arithmetic
calculations and rounding operations.

2. Description of the Prior Art
Prior art arithmetic processors, particularly inte

grated circuit processors, are characterized by various
artifacts of inaccuracy, unreliability and lack of safety
during floating point calculations. For example, a typi
cal prior art, integrated circuit process is capable of
performing transcendental mathematical operations,
including square root, in such a manner that the result is
not only obtained relatively slowly, often only with
software assistance, but subject to the possibility of
multiple rounding errors in intermediate results leading
to an inaccurate final answer and with no internal mech
anism within the processor to either detect or correct
the rounding errors. In addition, prior art processors
generally cannot operate with mixed mode operands or
can do so only with the substantial risk of producing
erroneous results,
What is needed then is an arithmetic processor having

sufficient internal precision to make quick, accurate and
reliable calculations of single and double precision inte
gers and floating point quantities with internal means to
deal with rounding errors and other arithmetic excep
tions or special cases such as zero and infinity arithme
tic.

15

20

25

35

40

45

50

55

65

2
BRIEF SUMMARY OF THE INVENTION

The present invention includes an improvement in a
numeric data processor for performing calculations on a
plurality of data formats representable by a fraction and
exponent representation comprising a first means or
circuit for converting the plurality of the formats to a
file format wherein the file format has a numeric frac
tion and exponent domain greater than any one of the
plurality of data formats. A fraction and exponent bus is
coupled to this first means or circuit for converting the
plurality of data formats. A stack of registers, which are
configured to store numeric information in the file for
mat, are coupled to the exponent and fraction bus. An
arithmetic unit which is used to perform arithmetical
operations in file format on the numeric information is
also coupled to the fraction bus. By reason of this com
bination of elements, the reliability of computation is
substantially increased since all data formats are con
verted to a file format which has a greater range of bits
in the significand and a greater exponent range than any
of the numerical quantities which the numeric proces
sor may be called upon to manipulate. Generally, then,
the only errors which are likely to occur are errors in
conversion and transfer rather than in computation.
This combination allows mixed mode arithmetic since
the file format is able to include all data formats after
their conversion.
The present invention also includes a circuit or means

for detecting and indicating numeric exceptions or er
rors during any computational operation and for han
dling of such exceptions or errors. A third means or
circuit for selectively masking a response to the numeric
exceptions is also included within the numeric proces
sor. A fourth means or circuit then selectively provides
a specific response to each exception which is capable
of identification and is active when the exception is
masked. The fourth circuit is coupled to the second and
third circuits so that a response is generated whenever
detected and identified by the second circuit and when
masked by the third circuit. As a result of this combina
tion of elements, an exception or error indication is
generated in each and every instance in which an error
or exception occurs during computation. The user is
then given the option by masking, either to generate an
interrupt to stop processing, or to continue computation
by inserting, at that point in the computation, a specific
response which is determined by the precise circum
stances of the exception or error which has occurred.
However, the indication that an error has occurred is
not lost and remains stored within the numeric proces
sor throughout the entire computation so that the user
has the option of being aware of the precise nature and
occurrence of the exception or error and taking appro
priate software measures should the exception or error
prove to be unacceptably unreliable.
By virtue of the above combination, the numeric data

processor may handle both signed zeros and signed
infinity and thereby be able to include within its capac
ity the capability to do interval arithmetic both in the
affine and projective closures.

Furthermore, the present invention includes a means
for rounding the numeric information according to a
selected one of a plurality of rounding modes. The
rounding is effected by appending to each numeric
quantity three additional bits, a guard, round and sticky
bit, wherein all right shifted bits are captured in the

4,338,675
3

guard, round or sticky bit, the latter of which is the or
function of all previously right shifted bits.
As a result of this rounding capability in the numeric

processor, the numeric processor includes a means for
performing exact arithmetic by being able to detect and
indicate by a precision flag, a P flag, whenever round
ing has occurred. In the case where exact arithmetic
must be computed, an interrupt can be generated in
response thereto.
The present invention also includes a programmable

bidirectional shifter which is comprised of a first bidi
rectional load and read interface circuit selectively acti
vated for left shifts, and a similarly constituted second
bidirectional load and interface circuit which is selec
tively activated for right shifts. The first interface cir
cuit is coupled to a byte shift matrix while the second
interface circuit is coupled to a bit shift matrix. The byte
shift matrix is arranged and configured to shift the input
quantity by a multiple of bytes, namely multiples of
eight bits. The bit shift matrix is similarly constituted to
shift its input quantity by a selected number of bit loca
tions up to seven consecutive places. The bit and byte
shift matrices are coupled to allow bidirectional flow of
signals therebetween. The bit and byte matrix are con
trolled by a bit and byte shift control circuit respec
tively which determines the number of bytes and bit
places each matrix will actually shift. By reason of this
combination of elements, a numeric quantity of virtually
arbitrary length may be selectively shifted by an arbi
trary number of bit places during a single clock cycle
and by the use of simple circuitry.
The present invention also includes an improvement

in a method of calculating numeric quantities having a
plurality of data formats representable by a fraction and
exponent representation comprising the steps of con
verting the plurality of data formats to a file format in a
conversion means whereby the file format has an expo
nent and fraction numeric domain greater than any one
of the plurality of data formats. The converted data is
then stored in file format within a stack of registers and
selectively coupled to a fraction and exponent bus, also
in file format. The file format numeric quantities on the
fraction and exponent bus are then selectively coupled
to an arithmetic unit which performs arithmetic opera
tions on those numeric quantities in file format. For the
reasons set forth above, execution and conversion of
numeric quantities into and from the file format of the
present invention virtually eliminates computational
errors and unreliability which were previously inherent
to numeric processors.
The present invention also includes an improvement

in the method for calculating numeric quantities con
prising the steps of detecting numeric exceptions during
computational operations in a numeric processor. All
numeric exceptions or errors are detected. The nature
of the exception or error detected is then indicated in an
appropriate status register. A response is then generated
within the numeric processor which is specific to the
indicated exception or error, including the exception of
operations employing and resulting in signed zeros and
infinity. Finally, certain ones of these generated re
sponses or indicated errors may be selectively masked
so that computation continues according to the specific
and reliable response indicated, rather than generating
an interrupt and allowing the software user to deter
mine what response should be made.
These and other aspects of the present invention can

be better understood by reviewing the following figures

5

O

15

20

25

30

35

45

50

55

60

65

4.
in light of the detailed description of the preferred em
bodiments.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram schematically showing the
system and environment in which the numeric proces
sor of the present invention is used, namely in conjunc
tion with a central processing unit having access to
external peripherals and memory.

FIG. 2 is a simplified block diagram of the architec
ture of the numeric processor showing its division into
a bus interface unit and floating point execution unit.

FIG. 3 is a block diagram of a programmable shifter
included within the present invention wherein left and
right shifts of an arbitrary length may be made within a
single clock cycle.

FIG. 4 illustrates the byte matrix shifter portion of
the programmable shifter illustrated in FIG. 3.

FIG. 5 is a schematic diagram of a load interface unit
circuit used in the programmable shifter.

FIG. 6 is a schematic diagram of a read interface unit
utilized by the programmable shifter.

FIG. 7 is a simplified block diagram of the nano
machine portion of the floating point execution unit
wherein multiplication, division, modulo reduction and
square roots are implemented directly in hardware.

FIGS. 8a and 8b is a detailed block diagram illustrat
ing the entire floating point execution unit of the present
invention.

DETALED DESCRIPTION OF THE
PREFERRED EMBODIMENT

... GENERAL DISCUSSION OF DATA AND
NUMERIC REPRESENTATIONS

In order to understand methodology and apparatus of
the present invention, consider first the basic represen
tational formats for numerical data which the numeric
processors must accommodate. According to the pres
ent invention, the data structure consists of five general
data types: real long and short; integer long and short;
and BCD integer.

Additionally, there are a number of special numbers
which must be handled as exceptions. Plus and minus
zero form a special class as a result of their special na
ture in arithmetic operations. Similarly, plus and minus
infinity are used to represent positive and negative num
bers with a magnitude greater than that of the largest
representable number. A normalized number is defined
as a real number having all significant bits in the fraction
or significand. Denormalized numbers are those num
bers which have an exponent equal to that of the small
est representable normalized number, but which have
significands which are allowed to have leading zeros.
Finally, when no numeric result can be represented,
such as in the case of division of zero by zero, a "not a
number (NAN)' or "IND” can be provided. Thus,
underflow and overflow, rather than aborting the nu
merical operation when occurring, can be dealt with by
the use of plus and minus infinity, denormalized num
bers and NANs.

In the following description let P equals the sign bit;
E equals the exponents; S the significand or fraction;
and X the general numeric variable.

Consider first the specific definition of normalized
numbers in both short and long word storage formats,
i.e., in the format suitable for memory storage. The
range of the number is 2-1022sxs(2-2-52)2023 and is

4,338,675
5

characterized by a biased eleven bit exponent, E, which
is 1 SES 2046, which has a leading implicit one bit in a
significant followed by 52 expressly spcified bits. Thus,
the interpretation of the long or double precision nor
malized number is x=(-1)P2E-1023("1"--S2-52)
where "1" is an implicit one.
By the same token, the definition of a short word or

single precision normalized number in memory is

thereby having a range of

23i 126sks(2-2-23)227

and characterized by an eight bit biased exponent
ls Es 254. In this case, the significand begins with an
implicit leading 1 bit followed by 23 expressly specified
bits.
The normalized representation of an extended or file

format of the present invention is described in the pres
ently illustrated embodiment as a normalized number
having a 15 bit biased exponent with a 64-bit significand
characterized by explicit leading 1 bit. In other words,
the file format is x=(-1)P2E-16383(S2-63) where
ls Es32766 and where E=215-1 is reserved for infl
nites, invalids and indefinites.

Plus and minus zero is characterized by a biased expo
nent and significand both having a zero value. Thus, in
the file format, the plus or minus zero is characterized
by the number having the smallest exponent e.g. zero,
and zeroes for the significand or by a number having a
corresponding zero flag tagged thereto.

Similarly, denormalized numbers in memory, which
are clustered about zero, have a range given by
2-126(2-23)sxs2-126(1-2-23) in single precision and
2-10222-52s x s 2-1022(1-2-52) in double precision.
Denormalized numbers in memory are characterized in
each case by a biased exponent equal to zero and inter
preted as x=(-1)(2-126) (S2–23) in single precision
and x=(-1)(2-1022) (S2-52) in double precision.

In the file or extended format of the present invention
a denormalized number has the range
(2-63)2-16382s Xs 2-16382(1-2-63), is characterized by
a leading Zero bit in the significand and is interpreted as
x=(-1)^2-16382(S 2-63). Plus and minus infinity as
described in the presently illustrated embodiment is
characterized by a number in the single or double preci
sion memory format has having a binary exponent of all
ones and a zero significand. In the file format, plus and
minus infinity is characterized by the most positive
exponent representable and a significand, 1.000 . . . 0,
with a corresponding invalid flag tagged to the number.

Finally, a NAN or a "not a number' is defined in the
presently illustrated embodiment as having, in single or
double precision, all ones in the exponent and a nonzero
significand. In the file format, NAN similarly has the
most positive exponent representable and any signifi
cand not equal to 1.000 . . . 0 and, as before, a corre
sponding invalid flag tagged to the number. In such a
case, the use of an actual significand is left to the user.
Thus, it is possible that the value of the significand can
be used to initialize storage such that when the storage
is utilized by the user, these large magnitude NANs will
propagate through the arithmetic operations and indi
cate to the user that an error occured and program logic
incorrectly accessed a nonutilized area of storage. Simi
larly, a NAN generated by an arithmetic operation and
numeric data such as zero divided by zero may be used

5

10

15

20

25

30

35

40

45

55

65

6
as a pointer by assignment of its significand to the of
fending portion of code. Many other uses as well can be
devised for specially coding and employing significands
in NANs.

In addition to the double and real normalized and
denormalized, and special cases described above, the
numeric processor of the present invention is capable of
handling integer word (16 bits) integer short (32 bits)
and integer long (64 bits) representations as well as 18
digit signed BCD integers.

II. GENERAL INTRODUCTION TO THE
SYSTEM CONTEXT OF THE NUMERIC

PROCESSOR OF THE PRESENT INVENTION.

The numerical floating point processor of the present
invention (hereinafter "the processor" or "FPU") is a
high performance processor fabricated in an integrated
circuit package and with standard circuit technology
incorporating many features not available in any present
day floating point processor. The processor of the pres
ent embodiment is intended to be used in a multimaster
system as the arithmetical unit in support of a co-proc
essing central processing unit (CPU). The processor
thus becomes a software transparent extension of the
CPU, thereby greatly improving system performance
beyond that achievable through other alternatives. As
described in a copending application entitled "Appara
tus and Method for Cooperative and Concurrent Co
processing of Digital Information' filed June 30, 1978,
Ser. No. 921,082 the processor is a concurrent, co-proc
essing unit with its corresponding CPU. While the pro
cessor is executing a floating point instruction, its corre
sponding CPU continues with the instruction stream,
thereby achieving overlapped operation with the pro
cessor. Program throughput is thereby increased by
operational interleaving of the processor and CPU in
structions. Floating point instructions are decoded di
rectly from the CPU's instruction stream. When the
floating point instruction is decoded from the instruc
tion queue of the FPU and CPU, the floating point unit
will execute that instruction in parallel with the CPU
which continues with the instruction stream. If the CPU
encounters a second floating point instruction, it will
"mark time' until the processor has finished the first
floating point instruction.
The bifurcated nature of the processor can be appre

ciated if the operation of the processor in conjunction
with its CPU is briefly described. The FPU gains access
to the local bus by means of a single request grant pin.
The processor tracks the instruction queue of its corre
sponding CPU by monitoring the status inputs and
tracking the data bus in parallel with the CPU. When a
floating point instruction is fetched from the instruction
queue, CPU20 will not execute it. In the case of a non
memory instruction, the CPU 20 ignores it totally and
proceeds with its other operations. In the case of an
instruction with a memory reference, CPU 20 will cal
culate the effective address using its addressing modes,
and will perform a dummy read, that is, a normal read
except that CPU 20 will not enter the data. Instead,
FPU 22 of the present invention, will capture the ad
dress of the operand during the first clock cycle and the
data during a subsequent clock cycle. In this manner,
the processor CPU 20's addressing capabilities with
respect to external memory. After a floating point in
struction has been fetched, the FPU 22 can start execu
tion unless it requires more pieces of data. In this latter

4,338,675
7

case, the FPU will request the bus by the request/grant
handshake and fetch the rest of the operand as though it
were the central processor, CPU 20, itself, by incre
menting the address captured from the bus to address
the subsequent words of the operand. When FPU 22
needs to store the results in memory, it will use the
address captured during the dummy read by CPU20 to
indicate the starting address of the operand in memory.
Again, it will request the buses and will write into mem
ory, incrementing the address after every write. While
FPU 2 is computing internally, CPU 20 has the buses
and can proceed with whatever the program dictates.
This is what is meant by co-processing between FPU 22
and CPU 20.

Occasionally, synchronization between CPU 20 and
FPU 22 is required and CPU 20 must wait for FPU 22
to finish before a subsequent floating point instruction
can be executed. A specific software instruction,
WAIT, is provided in the instruction set to cause CPU
20 to wait at the appropriate times. Similarly, when
FPU 22 desires to store information in memory, it must
make certain that it stored the information before CPU
20 tried to read it. Again, this synchronization is pro
vided by a software instruction which will cause CPU
20 to wait if FPU 22 has not yet performed the required
operation.
To accomplish this coprocessing FPU has a bus inter

face unit (BIU 30) shown in FIG. 2 which monitors and
tracks the activities on the local bus and the status of
CPU 20, and communicates with CPU 20, while the
arithmetic operations are independently proceeding
within the numerical processor's computation unit,
'floating point execution unit (FEU 32).

FIG. 1 diagramatically shows in simplified form a
CPU 20 concurrently coprocessing information in a
digital system with the processor of the present inven
tion, floating point unit (FPU) 22. As diagramatically
illustrated in FIG. 1, FPU 22 shares many of the exter
nal status and administrative function control pins with
CPU20. For example, FPU 22 and CPU 20 both oper
ate from clock 24 and are coupled through a local bus
26 to a system bus 28 by the same set of latches 29, bus
controllers 27 and transceivers 25. It is beyond the
scope of the present invention to detail the exact nature
and coordination within the local bus between CPU 20
and FPU 22, but details of this operation have been
disclosed on copending applications, entitled "Appara
tus and Method for Cooperative and Concurrent Co
processing of Digital Information", filed June 30, 1978,
Ser, No. 921,082; "System Bus Arbitration and Circuit
ry and Methodology', filed June 30, 1978, Ser. No.
92,083.
The increased capability and reliability of FPU 22,

becomes apparent when considered in view of the sys
tem of FIG. 1 wherein the FPU is a concurrent and
coprocessing unit. The number of exceptions, interrupts
and software handling which are reduced and removed
from the arithmetic operations of FPU 22 necessarily
leaves the CPU20 and the entire system free to produc
tively proceed with processing of instructions without
being overburdened by or delayed by inadequate or
faulty arithmetic execution.
FIG. 2 illustrates in simplified diagramatic form the

basic internal architecture of FPU 22. FPU 22 includes
a bus interface unit (BIU) 30 and a floating point execu
tion unit (FEU) 32. BIU 30 and FEU 32 are interactive
and operate in a substantially independent, albeit coor
dinated fashion. This bifurcated internal architecture
FPU 22 allows BIU to continuously track the local

10

5

20

25

30

35

45

50

65

8
system bus status while execution of a floating point
instruction is concurrently in progress within FEU 32.
The function of BIU 30 is to track the local system

bus, to decode floating point instructions, maintain sta
tus information and control the local bus when FPU 22
is transferring data. The bus handshake protocol be
tween BIU 30 and CPU 20 as described in copending
application, "System Bus Arbitration and Circuitry and
Methodology' fled June 30, 1978, Ser. No. 921,083;
and "Apparatus and Method for Cooperative and Con
current Coprocessing of Digital Information', filed
June 30, 1978, Ser, No. 921,082, BIU/FEU formatter
and data interface unit 34 serves to handle the passing of
commands, operands and status between BIU 30 and
FEU 32.
CPU20 and FPU 22 simultaneously maintain a queue

of pre-fetched instructions. Therefore, FPU 22 will
simultaneously decode a floating point instruction with
CPU 20. Upon detection of a floating point instruction
FPU 22 will gain control of the system bus and perform
any memory read or write cycles required. A 20 bit data
port 36 couples BIU 30 to local bus 26. Coupled to data
port 36 are a six byte instruction queue 38, a twenty bit
floating point instruction address register 40, a sixteen
bit control register (CW)42, a sixteen bit status register
(SW)44, and a sixteen bit tag register (TW)46. Addi
tional logic registers and decoding circuitry 47 are also
included within BIU 30, in a manner well-known to the
art and as disclosed in the above referenced co-pending
applications, to decode and provide the necessary ad
minstrative processing of instructions into and from
FPU 22 with respect to the local bus.

Floating point execution unit 32 is characterized by
an internal file format, eighty bits wide, diagramatically
shown in FIG. 2 as a 64 bit fraction bus 48 and a 16 bit
exponent bus 49. All numerical quantities are converted
to this standard file length real number within FEU 32,
namely to a numeric quantity with a fifteen bit biased
exponent, a sign bit and a 63 bit fraction. All calcula
tions on the fractions within FEU 32 are performed to
67 bits of accuracy and then rounded as provided by
precision control settings as discussed below.

Coupled to fraction bus 48 is a file memory array
comprising a register file 50, eight registers deep, a
programmable shifter 52, a sticky bit detector and adder
54, a post or surn shifter 56, a skip shifter 58, a quotient
register 62, a multiplexed B register 64 and a constant
ROM 60 containing various constants used in calcula
tions of transcendental approximations. In addition, a
number of temporary registers 66 are included as may
be required in the mathemetical operation and process
ing. Random control logic 68 is also included to provide
discrete control in response to microcoded instructions
in a manner well-known to the art. Logic circuit 68
includes a microcode engine for decoding the instruc
tions and includes a microcode ROM to store the micro
code program. The microcode program is not described
herein for the sake of brevity, but can be derived from
the definitions of the orthogonal instruction set.

Consider the loading of numbers from memory into
FEU 32 in greater detail as illustrated in FIGS. 8a and
b. Data, for example, a 64-bit integer transferred by BIU
30 in 16 bit blocks is placed in one of the temporary
registers 66 and then loaded into sum register 80. The
next 16 bit block is also placed in a temporary register
66, but is shifted left by 16 bits in shifter 52 before being
loaded into sum register 80. The remaining two 16 bit
blocks are similarly loaded and shifted until the 64 bit

4,338,675
integer has been assembled in sum register 80, which is
still left with 16 leading zeroes. Normalization can now
be implemented. Sum register 80 includes the following
components. Eight 8-input nor gates included in sam
register 80 have their inputs coupled to an internal sum
register and have their outputs coupled to a first coding
circuit which identifies how many of the bytes are all
zero. If all eight bytes are all zero, a zero indicator is
immediately activated. If a 0-7 bytes are zero, the num
ber of all zero bytes is loaded in to leading zero counter
154. Counter 154 in turn is coupled to shift count regis
ter 146 whose output is coupled to multiplexer 148. The
output of multiplexer 148 is used to control the number
of shifts in programmable shifter 52, thereby setting up
of the contents of sum register 80 to be shifted left by
the number of all zero bytes. Similarly, a second coding
circuit has its inputs coupled to the eight bit places of
the highest order byte of register 80. A three bit field is
similarly loaded into counter 154, register 146 and mul
tiplexer 148 to shift the contents of register 80 left by the
remaining number of zero bit places in the leading byte.
The number of byte and bit shifts stored in counter 154
is then coupled to exponent circuit 142 wherein a cor
rected exponent is generated. The normalized number
representing the integer is then stored in file 50.

Consider the normalization of a 32 bit real number in
file format. The 32 bit word from BIU is characterized
as consisting of word 1 comprising the 16 least signifi
cant bits and word 2 comprising the 16 most significant
bits. The value, 40, is loaded from an immediate micro
code literal according to microcode control. Table 158
is coupled to count register 146, with the result that the
shifted value for word 1 is stored in register 80. Word 2
is then placed in a register ASE, which then includes
from left to right, the sign, the exponent and the seven
most significant bits. Again, from an immediate micro
code literal a left shift of the contents of ASE by 57
places followed by a right shift of one and a forced one
being placed into the most significant bit position. The
contents of register ASE is then merged into register 80
by addition yielding a normalized real number, with an
explicit leading 1 bit in 80 bit file format. The exponent
of the memory real is coupled via exponent bus 49 to
exponent circuit 142 where it is tested or examined for
the special case exceptions, and converted to file format
exponent. The normalized fraction and file format expo
ment are then loaded into file 50.

Without detailing the operation, 18 digit BCD is also
translated into 80 bit file format using a series of multi
plications by 10 (addition of a single and triple left shift)
using Horner's rule as an implementary algorithm.
Conversion from file format to a selected data type is

implemented as follows: In the case of an integer, the
maximum number of the exponent representable in the
data format is read from exponent ROM 160 into expo
nent circuit 142. The difference, (d = max exponent
exponent), between the exponent of the number to be
converted and the maximum number is generated under
microcode control and examined by circuit 142. If d is
less than zero, an overflow condition results and an
error flag is generated. If d is equal to zero an overflow
is indicated if the number to be converted is positive (by
our convention), or if negative, an overflow is gener
ated unless the fraction is 1.000 . . . 0 (again this the
largest negative number representable). Otherwise, the
number is considered valid. If d is greater than zero,
then the fraction is shifted right by d places as a result of
transfer of d from circuit 142, through line 144 to

5

O

15

20

25

30

35

40

45

50

55

60

65

10
counter 146. The denormalized function is
rounded and ready to be sent out as an integer.

Conversion from file format real numbers to memory
is similarly implemented by exponent examination in
circuit 142 and rounding. The 64 bit number in register
80 is left shifted by a fixed number of places as deter
mined by table 158. For example, a single precision
number having a 23 bit significand is shifted 40 places
left. A guard (G), round (R), and sticky (S) bit are cal
culated as described below from the remaining tail in
register 80. The original number to be converted is
copied from file 50 and then shifted right by 23 bits with
the GRS bits appended to the right end. The most sig
nificant 1 bit in file format is suppressed. The fraction
can then be rounded and stored in a working register
together with the converted exponent from circuit 142
for transfer through BIU 30 to the user in 16 bit seg
ments.

In the case of BCD integers the file formatted number
is divided by 1018. If the quotient is less than one, then
a quotient is denormalized by a number of bit places
equal to the absolute value of the exponent of the quo
tient, and a loop is entered whereby each BCD digit is
extracted by multiplying the quotient by ten and ex
tracting the four most significant bits to form each BCD
digit.
Operands received from an exterior memory are pre

formatted to a sixteen bit word boundary and trans
ferred on a real time basis to FEU 32 through BIU/-
FEU interface 34. FEU 32 uses programmable shifter
52 to position the 16 bit quantities at adder 54 such that
successive additions form the fraction and exponent and
set tags which identify the type of operand. Control of
FEU 32 is provided by a microcode control engine or
control logic 68, which receives its instructions from
the registers in the BIU/FEU interface unit 34.
Once FEU 32 has performed the operations required

by the floating point instructions, it transfers the infor
mation regarding execution and/or error conditions to
status register 44 and tag register 46 from whence they
are relayed to the user. As previously stated, BIU/FEU
unit 34 passes commands, operands and status signals
between BIU 30 and FEU 32. Upon entry into FPU 22,
each portion of an operand is transferred through BIU
30 into a preformatter within the BIU/FEU interface
unit 34, and then transferred to FEU 32. Once in FEU
32 the operand is checked for validity and repacked into
the file format in which all operations are calculated.
The preformatter in BIU/FEU unit 34 allows the re
packing to be a succession of FEU unit additions such
that the operand can be transferred using back-to-back
memory cycles. One of the primary objects of BIU/-
FEU unit 34 is to allow the numeric processor to inter
face with both word and byte users which present infor
mation on both even and odd memory addresses. Cir
cuitry adapted to provide this type of service is de
scribed in the co-pending application entitled, "Appara
tus and Method for Providing Byte and Word Compati
ble Information Transfers,' Ser. No. 910, 103, filed May
30, 1978. In any case, information is uniformally pro
vided to FEU 32 by unit 34 as two byte words.

III. ARITHMETIC OPERATIONS OF THE
NUMERIC PROCESSOR

The arithmetic heart of FEU 22 is centered about a
nanomachine comprised of adder 54 and its related
registers, shifters and control circuitry. The nanoma
chine is particularly characterized by its ability to han

then

4,338,675
11

dle higher order arithmetic calculations directly in
hardware in file format at high rates of speed.
The nanomachine is shown in FIG. 3 and can be

better understood by considering the operational rou
tines used in the present invention for multiplication,
division, square root and modulus arithmetic.

A MULTIPLICATION

Consider first the multiplication routine. In the pres
ently illustrated embodiment, two bits are manipulated
in parallel during each clock cycle.
The multiplier is loaded into skip shifter 58 according

to program control well-known to the art. Skip shifter
58 is a conventional bidirectional shift register which, in
the multiplication routine, shifts its contents two places
to the right on each clock cycle in response to control
from from control circuitry 70 as shown in FIG. 7. The
two right most bits are used to indicate the current
multiplier control code. Skip shifter 58 is coupled to
control circuit 70 which is comprised of random logic
designed according to principles well-known to the art
in conformity with the teachings of the present inven
tion. A balance flip-flop in multiplexercontrol 70 is used
in order to avoid three bit additions. Table 1 below
summarizes the operation of control circuitry 70 as a
function of the bit pair multiplier and the balance of the
balance flip-flop within control circuit 70.

TABLE 1.
Old Balance Mux Control New Balance

OB O
1B 0
1B O
2B O.

0
1

bo b

O
O
0
0
l
1
1
1

The multiplicand is loaded into B register 72 according
to program control from the internal 64 bit fraction bus
48. The output of B register 72 is controlled by multi
plexer 74 which in turn is controlled by control cir
cuitry 70. Multiplexer 74 couples its output to one side
of adder 54 while the other side of adder 54 is coupled
to bus 48. The output of adder 54 is coupled to sum
shifter 76, and is selectively controlled by machine con
trol circuitry 78 shown in FIG. 7. The output of sum
shifter 76 is coupled to a master-slave register 80.

Consider the operation of circuitry of FIG. 7 as de
scribed in connection with Table 1. In the case where
the previous balance of the balance flip-flop of circuit
70 is zero, the contents of B register 72 is set to zero,
coupled directly through or shifted left one bit position,
depending upon whether the multiplier, bob, is 00,01 or
10 respectively. In the case where the old balance is
zero and the multiplier is 11, the contents of the B regis
ter 72 are complemented and the balance flip-flop is set,
otherwise the balance flip-flop remains reset as shown
in Table 1. In those cases where the prior value of the
balance flip-flop is 1, namely, where the balance flip

5

O

15

20

25

30

35

45

50

55

flop is set at the beginning of the cycle, the contents of 60
B register 72 are coupled to the right side of adder 54,
either without shifting, with a left shift, complemented
or set to zero, depending upon whether the multiplier is
00, 01, 10 or 11 respectively. Again, as shown in Table
l in the case where the old balance is 1 and the multi
plier is either 10 or 11, the balance flip-flop will remain
set, otherwise it will be reset. The metholodogy which
is illustrated in Table 1 uses zero multiplication or sim

12
ple left shifts in order to multiply with the factors 0,1 or
2. When multiplication by three is required, what actu
ally occurs is a multiplication by four by a two bit left
shift combined with a twos complement subtraction.
During the multiplication process, the output of adder
54 is automatically shifted right two locations within
sun shifter 76 by virtue of shift count control from
circuit 78. The right most bits during the multiplication
process go into the GRS bits and are used for rounding
as described below. The sum of slave register 84 is then
used as the input to the left side of adder 54.

For example, consider the multiplication of the nun
bers 1111 and 1010 or in decimal equivalent, 15X 10.
Although, in the normal course of operation within the
present invention, the numbers will usually be normal
ized, the principles illustrated by the example are the
same whether the numbers are normalized or denormal
ized. The multiplier, 1111, is inserted into skip shifter 58.
The multiplicand 1010, is loaded into B register 72. The
first pair of digits is shifted out of skip shifter 58 to
control circuit 70, which according to the logic illus
trated in Table 1, causes the complement of B register
72 to be coupled through multiplexer 74 to the right side
of adder 54. The complement of the register is required
for the subtraction operation which is implemented in
adder 54 which is coupled to sum shifter 76 as - 1010,
since the right side of adder 54 was initialized to zero by
the clearing of sum register 80. Shift register 76 will
shift -1010 two places to the right to leave the partial
product -001010. The balance flip-flop is set and the
next pair of digits in skip shifter 58 are coupled to con
trol circuit 70. Again, the digits 11 with a prior balance
flip-flop of 1 causes a zero to be coupled through multi
plexer 74 to the right side of adder 54 with the balance
flip-flop remaining set. The sum is again shifted right
two digits in sum shift register 76, leaving the partial
product -00001010 in sum register 80. This partial
product is then coupled to the left side of adder 54 and
the next pair of digits, which are 00, is coupled into
control circuit 70. As set forth in Table 1, the multiplier
pair 00 with a prior balance of l results in the contents
of B register 72 being coupled through multiplexer 74 to
the right side of adder 54 and added to the last partial
product. The result is 1010-00001010 or 10010110
which is the final product, the binary equivalent of the
decimal number, 150. The above example has been
described in signed negative notation while the compu
tation is actually implemented in twos complement. The
signed negative has been used in the example, only for
the purposes of clarity.

B. DIVISION

A non-restoring method is implemented in the cir
cuitry of FIG. 7 to perform division by machine hard
ware. The divisor is loaded according to program con
trol into B register 72 while the dividend is similarly
loaded in sum register 80. A series of addition and sub
traction steps are then carried out within adder 54 as
determined by the sign of the former operation. In other
words, the contents of B register 72, are added or sub
tracted to the contents of sum register 80 to create a
new sum according to the sign of the former operation.
The value of the sign in each operation is inverted by
inverter 86 and coupled into quotient register 62. In
other words, if the sign of the sum was positive, the next
operation will be a subtraction. Conversely, if the sign
of the sum is negative, the following operation will be

4,338,675
13

an addition. Thus, bit by bit the quotient is assembled in
register 62.
Consider the example wherein 150 is divided by 15.

Division is performed with both operands in normalized
format. Therefore, the contents of sum register 80 is
coupled to the left side of adder 54 as 1001 1 0110 repre
senting 150 while the right side of adder 54 is loaded
with - 111 1 0000 representing 15. The results of this
subtraction is - 101 1110 which is coupled into sum
shift register 76 and is shifted left one bit position by
virtue of shift count control from circuit 78. The con
tents of register 80 is thus -1011 1100. Inasmuch as the
result is negative, a zero is loaded into quotient shift
register 62 and the contents of register 72 is then added
into the contents of register 80 in the next cycle in adder
54. The result in sum shift register 76 after being shifted
left one space to 01 11 1000. Since the result is positive,
a binary 1 is loaded into shift register 62 by taking the
sign from sum shift register 76 and inverting it through
circuitry 86. Similarly, the next shifted sum in register
76 will be -111 1 0000, thereby loading a zero into
register 62. On the next cycle, a positive zero is the sum
in register 76 resulting in a positive 1 shifted into the
right bit position in register 62. In each succeeding
cycle, a 0 will be shifted in. The result in register 62 will
be the number 1010. Placement of the decimal is pro
vided by exponent control described below. Again the
above illustration is for purposes of example only, and it
is contemplated that it could be replaced by an equiva
lent two's complement, non-restoring algorithm.

C. MODULUS ARITHMETIC

Modulus arithmetic is performed in a circuitry of
FIG. 7 in a manner identical to division as described
above with the exception that the number of cycles is
determined by the exponent difference in the two num
bers. The remainder appears in register 80. For exam
ple, consider the operation of 10 modulo 8, 1010 is ini
tially loaded into register 80 while 1000 is loaded into
register 72. Both numbers have the same exponent,
therefore according to machine control, a single cycle is
performed. According to the division routine described
above, the contents of the B register 72 is subtracted
from the contents of sum register 80 in adder 54 leaving
the remainder, 10 in sum shift register 76. The remain
der 10, is then coupled to to sum register 80, and since
the exponents are equal, the modulus arithmetic opera
tion is completed in a single cycle and presented to bus
48.

D. SQUARE ROOT
The circuitry of FIG. 7 also performs square root

operations in hardware according to a nonrestoring
method wherein the argument is loaded into skip shifter
58. B register 72 and sum register 80 are initially
cleared. The root will be coupled into B register 72
during the arithmetic operation and will be shifted from
right to left one bit at a time from the sign bit coupled
from circuitry 86. On every cycle, two bits are taken
from the left end of skip shifter 58 and appended to the
right end of the partial remainder at the left input of
adder 54. The bit pair, 11, is appended during each such
shift to the right input of the partial root which is
formed in B register 72. These operations are controlled
by random logic well-known to the art which is selec
tively activated according to the teachings of the pres
ent invention. An addition or subtraction then takes
place within adder 54. The sign of the former remainder

5

O

5

20

25

30

35

40

45

50

55

60

65

14
will determine whether or not the current partial root
will be complemented in the case that the sign of the
former remainder is positive, or left uncomplemented.
The sum from adder 54 is shifted two bit locations to the
left in sum shift register 76, in response to the shift count
control from circuitry 78. At the end of the operation,
the total root will be contained in B register 72.

Consider, for example, the squre root of 25. The argu
ment 01100 l is loaded into skip shifter 58 while B regis
ter 72 and sum register 80 are cleared. The left input of
adder 54 is set equal to 000 0000.01. The sign bit is
replicated for two or three places in adder 54. Since the
sign of the form sum zero (0=positive) was positive, the
contents of register 72 will be complemented and 111
1111.11 will be inserted into the right input of adder 54.
The sum is zero, since the carry is lost and the sign of
the sum is again positive. The contents of B register 72
will now be 0001 due to the complemented sign from
inverter 86. The next input to the left side of adder 54 is
000 0000. 10. The right input will be 111 1110.11, since
the former sum was shifted left two places by shifter 76.
The next sum is 111 1111.01 or negative. B register 72
then becomes 0010 and the shifted sum register is
- 1101. Finally, the next left input to adder 54 is
111101.01 while 000 0010.11 is at the right input. The
new sum is a positive zero, since the result is exact, and
the root appears in B register 72 as 0101 or 5.

E. ROUNDING APPARATUS AND
METHODOLOGY

FIG. 7 illustrates the arithmetical operational portion
of FEU 32 and in particular, the rounding circuitry of
the present invention. The rounding methodology em
ployed in the present invention is comprised of two
steps: Firstly, the step of generating the sum and three
rounding bits; and, secondly, performing the rounding
operation specified. The rounding bits are denoted as
the guard (G) round (R), and sticky (S) bits.

Ultimately, all arithmetical operations are reduced at
one point to a binary addition. In FIG. 7, binary adder
54 which is a 64 bit wide adder, operating at approxi
mately 5 megahertz, has its output coupled to sum
shifter 76. The output of sum shifter 76 is coupled to a
master-slave register 80 which includes as its three least
significant bits, the GRS bits.
The detailed formation of the sun and the GRS bits

in the first step of the method will vary depending on
the type of arithmetical operation to be executed. Con
sider, for example, the addition and subtraction opera
tion. Consider the addition of two normalized operands
with different size exponents, such as 10101 X22 and
1.0011 X26. The smaller operand is denormalized to
0.0001, 0.101 X26. In our example, we have limited the
length of the word to four binary places for simplicity
of illustration. In the illustrated embodiment, the stan
dard word length is set at 64 bits. The "tail' of the
denormalized number are the bits "010'. The values of
the guard, round and sticky bits are then set by the value
of this tail. The most significant bit of the tail becomes
the guard bit, the next bit of the tail becomes the round
bit; and the logical-or function of all the remaining bits
of the tail become the sticky bit. Therefore, the GRS
bits of the denormalized number in the example are
"011" respectively. The desired arithmetical operation
is then performed. In FIG. 7, adder 54 is shown as
having an input for the normalized operand on its left
input and an input for the denormalized operand on its
right input. Thus, in the illustrated embodiment the

4,338,675
15

both inputs of adder 54 are 64 bits wide. The output of
adder 54 is 69 bits wide to accommodate the GRS bits
and carries.

In the second step of the method, the selected opera
tion is then performed. In the above example, the sum is
1.01.00011 X26. In case of addition, the sum is shifted
directly through sum shifter 76 and coupled to master
slave register 80 which is usually cleared previous to the
arithmetic operation. In the rounding operation, a de
termination is made whether or not to add a binary one
to the least significant bit of the fraction of the result,
This 1 will be added to the least significant bit of the
result of the arithmetic operation according to program
control, depending on whether or not a control logic
signal, yielding a status bit 'A', is set. Before or during
the rounding operation, the 'A' status bit will be set in
the status register as will the "P" error bit, which is the
logical-or function of the guard, round and sticky bits of
the arithmetical result. The "A" status bit is generated
by well-known random logic, according to the round
ing mode selected under program control. Rounding
mode is captured in an "RC' field, which is comprised
of a two bit code for the rounding modes: "nearest',
"up", "down", and "chop". In the chop mode, "A' is
simply set to 0 with the result that a binary 1 is never
added to the least significant bit of the arithmetical
result. The result is merely chopped or truncated. In the
simplified numeric example the result becomes
101000X26.

In the "down” rounding mode, "A' is set equal to the
logical product of the “P” status bit and the sign of the
arithmetic result. "P" or the logical-or function of the
GRS bits is 1, thereby indicating that there has been a
rounding error if any of these bits are 1. If the result is
exact, 'P' will be zero. Thus, a 1 is added to the least
significant bit of the result depending on whether or not
the result is positive or negative. In either case, a 1 is
added so that, if there is a rounding error, the rounded
result will be closer to or rounded down towards minus
infinity.

Similarly, in the 'up' rounding mode, "A' is set
equal to the logical product of the "P" status bit and the
complement of the sign of the result. In this mode, the
result will be rounded, where there is a rounding error
towards plus infinity.

Finally, in the "nearest' rounding mode, "A" will be
set equal to the logical product of the guard bit, "G",
with the logical sum of the round, sticky and least sig
nificant bit of the result. In our numeric example, the
exact sum lies somewhere between the machine repre
sentable number 1.000 and 1.01.01. The number which
lies exactly between the two machine representable
numbers is 1.01001. Therefore, if the guard bit is zero,
the arithmetic result must lie nearer to 1.01.00. The 'A'
status bit will thus be set to zero and the result rounded
down to 1.01.00. However, if the guard bit and either the
round or the sticky bits are non zero, then the exact
result must be greater than 1.0001, the “A” status bit
will be set to 1, and the result will be rounded up to the
nearest representable number, 1.0101. In the case where
the guard bit is 1 and the round and sticky bits are both
zero, the result stored within master-slave register 80 is
exact, but is exactly half way between two machine
representable numbers. In this instance, the least signifi
cant bit of the arithmetic result is examined, and a status
bit "sum 63” is set according to program control, de
pending on whether or not the user desires to round to

5

10

15

20

25

30

35

45

50

55

65

16
the nearest odd or to the nearest even number in such
circumstances.
The entire rounding operation has been described in

the context of addition or subtraction. The operations of
multiplication and division are similar, but differ in the
details of their execution in the first step of the method.
For example, in multiplication, the two least significant
bits from adder 54 are shifted right by sum shifter 76 by
two binary places into the guard and round bit places in
master-slave register 80. The sticky bit is the logical-or
function of the guard and round bits during previous
clock cycles. Thus, the guard, round and sticky bits in
slave register 84 are combined in Orgate 88 to become
the new sticky bit in master register 82. The sticky bit in
slave register 84 is similarly the or-function of all previ
ous guard and round bits in the multiplication process.

Similarly, in a division operation the entire quotient is
assembled into shift register 62 and is followed by two
additional division steps being performed on the re
mainder. The remainder quotient bits are shifted into
the guard and round bit positions and the total remain
der examined for any non zero bits. The sticky bit is set
if the remainder sun is nonzero.

In the case of multiplication or division, the first step
is then followed by a rounding operation which is con
plemented in exactly the same manner as described
above in connection with addition and subtraction.
According to the present invention rounding is sys

tematically incorporated into FEU 32. Fraction bus 48
is 68 bits wide, namely 64 bits of significand, one over
flow bit and the three GRS bits, so that rounding infor
mation is always associated with the number. Shifter 52
includes random logic, including that described in con
nection with register 80, that shifts a number left the
appropriate number of bits according to data format to
isolate and identify the rounding information and to
compute the GRS bits. Microcode is included within
FEU 32 to select the appropriate shift number from
table 158, and store it in shift count register 126 to selec
tively control shifter 52 to generate the appropriate
GRS bits. The GRS bits are automatically retained and
calculated in the nanomachine as described above.

F. Programmable Shifter
The operation of FEU 32 requires various unique

circuits described below in detail.
Programmable shifter 52 of the present invention is

included within FEU 32 to provide left or right shifts in
the range of 0-63 bits in one clock cycle. Generally, this
type of shifting is required in data format conversions,
cordic approximations and denormalization operations.
Left and right shifts are achieved by a bidirectional byte
shift matrix 90 and a bidirectional bit shift matrix 92
diagramatically shown in FIG. 3. The number of shifts
required is decoded into the number of whole bytes and
fractional bits constituting the total required number of
shifts.
For example, in FIG. 3 a shift of 52 bits would in

clude 6 byte shifts and 4 additional bit shifts. The word
is loaded from FEU bus 48 either into a left or right
latch 94 or 96 respectively as required and then first
shifted by the fractional number of bits or the required
number of bytes, depending on whether the shift indi
cated is a left or right shift. For example, FIG. 3 shows
a left load and right read interface circuit 94 which
serves both as the input for left loads and the output for
right shifts. Similarly, a right load and left read interface
circuit 96 is provided as a right input circuit and a left

4,338,675
17

shift output circuit. A byte shift count register 98 and
decoder 100 drives byte shift matrix 90 while a similar
bit shift count register 102 and decoder 104 drives the
bit shift matrix 92. Both registers 98 and 102 are three
bits wide and drive similar shift matrices 92 and 90. Byte
shift register 98 is decoded by decoder 100 to drive byte
shift command lines labeled 0, 8, 16, 32 . . . 48, and 56.
Similarly, bit decoder 104 has as its output eight discrete
lines labeled as 0, 1, 2, . . . 6, and 7.
FIG. 4 diagramatically illustrates byte shift matrix 90

and bit shift matrix 92. Only byte shift matrix 90 will be
illustrated for clarity, but bit shift matrix 92 is analo
gously constituted. The devices illustrated are bidirec
tional integrated circuit devices, and for the sake of
simplicity, the left hand nodes, Xi shall be considered
the input while the right hand nodes, Yishall be consid
ered the output, although the matrix is totally symmetri
cal and the opposite could also be true. In the illustrated
example, activation of the "0" decode line from decoder
100 activates bidirectional devices 106 which allows the
signal on nodes X to be transferred directly across to
nodes Yi, thereby representing a zero shift. However, if
the decode line '8' is activated, bidirectional devices
108 are each activated, thereby coupling node Xi to
node Y-8. Similarly, discrete decode line "16' will
cause node Xi to be coupled to node Yi-- 16 and so
forth.

In the same manner, discrete control lines 0, 1, 2 . . .
from decoder 104 will cause shift devices similar to
those shown in FIG. 4 to cross-couple node Xi to node
Yi-1 in case of activation of control line '1' and Xi to
Xi --2 in the case of control line "2" and so forth,

Both byte and bit matrix are precharged and are con
sidered in the present embodiment as being in an active
low logic condition. Therefore, when a number is
shifted to the left the vacated right bit positions will not
be coupled to the data source. Thus, the precharged
state of the byte or bit matrix will be read as logical
zeros. Similarly, zeros will be filled in the most signifi
cant bit positions in a right shift.
The read and load circuitry can be understood by

considering in detail the circuitry of the bidirectional
right and left read interfaces 94 and 96. FIG. 5 illus
trates a typical unit circuit used as a load interface. A
data bit, bi, is coupled as an input to a bidirectional
device 120 whose gate is controlled by the logical prod
uct of a left or right shift command signal and a timing
clock, -1. If a shift is required, device 120 will go active
on clock -1, charging node Ni, which is the gate of de
vice 122, to either a logical zero or 1, depending upon
whether the data bit, bi, is 1 or 0. At a slightly delayed
time, the delayed right or left signal coupled to the gate
of device 124 will go active low thereby allowing node
Ai, to go high if node N is 0 or will pull node A low
if node Niis 1. The gate of transistor 126 is controlled by
the condition at node A and will, together with device
128, provide an inverted output Xi with respect to A1. In
other words, Xi will be pulled low in the case that bi is
low or will be left precharged by device 128 if bi is one.
FIG. 6 similarly illustrates a typical unit read inter

face circuit. The input is Zifrom bit or byte matrix 90 or
92 is coupled to the input of transistor 130 whose gate is
controlled by a delayed shift left or shift right signal.
The signal present at Zi is coupled to the input of in
verter circuit 132 whose output is coupled to inverter
circuit 134. The output of inverter circuit 134 in turn
has its output fed back to the input of inverter 132 to
form a feedback loop which is completed by the com

O

15

20

25

30

35

45

50

55

65

18
plement of the shift left or shift right signal through
feedback device 133. The output of the first inverter
stage 132 is coupled to the gate of device 136 which has
an input coupled to ground and its output coupled to
the bus node bi. Device 136 is coupled to node bi
through device 138 whose gate is controlled either by
the read shift left or read shift right signal. Since the bus
is precharged, the 1 on Zi is coupled as a 0 to the gate of
device 136 which allows bi to remain in its precharged,
logical high state. Otherwise, if Z is 0 device 136 is
conductive thereby pulling bi to ground as well. The
output Zi is latched by the inverter combination of de
vices 132 and 134.

IV. ARCHITECTURE AND ORGANIZATION OF
THE FLOATING POINT EXECUTION UNIT

A. General Discussion

The present invention incorporates a number of
unique protocols in respect to denormalization and
normalization of exponent numbers, zero and infinity
arithmetic, and error detection and handling. Before
describing these protocols in detail, the internal file
organization of FEU 32 should be understood. An inter
nal register file 50, illustrated in FIGS. 2 and 8, is
treated both as a stack and general register file. The
current stack top in file 50 is identified by a “top” field
in status word register 44 in BIU 30. A two bit field in
the “tag” field of tag word register 46 identifies whether
each register is empty or contains an operand. Register
file 50 is addressable as ordinary registers by an address
ing protocol which is relative to the designated top
register (TOS). The register address is computed at the
start of each floating point instruction and is computed
by adding the address of the top of stack register to the
register displacement field within the floating point
instruction. Thus, "top" plus zero is the top of stack,
"top" plus one is the next on the stack, and "top" plus
seven is the bottom of the stack.

Consider first the organization of tag word register
46. Register 46 is 16 bits wide and is grouped into two
bit fields to comprise upper and lower byte of four fields
each. In the illustrated embodiment, the tag codes are 00
for valid; 01 for zero; 10 for invalid or infinity; and 11
for empty. The tags are primarily used to facilitate
branching and inspection within the microcodes em
ployed in FEU 32 according to well-known design
principles.

Status word register 44 is similarly a 16 bit register
which holds the current status of the entire chip. The
upper byte is used for conditional branching while the
lower byte holds error information and is used for error
recovery. The upper byte is comprised of eight status
bits including a three bit pointer to the top of stack
register. One bit, the busy bit, is used to indicate that
FEU 32 is busy, while the remaining four status bits
assume various meanings according to the coding de
vised for various floating point instructions. The lower
byte of status word register 44 includes a number of
error and exception flags, such as an interrupt bit, N,
which signifies a request for an interrupt routine; a
precision error bit, P; and underflow error bit, U; an
overflow error bit, O; a divide by zero error bit, Q; a
denormalization error bit, D; and an invalid error bit, I.

Finally, control word register 42 similarly is com
prised of two upper and lower bytes. Each of the bit
locations represents a field or bit flag which can be set
according to program control and utilized during oper

4,338,675
19

ation to effect a control function. For example, in the
upper byte, control word register 42 includes an affine
closure flag for infinity arithmetic, and the rounding
control two bit field (RC) used to control the mode of
rounding as described above. A two bit precision field,
PRE, in the upper byte, specifies the precision required
in the result and thus the format to which the result will
be rounded. For example, the code 00 indicates a preci
sion of 24 bits which is analogous to real single repre
sentation; the code 10, a precision of 53 bits and analo
gous to real double representation; and the code 11,
requiring 64 bits analogous to integer long representa
tion. The lower byte of control word register 42 in
cludes a plurality of mask bits, such as a common mask
bit, M, which masks the N bit in status word register 44,
thereby preventing the initiation of an interrupt routine.
The remaining mask bit locations are used to mask rele
vant error bits and correspond to the errors represented
in the lower byte of status word register 44, there is a
precision mask error bit, MP, corresponds to precision
error flag, P; an underflow error mask MU, correspond
ing to underflow error flag U; an overflow error mask,
MO, corresponding to overflow error, O; a divide by
zero error mask, MQ, corresponding to divide by Zero
error flag, Q; a denormalization error mask, MD, corre
sponding to denormalization error, D; and an invalid
error mask, MI, corresponding to invalid error flag, I.
The manner in which data is manipulated and preci

sion controlled within the present invention can now be
summarized. All operations in the chip are performed
using the file floating point format which is an 80 bit
real representation. However, when the result of an
arithmetic operation is exact, such as when two integer
operands are involved, the result is effectively an inte
ger. The file format of the present invention is an 80 bit
number wherein 64 of the bits are dedicated to the frac
tion and 16 are dedicated to the sign and exponent. In
arithmetic operation where an operand must be denor
malized in order to perform the operation, the present
invention includes a guard and round bit to extend the
normal 64 bit fraction. If there are any one bits beyond
the 67 working bits, a third bit, the sticky bit as de
scribed above, is set in the sticky bit register coupled to
the output of the adder. Normally, in the default round
ing mode, the results are rounded to the nearest repre
sentable floating point number and in the case that the
result is exactly between two representable values, it
will be rounded to the nearest even number. However,
as described above, the RC bit field in control word
register 42 allows for a chop, and directed rounding,
namely rounding up or down, according to program
control. The precision control field, PRE, will deter
mine the precision to which the result of the mathemati
cal operation will be rounded, that is, PRE is 00 for 24
bit sign and magnitude fraction, 10 for 53 bit sign to
magnitude fraction, and 11 for a 64 bit integer or file
format fraction.
Overflow and underflow errors are suppressed dur

ing directed rounding, if masked. Should either type of
error occur during an instruction, the error indication is
suppressed only after the proper masked response has
been made. An error is not reported by setting the ap
propriate bit of status word register 44, but is handled
appropriately.

5

10

15

20

25

30

35

45

SO

55

65

20

B. Handling of Denormalized and Unnormalized
Numbers

The present invention allows the generation and han
dling of unnormalized numbers. An unnormalized num
ber is defined as a valid number where the fraction is not
normalized, that is, the leading or hidden bit is not l.
Unnormalized numbers may be generated internally due
to a result that is too small to be represented in normal
ized form. For example, a number may have a small
exponent which can be incremented to become repre
sentable. In order to compensate for the incrementation
of the exponent, the fraction will be shifted right by as
many bit places as is required to increase the exponent.
The result could be an all zero fraction (defined as a
'pseudo-Zero'). Unnormalized numbers can also be
created in the operation of storing numbers into mem
ory.

In file 50 two kinds of unnormalized numbers may
exist, namely, a valid number where the fraction is un
normalized where the fraction, but not the exponent
may consist of all zeros (pseudo-zero); and an invalid
number with an exponent equal to zero and a nonzero
fraction. This latter type of number may be generated
on a masked underflow as a result of the computation.
In any case where an unnormalized number is detected,
a flag will be set. Generally, unnormalized numbers are
restricted to their own domain as long as they have
significance. For example, in the case of addition, where
larger number is denormalized, then the result is left in
a denormalized format. This is implemented by setting
the D flag and branching by microcode to omit the
normalization routine. In the case of subtraction, if the
number of greater magnitude is denormalized, a specific
response must be made depending on the circumstances
of the operation as to whether normalization should
occur. Thus, regardless of whether the operation is one
of addition or subtraction, if the number of greater
magnitude is denormalized, the result would be denor
malized as well. Otherwise, the result is normalized. In
the case of multiplication, the result is always left in the
denormalized format. In the case of division, if the den
ormalized number is in the divisor, an error is flagged,
or, if in the dividend, the result is left in the denormal
ized form. Finally, in the case of the square root, if the
argument is denormalized, an error flag will be gener
ated as in division, since in neither operation can the
nanomachine return a correct result with an unnormal
ized operand.

Arithmetic manipulation of denormalized numbers
may also require special handling in certain circum
stances as summarized in Table 2 in the appendix.
C. Signed Zero and Infinity Generation and Handling
Signed zeros and infinity are detected and handled as

exceptions or errors and, according to the present in
vention, and are tagged in each case with a specific
response returned if the exception or error is masked.

Both plus and minus zero is represented in the real
single and double precision representations, including
memory and file formats, in the present invention. Simi
larly, positive zero is represented in integer representa
tion and signed zero in BCD repesentation.

During arithmetic operation and various transfer
operations, the handling of true zeros, pseudo-zeros and
infinity is calculated and, in each case, is handled as a
tagged error or quantity which will generate an inter
rupt, unless masked, in which case the most logical or

4,338,675
21

expected result is returned. If, before an operation is
performed the tags of the operands are checked in tag
logic circuit 140, and if one or both of the operands are
not valid or nonzero, then a special routine, is invoked
according to conventional microcode control.

If plus infinity is in the top of stack (TOP) and the
other operand is minus infinity, then their sum is the
non-number, indefinite, IND. Similarly, if top of stack is
indicated as having a positive infinity and the operand is
also indicated as having a positive infinity, the result
will be indefinite (IND) and an error flag, the I error,
will be set. If TOP is minus infinity and plus infinity is
subtracted as an operand, the return difference is minus
infinity. In addition, when the top of stack contains a
positive value number and the operand is negative infin
ity, the result returned will be negative infinity with an
error flag setting. In the case of division operations, a
division by zero error flag, Q error, can also be indi
cated as set. For example, positive infinity divided by
minus zero, returns the result, minus infinity, with an
error flag and Q error setting indicated.

It is possible with respect to each of the above exam
ples, that the sign of the return result could be altered
according to the rounding mode chosen. In the above,
the default rounding mode has been selected, namely
when between two representable numbers round near
est even. For other rounding modes, an appropriate sign
will be returned according to the rounding mode
choice.

In addition to arithmetic operational errors, error
flags can be set and remedial action taken in response to
transfers and manipulations of numbers by floating
point instructions to and from memory, and within the
stack. Generally, the response's nature is determined by
the type of error indicated as well as the instruction in
which it occurred. In each case, an interrupt is provided
with appropriate error flags and indicators or it may be
masked, in which case the most reliable response or
return is specifically included within the design logic.

Before describing a number of examples illustrating
this principle, the language structure of the present
invention must first be generally understood. The in
struction set is highly symmetric and orthogonal which
greatly enhances its power and flexibility to the user. By
symmetry and orthogonality, it is meant that the format
or syntax of the instruction is uniform when used with
any type of data format, and has a uniform internal
syntax regardless of the operation performed, i.e. addi
tion, subtraction, multiplication, etc.
The set of instruction is divided into three categories:

a core instruction set; an extended set; and a transfer set
of instructions. The core instruction set performs basic
mathematical operations. Each core instruction has six
forms for six types of operands. Of these five forms, four
are memory referencing forms, and one a register form.
The four memory reference forms each correspond to
different storage representations, namely, short or long
precision, and real or integer.
The extended set supports more esoteric mathemati

cal functions which are applicable to the stack operands
only.
The transfer set of instructions supports special oper

ations, such as saving and storing various parts of the
volatile state of the processor. Generally, these instruc
tions reference memory for a source or destination.

Obviously, the number of examples which can be
taken are numerous, and inasmuch as each action is as
specific to the floating point instruction and the numeri

10

15

20

25

30

35

40

45

50

55

65

22
cal quantities handled by the instructions as well as the
source and destination, no universal example of the
error indication and its response can be set forth. There
fore, consider one specific example for the purposes of
illustration. Consider generally the fetch phase of a core
instruction. If the operand is specified to be in a register,
the contents of the register are copied into a temporary
storage that will serve as an operand for computing the
result. The register's address is computed by adding the
register field of the instruction to the top of stack
pointer, using modulus arithmetic. The address is com
puted at once at the start of the fetch phase and remains
unchanged, independent of the top of stack until the
floating point instruction is completed. An I error can
be caused by two cases. The register may be empty or
the number in the register may be an invalid. Consider
specifically the instruction, LOAD. If the error is un
masked, the circuitry of the present invention will stop
and generate an interrupt. If the error was masked, the
non number for "indefinite' will be loaded.
The error conditions are detected by tag logic circuit

140 of FIG. 8. The instructions are decoded using well
known microcode design principles. The errors I.D.Q.,
indicating zeroes, invalids, empty, and denormalized
numbers, are generally identified by examining the tags
and by using the exponent logic circuit 142 coupled to
exponent bus 49. As each number is loaded into file 50,
circuit 142 will test the exponent using random logic to
determine if any of the above error conditions exist. The
tag will be appropriately loaded under microcode con
trol into tag logic circuit 140 and thence for storage into
file 50. After a number has been loaded into FEU 32, O,
U, or Perrors can occur and will again be detected by
exponent logic circuit 142 according to the data type
which has been selected for output.

Because the operands are all formatted with 80 bit
lengths, the precision of the results of calculation are
independent of the precision of the operands since all
internal registers accommodate the file formal. Results
then are forced to real, real long, or other data formats
depending upon the outside destination. All exceptions
(I,O, U.D.O and P) (status flags) are detected and an
interrupt is generated if the exception is not masked. If
an interrupt is not generated, exception handling is
available in the numeric data processor of the present
invention and a saving or read out of the exception
flags, a pointer to the instruction causing the interrupt,
and a pointer to the data if memory was addressed. Zero
and infinity arithmetic are particularly provided for as
part of the internal exception handling, including both
offine and projective infinity.
The numeric data processor permits instructions that

load and store either the control word in the case of
rounding, precision, or infinity arithmetic and exception
handling or the entire environment and storage of the
exception flags.
The capability of the numeric data processor of the

present invention is also extended as well as its reliabil
ity. As previously stated, six data types in addition to
the file format can be accepted by the data processor by
virtue of conversion of each of the data formats to the
accompanying or generalized file format.

Exact arithmetic is accomplished by including an
inexact exception, "P", along with its mask. If a round
ing error is committed, the correctly rounded result is
delivered and the 'P' flag is set. If the mask, "PM", is
zero, an interrupt is generated, otherwise execution
simply continues. This permits accounting functions to

4,338,675
23

oe carried out and allows them to be protected from
"ound off error,
Through use of the rounding modes, signed zeros and

infinities, interval arithmetic can be implemented by the
numeric data processor. The signs on zero and infinity
permit open or closed intervals when zero or infinity is
an end point of an interval with the sign denoting
whether the interval is open or closed.
The numeric data processor also includes several

special instructions, such as the hardware executed
square root, multiplication, division, and modulus re
iuction described above.
Many other modifications and alterations may be

made to the presently illustrated embodiment without
leparting from the spirit and teachings of the present
nvention. The invention as set forth in the claims below
is merely illustrated and not limited by the above de
scription. The stack pointer is decremented and the
value of the significand of the original top of stack,
scaled between 1 and 2 or between - 1 and -2, loaded
Into the new top of stack position. The "remainder'
Instruction is for reducing arguments and periodic func
tions to a primary range. The instructions allow the
calculation of the exact remainder without round off
error of the two top stack elements, namely the remain
der is set equal to the contents of the top of stack (TOS)
modulo the contents of the next top of stack (TOS 1),
The remainder is returned to the top of stack and the
next top of stack remains unchanged.
Cordic approximations of transcendental functions

are accomodated in the numeric data processor of the
present invention in hardware. The inclusion of "de
compose' and "remainder' instruction facilitate argu
ment reduction necessary for transcendental function
calculations. Cordic approximations can be computed
in FEU 32 to obtain transcendental function in hard
ware, such as exponents, logarithms, tangents and arc
tangents. The Decompose instruction overrides the
contents of the top of stack with the integral value of
the exponent of the top of stack as expressed in the file
format.

W. SUMMARY AND ADVANTAGES OF THE
INVENTION

Each of the above aspects of the invention, when
taken together, result in significant improvements in
integrated circuit numeric data processors. The numeric
processor of the present invention is fast enough for
many scientific and statistical calculations; accurate
enough for business and commercial computations;
precise enough for new applications like interval arith
metic; provides an unprecendented level of capability,
safety and reliability with high performance and low
cost. The numeric processor is primarily characterized
by the fact that all data types, long and short real, long
and short integer, compact BCD, and integer word are
converted to an internal file or temporary real format of
80 bits in length. The internal stack within the numeric
processor, the exponent and fraction buses, the arithme

(a)

5

10

15

20

25

30

35

40

45

50

55

24
tic unit, and all shifters and registers are designed to
operate with an 80 bit word, including three additional
rounding bits (GRS) and where appropriate, a tag bit.
The file format has an explicit leading bit in the signifi
cand and thus allows unnormalized as well as normal
ized arithmetic.

Various mathematical expressions, known for ap
proximating functions, such as the polynomial approxi
mation, Maclaurin series, successive divisions, and
Padeh approximations, are examined with the purpose
of determining how many elements in the series are
required in order to obtain less than a specified degree
of error, it is readily demonstrable that the only way in
which the number of elements in the series can be kept
within a reasonable bounds is to limit the domain of the
argument in the approximation series. After the result is
calculated, there must be some way in which the do
main is then built back up to encompass the original
domain of numbers which the numeric processor is
designed to handle. Cordic approximations are well
known to the art and the general approach is to reduce
the argument to create a very small remainder using
pseudo-divides, to create a series of pseudo-quotients.
The approximate value of the function of the remain
ders are then computed followed by reconstruction of
the function with the correct argument using pseudo
multiplications with the pseudo-quotients. The algo
rithm of the cordic approximation are well-known,
somewhat complex and need not be repeated here. The
exact point to which the argument need to be reduced
will depend upon the accuracy desired, the mathemati
cal approximation used and the function to be calcu
lated. Microcode control applied (according to ordi
nary design considerations) is used to implement these
argument reductions and approximation calculations.
The pseudo-divisions and pseudo-multiplications are
implemented as loops using additions and subtractions
employing mathematical constants from ROM 63 and
the operand or remainder function. Shifts are required
in the cordic algorithm which are controlled by the
loop count. Loop counter 162 is provided for this pur
pose and is coupled both to multiplexer 148 and to
ROM pointer logic 164 which in turn controls the read
out from ROM 63, Essential to the hardware implemen
tation of the cordic approximations is a flexible loading
into a programmable shifter from multiple sources. For
example, shifter 52 can be variably controlled through
multiplexer 148; by loop counter 162, which is loaded
from a microcode immediate field as well as the variable
loop count; by bit or byte portion of leading zero
counter 154; from any source coupled to fraction bus 48
through shift count register 126; from rounding parame
ter table 158 through register 126; and by both the shift
count from counter 126 or its complement as may be
required and as is selectively provided by shift count
selection circuit 166. Without this combination of ele
ments, cordic approximations could not be implemented
in an integrated circuit chip of practical size or at suffi
cient speed and accuracy.

TABLE 2
ADD-SUBTRACT - Global ADD-SUBTRACT F. P. Instructions
are re-classified as local ADD MAGNITUDE, SUBTRACT
MAGNITUDE according to the signs of the opcrands.
(1) ADD MAGNITUDE - No special handling of unnormalized

operands.
(2) SUBTRACT MAGNITUDE - Two cases occur after the

exponents have been made equal by unnormalization
of the fraction with the smaller original exponent:
(i) if neither fraction is normalized, then leave

4,338,675
25

TABLE 2-continued
the difference unnormalized, and round as is.

(ii) If either fraction is normalized, then normalize
the difference prior to rounding.

MULTIPLY - Needs no special handling.
DIVISION - If Divisor is unnormalized, trap; if dividend
is unnormalized, carry on like any other division.

(b)
(c)

(d)
after normalizing as much as possible, check & react to
D-error at end.
SQRT - Trap on a unnormalized number argument,
MOD. Like Divide. Notice that if Divident is unnormalized
the remainder will still be a normalized result.
STORE (REAL) - An unnormalized number whose exponent
is above the underflow boundary will cause an I-error.
In the underflow range U-error will occur,
Integer Part of TOP - Pre-normalize as much as possible
without causing underflow.
LOAD File Format - If a number with zero exponent, non-zero
fraction is encountered the tags are set to Invalid and
the D-error is set. If unmasked it will cause Interrupt
upon completion.

(e)
(f)

(g)

(h)

(i)

26

COMPARE - Flag any Unnormalized as D-error, carry on comparison

We claim:
1. An improvement in a numeric data processor for

performing calculations on a plurality of data formats
representable by a fraction and exponent representation
comprising:

first means for converting said plurality of data for
mats to a file format having a fraction and exponent
representation wherein said file format has a nu
meric fraction and exponent domain greater than
any one of said plurality of data formats;

a fraction and exponent bus coupled to said first
means;

a stack of registers configured to store numeric infor
mation in said file format, said stack coupled to said
exponent and fraction bus;

an arithmetic unit to perform arithmetic operations
on said information in said file format, said arithme
tic unit being coupled to said fraction bus; and

means for rounding said numeric information in a
selected one of a plurality of modes,

wherein said means for rounding includes a three bit
register for storing a guard, round and sticky bit
corresponding to a numeric quantity, said sticky bit
being the Or-function of all right shifted bits from
said numeric quantity beyond the bit location of 45
said guard and round bits.

2. An improvement in a numeric data processor for
performing calculations on numeric quantities compris
1ng:

first means for detecting and indicating numeric ex
ceptions during computational operation and han
dling of said numeric quantities wherein said ex
ceptions include signed zeros and infinity;

second means for selectively masking a response to
said numeric exceptions;

third means for selectively providing a specific re
sponse to each said exception when said exception
is masked, said third means being coupled to said
second and first means;

means for rounding said numeric quantities in a se
lected one of a plurality of modes,

wherein said means for rounding includes a three bit
register for storing a guard, round and sticky bit
corresponding to said numeric quantity, said sticky
bit being the exclusive-or function of all right
shifted bits from one of said numeric quantities.

3. An improvement in a method for calculating nu
meric quantities having a plurality of data formats rep

25

30

35

40

SO

55

SO

65

resentable by a fraction and exponent representation in
a numeric processor comprising the steps of:

converting said plurality of data formats to a file
format in a conversion means wherein said file
format has an exponent and fraction numeric do
main greater than any one of said plurality of data
formats;

storing said converted data format in file format
within a stack of registers;

selectively coupling said file format numeric quanti
ties to a fraction and exponent bus;

selectively coupling said file format numeric quanti
ties to an arithmetic unit and performing arithmetic
operations in file format thereon; and

rounding said numeric quantities in one of a plurality
of modes by means for rounding,

wherein said means for rounding includes a three bit
register for storing a guard, round and sticky bit
corresponding to a numeric quantity, said sticky bit
being the exclusive-or function of all right shifted
bits from said numeric quantity beyond the bit
location of said guard and round bits,

4. An improvement in a method for calculating nu
meric quantities comprising the steps of:

detecting every numeric exceptions during computa
tional operations in a numeric processor;

indicating the nature of said exceptions detected in a
status register;

generating a response in hardware within said nu
meric processor specific to the indicated exception
without generating an interrupt signal, including
the exception of operations employing and result
ing in signed zeros and infinity; and

selectively masking said generated response.
5. An improvement in a numeric data processor for

performing calculations on a plurality of data formats
representable by a fraction and exponent representation
comprising:

first means for converting said plurality of data for
mats to a file format having a fraction and exponent
representation wherein said file format has a nu
meric fraction and exponent domain greater than
any one of said plurality of data formats;

a fraction and exponent bus coupled to said first
means;

a stack of registers configured to store numeric infor
nation in said file format, said stack coupled to said
exponent and fraction bus;

4,338,675
27

an arithmetic unit to perform arithmetic operations
on said information in said file format, said arithme
tic unit being coupled to said fraction bus;

means for rounding said numeric information in a
selected one of a plurality of modes; and

means for performing exact arithmetic including a P
flag register and PM mask register, wherein said P
flag register is set if rounding occurs within said
means for rounding and an interrupt is generated
by an interrupt means, and wherein if said PM
mask register is set, execution continues without
interrupt generation with a rounded result gener
ated by said means for rounding,

whereby reliability of calculation is increased.
6. An improvement in a numeric data processor for

performing calculations on mumeric quantities compris
1ng:

first means for detecting and indicating numeric ex
ceptions during computational operation and han
dling of said numeric quantities wherein said ex
ceptions include signed Zeros and infinity;

second means for selectively masking a response to
said numeric exceptions;

third means for selectively providing a specific re
sponse to each said exception when said exception
is masked, said third means being coupled to said
second and first means;

means for rounding said numeric quantities in a se
lected one of a plurality of modes; and

means for performing exact arithmetic including a P
flag register and PM mask register, wherein said P
flag register is set if rounding occurs within said
means for rounding and an interrupt is generated
by an interrupt means, and wherein if said PM
mask register is set, execution continues without
interrupt generation with a rounded result gener
ated by said means for rounding,

whereby every exception during numeric processing
is detected and indicated and if masked, will be
provided with a response so that calculation may
proceed in a reliable manner.

7. An improvement in a method for calculating nu
meric quantities having a plurality of data formats rep
resentable by a fraction and exponent representation in
a numeric processor comprising the steps of

converting said plurality of data formats to a file
format in a conversion means wherein said file
format has an exponent and fraction numeric do
main greater than any one of said plurality of data
formats;

storing said converted data format in file format
within a stack of registers;

selectively coupling said file format numeric quanti
ties to afraction and exponent bus;

selectively coupling said file.format numeric quanti
ties to an arithmetic unit and performing arithmetic
operations in file format thereon;

rounding said numeric quantities in one of a plurality
of modes by a means for rounding;

selectively setting a Pflag register if rounding occurs;
and

generating an interrupt if a PM mask register is not
set, otherwise generating a rounded result.

8. An improvement in a numeric data processor for
performing calculations on a plurality of data formats
representable by a fraction and exponent representation
comprising:

first means for converting said plurality of data for
mats to a file format having a fraction and exponent
representation wherein said file format has a nu

10

15

20

25

30

35

45

50

55

28
meric fraction and exponent domain greater than
any one of said plurality of data formats;

a fraction and exponent bus coupled to said first
means;

a stack of registers configured to store numeric infor
mation in said file format, said stack coupled to said
exponent and fraction bus;

an arithmetic unit to perform arithmetic operations
on said information in said file format, said arithme
tic unit being coupled to said fraction bus;

second means for detecting and indicating numeric
exceptions during computational operation and
handling of said information;

third means for selectively masking a response to said
numeric exceptions; and

fourth means for selectively providing a specific re
sponse in hardware and without the generations of
an interrupt signal to each said exception when said
exception is masked, said fourth means being cou
pled to said second and third means,

whereby every exception during numeric processing
is detected and indicated, and, if masked, will be
provided with a response so that calculation may
proceed in a reliable manner.

9. An improvement in a numeric data processor for
performing calculations on numeric quantities compris
1ng:

first means for detecting and indicating numeric ex
ceptions during computational operation and han
dling of said information wherein said exceptions
include signed zeros and infinity;

second means for selectively masking a response to
said numeric exceptions; and

third means for selectively providing a specific re
sponse in hardware and without generating an
interrupt signal, said third means being coupled to
said second and first means,

whereby every exception during numeric processing
is detected and indicated and if masked, will be
provided with a response so that calculation may
proceed in a reliable manner.

10. An improvement in a method for calculating nu
meric quantities having a plurality of data formats rep
resentable by a fraction and exponent representation in
a numeric processor comprising the steps of:

converting said plurality of data formats to a file
format in a conversion means wherein said file
format has an exponent and fraction numeric do
main greater than any one of said plurality of data
formats;

storing said converted data format in file format
within a stack of registers;

selectively coupling said file format numeric quanti
ties to a fraction and exponent bus;

selectively coupling said file format numeric quanti
ties to an arithmetic unit and performing arithmetic
operations in file format thereon;

reconverting a file format numeric quantity in said
stack of registers by said conversion means into a
selected one of said plurality of data formats;

detecting and indicating numeric exceptions during
said steps of converting, reconverting, performing
arithmetic operations in an error detection means;
and

selectively providing a specific response to each said
exception in hardware without generating an inter
rupt signal when said exception is masked by an
error handling means.

t t

