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(57) ABSTRACT 
A floating point, integrated, arithmetic circuit is orga 
nized around a file format having a floating point nu 
meric domain exceeding that of any single or double 
precision floating point numbers, long or short integer 
words or BCD data upon which it must operate. As a 
result the circuit has a greater reliability, range and 
precision than ever previously achieved without entail 
ing additional circuit complexity. Reliability is further 
enhanced by a systematic three bit rounding field, and 
by including means for detecting every error or excep 
tion condition with an optional expected response pro 
vided thereto by hardware. As a result of such organiza 
tion, an unexpected increase of capacity is achieved 
wherein transcendental functions can be computed to 
tally in hardware, and whereby mixed mode arithmetic 
can be implemented without difficulty. The numeric 
processor also includes a programmable shifter capable 
of arbitrary numbers of bit and byte shifts in a single 
clock cycle, as well as an arithmetic unit capable of 
implementing multiplication, division, modulo reduc 
tion and square roots directly in hardware, 

10 Claims, 9 Drawing Figures 
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BACKGROUND OF THE INVENTION 

1. Field of the Invention 
The present invention relates to the field of numeric 

data processors and in particular, relates to integrated 
circuit, floating point numerical processors capable of 
mixed precision calculations, mixed mode arithmetic 
calculations and rounding operations. 

2. Description of the Prior Art 
Prior art arithmetic processors, particularly inte 

grated circuit processors, are characterized by various 
artifacts of inaccuracy, unreliability and lack of safety 
during floating point calculations. For example, a typi 
cal prior art, integrated circuit process is capable of 
performing transcendental mathematical operations, 
including square root, in such a manner that the result is 
not only obtained relatively slowly, often only with 
software assistance, but subject to the possibility of 
multiple rounding errors in intermediate results leading 
to an inaccurate final answer and with no internal mech 
anism within the processor to either detect or correct 
the rounding errors. In addition, prior art processors 
generally cannot operate with mixed mode operands or 
can do so only with the substantial risk of producing 
erroneous results, 
What is needed then is an arithmetic processor having 

sufficient internal precision to make quick, accurate and 
reliable calculations of single and double precision inte 
gers and floating point quantities with internal means to 
deal with rounding errors and other arithmetic excep 
tions or special cases such as zero and infinity arithme 
tic. 
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2 
BRIEF SUMMARY OF THE INVENTION 

The present invention includes an improvement in a 
numeric data processor for performing calculations on a 
plurality of data formats representable by a fraction and 
exponent representation comprising a first means or 
circuit for converting the plurality of the formats to a 
file format wherein the file format has a numeric frac 
tion and exponent domain greater than any one of the 
plurality of data formats. A fraction and exponent bus is 
coupled to this first means or circuit for converting the 
plurality of data formats. A stack of registers, which are 
configured to store numeric information in the file for 
mat, are coupled to the exponent and fraction bus. An 
arithmetic unit which is used to perform arithmetical 
operations in file format on the numeric information is 
also coupled to the fraction bus. By reason of this com 
bination of elements, the reliability of computation is 
substantially increased since all data formats are con 
verted to a file format which has a greater range of bits 
in the significand and a greater exponent range than any 
of the numerical quantities which the numeric proces 
sor may be called upon to manipulate. Generally, then, 
the only errors which are likely to occur are errors in 
conversion and transfer rather than in computation. 
This combination allows mixed mode arithmetic since 
the file format is able to include all data formats after 
their conversion. 
The present invention also includes a circuit or means 

for detecting and indicating numeric exceptions or er 
rors during any computational operation and for han 
dling of such exceptions or errors. A third means or 
circuit for selectively masking a response to the numeric 
exceptions is also included within the numeric proces 
sor. A fourth means or circuit then selectively provides 
a specific response to each exception which is capable 
of identification and is active when the exception is 
masked. The fourth circuit is coupled to the second and 
third circuits so that a response is generated whenever 
detected and identified by the second circuit and when 
masked by the third circuit. As a result of this combina 
tion of elements, an exception or error indication is 
generated in each and every instance in which an error 
or exception occurs during computation. The user is 
then given the option by masking, either to generate an 
interrupt to stop processing, or to continue computation 
by inserting, at that point in the computation, a specific 
response which is determined by the precise circum 
stances of the exception or error which has occurred. 
However, the indication that an error has occurred is 
not lost and remains stored within the numeric proces 
sor throughout the entire computation so that the user 
has the option of being aware of the precise nature and 
occurrence of the exception or error and taking appro 
priate software measures should the exception or error 
prove to be unacceptably unreliable. 
By virtue of the above combination, the numeric data 

processor may handle both signed zeros and signed 
infinity and thereby be able to include within its capac 
ity the capability to do interval arithmetic both in the 
affine and projective closures. 

Furthermore, the present invention includes a means 
for rounding the numeric information according to a 
selected one of a plurality of rounding modes. The 
rounding is effected by appending to each numeric 
quantity three additional bits, a guard, round and sticky 
bit, wherein all right shifted bits are captured in the 
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guard, round or sticky bit, the latter of which is the or 
function of all previously right shifted bits. 
As a result of this rounding capability in the numeric 

processor, the numeric processor includes a means for 
performing exact arithmetic by being able to detect and 
indicate by a precision flag, a P flag, whenever round 
ing has occurred. In the case where exact arithmetic 
must be computed, an interrupt can be generated in 
response thereto. 
The present invention also includes a programmable 

bidirectional shifter which is comprised of a first bidi 
rectional load and read interface circuit selectively acti 
vated for left shifts, and a similarly constituted second 
bidirectional load and interface circuit which is selec 
tively activated for right shifts. The first interface cir 
cuit is coupled to a byte shift matrix while the second 
interface circuit is coupled to a bit shift matrix. The byte 
shift matrix is arranged and configured to shift the input 
quantity by a multiple of bytes, namely multiples of 
eight bits. The bit shift matrix is similarly constituted to 
shift its input quantity by a selected number of bit loca 
tions up to seven consecutive places. The bit and byte 
shift matrices are coupled to allow bidirectional flow of 
signals therebetween. The bit and byte matrix are con 
trolled by a bit and byte shift control circuit respec 
tively which determines the number of bytes and bit 
places each matrix will actually shift. By reason of this 
combination of elements, a numeric quantity of virtually 
arbitrary length may be selectively shifted by an arbi 
trary number of bit places during a single clock cycle 
and by the use of simple circuitry. 
The present invention also includes an improvement 

in a method of calculating numeric quantities having a 
plurality of data formats representable by a fraction and 
exponent representation comprising the steps of con 
verting the plurality of data formats to a file format in a 
conversion means whereby the file format has an expo 
nent and fraction numeric domain greater than any one 
of the plurality of data formats. The converted data is 
then stored in file format within a stack of registers and 
selectively coupled to a fraction and exponent bus, also 
in file format. The file format numeric quantities on the 
fraction and exponent bus are then selectively coupled 
to an arithmetic unit which performs arithmetic opera 
tions on those numeric quantities in file format. For the 
reasons set forth above, execution and conversion of 
numeric quantities into and from the file format of the 
present invention virtually eliminates computational 
errors and unreliability which were previously inherent 
to numeric processors. 
The present invention also includes an improvement 

in the method for calculating numeric quantities con 
prising the steps of detecting numeric exceptions during 
computational operations in a numeric processor. All 
numeric exceptions or errors are detected. The nature 
of the exception or error detected is then indicated in an 
appropriate status register. A response is then generated 
within the numeric processor which is specific to the 
indicated exception or error, including the exception of 
operations employing and resulting in signed zeros and 
infinity. Finally, certain ones of these generated re 
sponses or indicated errors may be selectively masked 
so that computation continues according to the specific 
and reliable response indicated, rather than generating 
an interrupt and allowing the software user to deter 
mine what response should be made. 
These and other aspects of the present invention can 

be better understood by reviewing the following figures 
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4. 
in light of the detailed description of the preferred em 
bodiments. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 is a block diagram schematically showing the 
system and environment in which the numeric proces 
sor of the present invention is used, namely in conjunc 
tion with a central processing unit having access to 
external peripherals and memory. 

FIG. 2 is a simplified block diagram of the architec 
ture of the numeric processor showing its division into 
a bus interface unit and floating point execution unit. 

FIG. 3 is a block diagram of a programmable shifter 
included within the present invention wherein left and 
right shifts of an arbitrary length may be made within a 
single clock cycle. 

FIG. 4 illustrates the byte matrix shifter portion of 
the programmable shifter illustrated in FIG. 3. 

FIG. 5 is a schematic diagram of a load interface unit 
circuit used in the programmable shifter. 

FIG. 6 is a schematic diagram of a read interface unit 
utilized by the programmable shifter. 

FIG. 7 is a simplified block diagram of the nano 
machine portion of the floating point execution unit 
wherein multiplication, division, modulo reduction and 
square roots are implemented directly in hardware. 

FIGS. 8a and 8b is a detailed block diagram illustrat 
ing the entire floating point execution unit of the present 
invention. 

DETALED DESCRIPTION OF THE 
PREFERRED EMBODIMENT 

... GENERAL DISCUSSION OF DATA AND 
NUMERIC REPRESENTATIONS 

In order to understand methodology and apparatus of 
the present invention, consider first the basic represen 
tational formats for numerical data which the numeric 
processors must accommodate. According to the pres 
ent invention, the data structure consists of five general 
data types: real long and short; integer long and short; 
and BCD integer. 

Additionally, there are a number of special numbers 
which must be handled as exceptions. Plus and minus 
zero form a special class as a result of their special na 
ture in arithmetic operations. Similarly, plus and minus 
infinity are used to represent positive and negative num 
bers with a magnitude greater than that of the largest 
representable number. A normalized number is defined 
as a real number having all significant bits in the fraction 
or significand. Denormalized numbers are those num 
bers which have an exponent equal to that of the small 
est representable normalized number, but which have 
significands which are allowed to have leading zeros. 
Finally, when no numeric result can be represented, 
such as in the case of division of zero by zero, a "not a 
number (NAN)' or "IND” can be provided. Thus, 
underflow and overflow, rather than aborting the nu 
merical operation when occurring, can be dealt with by 
the use of plus and minus infinity, denormalized num 
bers and NANs. 

In the following description let P equals the sign bit; 
E equals the exponents; S the significand or fraction; 
and X the general numeric variable. 

Consider first the specific definition of normalized 
numbers in both short and long word storage formats, 
i.e., in the format suitable for memory storage. The 
range of the number is 2-1022sxs(2-2-52)2023 and is 
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characterized by a biased eleven bit exponent, E, which 
is 1 SES 2046, which has a leading implicit one bit in a 
significant followed by 52 expressly spcified bits. Thus, 
the interpretation of the long or double precision nor 
malized number is x=(-1)P2E-1023("1"--S2-52) 
where "1" is an implicit one. 
By the same token, the definition of a short word or 

single precision normalized number in memory is 

thereby having a range of 

23i 126sks(2-2-23)227 

and characterized by an eight bit biased exponent 
ls Es 254. In this case, the significand begins with an 
implicit leading 1 bit followed by 23 expressly specified 
bits. 
The normalized representation of an extended or file 

format of the present invention is described in the pres 
ently illustrated embodiment as a normalized number 
having a 15 bit biased exponent with a 64-bit significand 
characterized by explicit leading 1 bit. In other words, 
the file format is x=(-1)P2E-16383(S2-63) where 
ls Es32766 and where E=215-1 is reserved for infl 
nites, invalids and indefinites. 

Plus and minus zero is characterized by a biased expo 
nent and significand both having a zero value. Thus, in 
the file format, the plus or minus zero is characterized 
by the number having the smallest exponent e.g. zero, 
and zeroes for the significand or by a number having a 
corresponding zero flag tagged thereto. 

Similarly, denormalized numbers in memory, which 
are clustered about zero, have a range given by 
2-126(2-23)sxs2-126(1-2-23) in single precision and 
2-10222-52s x s 2-1022(1-2-52) in double precision. 
Denormalized numbers in memory are characterized in 
each case by a biased exponent equal to zero and inter 
preted as x=(-1)(2-126) (S2–23) in single precision 
and x=(-1)(2-1022) (S2-52) in double precision. 

In the file or extended format of the present invention 
a denormalized number has the range 
(2-63)2-16382s Xs 2-16382(1-2-63), is characterized by 
a leading Zero bit in the significand and is interpreted as 
x=(-1)^2-16382(S 2-63). Plus and minus infinity as 
described in the presently illustrated embodiment is 
characterized by a number in the single or double preci 
sion memory format has having a binary exponent of all 
ones and a zero significand. In the file format, plus and 
minus infinity is characterized by the most positive 
exponent representable and a significand, 1.000 . . . 0, 
with a corresponding invalid flag tagged to the number. 

Finally, a NAN or a "not a number' is defined in the 
presently illustrated embodiment as having, in single or 
double precision, all ones in the exponent and a nonzero 
significand. In the file format, NAN similarly has the 
most positive exponent representable and any signifi 
cand not equal to 1.000 . . . 0 and, as before, a corre 
sponding invalid flag tagged to the number. In such a 
case, the use of an actual significand is left to the user. 
Thus, it is possible that the value of the significand can 
be used to initialize storage such that when the storage 
is utilized by the user, these large magnitude NANs will 
propagate through the arithmetic operations and indi 
cate to the user that an error occured and program logic 
incorrectly accessed a nonutilized area of storage. Simi 
larly, a NAN generated by an arithmetic operation and 
numeric data such as zero divided by zero may be used 
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6 
as a pointer by assignment of its significand to the of 
fending portion of code. Many other uses as well can be 
devised for specially coding and employing significands 
in NANs. 

In addition to the double and real normalized and 
denormalized, and special cases described above, the 
numeric processor of the present invention is capable of 
handling integer word (16 bits) integer short (32 bits) 
and integer long (64 bits) representations as well as 18 
digit signed BCD integers. 

II. GENERAL INTRODUCTION TO THE 
SYSTEM CONTEXT OF THE NUMERIC 

PROCESSOR OF THE PRESENT INVENTION. 

The numerical floating point processor of the present 
invention (hereinafter "the processor" or "FPU") is a 
high performance processor fabricated in an integrated 
circuit package and with standard circuit technology 
incorporating many features not available in any present 
day floating point processor. The processor of the pres 
ent embodiment is intended to be used in a multimaster 
system as the arithmetical unit in support of a co-proc 
essing central processing unit (CPU). The processor 
thus becomes a software transparent extension of the 
CPU, thereby greatly improving system performance 
beyond that achievable through other alternatives. As 
described in a copending application entitled "Appara 
tus and Method for Cooperative and Concurrent Co 
processing of Digital Information' filed June 30, 1978, 
Ser. No. 921,082 the processor is a concurrent, co-proc 
essing unit with its corresponding CPU. While the pro 
cessor is executing a floating point instruction, its corre 
sponding CPU continues with the instruction stream, 
thereby achieving overlapped operation with the pro 
cessor. Program throughput is thereby increased by 
operational interleaving of the processor and CPU in 
structions. Floating point instructions are decoded di 
rectly from the CPU's instruction stream. When the 
floating point instruction is decoded from the instruc 
tion queue of the FPU and CPU, the floating point unit 
will execute that instruction in parallel with the CPU 
which continues with the instruction stream. If the CPU 
encounters a second floating point instruction, it will 
"mark time' until the processor has finished the first 
floating point instruction. 
The bifurcated nature of the processor can be appre 

ciated if the operation of the processor in conjunction 
with its CPU is briefly described. The FPU gains access 
to the local bus by means of a single request grant pin. 
The processor tracks the instruction queue of its corre 
sponding CPU by monitoring the status inputs and 
tracking the data bus in parallel with the CPU. When a 
floating point instruction is fetched from the instruction 
queue, CPU20 will not execute it. In the case of a non 
memory instruction, the CPU 20 ignores it totally and 
proceeds with its other operations. In the case of an 
instruction with a memory reference, CPU 20 will cal 
culate the effective address using its addressing modes, 
and will perform a dummy read, that is, a normal read 
except that CPU 20 will not enter the data. Instead, 
FPU 22 of the present invention, will capture the ad 
dress of the operand during the first clock cycle and the 
data during a subsequent clock cycle. In this manner, 
the processor CPU 20's addressing capabilities with 
respect to external memory. After a floating point in 
struction has been fetched, the FPU 22 can start execu 
tion unless it requires more pieces of data. In this latter 
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case, the FPU will request the bus by the request/grant 
handshake and fetch the rest of the operand as though it 
were the central processor, CPU 20, itself, by incre 
menting the address captured from the bus to address 
the subsequent words of the operand. When FPU 22 
needs to store the results in memory, it will use the 
address captured during the dummy read by CPU20 to 
indicate the starting address of the operand in memory. 
Again, it will request the buses and will write into mem 
ory, incrementing the address after every write. While 
FPU 2 is computing internally, CPU 20 has the buses 
and can proceed with whatever the program dictates. 
This is what is meant by co-processing between FPU 22 
and CPU 20. 

Occasionally, synchronization between CPU 20 and 
FPU 22 is required and CPU 20 must wait for FPU 22 
to finish before a subsequent floating point instruction 
can be executed. A specific software instruction, 
WAIT, is provided in the instruction set to cause CPU 
20 to wait at the appropriate times. Similarly, when 
FPU 22 desires to store information in memory, it must 
make certain that it stored the information before CPU 
20 tried to read it. Again, this synchronization is pro 
vided by a software instruction which will cause CPU 
20 to wait if FPU 22 has not yet performed the required 
operation. 
To accomplish this coprocessing FPU has a bus inter 

face unit (BIU 30) shown in FIG. 2 which monitors and 
tracks the activities on the local bus and the status of 
CPU 20, and communicates with CPU 20, while the 
arithmetic operations are independently proceeding 
within the numerical processor's computation unit, 
'floating point execution unit (FEU 32). 

FIG. 1 diagramatically shows in simplified form a 
CPU 20 concurrently coprocessing information in a 
digital system with the processor of the present inven 
tion, floating point unit (FPU) 22. As diagramatically 
illustrated in FIG. 1, FPU 22 shares many of the exter 
nal status and administrative function control pins with 
CPU20. For example, FPU 22 and CPU 20 both oper 
ate from clock 24 and are coupled through a local bus 
26 to a system bus 28 by the same set of latches 29, bus 
controllers 27 and transceivers 25. It is beyond the 
scope of the present invention to detail the exact nature 
and coordination within the local bus between CPU 20 
and FPU 22, but details of this operation have been 
disclosed on copending applications, entitled "Appara 
tus and Method for Cooperative and Concurrent Co 
processing of Digital Information", filed June 30, 1978, 
Ser, No. 921,082; "System Bus Arbitration and Circuit 
ry and Methodology', filed June 30, 1978, Ser. No. 
92,083. 
The increased capability and reliability of FPU 22, 

becomes apparent when considered in view of the sys 
tem of FIG. 1 wherein the FPU is a concurrent and 
coprocessing unit. The number of exceptions, interrupts 
and software handling which are reduced and removed 
from the arithmetic operations of FPU 22 necessarily 
leaves the CPU20 and the entire system free to produc 
tively proceed with processing of instructions without 
being overburdened by or delayed by inadequate or 
faulty arithmetic execution. 
FIG. 2 illustrates in simplified diagramatic form the 

basic internal architecture of FPU 22. FPU 22 includes 
a bus interface unit (BIU) 30 and a floating point execu 
tion unit (FEU) 32. BIU 30 and FEU 32 are interactive 
and operate in a substantially independent, albeit coor 
dinated fashion. This bifurcated internal architecture 
FPU 22 allows BIU to continuously track the local 
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8 
system bus status while execution of a floating point 
instruction is concurrently in progress within FEU 32. 
The function of BIU 30 is to track the local system 

bus, to decode floating point instructions, maintain sta 
tus information and control the local bus when FPU 22 
is transferring data. The bus handshake protocol be 
tween BIU 30 and CPU 20 as described in copending 
application, "System Bus Arbitration and Circuitry and 
Methodology' fled June 30, 1978, Ser. No. 921,083; 
and "Apparatus and Method for Cooperative and Con 
current Coprocessing of Digital Information', filed 
June 30, 1978, Ser, No. 921,082, BIU/FEU formatter 
and data interface unit 34 serves to handle the passing of 
commands, operands and status between BIU 30 and 
FEU 32. 
CPU20 and FPU 22 simultaneously maintain a queue 

of pre-fetched instructions. Therefore, FPU 22 will 
simultaneously decode a floating point instruction with 
CPU 20. Upon detection of a floating point instruction 
FPU 22 will gain control of the system bus and perform 
any memory read or write cycles required. A 20 bit data 
port 36 couples BIU 30 to local bus 26. Coupled to data 
port 36 are a six byte instruction queue 38, a twenty bit 
floating point instruction address register 40, a sixteen 
bit control register (CW)42, a sixteen bit status register 
(SW)44, and a sixteen bit tag register (TW)46. Addi 
tional logic registers and decoding circuitry 47 are also 
included within BIU 30, in a manner well-known to the 
art and as disclosed in the above referenced co-pending 
applications, to decode and provide the necessary ad 
minstrative processing of instructions into and from 
FPU 22 with respect to the local bus. 

Floating point execution unit 32 is characterized by 
an internal file format, eighty bits wide, diagramatically 
shown in FIG. 2 as a 64 bit fraction bus 48 and a 16 bit 
exponent bus 49. All numerical quantities are converted 
to this standard file length real number within FEU 32, 
namely to a numeric quantity with a fifteen bit biased 
exponent, a sign bit and a 63 bit fraction. All calcula 
tions on the fractions within FEU 32 are performed to 
67 bits of accuracy and then rounded as provided by 
precision control settings as discussed below. 

Coupled to fraction bus 48 is a file memory array 
comprising a register file 50, eight registers deep, a 
programmable shifter 52, a sticky bit detector and adder 
54, a post or surn shifter 56, a skip shifter 58, a quotient 
register 62, a multiplexed B register 64 and a constant 
ROM 60 containing various constants used in calcula 
tions of transcendental approximations. In addition, a 
number of temporary registers 66 are included as may 
be required in the mathemetical operation and process 
ing. Random control logic 68 is also included to provide 
discrete control in response to microcoded instructions 
in a manner well-known to the art. Logic circuit 68 
includes a microcode engine for decoding the instruc 
tions and includes a microcode ROM to store the micro 
code program. The microcode program is not described 
herein for the sake of brevity, but can be derived from 
the definitions of the orthogonal instruction set. 

Consider the loading of numbers from memory into 
FEU 32 in greater detail as illustrated in FIGS. 8a and 
b. Data, for example, a 64-bit integer transferred by BIU 
30 in 16 bit blocks is placed in one of the temporary 
registers 66 and then loaded into sum register 80. The 
next 16 bit block is also placed in a temporary register 
66, but is shifted left by 16 bits in shifter 52 before being 
loaded into sum register 80. The remaining two 16 bit 
blocks are similarly loaded and shifted until the 64 bit 
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integer has been assembled in sum register 80, which is 
still left with 16 leading zeroes. Normalization can now 
be implemented. Sum register 80 includes the following 
components. Eight 8-input nor gates included in sam 
register 80 have their inputs coupled to an internal sum 
register and have their outputs coupled to a first coding 
circuit which identifies how many of the bytes are all 
zero. If all eight bytes are all zero, a zero indicator is 
immediately activated. If a 0-7 bytes are zero, the num 
ber of all zero bytes is loaded in to leading zero counter 
154. Counter 154 in turn is coupled to shift count regis 
ter 146 whose output is coupled to multiplexer 148. The 
output of multiplexer 148 is used to control the number 
of shifts in programmable shifter 52, thereby setting up 
of the contents of sum register 80 to be shifted left by 
the number of all zero bytes. Similarly, a second coding 
circuit has its inputs coupled to the eight bit places of 
the highest order byte of register 80. A three bit field is 
similarly loaded into counter 154, register 146 and mul 
tiplexer 148 to shift the contents of register 80 left by the 
remaining number of zero bit places in the leading byte. 
The number of byte and bit shifts stored in counter 154 
is then coupled to exponent circuit 142 wherein a cor 
rected exponent is generated. The normalized number 
representing the integer is then stored in file 50. 

Consider the normalization of a 32 bit real number in 
file format. The 32 bit word from BIU is characterized 
as consisting of word 1 comprising the 16 least signifi 
cant bits and word 2 comprising the 16 most significant 
bits. The value, 40, is loaded from an immediate micro 
code literal according to microcode control. Table 158 
is coupled to count register 146, with the result that the 
shifted value for word 1 is stored in register 80. Word 2 
is then placed in a register ASE, which then includes 
from left to right, the sign, the exponent and the seven 
most significant bits. Again, from an immediate micro 
code literal a left shift of the contents of ASE by 57 
places followed by a right shift of one and a forced one 
being placed into the most significant bit position. The 
contents of register ASE is then merged into register 80 
by addition yielding a normalized real number, with an 
explicit leading 1 bit in 80 bit file format. The exponent 
of the memory real is coupled via exponent bus 49 to 
exponent circuit 142 where it is tested or examined for 
the special case exceptions, and converted to file format 
exponent. The normalized fraction and file format expo 
ment are then loaded into file 50. 

Without detailing the operation, 18 digit BCD is also 
translated into 80 bit file format using a series of multi 
plications by 10 (addition of a single and triple left shift) 
using Horner's rule as an implementary algorithm. 
Conversion from file format to a selected data type is 

implemented as follows: In the case of an integer, the 
maximum number of the exponent representable in the 
data format is read from exponent ROM 160 into expo 
nent circuit 142. The difference, (d = max exponent 
exponent), between the exponent of the number to be 
converted and the maximum number is generated under 
microcode control and examined by circuit 142. If d is 
less than zero, an overflow condition results and an 
error flag is generated. If d is equal to zero an overflow 
is indicated if the number to be converted is positive (by 
our convention), or if negative, an overflow is gener 
ated unless the fraction is 1.000 . . . 0 (again this the 
largest negative number representable). Otherwise, the 
number is considered valid. If d is greater than zero, 
then the fraction is shifted right by d places as a result of 
transfer of d from circuit 142, through line 144 to 
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10 
counter 146. The denormalized function is 
rounded and ready to be sent out as an integer. 

Conversion from file format real numbers to memory 
is similarly implemented by exponent examination in 
circuit 142 and rounding. The 64 bit number in register 
80 is left shifted by a fixed number of places as deter 
mined by table 158. For example, a single precision 
number having a 23 bit significand is shifted 40 places 
left. A guard (G), round (R), and sticky (S) bit are cal 
culated as described below from the remaining tail in 
register 80. The original number to be converted is 
copied from file 50 and then shifted right by 23 bits with 
the GRS bits appended to the right end. The most sig 
nificant 1 bit in file format is suppressed. The fraction 
can then be rounded and stored in a working register 
together with the converted exponent from circuit 142 
for transfer through BIU 30 to the user in 16 bit seg 
ments. 

In the case of BCD integers the file formatted number 
is divided by 1018. If the quotient is less than one, then 
a quotient is denormalized by a number of bit places 
equal to the absolute value of the exponent of the quo 
tient, and a loop is entered whereby each BCD digit is 
extracted by multiplying the quotient by ten and ex 
tracting the four most significant bits to form each BCD 
digit. 
Operands received from an exterior memory are pre 

formatted to a sixteen bit word boundary and trans 
ferred on a real time basis to FEU 32 through BIU/- 
FEU interface 34. FEU 32 uses programmable shifter 
52 to position the 16 bit quantities at adder 54 such that 
successive additions form the fraction and exponent and 
set tags which identify the type of operand. Control of 
FEU 32 is provided by a microcode control engine or 
control logic 68, which receives its instructions from 
the registers in the BIU/FEU interface unit 34. 
Once FEU 32 has performed the operations required 

by the floating point instructions, it transfers the infor 
mation regarding execution and/or error conditions to 
status register 44 and tag register 46 from whence they 
are relayed to the user. As previously stated, BIU/FEU 
unit 34 passes commands, operands and status signals 
between BIU 30 and FEU 32. Upon entry into FPU 22, 
each portion of an operand is transferred through BIU 
30 into a preformatter within the BIU/FEU interface 
unit 34, and then transferred to FEU 32. Once in FEU 
32 the operand is checked for validity and repacked into 
the file format in which all operations are calculated. 
The preformatter in BIU/FEU unit 34 allows the re 
packing to be a succession of FEU unit additions such 
that the operand can be transferred using back-to-back 
memory cycles. One of the primary objects of BIU/- 
FEU unit 34 is to allow the numeric processor to inter 
face with both word and byte users which present infor 
mation on both even and odd memory addresses. Cir 
cuitry adapted to provide this type of service is de 
scribed in the co-pending application entitled, "Appara 
tus and Method for Providing Byte and Word Compati 
ble Information Transfers,' Ser. No. 910, 103, filed May 
30, 1978. In any case, information is uniformally pro 
vided to FEU 32 by unit 34 as two byte words. 

III. ARITHMETIC OPERATIONS OF THE 
NUMERIC PROCESSOR 

The arithmetic heart of FEU 22 is centered about a 
nanomachine comprised of adder 54 and its related 
registers, shifters and control circuitry. The nanoma 
chine is particularly characterized by its ability to han 

then 



4,338,675 
11 

dle higher order arithmetic calculations directly in 
hardware in file format at high rates of speed. 
The nanomachine is shown in FIG. 3 and can be 

better understood by considering the operational rou 
tines used in the present invention for multiplication, 
division, square root and modulus arithmetic. 

A MULTIPLICATION 

Consider first the multiplication routine. In the pres 
ently illustrated embodiment, two bits are manipulated 
in parallel during each clock cycle. 
The multiplier is loaded into skip shifter 58 according 

to program control well-known to the art. Skip shifter 
58 is a conventional bidirectional shift register which, in 
the multiplication routine, shifts its contents two places 
to the right on each clock cycle in response to control 
from from control circuitry 70 as shown in FIG. 7. The 
two right most bits are used to indicate the current 
multiplier control code. Skip shifter 58 is coupled to 
control circuit 70 which is comprised of random logic 
designed according to principles well-known to the art 
in conformity with the teachings of the present inven 
tion. A balance flip-flop in multiplexercontrol 70 is used 
in order to avoid three bit additions. Table 1 below 
summarizes the operation of control circuitry 70 as a 
function of the bit pair multiplier and the balance of the 
balance flip-flop within control circuit 70. 

TABLE 1. 
Old Balance Mux Control New Balance 

OB O 
1B 0 
1B O 
2B O. 

0 
1 

bo b 

O 
O 
0 
0 
l 
1 
1 
1 

The multiplicand is loaded into B register 72 according 
to program control from the internal 64 bit fraction bus 
48. The output of B register 72 is controlled by multi 
plexer 74 which in turn is controlled by control cir 
cuitry 70. Multiplexer 74 couples its output to one side 
of adder 54 while the other side of adder 54 is coupled 
to bus 48. The output of adder 54 is coupled to sum 
shifter 76, and is selectively controlled by machine con 
trol circuitry 78 shown in FIG. 7. The output of sum 
shifter 76 is coupled to a master-slave register 80. 

Consider the operation of circuitry of FIG. 7 as de 
scribed in connection with Table 1. In the case where 
the previous balance of the balance flip-flop of circuit 
70 is zero, the contents of B register 72 is set to zero, 
coupled directly through or shifted left one bit position, 
depending upon whether the multiplier, bob, is 00,01 or 
10 respectively. In the case where the old balance is 
zero and the multiplier is 11, the contents of the B regis 
ter 72 are complemented and the balance flip-flop is set, 
otherwise the balance flip-flop remains reset as shown 
in Table 1. In those cases where the prior value of the 
balance flip-flop is 1, namely, where the balance flip 
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flop is set at the beginning of the cycle, the contents of 60 
B register 72 are coupled to the right side of adder 54, 
either without shifting, with a left shift, complemented 
or set to zero, depending upon whether the multiplier is 
00, 01, 10 or 11 respectively. Again, as shown in Table 
l in the case where the old balance is 1 and the multi 
plier is either 10 or 11, the balance flip-flop will remain 
set, otherwise it will be reset. The metholodogy which 
is illustrated in Table 1 uses zero multiplication or sim 

12 
ple left shifts in order to multiply with the factors 0,1 or 
2. When multiplication by three is required, what actu 
ally occurs is a multiplication by four by a two bit left 
shift combined with a twos complement subtraction. 
During the multiplication process, the output of adder 
54 is automatically shifted right two locations within 
sun shifter 76 by virtue of shift count control from 
circuit 78. The right most bits during the multiplication 
process go into the GRS bits and are used for rounding 
as described below. The sum of slave register 84 is then 
used as the input to the left side of adder 54. 

For example, consider the multiplication of the nun 
bers 1111 and 1010 or in decimal equivalent, 15X 10. 
Although, in the normal course of operation within the 
present invention, the numbers will usually be normal 
ized, the principles illustrated by the example are the 
same whether the numbers are normalized or denormal 
ized. The multiplier, 1111, is inserted into skip shifter 58. 
The multiplicand 1010, is loaded into B register 72. The 
first pair of digits is shifted out of skip shifter 58 to 
control circuit 70, which according to the logic illus 
trated in Table 1, causes the complement of B register 
72 to be coupled through multiplexer 74 to the right side 
of adder 54. The complement of the register is required 
for the subtraction operation which is implemented in 
adder 54 which is coupled to sum shifter 76 as - 1010, 
since the right side of adder 54 was initialized to zero by 
the clearing of sum register 80. Shift register 76 will 
shift -1010 two places to the right to leave the partial 
product -001010. The balance flip-flop is set and the 
next pair of digits in skip shifter 58 are coupled to con 
trol circuit 70. Again, the digits 11 with a prior balance 
flip-flop of 1 causes a zero to be coupled through multi 
plexer 74 to the right side of adder 54 with the balance 
flip-flop remaining set. The sum is again shifted right 
two digits in sum shift register 76, leaving the partial 
product -00001010 in sum register 80. This partial 
product is then coupled to the left side of adder 54 and 
the next pair of digits, which are 00, is coupled into 
control circuit 70. As set forth in Table 1, the multiplier 
pair 00 with a prior balance of l results in the contents 
of B register 72 being coupled through multiplexer 74 to 
the right side of adder 54 and added to the last partial 
product. The result is 1010-00001010 or 10010110 
which is the final product, the binary equivalent of the 
decimal number, 150. The above example has been 
described in signed negative notation while the compu 
tation is actually implemented in twos complement. The 
signed negative has been used in the example, only for 
the purposes of clarity. 

B. DIVISION 

A non-restoring method is implemented in the cir 
cuitry of FIG. 7 to perform division by machine hard 
ware. The divisor is loaded according to program con 
trol into B register 72 while the dividend is similarly 
loaded in sum register 80. A series of addition and sub 
traction steps are then carried out within adder 54 as 
determined by the sign of the former operation. In other 
words, the contents of B register 72, are added or sub 
tracted to the contents of sum register 80 to create a 
new sum according to the sign of the former operation. 
The value of the sign in each operation is inverted by 
inverter 86 and coupled into quotient register 62. In 
other words, if the sign of the sum was positive, the next 
operation will be a subtraction. Conversely, if the sign 
of the sum is negative, the following operation will be 
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an addition. Thus, bit by bit the quotient is assembled in 
register 62. 
Consider the example wherein 150 is divided by 15. 

Division is performed with both operands in normalized 
format. Therefore, the contents of sum register 80 is 
coupled to the left side of adder 54 as 1001 1 0110 repre 
senting 150 while the right side of adder 54 is loaded 
with - 111 1 0000 representing 15. The results of this 
subtraction is - 101 1110 which is coupled into sum 
shift register 76 and is shifted left one bit position by 
virtue of shift count control from circuit 78. The con 
tents of register 80 is thus -1011 1100. Inasmuch as the 
result is negative, a zero is loaded into quotient shift 
register 62 and the contents of register 72 is then added 
into the contents of register 80 in the next cycle in adder 
54. The result in sum shift register 76 after being shifted 
left one space to 01 11 1000. Since the result is positive, 
a binary 1 is loaded into shift register 62 by taking the 
sign from sum shift register 76 and inverting it through 
circuitry 86. Similarly, the next shifted sum in register 
76 will be -111 1 0000, thereby loading a zero into 
register 62. On the next cycle, a positive zero is the sum 
in register 76 resulting in a positive 1 shifted into the 
right bit position in register 62. In each succeeding 
cycle, a 0 will be shifted in. The result in register 62 will 
be the number 1010. Placement of the decimal is pro 
vided by exponent control described below. Again the 
above illustration is for purposes of example only, and it 
is contemplated that it could be replaced by an equiva 
lent two's complement, non-restoring algorithm. 

C. MODULUS ARITHMETIC 

Modulus arithmetic is performed in a circuitry of 
FIG. 7 in a manner identical to division as described 
above with the exception that the number of cycles is 
determined by the exponent difference in the two num 
bers. The remainder appears in register 80. For exam 
ple, consider the operation of 10 modulo 8, 1010 is ini 
tially loaded into register 80 while 1000 is loaded into 
register 72. Both numbers have the same exponent, 
therefore according to machine control, a single cycle is 
performed. According to the division routine described 
above, the contents of the B register 72 is subtracted 
from the contents of sum register 80 in adder 54 leaving 
the remainder, 10 in sum shift register 76. The remain 
der 10, is then coupled to to sum register 80, and since 
the exponents are equal, the modulus arithmetic opera 
tion is completed in a single cycle and presented to bus 
48. 

D. SQUARE ROOT 
The circuitry of FIG. 7 also performs square root 

operations in hardware according to a nonrestoring 
method wherein the argument is loaded into skip shifter 
58. B register 72 and sum register 80 are initially 
cleared. The root will be coupled into B register 72 
during the arithmetic operation and will be shifted from 
right to left one bit at a time from the sign bit coupled 
from circuitry 86. On every cycle, two bits are taken 
from the left end of skip shifter 58 and appended to the 
right end of the partial remainder at the left input of 
adder 54. The bit pair, 11, is appended during each such 
shift to the right input of the partial root which is 
formed in B register 72. These operations are controlled 
by random logic well-known to the art which is selec 
tively activated according to the teachings of the pres 
ent invention. An addition or subtraction then takes 
place within adder 54. The sign of the former remainder 

5 

O 

5 

20 

25 

30 

35 

40 

45 

50 

55 

60 

65 

14 
will determine whether or not the current partial root 
will be complemented in the case that the sign of the 
former remainder is positive, or left uncomplemented. 
The sum from adder 54 is shifted two bit locations to the 
left in sum shift register 76, in response to the shift count 
control from circuitry 78. At the end of the operation, 
the total root will be contained in B register 72. 

Consider, for example, the squre root of 25. The argu 
ment 01100 l is loaded into skip shifter 58 while B regis 
ter 72 and sum register 80 are cleared. The left input of 
adder 54 is set equal to 000 0000.01. The sign bit is 
replicated for two or three places in adder 54. Since the 
sign of the form sum zero (0=positive) was positive, the 
contents of register 72 will be complemented and 111 
1111.11 will be inserted into the right input of adder 54. 
The sum is zero, since the carry is lost and the sign of 
the sum is again positive. The contents of B register 72 
will now be 0001 due to the complemented sign from 
inverter 86. The next input to the left side of adder 54 is 
000 0000. 10. The right input will be 111 1110.11, since 
the former sum was shifted left two places by shifter 76. 
The next sum is 111 1111.01 or negative. B register 72 
then becomes 0010 and the shifted sum register is 
- 1101. Finally, the next left input to adder 54 is 
111101.01 while 000 0010.11 is at the right input. The 
new sum is a positive zero, since the result is exact, and 
the root appears in B register 72 as 0101 or 5. 

E. ROUNDING APPARATUS AND 
METHODOLOGY 

FIG. 7 illustrates the arithmetical operational portion 
of FEU 32 and in particular, the rounding circuitry of 
the present invention. The rounding methodology em 
ployed in the present invention is comprised of two 
steps: Firstly, the step of generating the sum and three 
rounding bits; and, secondly, performing the rounding 
operation specified. The rounding bits are denoted as 
the guard (G) round (R), and sticky (S) bits. 

Ultimately, all arithmetical operations are reduced at 
one point to a binary addition. In FIG. 7, binary adder 
54 which is a 64 bit wide adder, operating at approxi 
mately 5 megahertz, has its output coupled to sum 
shifter 76. The output of sum shifter 76 is coupled to a 
master-slave register 80 which includes as its three least 
significant bits, the GRS bits. 
The detailed formation of the sun and the GRS bits 

in the first step of the method will vary depending on 
the type of arithmetical operation to be executed. Con 
sider, for example, the addition and subtraction opera 
tion. Consider the addition of two normalized operands 
with different size exponents, such as 10101 X22 and 
1.0011 X26. The smaller operand is denormalized to 
0.0001, 0.101 X26. In our example, we have limited the 
length of the word to four binary places for simplicity 
of illustration. In the illustrated embodiment, the stan 
dard word length is set at 64 bits. The "tail' of the 
denormalized number are the bits "010'. The values of 
the guard, round and sticky bits are then set by the value 
of this tail. The most significant bit of the tail becomes 
the guard bit, the next bit of the tail becomes the round 
bit; and the logical-or function of all the remaining bits 
of the tail become the sticky bit. Therefore, the GRS 
bits of the denormalized number in the example are 
"011" respectively. The desired arithmetical operation 
is then performed. In FIG. 7, adder 54 is shown as 
having an input for the normalized operand on its left 
input and an input for the denormalized operand on its 
right input. Thus, in the illustrated embodiment the 
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both inputs of adder 54 are 64 bits wide. The output of 
adder 54 is 69 bits wide to accommodate the GRS bits 
and carries. 

In the second step of the method, the selected opera 
tion is then performed. In the above example, the sum is 
1.01.00011 X26. In case of addition, the sum is shifted 
directly through sum shifter 76 and coupled to master 
slave register 80 which is usually cleared previous to the 
arithmetic operation. In the rounding operation, a de 
termination is made whether or not to add a binary one 
to the least significant bit of the fraction of the result, 
This 1 will be added to the least significant bit of the 
result of the arithmetic operation according to program 
control, depending on whether or not a control logic 
signal, yielding a status bit 'A', is set. Before or during 
the rounding operation, the 'A' status bit will be set in 
the status register as will the "P" error bit, which is the 
logical-or function of the guard, round and sticky bits of 
the arithmetical result. The "A" status bit is generated 
by well-known random logic, according to the round 
ing mode selected under program control. Rounding 
mode is captured in an "RC' field, which is comprised 
of a two bit code for the rounding modes: "nearest', 
"up", "down", and "chop". In the chop mode, "A' is 
simply set to 0 with the result that a binary 1 is never 
added to the least significant bit of the arithmetical 
result. The result is merely chopped or truncated. In the 
simplified numeric example the result becomes 
101000X26. 

In the "down” rounding mode, "A' is set equal to the 
logical product of the “P” status bit and the sign of the 
arithmetic result. "P" or the logical-or function of the 
GRS bits is 1, thereby indicating that there has been a 
rounding error if any of these bits are 1. If the result is 
exact, 'P' will be zero. Thus, a 1 is added to the least 
significant bit of the result depending on whether or not 
the result is positive or negative. In either case, a 1 is 
added so that, if there is a rounding error, the rounded 
result will be closer to or rounded down towards minus 
infinity. 

Similarly, in the 'up' rounding mode, "A' is set 
equal to the logical product of the "P" status bit and the 
complement of the sign of the result. In this mode, the 
result will be rounded, where there is a rounding error 
towards plus infinity. 

Finally, in the "nearest' rounding mode, "A" will be 
set equal to the logical product of the guard bit, "G", 
with the logical sum of the round, sticky and least sig 
nificant bit of the result. In our numeric example, the 
exact sum lies somewhere between the machine repre 
sentable number 1.000 and 1.01.01. The number which 
lies exactly between the two machine representable 
numbers is 1.01001. Therefore, if the guard bit is zero, 
the arithmetic result must lie nearer to 1.01.00. The 'A' 
status bit will thus be set to zero and the result rounded 
down to 1.01.00. However, if the guard bit and either the 
round or the sticky bits are non zero, then the exact 
result must be greater than 1.0001, the “A” status bit 
will be set to 1, and the result will be rounded up to the 
nearest representable number, 1.0101. In the case where 
the guard bit is 1 and the round and sticky bits are both 
zero, the result stored within master-slave register 80 is 
exact, but is exactly half way between two machine 
representable numbers. In this instance, the least signifi 
cant bit of the arithmetic result is examined, and a status 
bit "sum 63” is set according to program control, de 
pending on whether or not the user desires to round to 
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16 
the nearest odd or to the nearest even number in such 
circumstances. 
The entire rounding operation has been described in 

the context of addition or subtraction. The operations of 
multiplication and division are similar, but differ in the 
details of their execution in the first step of the method. 
For example, in multiplication, the two least significant 
bits from adder 54 are shifted right by sum shifter 76 by 
two binary places into the guard and round bit places in 
master-slave register 80. The sticky bit is the logical-or 
function of the guard and round bits during previous 
clock cycles. Thus, the guard, round and sticky bits in 
slave register 84 are combined in Orgate 88 to become 
the new sticky bit in master register 82. The sticky bit in 
slave register 84 is similarly the or-function of all previ 
ous guard and round bits in the multiplication process. 

Similarly, in a division operation the entire quotient is 
assembled into shift register 62 and is followed by two 
additional division steps being performed on the re 
mainder. The remainder quotient bits are shifted into 
the guard and round bit positions and the total remain 
der examined for any non zero bits. The sticky bit is set 
if the remainder sun is nonzero. 

In the case of multiplication or division, the first step 
is then followed by a rounding operation which is con 
plemented in exactly the same manner as described 
above in connection with addition and subtraction. 
According to the present invention rounding is sys 

tematically incorporated into FEU 32. Fraction bus 48 
is 68 bits wide, namely 64 bits of significand, one over 
flow bit and the three GRS bits, so that rounding infor 
mation is always associated with the number. Shifter 52 
includes random logic, including that described in con 
nection with register 80, that shifts a number left the 
appropriate number of bits according to data format to 
isolate and identify the rounding information and to 
compute the GRS bits. Microcode is included within 
FEU 32 to select the appropriate shift number from 
table 158, and store it in shift count register 126 to selec 
tively control shifter 52 to generate the appropriate 
GRS bits. The GRS bits are automatically retained and 
calculated in the nanomachine as described above. 

F. Programmable Shifter 
The operation of FEU 32 requires various unique 

circuits described below in detail. 
Programmable shifter 52 of the present invention is 

included within FEU 32 to provide left or right shifts in 
the range of 0-63 bits in one clock cycle. Generally, this 
type of shifting is required in data format conversions, 
cordic approximations and denormalization operations. 
Left and right shifts are achieved by a bidirectional byte 
shift matrix 90 and a bidirectional bit shift matrix 92 
diagramatically shown in FIG. 3. The number of shifts 
required is decoded into the number of whole bytes and 
fractional bits constituting the total required number of 
shifts. 
For example, in FIG. 3 a shift of 52 bits would in 

clude 6 byte shifts and 4 additional bit shifts. The word 
is loaded from FEU bus 48 either into a left or right 
latch 94 or 96 respectively as required and then first 
shifted by the fractional number of bits or the required 
number of bytes, depending on whether the shift indi 
cated is a left or right shift. For example, FIG. 3 shows 
a left load and right read interface circuit 94 which 
serves both as the input for left loads and the output for 
right shifts. Similarly, a right load and left read interface 
circuit 96 is provided as a right input circuit and a left 
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shift output circuit. A byte shift count register 98 and 
decoder 100 drives byte shift matrix 90 while a similar 
bit shift count register 102 and decoder 104 drives the 
bit shift matrix 92. Both registers 98 and 102 are three 
bits wide and drive similar shift matrices 92 and 90. Byte 
shift register 98 is decoded by decoder 100 to drive byte 
shift command lines labeled 0, 8, 16, 32 . . . 48, and 56. 
Similarly, bit decoder 104 has as its output eight discrete 
lines labeled as 0, 1, 2, . . . 6, and 7. 
FIG. 4 diagramatically illustrates byte shift matrix 90 

and bit shift matrix 92. Only byte shift matrix 90 will be 
illustrated for clarity, but bit shift matrix 92 is analo 
gously constituted. The devices illustrated are bidirec 
tional integrated circuit devices, and for the sake of 
simplicity, the left hand nodes, Xi shall be considered 
the input while the right hand nodes, Yishall be consid 
ered the output, although the matrix is totally symmetri 
cal and the opposite could also be true. In the illustrated 
example, activation of the "0" decode line from decoder 
100 activates bidirectional devices 106 which allows the 
signal on nodes X to be transferred directly across to 
nodes Yi, thereby representing a zero shift. However, if 
the decode line '8' is activated, bidirectional devices 
108 are each activated, thereby coupling node Xi to 
node Y-8. Similarly, discrete decode line "16' will 
cause node Xi to be coupled to node Yi-- 16 and so 
forth. 

In the same manner, discrete control lines 0, 1, 2 . . . 
from decoder 104 will cause shift devices similar to 
those shown in FIG. 4 to cross-couple node Xi to node 
Yi-1 in case of activation of control line '1' and Xi to 
Xi --2 in the case of control line "2" and so forth, 

Both byte and bit matrix are precharged and are con 
sidered in the present embodiment as being in an active 
low logic condition. Therefore, when a number is 
shifted to the left the vacated right bit positions will not 
be coupled to the data source. Thus, the precharged 
state of the byte or bit matrix will be read as logical 
zeros. Similarly, zeros will be filled in the most signifi 
cant bit positions in a right shift. 
The read and load circuitry can be understood by 

considering in detail the circuitry of the bidirectional 
right and left read interfaces 94 and 96. FIG. 5 illus 
trates a typical unit circuit used as a load interface. A 
data bit, bi, is coupled as an input to a bidirectional 
device 120 whose gate is controlled by the logical prod 
uct of a left or right shift command signal and a timing 
clock, -1. If a shift is required, device 120 will go active 
on clock -1, charging node Ni, which is the gate of de 
vice 122, to either a logical zero or 1, depending upon 
whether the data bit, bi, is 1 or 0. At a slightly delayed 
time, the delayed right or left signal coupled to the gate 
of device 124 will go active low thereby allowing node 
Ai, to go high if node N is 0 or will pull node A low 
if node Niis 1. The gate of transistor 126 is controlled by 
the condition at node A and will, together with device 
128, provide an inverted output Xi with respect to A1. In 
other words, Xi will be pulled low in the case that bi is 
low or will be left precharged by device 128 if bi is one. 
FIG. 6 similarly illustrates a typical unit read inter 

face circuit. The input is Zifrom bit or byte matrix 90 or 
92 is coupled to the input of transistor 130 whose gate is 
controlled by a delayed shift left or shift right signal. 
The signal present at Zi is coupled to the input of in 
verter circuit 132 whose output is coupled to inverter 
circuit 134. The output of inverter circuit 134 in turn 
has its output fed back to the input of inverter 132 to 
form a feedback loop which is completed by the com 
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18 
plement of the shift left or shift right signal through 
feedback device 133. The output of the first inverter 
stage 132 is coupled to the gate of device 136 which has 
an input coupled to ground and its output coupled to 
the bus node bi. Device 136 is coupled to node bi 
through device 138 whose gate is controlled either by 
the read shift left or read shift right signal. Since the bus 
is precharged, the 1 on Zi is coupled as a 0 to the gate of 
device 136 which allows bi to remain in its precharged, 
logical high state. Otherwise, if Z is 0 device 136 is 
conductive thereby pulling bi to ground as well. The 
output Zi is latched by the inverter combination of de 
vices 132 and 134. 

IV. ARCHITECTURE AND ORGANIZATION OF 
THE FLOATING POINT EXECUTION UNIT 

A. General Discussion 

The present invention incorporates a number of 
unique protocols in respect to denormalization and 
normalization of exponent numbers, zero and infinity 
arithmetic, and error detection and handling. Before 
describing these protocols in detail, the internal file 
organization of FEU 32 should be understood. An inter 
nal register file 50, illustrated in FIGS. 2 and 8, is 
treated both as a stack and general register file. The 
current stack top in file 50 is identified by a “top” field 
in status word register 44 in BIU 30. A two bit field in 
the “tag” field of tag word register 46 identifies whether 
each register is empty or contains an operand. Register 
file 50 is addressable as ordinary registers by an address 
ing protocol which is relative to the designated top 
register (TOS). The register address is computed at the 
start of each floating point instruction and is computed 
by adding the address of the top of stack register to the 
register displacement field within the floating point 
instruction. Thus, "top" plus zero is the top of stack, 
"top" plus one is the next on the stack, and "top" plus 
seven is the bottom of the stack. 

Consider first the organization of tag word register 
46. Register 46 is 16 bits wide and is grouped into two 
bit fields to comprise upper and lower byte of four fields 
each. In the illustrated embodiment, the tag codes are 00 
for valid; 01 for zero; 10 for invalid or infinity; and 11 
for empty. The tags are primarily used to facilitate 
branching and inspection within the microcodes em 
ployed in FEU 32 according to well-known design 
principles. 

Status word register 44 is similarly a 16 bit register 
which holds the current status of the entire chip. The 
upper byte is used for conditional branching while the 
lower byte holds error information and is used for error 
recovery. The upper byte is comprised of eight status 
bits including a three bit pointer to the top of stack 
register. One bit, the busy bit, is used to indicate that 
FEU 32 is busy, while the remaining four status bits 
assume various meanings according to the coding de 
vised for various floating point instructions. The lower 
byte of status word register 44 includes a number of 
error and exception flags, such as an interrupt bit, N, 
which signifies a request for an interrupt routine; a 
precision error bit, P; and underflow error bit, U; an 
overflow error bit, O; a divide by zero error bit, Q; a 
denormalization error bit, D; and an invalid error bit, I. 

Finally, control word register 42 similarly is com 
prised of two upper and lower bytes. Each of the bit 
locations represents a field or bit flag which can be set 
according to program control and utilized during oper 
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ation to effect a control function. For example, in the 
upper byte, control word register 42 includes an affine 
closure flag for infinity arithmetic, and the rounding 
control two bit field (RC) used to control the mode of 
rounding as described above. A two bit precision field, 
PRE, in the upper byte, specifies the precision required 
in the result and thus the format to which the result will 
be rounded. For example, the code 00 indicates a preci 
sion of 24 bits which is analogous to real single repre 
sentation; the code 10, a precision of 53 bits and analo 
gous to real double representation; and the code 11, 
requiring 64 bits analogous to integer long representa 
tion. The lower byte of control word register 42 in 
cludes a plurality of mask bits, such as a common mask 
bit, M, which masks the N bit in status word register 44, 
thereby preventing the initiation of an interrupt routine. 
The remaining mask bit locations are used to mask rele 
vant error bits and correspond to the errors represented 
in the lower byte of status word register 44, there is a 
precision mask error bit, MP, corresponds to precision 
error flag, P; an underflow error mask MU, correspond 
ing to underflow error flag U; an overflow error mask, 
MO, corresponding to overflow error, O; a divide by 
zero error mask, MQ, corresponding to divide by Zero 
error flag, Q; a denormalization error mask, MD, corre 
sponding to denormalization error, D; and an invalid 
error mask, MI, corresponding to invalid error flag, I. 
The manner in which data is manipulated and preci 

sion controlled within the present invention can now be 
summarized. All operations in the chip are performed 
using the file floating point format which is an 80 bit 
real representation. However, when the result of an 
arithmetic operation is exact, such as when two integer 
operands are involved, the result is effectively an inte 
ger. The file format of the present invention is an 80 bit 
number wherein 64 of the bits are dedicated to the frac 
tion and 16 are dedicated to the sign and exponent. In 
arithmetic operation where an operand must be denor 
malized in order to perform the operation, the present 
invention includes a guard and round bit to extend the 
normal 64 bit fraction. If there are any one bits beyond 
the 67 working bits, a third bit, the sticky bit as de 
scribed above, is set in the sticky bit register coupled to 
the output of the adder. Normally, in the default round 
ing mode, the results are rounded to the nearest repre 
sentable floating point number and in the case that the 
result is exactly between two representable values, it 
will be rounded to the nearest even number. However, 
as described above, the RC bit field in control word 
register 42 allows for a chop, and directed rounding, 
namely rounding up or down, according to program 
control. The precision control field, PRE, will deter 
mine the precision to which the result of the mathemati 
cal operation will be rounded, that is, PRE is 00 for 24 
bit sign and magnitude fraction, 10 for 53 bit sign to 
magnitude fraction, and 11 for a 64 bit integer or file 
format fraction. 
Overflow and underflow errors are suppressed dur 

ing directed rounding, if masked. Should either type of 
error occur during an instruction, the error indication is 
suppressed only after the proper masked response has 
been made. An error is not reported by setting the ap 
propriate bit of status word register 44, but is handled 
appropriately. 
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B. Handling of Denormalized and Unnormalized 
Numbers 

The present invention allows the generation and han 
dling of unnormalized numbers. An unnormalized num 
ber is defined as a valid number where the fraction is not 
normalized, that is, the leading or hidden bit is not l. 
Unnormalized numbers may be generated internally due 
to a result that is too small to be represented in normal 
ized form. For example, a number may have a small 
exponent which can be incremented to become repre 
sentable. In order to compensate for the incrementation 
of the exponent, the fraction will be shifted right by as 
many bit places as is required to increase the exponent. 
The result could be an all zero fraction (defined as a 
'pseudo-Zero'). Unnormalized numbers can also be 
created in the operation of storing numbers into mem 
ory. 

In file 50 two kinds of unnormalized numbers may 
exist, namely, a valid number where the fraction is un 
normalized where the fraction, but not the exponent 
may consist of all zeros (pseudo-zero); and an invalid 
number with an exponent equal to zero and a nonzero 
fraction. This latter type of number may be generated 
on a masked underflow as a result of the computation. 
In any case where an unnormalized number is detected, 
a flag will be set. Generally, unnormalized numbers are 
restricted to their own domain as long as they have 
significance. For example, in the case of addition, where 
larger number is denormalized, then the result is left in 
a denormalized format. This is implemented by setting 
the D flag and branching by microcode to omit the 
normalization routine. In the case of subtraction, if the 
number of greater magnitude is denormalized, a specific 
response must be made depending on the circumstances 
of the operation as to whether normalization should 
occur. Thus, regardless of whether the operation is one 
of addition or subtraction, if the number of greater 
magnitude is denormalized, the result would be denor 
malized as well. Otherwise, the result is normalized. In 
the case of multiplication, the result is always left in the 
denormalized format. In the case of division, if the den 
ormalized number is in the divisor, an error is flagged, 
or, if in the dividend, the result is left in the denormal 
ized form. Finally, in the case of the square root, if the 
argument is denormalized, an error flag will be gener 
ated as in division, since in neither operation can the 
nanomachine return a correct result with an unnormal 
ized operand. 

Arithmetic manipulation of denormalized numbers 
may also require special handling in certain circum 
stances as summarized in Table 2 in the appendix. 
C. Signed Zero and Infinity Generation and Handling 
Signed zeros and infinity are detected and handled as 

exceptions or errors and, according to the present in 
vention, and are tagged in each case with a specific 
response returned if the exception or error is masked. 

Both plus and minus zero is represented in the real 
single and double precision representations, including 
memory and file formats, in the present invention. Simi 
larly, positive zero is represented in integer representa 
tion and signed zero in BCD repesentation. 

During arithmetic operation and various transfer 
operations, the handling of true zeros, pseudo-zeros and 
infinity is calculated and, in each case, is handled as a 
tagged error or quantity which will generate an inter 
rupt, unless masked, in which case the most logical or 
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expected result is returned. If, before an operation is 
performed the tags of the operands are checked in tag 
logic circuit 140, and if one or both of the operands are 
not valid or nonzero, then a special routine, is invoked 
according to conventional microcode control. 

If plus infinity is in the top of stack (TOP) and the 
other operand is minus infinity, then their sum is the 
non-number, indefinite, IND. Similarly, if top of stack is 
indicated as having a positive infinity and the operand is 
also indicated as having a positive infinity, the result 
will be indefinite (IND) and an error flag, the I error, 
will be set. If TOP is minus infinity and plus infinity is 
subtracted as an operand, the return difference is minus 
infinity. In addition, when the top of stack contains a 
positive value number and the operand is negative infin 
ity, the result returned will be negative infinity with an 
error flag setting. In the case of division operations, a 
division by zero error flag, Q error, can also be indi 
cated as set. For example, positive infinity divided by 
minus zero, returns the result, minus infinity, with an 
error flag and Q error setting indicated. 

It is possible with respect to each of the above exam 
ples, that the sign of the return result could be altered 
according to the rounding mode chosen. In the above, 
the default rounding mode has been selected, namely 
when between two representable numbers round near 
est even. For other rounding modes, an appropriate sign 
will be returned according to the rounding mode 
choice. 

In addition to arithmetic operational errors, error 
flags can be set and remedial action taken in response to 
transfers and manipulations of numbers by floating 
point instructions to and from memory, and within the 
stack. Generally, the response's nature is determined by 
the type of error indicated as well as the instruction in 
which it occurred. In each case, an interrupt is provided 
with appropriate error flags and indicators or it may be 
masked, in which case the most reliable response or 
return is specifically included within the design logic. 

Before describing a number of examples illustrating 
this principle, the language structure of the present 
invention must first be generally understood. The in 
struction set is highly symmetric and orthogonal which 
greatly enhances its power and flexibility to the user. By 
symmetry and orthogonality, it is meant that the format 
or syntax of the instruction is uniform when used with 
any type of data format, and has a uniform internal 
syntax regardless of the operation performed, i.e. addi 
tion, subtraction, multiplication, etc. 
The set of instruction is divided into three categories: 

a core instruction set; an extended set; and a transfer set 
of instructions. The core instruction set performs basic 
mathematical operations. Each core instruction has six 
forms for six types of operands. Of these five forms, four 
are memory referencing forms, and one a register form. 
The four memory reference forms each correspond to 
different storage representations, namely, short or long 
precision, and real or integer. 
The extended set supports more esoteric mathemati 

cal functions which are applicable to the stack operands 
only. 
The transfer set of instructions supports special oper 

ations, such as saving and storing various parts of the 
volatile state of the processor. Generally, these instruc 
tions reference memory for a source or destination. 

Obviously, the number of examples which can be 
taken are numerous, and inasmuch as each action is as 
specific to the floating point instruction and the numeri 
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22 
cal quantities handled by the instructions as well as the 
source and destination, no universal example of the 
error indication and its response can be set forth. There 
fore, consider one specific example for the purposes of 
illustration. Consider generally the fetch phase of a core 
instruction. If the operand is specified to be in a register, 
the contents of the register are copied into a temporary 
storage that will serve as an operand for computing the 
result. The register's address is computed by adding the 
register field of the instruction to the top of stack 
pointer, using modulus arithmetic. The address is com 
puted at once at the start of the fetch phase and remains 
unchanged, independent of the top of stack until the 
floating point instruction is completed. An I error can 
be caused by two cases. The register may be empty or 
the number in the register may be an invalid. Consider 
specifically the instruction, LOAD. If the error is un 
masked, the circuitry of the present invention will stop 
and generate an interrupt. If the error was masked, the 
non number for "indefinite' will be loaded. 
The error conditions are detected by tag logic circuit 

140 of FIG. 8. The instructions are decoded using well 
known microcode design principles. The errors I.D.Q., 
indicating zeroes, invalids, empty, and denormalized 
numbers, are generally identified by examining the tags 
and by using the exponent logic circuit 142 coupled to 
exponent bus 49. As each number is loaded into file 50, 
circuit 142 will test the exponent using random logic to 
determine if any of the above error conditions exist. The 
tag will be appropriately loaded under microcode con 
trol into tag logic circuit 140 and thence for storage into 
file 50. After a number has been loaded into FEU 32, O, 
U, or Perrors can occur and will again be detected by 
exponent logic circuit 142 according to the data type 
which has been selected for output. 

Because the operands are all formatted with 80 bit 
lengths, the precision of the results of calculation are 
independent of the precision of the operands since all 
internal registers accommodate the file formal. Results 
then are forced to real, real long, or other data formats 
depending upon the outside destination. All exceptions 
(I,O, U.D.O and P) (status flags) are detected and an 
interrupt is generated if the exception is not masked. If 
an interrupt is not generated, exception handling is 
available in the numeric data processor of the present 
invention and a saving or read out of the exception 
flags, a pointer to the instruction causing the interrupt, 
and a pointer to the data if memory was addressed. Zero 
and infinity arithmetic are particularly provided for as 
part of the internal exception handling, including both 
offine and projective infinity. 
The numeric data processor permits instructions that 

load and store either the control word in the case of 
rounding, precision, or infinity arithmetic and exception 
handling or the entire environment and storage of the 
exception flags. 
The capability of the numeric data processor of the 

present invention is also extended as well as its reliabil 
ity. As previously stated, six data types in addition to 
the file format can be accepted by the data processor by 
virtue of conversion of each of the data formats to the 
accompanying or generalized file format. 

Exact arithmetic is accomplished by including an 
inexact exception, "P", along with its mask. If a round 
ing error is committed, the correctly rounded result is 
delivered and the 'P' flag is set. If the mask, "PM", is 
zero, an interrupt is generated, otherwise execution 
simply continues. This permits accounting functions to 
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oe carried out and allows them to be protected from 
"ound off error, 
Through use of the rounding modes, signed zeros and 

infinities, interval arithmetic can be implemented by the 
numeric data processor. The signs on zero and infinity 
permit open or closed intervals when zero or infinity is 
an end point of an interval with the sign denoting 
whether the interval is open or closed. 
The numeric data processor also includes several 

special instructions, such as the hardware executed 
square root, multiplication, division, and modulus re 
iuction described above. 
Many other modifications and alterations may be 

made to the presently illustrated embodiment without 
leparting from the spirit and teachings of the present 
nvention. The invention as set forth in the claims below 
is merely illustrated and not limited by the above de 
scription. The stack pointer is decremented and the 
value of the significand of the original top of stack, 
scaled between 1 and 2 or between - 1 and -2, loaded 
Into the new top of stack position. The "remainder' 
Instruction is for reducing arguments and periodic func 
tions to a primary range. The instructions allow the 
calculation of the exact remainder without round off 
error of the two top stack elements, namely the remain 
der is set equal to the contents of the top of stack (TOS) 
modulo the contents of the next top of stack (TOS 1), 
The remainder is returned to the top of stack and the 
next top of stack remains unchanged. 
Cordic approximations of transcendental functions 

are accomodated in the numeric data processor of the 
present invention in hardware. The inclusion of "de 
compose' and "remainder' instruction facilitate argu 
ment reduction necessary for transcendental function 
calculations. Cordic approximations can be computed 
in FEU 32 to obtain transcendental function in hard 
ware, such as exponents, logarithms, tangents and arc 
tangents. The Decompose instruction overrides the 
contents of the top of stack with the integral value of 
the exponent of the top of stack as expressed in the file 
format. 

W. SUMMARY AND ADVANTAGES OF THE 
INVENTION 

Each of the above aspects of the invention, when 
taken together, result in significant improvements in 
integrated circuit numeric data processors. The numeric 
processor of the present invention is fast enough for 
many scientific and statistical calculations; accurate 
enough for business and commercial computations; 
precise enough for new applications like interval arith 
metic; provides an unprecendented level of capability, 
safety and reliability with high performance and low 
cost. The numeric processor is primarily characterized 
by the fact that all data types, long and short real, long 
and short integer, compact BCD, and integer word are 
converted to an internal file or temporary real format of 
80 bits in length. The internal stack within the numeric 
processor, the exponent and fraction buses, the arithme 
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tic unit, and all shifters and registers are designed to 
operate with an 80 bit word, including three additional 
rounding bits (GRS) and where appropriate, a tag bit. 
The file format has an explicit leading bit in the signifi 
cand and thus allows unnormalized as well as normal 
ized arithmetic. 

Various mathematical expressions, known for ap 
proximating functions, such as the polynomial approxi 
mation, Maclaurin series, successive divisions, and 
Padeh approximations, are examined with the purpose 
of determining how many elements in the series are 
required in order to obtain less than a specified degree 
of error, it is readily demonstrable that the only way in 
which the number of elements in the series can be kept 
within a reasonable bounds is to limit the domain of the 
argument in the approximation series. After the result is 
calculated, there must be some way in which the do 
main is then built back up to encompass the original 
domain of numbers which the numeric processor is 
designed to handle. Cordic approximations are well 
known to the art and the general approach is to reduce 
the argument to create a very small remainder using 
pseudo-divides, to create a series of pseudo-quotients. 
The approximate value of the function of the remain 
ders are then computed followed by reconstruction of 
the function with the correct argument using pseudo 
multiplications with the pseudo-quotients. The algo 
rithm of the cordic approximation are well-known, 
somewhat complex and need not be repeated here. The 
exact point to which the argument need to be reduced 
will depend upon the accuracy desired, the mathemati 
cal approximation used and the function to be calcu 
lated. Microcode control applied (according to ordi 
nary design considerations) is used to implement these 
argument reductions and approximation calculations. 
The pseudo-divisions and pseudo-multiplications are 
implemented as loops using additions and subtractions 
employing mathematical constants from ROM 63 and 
the operand or remainder function. Shifts are required 
in the cordic algorithm which are controlled by the 
loop count. Loop counter 162 is provided for this pur 
pose and is coupled both to multiplexer 148 and to 
ROM pointer logic 164 which in turn controls the read 
out from ROM 63, Essential to the hardware implemen 
tation of the cordic approximations is a flexible loading 
into a programmable shifter from multiple sources. For 
example, shifter 52 can be variably controlled through 
multiplexer 148; by loop counter 162, which is loaded 
from a microcode immediate field as well as the variable 
loop count; by bit or byte portion of leading zero 
counter 154; from any source coupled to fraction bus 48 
through shift count register 126; from rounding parame 
ter table 158 through register 126; and by both the shift 
count from counter 126 or its complement as may be 
required and as is selectively provided by shift count 
selection circuit 166. Without this combination of ele 
ments, cordic approximations could not be implemented 
in an integrated circuit chip of practical size or at suffi 
cient speed and accuracy. 

TABLE 2 
ADD-SUBTRACT - Global ADD-SUBTRACT F. P. Instructions 
are re-classified as local ADD MAGNITUDE, SUBTRACT 
MAGNITUDE according to the signs of the opcrands. 
(1) ADD MAGNITUDE - No special handling of unnormalized 

operands. 
(2) SUBTRACT MAGNITUDE - Two cases occur after the 

exponents have been made equal by unnormalization 
of the fraction with the smaller original exponent: 
(i) if neither fraction is normalized, then leave 



4,338,675 
25 

TABLE 2-continued 
the difference unnormalized, and round as is. 

(ii) If either fraction is normalized, then normalize 
the difference prior to rounding. 

MULTIPLY - Needs no special handling. 
DIVISION - If Divisor is unnormalized, trap; if dividend 
is unnormalized, carry on like any other division. 

(b) 
(c) 

(d) 
after normalizing as much as possible, check & react to 
D-error at end. 
SQRT - Trap on a unnormalized number argument, 
MOD. Like Divide. Notice that if Divident is unnormalized 
the remainder will still be a normalized result. 
STORE (REAL) - An unnormalized number whose exponent 
is above the underflow boundary will cause an I-error. 
In the underflow range U-error will occur, 
Integer Part of TOP - Pre-normalize as much as possible 
without causing underflow. 
LOAD File Format - If a number with zero exponent, non-zero 
fraction is encountered the tags are set to Invalid and 
the D-error is set. If unmasked it will cause Interrupt 
upon completion. 

(e) 
(f) 

(g) 

(h) 

(i) 

26 

COMPARE - Flag any Unnormalized as D-error, carry on comparison 

We claim: 
1. An improvement in a numeric data processor for 

performing calculations on a plurality of data formats 
representable by a fraction and exponent representation 
comprising: 

first means for converting said plurality of data for 
mats to a file format having a fraction and exponent 
representation wherein said file format has a nu 
meric fraction and exponent domain greater than 
any one of said plurality of data formats; 

a fraction and exponent bus coupled to said first 
means; 

a stack of registers configured to store numeric infor 
mation in said file format, said stack coupled to said 
exponent and fraction bus; 

an arithmetic unit to perform arithmetic operations 
on said information in said file format, said arithme 
tic unit being coupled to said fraction bus; and 

means for rounding said numeric information in a 
selected one of a plurality of modes, 

wherein said means for rounding includes a three bit 
register for storing a guard, round and sticky bit 
corresponding to a numeric quantity, said sticky bit 
being the Or-function of all right shifted bits from 
said numeric quantity beyond the bit location of 45 
said guard and round bits. 

2. An improvement in a numeric data processor for 
performing calculations on numeric quantities compris 
1ng: 

first means for detecting and indicating numeric ex 
ceptions during computational operation and han 
dling of said numeric quantities wherein said ex 
ceptions include signed zeros and infinity; 

second means for selectively masking a response to 
said numeric exceptions; 

third means for selectively providing a specific re 
sponse to each said exception when said exception 
is masked, said third means being coupled to said 
second and first means; 

means for rounding said numeric quantities in a se 
lected one of a plurality of modes, 

wherein said means for rounding includes a three bit 
register for storing a guard, round and sticky bit 
corresponding to said numeric quantity, said sticky 
bit being the exclusive-or function of all right 
shifted bits from one of said numeric quantities. 

3. An improvement in a method for calculating nu 
meric quantities having a plurality of data formats rep 
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resentable by a fraction and exponent representation in 
a numeric processor comprising the steps of: 

converting said plurality of data formats to a file 
format in a conversion means wherein said file 
format has an exponent and fraction numeric do 
main greater than any one of said plurality of data 
formats; 

storing said converted data format in file format 
within a stack of registers; 

selectively coupling said file format numeric quanti 
ties to a fraction and exponent bus; 

selectively coupling said file format numeric quanti 
ties to an arithmetic unit and performing arithmetic 
operations in file format thereon; and 

rounding said numeric quantities in one of a plurality 
of modes by means for rounding, 

wherein said means for rounding includes a three bit 
register for storing a guard, round and sticky bit 
corresponding to a numeric quantity, said sticky bit 
being the exclusive-or function of all right shifted 
bits from said numeric quantity beyond the bit 
location of said guard and round bits, 

4. An improvement in a method for calculating nu 
meric quantities comprising the steps of: 

detecting every numeric exceptions during computa 
tional operations in a numeric processor; 

indicating the nature of said exceptions detected in a 
status register; 

generating a response in hardware within said nu 
meric processor specific to the indicated exception 
without generating an interrupt signal, including 
the exception of operations employing and result 
ing in signed zeros and infinity; and 

selectively masking said generated response. 
5. An improvement in a numeric data processor for 

performing calculations on a plurality of data formats 
representable by a fraction and exponent representation 
comprising: 

first means for converting said plurality of data for 
mats to a file format having a fraction and exponent 
representation wherein said file format has a nu 
meric fraction and exponent domain greater than 
any one of said plurality of data formats; 

a fraction and exponent bus coupled to said first 
means; 

a stack of registers configured to store numeric infor 
nation in said file format, said stack coupled to said 
exponent and fraction bus; 
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an arithmetic unit to perform arithmetic operations 
on said information in said file format, said arithme 
tic unit being coupled to said fraction bus; 

means for rounding said numeric information in a 
selected one of a plurality of modes; and 

means for performing exact arithmetic including a P 
flag register and PM mask register, wherein said P 
flag register is set if rounding occurs within said 
means for rounding and an interrupt is generated 
by an interrupt means, and wherein if said PM 
mask register is set, execution continues without 
interrupt generation with a rounded result gener 
ated by said means for rounding, 

whereby reliability of calculation is increased. 
6. An improvement in a numeric data processor for 

performing calculations on mumeric quantities compris 
1ng: 

first means for detecting and indicating numeric ex 
ceptions during computational operation and han 
dling of said numeric quantities wherein said ex 
ceptions include signed Zeros and infinity; 

second means for selectively masking a response to 
said numeric exceptions; 

third means for selectively providing a specific re 
sponse to each said exception when said exception 
is masked, said third means being coupled to said 
second and first means; 

means for rounding said numeric quantities in a se 
lected one of a plurality of modes; and 

means for performing exact arithmetic including a P 
flag register and PM mask register, wherein said P 
flag register is set if rounding occurs within said 
means for rounding and an interrupt is generated 
by an interrupt means, and wherein if said PM 
mask register is set, execution continues without 
interrupt generation with a rounded result gener 
ated by said means for rounding, 

whereby every exception during numeric processing 
is detected and indicated and if masked, will be 
provided with a response so that calculation may 
proceed in a reliable manner. 

7. An improvement in a method for calculating nu 
meric quantities having a plurality of data formats rep 
resentable by a fraction and exponent representation in 
a numeric processor comprising the steps of 

converting said plurality of data formats to a file 
format in a conversion means wherein said file 
format has an exponent and fraction numeric do 
main greater than any one of said plurality of data 
formats; 

storing said converted data format in file format 
within a stack of registers; 

selectively coupling said file format numeric quanti 
ties to afraction and exponent bus; 

selectively coupling said file.format numeric quanti 
ties to an arithmetic unit and performing arithmetic 
operations in file format thereon; 

rounding said numeric quantities in one of a plurality 
of modes by a means for rounding; 

selectively setting a Pflag register if rounding occurs; 
and 

generating an interrupt if a PM mask register is not 
set, otherwise generating a rounded result. 

8. An improvement in a numeric data processor for 
performing calculations on a plurality of data formats 
representable by a fraction and exponent representation 
comprising: 

first means for converting said plurality of data for 
mats to a file format having a fraction and exponent 
representation wherein said file format has a nu 

10 

15 

20 

25 

30 

35 

45 

50 

55 

28 
meric fraction and exponent domain greater than 
any one of said plurality of data formats; 

a fraction and exponent bus coupled to said first 
means; 

a stack of registers configured to store numeric infor 
mation in said file format, said stack coupled to said 
exponent and fraction bus; 

an arithmetic unit to perform arithmetic operations 
on said information in said file format, said arithme 
tic unit being coupled to said fraction bus; 

second means for detecting and indicating numeric 
exceptions during computational operation and 
handling of said information; 

third means for selectively masking a response to said 
numeric exceptions; and 

fourth means for selectively providing a specific re 
sponse in hardware and without the generations of 
an interrupt signal to each said exception when said 
exception is masked, said fourth means being cou 
pled to said second and third means, 

whereby every exception during numeric processing 
is detected and indicated, and, if masked, will be 
provided with a response so that calculation may 
proceed in a reliable manner. 

9. An improvement in a numeric data processor for 
performing calculations on numeric quantities compris 
1ng: 

first means for detecting and indicating numeric ex 
ceptions during computational operation and han 
dling of said information wherein said exceptions 
include signed zeros and infinity; 

second means for selectively masking a response to 
said numeric exceptions; and 

third means for selectively providing a specific re 
sponse in hardware and without generating an 
interrupt signal, said third means being coupled to 
said second and first means, 

whereby every exception during numeric processing 
is detected and indicated and if masked, will be 
provided with a response so that calculation may 
proceed in a reliable manner. 

10. An improvement in a method for calculating nu 
meric quantities having a plurality of data formats rep 
resentable by a fraction and exponent representation in 
a numeric processor comprising the steps of: 

converting said plurality of data formats to a file 
format in a conversion means wherein said file 
format has an exponent and fraction numeric do 
main greater than any one of said plurality of data 
formats; 

storing said converted data format in file format 
within a stack of registers; 

selectively coupling said file format numeric quanti 
ties to a fraction and exponent bus; 

selectively coupling said file format numeric quanti 
ties to an arithmetic unit and performing arithmetic 
operations in file format thereon; 

reconverting a file format numeric quantity in said 
stack of registers by said conversion means into a 
selected one of said plurality of data formats; 

detecting and indicating numeric exceptions during 
said steps of converting, reconverting, performing 
arithmetic operations in an error detection means; 
and 

selectively providing a specific response to each said 
exception in hardware without generating an inter 
rupt signal when said exception is masked by an 
error handling means. 
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