ARTIFICIAL INTELLIGENCE 251

Learning and Exautmg Generahzed
Robot Plans __ ‘

Rlchard E. Flkes_, Peter E. Hart and
Nils J. Nilsson

Stanford Research Institute, Menlo Park, California 94025

Recommended by D. Michie

ABSTRACT

In this paper we describe some major new additions to the STRIPS robot problem-solving
system. The first addition is a process for generalizing a plan produced by STRIPS so that
problem-specific constants appearing in the plan are replaced by prab.’em-mdependem para-
meters.

The generdlized plan, stored in a convenient format called a tna.ngle table, has two important
Junctions. The more obvious function is as a single macro action that can be used by STRIPS—
either in whole or in p. t—during the solution of a subsequent problem. Perhaps less obviously,
the generalized plan also plays a central part in the process that monitors the real-world
execution of a plan, and allows the robot to react “intelligently 1o unexpected consequences of
actions.

We conclude with a discussion of experiments with the system on szveral example problems.

1. Introduction

In this paper we describe a system of computer programs for controlling a
mobile robot. This sysiem can conceive and execute plans enabling the robot
to accomplish certain tasks such as pushing boxes from one room to another
in a simple but real environment. Although these sorts of tasks are commonly
thought to demand little skill or intelligence, they pose importan: con-
ceptual probiems and can require quite complex plenning and execution
strategies.

In previous papers, we described two important components of our robot
system, namely, STRIPS [1] and PLANEX [2]. When a task statement is given
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to the robot, STRIPS produces a plan consisting of a sequence of pre-
programmed actions, and PLANEX supervises the execution of this sequence
to accomplish the task. In this paper we present a major new addition tc the
original capabilities of STRIPS and PLANEX that enables the system to
generalize and then save a solution to a particular problem. This generaliza-
tion capaga ility is used in two ways. The more obvious use of a generalized
plan is as & ‘“macro action” that can be used as a single component of a new
plan to solie a new problem. When used in this fashion, generalization be-
comes a powerful form of learning that can reduce the planning time for
similar tasks as well as allow the formation of much longer plans, previously
beyond the combinatoric capabilities of STRIPS.

The second use of generalized plans involves the supervision or momtormg
of plan execution. Often, a real-world robot must reexecute a portion of its
plan because of some failure that occurred during the first attempt at execu-
tion. At such a time, the system has more flexibility if it is not restricted to
repeating identically the unsuccessful portion of the plan, but instead can
reexecute the offending actions with different arguments.

Before getting into details (and defining just what we mean by generalize),
we present in outline form a scenario that illustrates some of the capabilities
of the system. Suppose we give a robot the task “Close window WIND1 and
turn off light LITEL.”? To accomplish this, let us say that the robot decides
to push box BOXI to window WINDI, climb BOXI in order to close the
window, and then proceed to turn off light LITEI. First, the system generalizes
this specific plan to produce a plan that can, under certain specified conditions,
close an arbitrary window (not just WIND1) and turn off an arbitrary light.
Next, the system applies the appropriate version of this generalized plan to
the specific problem: at hand, namely, “closc WIND1 and turn off LITEL.”
While executing the appropriate version, let us suppose that the robot fails to
push BOXI1 to the window because, say, it discovers another box is aiready
under the window. The PLANEX supervisor will recognize that this new box
will serve the purpose that BOX1 was to serve, and the plan execution will
proceed.

Now let us suppose that, after finishing the first task, the robot is given a
new problem, *‘Close window WINDYS and lock door DOOR1.” The system
is capable of recognizing that a portion of the old generalized plan can help
solve the new task. Thus, the sequence of several component actions needed
to close the window can be readily obtained as a single macro action, and the
planning time required to solve the new problem thereby reduced.

We shall begin with a brief reviev: of the problem-solving program STRIPS.
Then we shall review a novel format for storing plans that conveniently

2 The sce:-ario is imaginary; our robot canuot actually turn off light switches or close
windows.
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allows most of the legitimate 2" — 1 subsequences of an n-step plan to be
extracted as a unit in a subsequent planning activity. We then describe a
process by which constants appearing in the plan can be converted to para-
meters so that each plan can handle a family of different tasks. Thus general-
ized, the plan can be stored (i.e., learned) for future use. Next, we review the
operation of PLANEX and discuss how genetalized plans are used during
execution to increase the system’s capabilities for responding to unplanned-for
situations. Finally, we discuss how STRIPS uses stored plans to compose
more complex ones and describe some experiments with 4 sequence of
learning tasks.

2. Summary of Strips
2.1, Description

Because STRIPS is basic to our discussion, let us briefly outline its operation.
(For a complet: discussion and additional examples, see [1].) The nrimitive
actions available to the robot vehicle are precoded in a set of action routines.
For example, execution of the routine GOTHRU(D1,R1,R2) causes the robot
vehicle actually to go through the doorway D1 from room RI to room R2.
The robot system keeps track of where the robot vehicle is and stores its other
knowledge of the world in a model 3 composed of well-formed formulas
(wffs) in the predicate calculus. Thus, the system knows that there is a door-
way D1 between rooms R1 and R2 by the presence of the wif CONNECTS-
ROOMS(D1,R1,R2} in the model.

Tasks are given to the system in the form of predicate calculus wfis. To
direct the robot to go to room R2, we pose for it the goal wif INROOM(RO-
BOT,R2). The planning system, STRIPS, then attempts to find a sequence of
primitive actions that would change the world in such a way that the goal wif
is true in the correspondingly changed model. In order to generate a plan of
actions, STRIPS needs to know about the effects of these actions; that is,
STRIPS must have a model of each action. The model actions are called
operators and, just as the actions change the world, the operators transform
one model into another. By applying a sequence of operators to the initial
world model, STRIPS can produce a sequence of models (representing
hypotheticai worlds) ultimately ending in a model in which the goal wff is
true. Presumably then, execution of the sequence of actions corresponding
to these operators would change the world to accomplish the task.

Each STRIPS operator mus? be c¢escribed in some convenient way. We
characterize each operator in the repertoire by three entities: an add list, a
delete list, and a precondition wff. The meanings of these entities are straight-
forward. An operator is applicable tc a given model only if its precondition

3 Our use of the word “model” is consistent with customary terminology in Artificizl
Intelligence. We hope thers will be no corfusion between our use of the word and iis
technical definition in logic, namely an interpretation for a set of formulas.

Artificial Intelligence 3 (1972), 251-288



254 RICHARD E. FIKES, PETER E. HART AND NILS J. NILSSON

wiT is satisfied in that model. The effect of applying an (assumed applicable)
operator to a given model is to delete from the model all those clauses
specified by the delete list and to add to the model all those clauses specified
by the add list. Hencs, the add ana delete lists prescribe how an operator
transforms one state into another.

Within this basic framework STRIPS operates in a GPS-like manner [6).
First, it tries io establish that a goal wff is satisfied by a model. (STRIPS uses
the QA3 resolution-based theorem prover [3] in its attempts to prove goal
wifs.) If the goal wif cannot be proved, STRIPS selects a ““relevant’ operator
that is likely to produce a model in which the goal wif is “more nearly”
satistied. In order to apply a selected operator the precondition wif of that
operator must of course be satisfied ; this precondition-becomes a new subgoal
and the process is repeated. At sone point we expect to find that the pre-
condition of a relevant operator is already satisfied in the current model,
When this happens the operator is applied; the initial model is transformed
on the basis of the add and delete lists of the operator, and the model thus
created is treated in effect as a new initial model of the world.

To complete our review of ST - IPS we must indicate how relevant oper-
ators are selected. An operator is needed only if a subgoal cannot be proved
from the wfls defining a model. Ir. this case the operators are scanned to find
ore whose effects would allow the proof attempt to continue. Specifically,
STRIPS searches for an operator whose add list specifies clauses that would
allow the proof to be successfully continued (if not completed). When an add
list is found whose clauses do in fact permit an adequate continuation of the
proof, then the associated operator is daclared relevant; moreover, the sub-
stitutions used in the proof continuation serve to instantiate at least partially
the arguments of the operator. Typicaily, more than one relevant operator
instance will be found. Thus, the entire STRIPS planning process takes the
form of a tree search so that the consequences of considering different
relevant operators can be explored. In summary, then, the “inner loop” of
STRIPS works as follows:

(1) Select a subgoal and try to establish that it is true in the appropriate
model. If it is, go to Step 4. Otherwise:

(2) Choose as a relevant operator one whose add list specifies clauses that
allow the incomplete proof of Step | to be continued.

(3) The appropriately instantiated precondition wff of the selected operator
constitutes a new subgoal. Go to Step [.

(4) If the subgoal is the main goal, terminate. Otherwise, create a new
model by applying the operator whose precondition is the subgoal just
established. Go to Step [.

The final output of STRIPS, then, is a list of instantiated operators whose
corresponding actions wiil achieve the goal.

Artificial Intelligence 3 (1972), 251-288
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2.2. An Example

An understanding of STRIPS is greatly aided by an elementary example.
The following example considers the simple task of fetching a box from an
adjacent room. Let us supposz that the initial state of the world is as shown
below: ' | o

Room Rl Room R2
n-n;or )
(W n |
ROBOT D BOX1
-D;;gré_____,
Room R3
Initial Model
Mo: INROOM(ROBOT,R1])
CONNECTS(D1,R1,R2)
CONNECTS(D2,R2,R3)
BOX(BOX1)

INROOM(BOXI1,R2)

(Vx Yy Y2)[CONNECTS(x,7,2)=>CONNECTS(x,2,)]

Goal wif
Go: (3x)[BOX(x) A INROOM(x,R1)}

We assume for this example that models can be transformed by two
operators GOTHRU and PUSHTHRU, having the descriptions given below.
Each description specifies an operator scizema indexed by «_hema variables.
We will call schema variables parameters, and denote them by strings begin-
ning with lower-case letters, A particular member of an operator schema is
obtained by instantiating all the parameters in its description to constan’s.
It is a straightforwa:d matter to modify a resolution theorem prover to
handle wfls containing parameters [1], but for present purposes we need only
know that the modification ensures that each parameter can be bound only to
one constant; hence, the operator arguments (which may be parameters) can
assume unique vaiues. (In ali of the following we denote constants by strings
beginning with capital letters aid quantified variables by x, y or 2):

Artificial Inteliigence 3 (1972), 251-188
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GOTHRU(d,rl,r2)
(Robot goes through Door d from Room rl into Room r2.)
Precondition wff
INROOM(ROBOT,r1) A CONNECTS(d,rl,r2)
Delete List
INROOM(RCBOT, $)
(Our convention here is to delete any clause containing a predicate of the
form INROOM(ROBOT, $) for any value of $.)
Add List
INROOM(ROBOT,r2)

PUSHTHRU(b,d,r1,r2)
(Robot pushes Object b through Door d from Room rl into Room r2.)
Precondition wiff

INROCM(b,r1) A INROOM(ROBOT,r1) A CONMECTS(d,ri,r2)
Delete List

INROGCM(ROBOT,$)

INROOM(b,$)
Add List

INROOM(ROBOT,r2)

INROOM(b,r2).

When STRIPS is given the problem it first attempts to prove the goal
G from the initial model M. This proof cannot be completed ; however, were
the model to contain other clauses, such as INROOM(BOX]1,R1), the proof
attempt could continue. STRIPS determines that the operator PUSHTHRU
can provide the desired clause; in particular, the partial instance PUSHTHRU
(BOX1,d,r1,R1) provides the wif INROOM(BOXI,R1).

The precondition G, for this instance of PUSHTHRU is

G,: INROOM(BOX1.rl)
A INROOM(ROBOT,r1)
A CONNECTS(d,rl,R1).

This precondition is set up as a subgoal and STRIPS tries to prove it from M,,.
Although no proof for G, can be fourd, STRIPS determines that if
rl = R2and d = DI, then the proof of G, could continue were the model to
contain INROOM(ROBOT,R2). Again STRIPS checks operators for one
whose effects could continue the proof and settles on the instance GO-
THRU(d,r1,R2). Its precondition is the next subgoal, namely:

G,: INROOM(ROBOT,r1)
A CONNECTS(d,r1,R2).

STRIPS is able to prove G, frormn M, using the substitutions r1 = R1 and
d = DI. It therefore applies GOTHRU(D1,R1,R2) to M, to yield:
Artificial Intelligence 3 (1972), 251-28¢
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M, : INROOM(ROBOT,R2)
CONNECTS(D1,RL,R2;
CONNECTS(D2,R2,R3;
BOX(BOX?!)
INROOM(BOX1,R2)

(¥x Yy V2)[CONNECTS(x,,2}=>CONNECTS(x,2,5)}.

Now STRIPS attempts to prove the subgoal G, from the new model M,.
The proof is successful with the instantiations r1 = R2, d = D1. These
substitutions yield the operator instance PUSHTHRU(BOXI1,D1,R2,R1),

which applied to M, yields

M;: INROOM(ROBOT,R1)
CONNECTS(D1,R1,R2)
CONNECTS(D1,R2,R3)
BOX(BOXI)
INROOM(BOXI,RI)

(Vx Yy Y2)I[CONNECTS(x,y,2)=>CONNECTS(x,z,y)].

Next, STRIPS attempts to prove the original goal Gy, from M,. This attempt
is successful and the final operator sequence is

GOTHRU(D1,R1,R2)
PUSHTHRU(BOXI,D1,R2,R1).

We have just seen how STRIPS computes a specific plan to solve a par-
ticular problem. The next step is to generalize the specific plan by replacing
constants by new parameters. In other words, we wish to elevate our partic-
ular plan to the status of a plan schema, or macro operator, analogous to the
primitive operators we were given initially. Moreover, we would like to store
a macro operator in such a way as to make any of its legitimate subsequences
also available to STRIPS. In the next section we describe a storage format,
called a triangle table, that has this property. Our procedure for plan general-
ization will be explained after we have discussed triangle tables and their
properties.

3. ‘iriangle Tables

Suppose STRIPS Las just computed a plan consisting ¢« the sequence cf n
operators OP,, OP,, . . ., OP,. In what form should this plan be presented to
Artificial Inteiligence 3 (1972), 251-288
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PLANEYX, the system responsible for monitoring the execution of plans? In
what form should it be saved? For purposes of monitoring execution,
PLANEX needs at every step to be able to answer such questions as

(a) Has the portion of the plan executed so far produced the expected
results? '

(b) What portion of the plan needs to be executed next so that after its
execution the task will be accomplished ?

(¢) Can this portion be executed in the current state of the world ?

Also, for purposes of saving plans so that portions of them can be used in a
later planning process, we need to know the preconditions and effects of any
portion of the pian.

If we are to have efficient methods for answering Questions (a)-(c), we
must store a plan in a way that plainly reveals its internal structure. In par-
ticular, we must be able to identify the role of each operator in the overall
plan: what its important effects are (as opposed to side effects) and why these
effects are needed in the plan. To accomplish this, we decided to store plans
in a tabular form called a triangle rable.*

A triangie table is a lower triangular array where rows and .olumns
cc-sespond to the operators of the plan.

An example of a triangle table is shown in Fig. 1. (The reader may tempo-
rarily ignore the heavily outlinzd rectangle.) The columns of the table, with
the exception of Column zero, are labelled with the names of the operators of
the plan, in this example OP,, . . ., OP,. Foreach Columni,i=!,.. . 4, we
place in the top cell the add list 4; of opsrator OP;. Going down the ith
column, we place in consecutive cells the portion of A; that survives the
application of subsequent operators. Thus, Ay,2 denotes those clauses in 4,
not deleted by OP,; A41,2,3 denotes those clauses in 4y;2 not deleted by OP,,
and so forth. Thus, the ijth czll of the matrix contains those wils added
by the jth operator that are still true at the time of application of the ith
operator.

We can now interpret the contents of the ith row of the table, excluding
the left-most column. Since each cell in the ith row (excluding the left-most)
contains statements added by one of the first (i — 1) operators but not
deleted by any of those operators, we see that the union of the cells in the ith
row (excluding the left-most) specifies the add list obtained by applying the
(f — 1)st i.ead of the plain; i.c., by applying in sequence OP,, ..., OP,_,.
We denote by 4;,... ; the add list achieved by the first j operators applied in
sequence. The union of the cells in the bottom row of a triangle table evidently
specifies the add list of the coraplete sequence.

The Ieft-most column of the triangle table, which we have thus far ignored,
is involved with the preconditions for the stored plan. During the formation

4 We are indebted o John Munson who prompted us 1o try 2 tabular format.
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of the plan, STRIPS produced a proof of each operator’s preconditions from
the model to which the operator was applied. We will define the set of clauses
used io prove a formula as the support of that formula. We wish to ensure
that the ith row of a triangle table contains all the wiffs in the support of the
preconditions for Operator i. In general, scme clauses in the support for
Operator i will have been added by the first i — 1 operators in the plan and
will therefore be included in Row i, as described in the previous paragraphs.

1 Pcl Opl

2 P, | A or,

3 e, | A, A, op,

4 e | M2s Arrs A P,

3 Mrzaa | Parsa | Paza | A
0 1 2 3 4

Fi1G. 1. A triangle tabie.

The remainder of the support clavses appeared in the iritial model and were
not deleted by any of the first i — 1 operators. These clauses, which we denote
by PC,, are precisely the clauses that are entered into the left-most (Colvmn
0) cell of Row i. Hence, we see that Column 0 of a triangle table contains those
clauses from the initial model that were used in the precondition proofs for
the plan. It is convenient to flag the clauses in each Row i that are in the
support for Operator i and hereafter speak of them as marked clauses; by
construction, all clauses in Column 0 are marked. Note that ir: proving the
preconditions of operators, STRIPS must save the support clauses so that the
triangle table can be constructed.

As an example, we show in Fig. 2 the triangle tabie for the plan discussed
in the previous section. The clauses that are marked by an asterisk “*” were
all used in the proofs of preconditions.

“We have seen how the marked clauses on Rov’ i constitute the support of

Artificial Intelligence 3 (1972), 251-288
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the preconditions for the ith operator. Let us now investigate the precon-
ditions for the ith rail of the plan—that is, the preconditions for applying the
operator sequence OP;, OP;,,, . . ., OP,. The key observation here is that the
ith tail is applicable to a model if the model already contains that portion of
the suppor: of each operator in the tail that is not supplied within the tail
itself. This observation may be formulated more precisely by introducing the
notion of a kernel of a triangle table. We define the ith kernel of a table to be
the unique rectangular subarray containing the lower left-most cell and Row i.
We assert now that the ith tail of a plan is applicable to a model if all the
marked clauses in the ith kerrel are true in that model. Let us see by example
why this is so.

*INFOOM(ROBOT,R1)

*CONNECTS(D1,R1,R2) GOTHRU{D1,R1,R2)

*INRDOM (BOX1,R2)
*INROOM (ROBOT , R2)
*CONNECTS(D1,R1,R2)
2  PUSHTHRU (BOX1,D1,R2,R1)
*JONNECTS(x,y,2) >

CONNECTS (x,z .y)

INROOM(ROBOT,R1)

INROOM (BOX1 ,R1)

FiG. 2. Triangle table for example plan.
(A “*” preceding a clause indicates a “marked” clause.)

Consider again Fig. 1, in which we have heavily outlined Kernel 3. Let us
assume that all marked clauses in this kernel are true in the current model.
(When all the marked clauses in a kernel are true, we shall say that the kernel
is true.) Certainly, OP; is applicabie; the marked clauses in Row 3 are true,
and these marked clauses support the proof of the preconditious of OP,.
Suppose now that OP; is applied to the current model to produce a new model
in which A,, the set of clauses addsd by OP;, is true. Evidently, OP, is now
applicable, since all the marked clauses in Row 4 are true; those clauses
within the outlined kernel were true before applying OP, (and by construction
of the triangle table are still true), and those outside the kernel (that is, 4,)
Artificial Intelligence 3 (1972), 251--288
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are true because they were added by OP;. Thus, the truth of the marked
clauses in Kernel 3 is a sufficient condition for the applicability of the taii of
the plan beginning with OP,.

We have some additional observations to make about triangle tables before
moving on to the matter of plan generalization. First, notice that Kernel 1—
that is, the left-most cclumn of a triangle table—constitutes a set of sufficient
conditions for the applicability of the entire plan. Thus, we can take the
conjunction of the clauses in Column O to be a precondition formula for the
whole plan. '

A second observation may help the reader gain a little more insight into
the structure of triangle tables. Consider again the table of Fig. 1, and let us
suppose this time that Kernel 2 is true. Since Kernel 2 is true, the sequence OP,,
OP,, OP, is applicable. Upon applying OP,, which is immediately applicable
because the marked clauses in Row 2 are true, we effectively add Column 2
to the table. Moreover, we lose interest in Row 2 because OP, has aiready
been applied. Thus the application of OP, transforms a true Kernel 2 into a
true Kernel 3, and the application of the operators in the tail of the plan can
continue.

4. Generalizing Plans
4.1. Motivation

The need for plan generalization in a learning system is readily apparent.
Consider the specific plan produced in the example of Section 2:

GOTHRU(D1,R1,R2)
PUSHTHRU(BOX1,D1,R2,R1).

While this sequence solves the criginai iask, it probably doesn’t warrant
teing saved for the future unless, of course, we expzct that the robet would
often need to go from Room R1 through Door D1 to Room R2 to push back
the specific box, BOX1, through Door D1 into Room R1. We would like to
generalize the plan so that it could be free from the specific constants, D1, R1,
R2, and BOXI and could be used in situations involving arbitrary doors,
rooms, and boxes.

In consi‘ering possible procedures for generalizing plans we must ﬁrst
reject the naive suggestion of merely replacing each constant in the plan by
a parameter. Some of the constants may really need to have specific values
in order for the plan to work at all. For example, consider a modification of
our box-fetching plan in which the second step of the plan is an operator that
only pushes objects from room R2 iato room R1. The specific plan might
then be

GOTHRU(DI1.R1,R2)

SPECIALPUSH(BOX]}).

Artisicial Intelligence 3 (1972), 251-288
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When we generalize this plan we cannot replace all constants by parameters,
since the plan only works when the third argument of GOTHRU is R2. We
would want ou:r procedure to recognize this fact and produce the plan

GOTHRU(d1,r1,R2)
SPECIALPUSH(b1).

Another reason for rejecting the simple replacement of constants by para-
meters is that there is often more generality readily available in many plans
than this simple procedure will extract. For example, the form of our box-
pushing plan, GOTHRU followed by PUSHTHRU, does not require that the
room in which the robot begins be the same room into which ‘he box is
pushed. Hence the plan could be generalized as follows:

GOTHRU(d1,r1,r2)
PUSHTHRU(b,d2,r2,r3)

and be used to go from one room to an adjacent second room and push a
box to an adjacent third room.

Our plan-generalizat’ »n procedire overcumes these difficulties by taking
into account the internai structure of the plan and the preconditions of each
operator. The remainder of this section is a description of this generalization
procedure.

4,2. The Generalization Procedurz

The first step in our generalization procedure is to “lift” the triangle table to
its most general form as follows: We first replace every occurrence of a
constant in the clauses of the left-most column by a new parameter. (Mnltiple
occurrences of the same constant are replaced by distinct parameters.) Then
the remainder of the table is filled in with appropriate add clauses assuming
completely uninstantiated operators (i.c., as these add clauses appear in the
operator descriptions), and assuming the same deletions as occurred i the
original table. As an example, Fig. 3 shows the table from Fig. 2 in its most
general form.

The lifted table thus obtained is too general; we wish to constrain it so that
the marked clauses in each row support the precorditions of the operator on
that row, while retaining the property that the lifted table has the original
table as an instance. To determine the constraints we redo each operator’s
precondition proof using the support clauses in the lifted table as axioms and
the precondition formulas {rom the operator descriptions as the theorems to
be proved. Each new proof is constructed as an isomorphic image of STRIPS’
original preconditions proof by performing at each step resolutions on the
same clauses and unifications on the same literals as in the original proof.
This proof process ensures that each c¢niginal proof is an instance of the new
Artificial Intelligence 3 (1972), 251-288
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~INROOM (pl1,p2)

*CONNECTS(p3,p4,p5) GOTHRU(p11,p12,p13)

#*INROOM{p6,p7)
*INROOM (ROBOT ,p13) .
*CONNECTS (p8, 23 ,p10)
2 PUSHTHRU(p14,pl5,pl6,pl7)
*ODNNECTS(x,y,2z) 2

CONNECTS(x,2 :y)

1NROOM {ROBOT , p17)

INROOM(p14,pl7)

(1] 1 2

F1G. 3. Triangle table after initial lifting process.
o

generalized proof and therefore provides the basis for ensuring that the
original table is an instance of the lifted table. Any substitutions of para-
meters for constants or for other parameters in the new proofs act as con-
straints ou the generality of the plan and must be reflected in the lifted table.
Hence these parameter substitutions are made throughout the lifted table and
the generalized plan. The table resulting from the substitutions determined by
the new proofs is constrained in the desired way.

Consider the effects of the new precondition proofs on the example table
shown in Fig. 3. The precondition proof for GOTHRU(pl1,p12,p13) pro-
ceeds as follows:

Negation of Theorem: ~INROOM(ROBOT.p12) v ~CONNECT S(pll,plZ,’le).
Axiom: INROOM(p1.p2)

Substitutions

ROBOT->pl
p2_-;p12
~CONNECTS(pt1.p2,p13)
Axiom: CONNECTS(p3.p4.p5) p3->pli
p2->pd
p5—>pl3

nil
Artificial Intelligence 3 (1972), 251-288
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The substitutions from the proof are made in the table and then the following
precondition proof for PUSHTHRU(p14,p15,p16,p17) is performed:

Subst tutions

Negation of Theorem: ~INKOCM(ROBOT,p16) v ~INROOM(pi4,plé) v

~CGNNECTS(pi5,pl6,p1T)
Axiom: INROOM(p6,p7)
——

p7--pl6
~INROOM(ROBOT,p7) v ~CONNECTS(pl5,p7,p17)
Axiom: INROOM(ROBOT,p5)
\\ \
\
pS->p7
~CONNECT§(p15,pS,pl7)

Axiom: ~CONNECTS(x,y,2) Vv CONNECTS(x,2,5)

~CONNECTS(p15,p17,p5)

/

Axiom: CONNECTS(p8,p9.p10)
p8-»pl5
p9->pl7
p5-»pl0

The substitutions from this proof are then used to produce the triangle table
shown in Fig. 4.

The two proofs have constrained the plan so that the room into which the
first operator takes the rcbot is the same room that contains the object to be
pushed by the second operator. The robot’s initial room and the target room
for the push, however, remain distinct parameters constrained only by the
precondition requirements that they each be adjacent to the object’s initial
room. :

4.3. Two Refinements

Before a generalized plan is stored, two additional processing steps are
carried out—one to improve efficiency and the other to remove possible
inconsistencies. The first step eliminates some cases of overgeneralization
produced during the lifting process and therefore makes more efficient the use
of the plan by STRIPS and PLANEX. Often a clause in a plan’s initial model
will he in the support set of more than cae operator, and therefore will
appear more than once in Column O of the triangle table. When the table is
lifted, each occurrence of the clause will generate new parameters. For
example, in Fig. 3, CONNECTS(D1,R1,R2) was lifted to CONNECTS-
(p3,p4,p5) and to CONNECTS(p8,p?,p10). In many cases this lifting pro-
Artificial Intelligence 3 (1972), 251-288



LEARNING AND EXECUTING GENERALIZED ROBOT PLANS 265

*INROOM (F.OBOT', p2)

*CONNECTS{p3,p2,p5) GOTHRU{p3 ,p2 . p5)

*INROOM (p6, p5)

*CONNECTS(p8 , p9, p5) .
2 *INROOM « nOBOT, p5) PUSHTHRU{p6,p8, p5,p9)
*CONNECTS(x,y.2) D

CONNECTS(x,2 ly)

INROOM (ROBOT , p9)

INROOM (p6 , p9)

0 1 2
FiG. 4. Final form of triangle table for generalized plan.

cedure enhances the generality of the plan (as it did for the box-fetching plan
oy allowing the first and third rooms to be distinct), but it also produces cases
of over-generalization that, while not incorrect, can lead to inefficiencies.
For example, consider a case in which INROOM(BOX1,R1) appears twice
in Column O of a triangle table. Whe~ the table is lifted, the occurrences of
the clause in Column 0 might become INROOM(pl,p2) and INROOM(p3,
p4). If the precondition proofs cause pl to be substituted for p3, but do not
constrain p2 and p4, then we have a plan whose preconditions include the
clauses '

INROOM(pl,p2) and
INROOM(pl,p4).

Therefore we have a plan whose preconditions allow Object pi to be in two .
distinct rooms at the same tirae, even though we know that in a2ny semanti-
cally correct model Object p! will be in only one room.

We eliminate most cases of this overgeneralization by recognizing those
cases where two parameters are produced from a single occurrence of a
constant in a single clause; if both such parameters do not appear as argu-
ments of operators in the plan, then they can be bound together and one
substituted for the other throughout the table without effectively inhibiting
the generality of the plan. This procedure would substitute p2 for p4 in the
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INROOM example above, thereby making the two occurrences of the clause
identical, but would not generate any constraining substitutions for the
CONNECTS clause in the box-fetching example.

The second processing step that is performed before the plan is stored is
needed to avoid inconsistencies that can eoccur in the lifted tables. The
difficulty can be illustrated with the following example. '

Consider a simple plan, PUSH(BOX1,LOC1), PUSH(BOX2,LOC2), for
pushing two boxes to two locations. The unlifted triangle table for this plan
might be as shown in Fig. 5a, where for simpiicity we have not shown ali
clauses. When this table is lifted and the precondition proofs redone, no
constraints are placed on the lifted table and it has the form shown in Fig. 5b.
Suppose now that STRIFS were to use this plan with boxl and box2 instan-
tiated to the same object and loc! and loc2 instantiated to distinct locations.
In that case STRIPS would evidently have a plan for achieving a state in
which the same object is simultaneously at two different places!

1 —— PUSH(BOX1,LOC1)
2 —— AT(BOX1,LOC1) PUSH(BOX2,10C2)
i
3 —— AT(BOX1,10C1) AT(B0X2,10C2) l
[+ 1 . 2
{a) Unlifted Table
1 -— PUSH(box1,locl)
2 ~—- AT(box1,locl) PUSH(box2, 1loc2)
3 - AT(boxl,locl’ AT (box2,10c2)
[¢] 1 2
{b) Inconsistent Lifted Table
1 —— PUSH(box1,locl)
2 — AT{boxl, iocl) PUSH(box2,10¢2)
3 -— boxl # box2 D AT(box2,1lo0c2)
AT{boxl,Yocl)
[+ 1 2

{c) Correct Lifted Table

FiG. 5. Triangle table for box-pushing plan
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The source of this embarrassment lies in the assumption made above that
the deletions in the lifted table can be the same as in the unlifted table. In our
example, the clause AT(boxl,locl) should be deleted by the PUSH(box2,
loc2) operator in the case where box1 and box2 are bound to the same object,
bui not deleted otherwise. Using the deletion algorithm described below, we
represent this situation in the lifted table by replacing the clause AT(boxl,
locl) in Row 3 by the clause form of

box1 # box2 > AT(boxl,locl)

as shown in Fig. 5(c). This implication serves us well since the thecrer prover
can deduce AT(box!,loc!) as being part of the plan’s additions list for exactly
those cases in which box1 and box2 are distinct. ,

We now consider in general how deletions are correctly accounted for in the
lifted triangle tables. After all the precondition proofs are redone for the
lifted table, the delete list of each operator is considered beginning with the
drst operator and continuing in sequence through the plan. The delete list of
the ith operator is applied to the clauses in Pow i of the table to determine
which clauses should appear in Row / + 1 of the table.® Recall that an
operator’s delete list is specified to STRIPS as a list of literais, and any
clause that unifies with one of these literals is deleted. Application of the
delete list will cause the lifted table to be modified only when a unification
with a delete literal requires that a parameter pl be replaced by another
parameter p2 or by a constant Cl. in that case the clause will unify with the
delete literal only when pl and p2 are instantiated to the same constant or
when p! is instantiated to C1. Hence the clause is replaced in the next row
of the table by an implication as foilows:

pl # p2>clause or
pl # Cl o clause.

This implication allows the theorem prover to deduce the clause in only those
cases where the operator’s delete list would not have deleted it from the model.

If the clause that is replaced by the implication in a conditional deletion is
part of the support of an operator in the plan {i.e., the clause is marked), then
the implication must be accompanied by another addition to the table. In
particular, if a clause CL1 is part of the support for the jth operator of the
plan and CL1 is replaced in Row j of the table by the implication pl #
p2 = CLI,then pl # p2 must be added as a marked clause to Cell (j, 0) of the
table. This addition to the table ensures that the jth operator’s preconditions
can be proved from the marked clauses in Row j of the table. The precor-
ditions proof previously obtained will remain valid with the addition of a

5 This characterization of the deletion applications requires that we include in Cell (1, 0)
of the table all the clauses that appear anywhere in Columin 0. The resulting redundant
occurrences of Column O clauses can be edited out before the table is stored.
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preliminary proof step in which clause CL1 is derived from pl # p2 and
pl # p2 o> CLL

After these two precessing steps are completed, the generaiized plan is
ready to be stored away as a macro operator, or MACROP, for later use by
STRIPS and PLANEX.

_ 5. Execution Strategies
5.1. Requirements for the Pian Executor
In this section we shall describe how a program called PLANEX uses triangle
tables to monitor the execution of plans. An early version of PLANEX was
described by Fikes [2]. It is now being used in conjunction with STRIPS and
the MACROP generation procedures to control the SRI robot [4].

One of the novel elements introduced into artificial intelligence research by
work on robots is the study of execution strategies and how they interact with
planning activities. Since robot plans must ultimately be executed in the real
world by a mechanical device, as opposed to bzing carried out in a mathe-
matical space or by a simulator, consideration must be given by the executor
to the possibility that operations in the plan may not accomplish what they
were intended to, that data obtained from sensory devices may be inaccurate,
and that mechanical tolerances may introduce errors as the plan is executed.

Many of these probleras of plan execution would disappear if our system
generated a whole new plan after each execution step. Obviously, such a
strategy would be too costly, so we instead seek a plan execution scheme
with the following properties:

(1) When néw information obtaitied during plan execution implies that
some remaining portion of the plan need not be executed, the executor should
recognize such information and omit the unneeded plan steps.

(2) When execution of some portion of the plan fails to achieve the
intended results, the executor should recognize the failure and either direct
reexecution of some portion of the plan or, as a default, call for a replanning

activity.

5.2. Preparation of the MIACROP for Execution

Rather than working with the specific version of the plan originally produced
by STRIPS, PLANEX tuses the generalized MACROP to guide execution.
The generalized plan allows a modest amount of replanning by the executor
should parts of the plan fail in certain ways.

Before a MACROP can be used by PLANEX, its parameters must be
partially instantiated using the spevific constants of the goal wff. This special-
izes the MACROP to the specific task at hand while it leaves as general as
possible the conditions under which it can be executed. This partial instantia-
tion process is quite simple: We put in the lower left-most cell of the triangle
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table those clauses from the original model that were used by STEIPS in
proving the goal wif. Then we use all of the clauses in the entire last row of
the MACROP to prove the goal wif. Thoze substitutions made during this
proof are then made on the entire MACROP. In addition we mark those
clauses in the last row of the MACROP that were used to support the goal
wif proof. This version of the MACROP is the one used to control execu~
tion.® , S |

Let us illustrate what we have said about preparing a MACROP for
execution by considering our example of feiching a box. In Fig. 4, we have
the MACROP for this task. In Sectjon 2, the goal wif for this task was given as

(3x)[BOX(x) ~ INROOM(x,R1)}.

In the proof of this goal wif we used the clause BOX(BOXI) from the
original model, M,. Therefore, we insert this clause in Cell (3,0) of the triangle
table. We now use the clauses in Row 3 of the MACRORP in Fig. 4 (together
with BOX(BOX1), just inseried) to prove the goal wff. That is, we use
BOX(BOX1), INROOM(ROBOT,p9) and INROOM(p6,p9) to prove
(3x)[BOX(x) A INROOM(x,R1)]. The substitutions made in obtaining the
proof are BOXI1 for p6 and R1 for p9. When these substitutions are applied
to the MACROP of Fig. 4 and the support clauses for the new proof are
marked, we obtain the execution MACROP shown in Fig. 6.

*1NROOM (ROBOT, p2)

*INROOM {BOX1, p10)

i *CONNECTS(p8,R1,p10)
*INROOM (ROROT , p10}
*CONNICTS (x,y,2) O

CONNECTS(x,2,y) PUSHTHROUGH (BOX1,p8,p10,R1)

INROOM (ROBOT,R1)
*«BOX (BOX1)
*INROOM (BOX1,R1)

|
FiG. 6. Execution MACROP for the fetch a box task.

6 Some increase in generality can be obtained by putting in the lower leftmost cell of the

triangle table gereralized versions oi the original model clauses. Some of the patameters in

these generalized clauses might remcin unbound in the proof of the goal wif, thereby making
the table more general. In our implementatic we shunned this additional complication.
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5.3. The PLANEX Execution Strategy

Our strategy for monitoring the execution of plans makes use of the kernels
of the execution MACROP. Recall that the ith kernel of a trizngle table for
" an n-step plan is the unique rectangular subarray contairing Row i and Celi
(n + 1, 0). The importance of the ith kernel stems from the fact that it con-
tains (as marked clauses) the support of the preconditions for the ith tail of
the plan—that is, for the operator sequence {OP,, . . ., OP,}. Thus if at some
stage of plan execution the marked clauses in the ith kernel are provable, then
we know that the ith tail is an appropriate operator sequence for achieving the
goal. At each state of execution we must have at least one true kernel if we are
to continue execution of the plan.

At the beginning of execution we know that the first kernel is true, since
the initial model was used by STRIPS when the plan was created. But at later
- stages, unplanned outcomes might place us either unexpectedly close to the
goal or throw us off the track completely. Our present implementation adopts
a rather optimistic bias. We check each kernel in turn starting with the
highest rumbered one (which is the last row of the MACROP) and work
backwards from the goal until we find a kernel that is true. If the goal kernel
(the last row) is true, execution halts; vtherwise we determine if the next-to-
last kernel is true, and so on, until we find a true kernel k; and a cerresponding
tail of the plan {OP,, ..., OP,}. The execuiion strategy then executes the
action corresponding to OP; and checks the outcome, as before, by searching
for the highest-numbered true kernel. In an “‘ideal” world this procedure
mercly executes in order each operator in the plan. On the other hand, the
procedure has the freedom to omit execution of unnecessary operators and to
overcome failures by repeating the execution of operators. Replanning by
STRIPS is initiated when no kernels are true.”

When checking to see if a kernel is true, we check to see if some instance of
the conjunction of marked clauses in the kernel can be proved from the
present model. Once such an instancz is found, we determine the corresponding
instance of the first operator in the tail of the plan and execute the action
corresponding to hat instance. Thus the generality of representation of the
execution MACROP allows a great deal of flexibility in plan execution. For
example, consider a case where PLANEX is executing a plan that takes the
robot from one room through a second room into a third room. If, when the
robot attempts to go through the door connecting the second and third
rooms, the door is found to be locked, then PLANEX may be able to

? Typically, when replanning is necessary it is sufficient to produce a short sequence of
operators to “‘get back onto the track™ of the original plan. Since STRIPS has the MAC-
ROP for the original plan in its repertoire of operatoss, the new plan can often be formed
by composing a sequence of operators and appending it to an appropriate tail of the
MACROP.
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reinstantiate parameters so that the first part of the plan can be reexecuted
to take the rcbot from the second room through some new fourth room and
then into the target third room. »

An interesting by-product of our optimistic strategy of examining kernels
in backwards order is that PLANEX sometimes remedies certain blunders
made by STRIPS. Occasionally, STRIPS produces a plan containing an
entirely superfluous subsequence—for example, a subsequence of the form
OP, OP-1, where OP-! precisely negates the effects of OP. (Such a “detour”
in a plan would reflect inadequacies in the search heuristics used by STRIPS.)
Duzing plan execution, however, PLANEX would effectively recognize that
the state following OP-! is the same as the state preceding OP -and would
therefore not execute the superfluous subsequence

5.4. The PLANEX Scanning Algorithm

The triangle table is a compact way of representing the kernels of a MAC-
ROP; most cells of the table occur in more than one kernel. We have exploited
this economy of representation by designing an efficient algorithm for finding
the highest-numbered true kernel. This algorithm, called the PLANEX scan,
involves a cell-by-cell scan of the triangle tabie. We give a brief description
of it here and refer the reader to Fikes [2] for more details. Each cell exam-
ined is evaluated as either True (i.e., «il the marked clauses are provable from
the current model) or False. The interest of the algorithm stems from the order
in which cells are examined. Let us call a kernel “potentially true” at some
stage in the scan if all evaluated cells of the kernel are true. The scan algo-
cithm can then be succinctly stated as: Among all unevaluated cells in the
highest-indexed potentially true kernel, evaluate the left-most. Break ‘left-
most ties” arbitrarily. The reader can verify that, roughly speaking, this
table-scanning rule results in a left-to-right, bottom-to-top scan of the table.
However, the table is never scanned to the right of any cell already evaluated
as false. An equivalent statement of the algorithia is “Among all unevaluated
cells, evaluate the cell comnon to the largest number of potentially true
kernels. Break ties arbitrarily.” We conjecture that this scanning algorithm
is optimal in the sense that it evaluates, on the average, fewer cells than any
other scan guaranteed always to find the highest true kernel. A proof of this
conjecture has not been found.

As the cells in the table are scanned we will be making substitutions for the
MACROP parameters as dictated by the proofs of the cells’ clauses. It is
important to note that a substitution made to establish the truth of clauses in
a particular cell must be applied to the entire table. When there are alternative
choices about which substitutions to make, we keep a tree of possibilities so
that backtracking can occur if needed.
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6. Planviag with MACROPS

In the preceding sections, we described the construction of MACROPS and
how they are used to control execution. Now let us consider how a MACROP
can be used by STRIPS during a subsequent planning process.

6.1, Extracting a Relevant Operator Sequence from a MACROP

Recall that the (i + I)st row of a triangle table (excluding the first cell)
represents the add list, 4,,..., ;, of the ith head of the plan, ie. of the
sequence OP,, ..., OP,. An n-step plan presents STRIPS with n alternative
add lists, any one of which can be used to reduce a difference encountered
during the normal planning process. STRIPS tests the relevance of each of a
MACROP’s add lists in the usual fashion, and the add lists that provide the
greatest reduction in the difference are selected. Often a given set of relevant
clauses will appear in more than one row of the table. In that case only the
lowest-numbered row is selected, since this choice results in the shortest
operator sequence capable of producing the desired clauses.

Suppose that STRIPS selects the ith add list 4,, ..., » I < n. Since this add
list is achieved by applying in sequence OP,,. . ., OP;, we will obviously not
be interested in the application of OP,,,, ..., OP,, and will therefore not be
interested in establishing any of the preconditions for these operators. Now
in general, some steps cf a plan are needed oaly to establish preconditions
for subsequent steps. If v.¢ lose interest in a tail of a plan, then the relevant
instance of the MACROP need not contain those operators whose sole
purpose is to establish preconditions for the tail. Also, STRIPS will, in
general, have used only some subset of 4,, ..., ; in establishing the relevance
of the ith head of the plan. Any of the first / oper: .ors that does not add some
clause in this subset or help establish the preconditions for some operator
that adds a clause in the subset is not needed in the relevant instance of the
MACROP.

Conceptually, then, we can think of a single triangle table as representing a
family of generalized operators. Upon the selection by STRIPS of a relevant
add list, we must extract from this family an economical parameterized
operator achieving the add list. In the following paragraphs, we will explain
by means of an example an editing algorithm for accomplishing this task of
operator extraction.

6.2. The Editing Algoriihm

Consider the illustrative triangle tabie shown in Fig. 7. Each of the numbers
within cells represents a single clause. The circled clauses are “marked” in the
sense described earlier; that is, they are used to prove the precondition of the
operator whose name appears on the same row. A summary of the structure
Artificial Inteiligence 3 (1972), 251-288
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Fi16. 7. MACROP with marked clauses.

TA-8973-13

of this plan is shown below, where “I” refers to the initia! state and “F” to the

final state:

PRECONDITION SUPPORT  PRECONDITION SUPPORT
OPERATOR SUPPLIED BY SUPPLIED TO

OP, 1 OP,

oP, 1 OP;

(7] 49 I/ OP,,F

OP, 1,0P, F

OP; 1,OP; OPs,F

OPs 1,OP;s opP,

OP; L,OP;,0P F

Suppose now that STRIPS selects 4,, . ..

, ¢ as the desired add list aud, in

particular, selects Clause 16 and Clause 25 as the particular members of the
add list that are relevant to reducing the difference of immediate interest.
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These clauses have been indicated on the table by an asterisk (*). The editing
algorithm proceeds by examining the table to determine what effects of
individual operators are not needed to preduce Clauses 16 and 25. First, OP,
is obviously not needed; we can therefore remove all circle marks from Row
7, since those marks indicate the support of the precondiiions of OP,;. We
now inspect the columns, beginning with Column § and going from right to
left, to find the first column with no marks of either kind (circles or asterisks).
Column 4 is the first such column. The absence of marked clauses in Column 4
means that the clauses added by OP, are not needed to reduce the difference
and are not required to prove the pre-conditior: of any subsequent operator;
hence OF, will not be in the editsd operator sequence and we can unmark
all clauses in Row 4. Continuing our right-tc-left scan of the columns, we
note that Column 3 contains no marked clauses. (Recall that we have already
unmarked Clause 18.) We therefore delete OP, from the plan and unmark
all clauses in Row 3. Continuing thc scan, we note that Column 1 contains
no marked entries (we have already unmarked Clause 11), and therefore we
can delete OP, and the marked entries in Row 1.

The result of this editing process is to reduce the original seven-step plan to
the compact three-step plan, {OP,, OPs;, OP¢}, whose add list specifically
includer the relevant clauses. The structure of this plan is shown below.

PRECONDIYTION SUPPNORT PRECONDITION SUPPORT

OPERATOR SUPPLIED BY SUPPLIED TO
or, 7 OPs,F
OP; 1,OP, OPs,F
OP, LOP; F

6.3. Use of Edited MACROPS as Relevant Operators

Once an edited MACROP has been constructed, we would like STRIPS to
use it in the same manner as any other operator. We have some latitude
though, in specifying the preconditions of the MACROP. An obvious choice
would be to use the conjunction of the clauses in the left-most column, but
there is a difficulty with this straightforward choice that can be made clear
with the aid of a simple example. Suppose we are currently in a state in which
the first kernel of an edited MACROP—that is, its left-most column—is
false, but suppose further that, say, the third kernel is true. Since the third
kernel is true, the tail of the MACROP beginning with OP, is immediately
applicable and would produce the desired relevant additions to the model. If
STRIPS were tc ignore this opportunity and set up the left-most column of
the MACROP as a subgoal, it would thereby take the proverbial cne step
backward to go two steps forward.

This example suggests that we employ a PLANEX scan on the edited table
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so that all tails of the reievant MACROP will be tested for applicability. If
an applicable tail is found, STRIPS applies, in sequence, each operator in
this tail to produce a new planning model. Each operator application is

porformed in the usual manner using the add and delete lists of the individual

operators. If the PLANEX scan fails to find a true kernel, then no tail is

applicable and the conjunction of the marked clauses in the first kernel is set

up as a subgcal to be achieved by STRIPS. Actually, any kernel would

constitute a perfectly good subgoal and, in principle, the disjunction of all the

kernels would be better still. Unfortunately, this disjunction places excessive

demands on both the theorem prover and the STRIPS executlve, s0 we restrict

ourselves to consideration of the first kernel.

We have seen that STRIPS uses a MACROP during plannmg by extractmg
a relevant subsequence of the MACROP’s operators, and then including that
subsequence in the new plan being constructed. When the new plan is made
into a MACRORP it is often the case that it will contain add lists that are
subsets of add lists in already existing tables. IFor example, if an entire
existing MACROP is used in the construction of a new plan, and the para-
meter substitutions in the new MACROP correspond to those in the old
MACROP, then each add list in the old MACROP will be a subset of an add
list in the new MACROP. To assist STRIPS ‘n its use of MACROPS, we have
designed a procedure that will remove redundant add lists from consideration
during planning, and in cases where an entire MACROP is contained within
another, will delete the contained MACROP from the system.

Our procedure takes the following action: If every instance of the cperator
sequence that is the ith head of some MACROP is also an instance of a
sequence occurring anywhere else in the same or some other MACROF, then
all the add lists in that head (i.e. Rows 2 through i 4 1) are disaliowed for
consideration by STRIPS.® For exaniple, consider tne following two genezral-
ized plans: ;

Plan A :OPA(pl1),OPB(pl,p2),0PC(p3),0GPD(p3,C1),0PA(p3),OPB(p4,pS)

Plan B: OPC(p6),0PD(p6,C1),0PA(p7),OPF(r6,p7).

Rows 2 and 3 of Plan A are disallowed for consideration as add lists since
every instaince of the sequence, OPA(p1),OPB(p!,p2), is also an instance of
the sequence, OPA(p3),OPB(p4,p5), that occurs at the end oi Plan A. Rows
2 and 3 of Plan B are disallowed because of the sequence, OPC(p3),OFD-
(p3,C1), that occurs in Plan A. Note that Row «+ of Plan B could not be
disallowed for consideration by Plan A since the-e are instances of the se-
quence, OPC(p6),OPD(p6,C!),OPA(p7), that are 10t instances of OPC(p3),
OPD(p3,C!),OPA(p3).

This procedure is applied whenever 2 new MACROP is added to the
system. It has proved to be quite effective at minimizing the number of

8 Note that the first row of a MACROP contains no add clauses.
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MACROP add lists that STRIPS must consider during planning. (See
Section 7, for examples.) A difficulty arises in the use of this procedure when
the same operator appears in two MACROPs and the support sets for the
precond:tion proofs of that operator differ markedly in the two triangle tables.
This can occur, for example, when the precondition is a disjunction of two
wils and in one case the first disjunct was proven to be true and in the other
case the second disjunci was proven to be true. In those situations the two
occurrences of the operator shouid not be considered as instances of the same
operator since each occurrence effectively had different preconditions. A
. refinement of our procedure that would include an appropriate comparison
of the support sets could be employed to overcome this difficulty.

7. Experimental Results

The mechanisms we have described for generating and using MACROPS
have been implemented as additions and modifications to the existing STRIPS
and PLANEX systems. In this section we will describe the resuits of some of
the experiments we have run with the new system. Problems were posed to the
system in the SRI robot’s current experimental environment of seven rooms,
eight doors, and several boxes about two feet high. The robot is 2 mobile
vehicle equipped with touch sensors, a television camera, and a push bar that
allows the robot to push the boxes [4]. A typical state of this experimental
environment is modeled by STRIPS using about 160 axioms.

7.1. Operator Descriptions

The operator descriptions given to STRIPS for these experiments model the
robot’s preprogrammed action routines for moving the robot next to a door
in a room, next to a box in a room, to a location in a room, or through a door.
There are also operators that model action routines for pushing a box next to
another box in a room, to a location in a room, or through a door. In addition,
we have included operator descriptions that model fictitious action routines
for opening and closing doors. These descriptions are as follows:
GOTOB\Ox) Go to cbject bx.

Preconditions: TYPE(bx,OBJECT),(3rx)[INROOM(bx,rx) A INROOM(ROBOT,rx))
Deletions: AT(ROBOT,$1,$2),NEXTTO(ROBOT,$1)

Additions: *NEXTTO(ROBOT,bx)

GOTOD{ax) Go to door dx.

Preconditions: TYPE(dx,DOOR),@rx)}3ry)[INROOM(ROBOT,rx) A
CONNECTS(dx,rx,r)]

Deletions: AT(ROBOT,$1,32),NEXTTO(ROBOT,$1)

Additions: *NEXTTO(ROBOT,dx)

GOTOL(x,y) Go to coordinate location (x,y).

Preconditions: @Arx)[INROOM(ROBOT,rx) A LOCINROOM(x,y,rx))

Deletions: AT(ROBOT, $1,$2), NEXTTO(ROBOT,$1)

Additions: *AT(ROBOT,x,y)
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PUSHB(bx,by) Push bx to object by.

Preconditions: TYPE(by,OBJECT),PUSHABLE(5x),NEX I'I'O(ROBOT DX,
Arx)[INROOM(bx,rx) A INROOM(by,rx)]

Deleiions: AT(ROBOT,$1,$2), NEXTTO(ROBOT, Sl).AT(bx,sl $2),NEXTTO(bx,$ 1),
NEXTTO($1,bx)

Additions; *NEX’ITO(bx,dx),NEX‘ITO(ROBOT bx)

PUSHD(Lx,dx) Push bx to door dx.

Preconditions: PUSHABLE(bx), TYPE(dx, DOOR),NEXﬂTO(ROBOT,bx)

a rx)(!rK[INROOM(bx,rx) A CONNECTS(dx rx,ry)]

Deletions: AT(ROBOT,$1,%2), NEXTTO(ROBOT, SI),AT(Dx,Sl SZ).NEXTI‘O(bx,sl),
NEXTTO($1,bx)

Addirions: *NEXTTO(bx,dx), NEXTTO(ROBOT,5x)

PUSHL(bx,x,y) Push bx to coordinate location (x,y).

Preconditions: PUSHABLE((6x), NEXTTO(ROBOT,bx),(37x)[INROOM(ROBOT,rx) A
LOCINROOM(x,y,rx)}

Deletions: AT(ROBOT,$1,52), NEXTTO(ROBOT, $1),AT(ix,$1,82), NEXTTO(x,$1),
NEXTTO($1,06x)

Additions: *AT(bx,x,y),NEXTTO(ROBOT,bx)

GOTHRUDK(dx,rx) Go through door dx in:o rocm rx.

Preconditions: TYPE(dx,DOOR),STATUS(dx,OPEN),TYFE(rx,ROOM),
NEXTTO(ROBOT,dx) 3ry)INROOMMROBOT,r¥) A CONNECTS(dx,ry,rx)]

Deletions: AT(ROBOT, $1,$2), NEXTTG(ROBOT, $1),INROOM(ROBOT,$1)

Additions: *INROOM(ROBOT.rx)

PUSHTHRUDR(bx,dx,rx) Push bx through door dx intoe room rx.

Preconditions: PUSHABLE(bx), TYPE(dx,L OOR),STATUS(dx,OPEN), TYPE(rx,
ROOM),NEXTTO(5x,dx), NEXTTO(ROBOT,bx),@rINROOM(bx.ry) A
CONNECTS({dx,ry,rx)}

Deletions: AT(ROBOT,$1,$2),NEXTTO(ROBOT,$1),AT(bx,$1, SZ),NEXTTO(bx,Sl),
NEXTTO($1,6x),INROOM(ROBOT,$1),INROOM(Hx,$1)

Additions: *INROOM(bx,rx),INROOMROBOT,rx), NEXTTO(ROBOT,bx)

OPEN(dx) Open door dx.

Preconditions: NEXTTO(RCBOT,dx), TYPE(dx,DOOR),STATUS(dx,CLOSED)
Deletions: STATUS(dx,CLOSED)

Additions: *STATUS(dx,OPEN)

CLOSE(dx) Close door dx.

Przconditions: NEXTTO(ROBOT.dx), TYPE(dx,DOOR),STATUS(dx,OP=N)
Deletions: STATUS(dx,OPEN)

Additions: *STATUS(dx,CLOSED)

Note: The addition clauses preceded by an asterisk are the prirmary additions of the operator.
When STRIFS searches for a relevant operator is considers only ihese primary addition
clauses.

7.2. Example Problems

7.2.1. SuMMARY. A sequence of five problems was des’gned to illustrate the
various ways in which MACROPs are used during planning. We show in the
next subsection an annotated trace of the systein’s behaviour for each problem
in the sequence. Each trace is preceded by a diagram of the problem’s initial
and final states, and includes the sequence of subgoal generations and
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operator applications actualiy o cumng in the STRIPS sclution. STRIPS’
attention was directed to the rcoms shown in the diagrams by closing the
doors connecting all other rooms.

The plan for the first problem in the sequence pushes two boxes together
and then takes the robot iiito an adjacent room. The second problem is similar
to the first except that different rooms and different boxes are involved, and
the robot begins in a room adjaceint to the room containing the boxes.
STRIPS uses a tail of MACROPI to get the robot into the room with the
boxes and then uses the entire MACROP! to complete the plan.

The third problem involves taking the rcbot from one room through a
second room and into a third room, with the added complication that the door
connecting the second and third rooms is closed. STRIPS first decides to use
MACROP2 with the box-pushing sequence edited out and then finds that the
door must be opened; to get the robot next to the closed door, a head of
MACRORP2 is selected with the box-pushing sequence again edited out. After
formation of the plan to go to the door and open it, the PLANEX scan
observes that only the final operator of the first relevant mstance of MAC-
ROP2 is needed to complete the plan.

The fourth problem requirss iiiat three boxes be pushed together, with the
robot beginning in a room adiacent to the room containing the boxes. A
head of MACROP2 is used to g2t the robot into the room with the boxes and
to push two of them together; the box-pushing sequence of MACROP2 is used
to complete the plan, again with the assistance of the PLANEX scan.

The fifth problem requires the robot to go from one room into a second
room, open a door that leads into a third room, go through the third room
inio a fourth room, and then push together two pairs of boxes. The plan,
which is formed by combining all of MACROP4 with ail of MACROP3, is
well beyond the range of plans producible by STRIPS without the use of
MACROPs. Note that although MACROP4 was created by lifting a plan
that pushed three boxes together, iz has enough generality to handle this form
of a four-box problem. Note also that MACROP1, MACROP3, and
MACROP4 have been recognized as redundant and deleted, so that the net
result of this learning sequence is 1o 2dd only MACROP2 and MACROPS
to the systenp1.

In Table I we present a tablc showing the search tree sizes and running
times for the five problems. The problems were run both with and without
the use of MACROPs for comparison. Even when MACROPs were not being
used for planning we include the MACROP production time since PLANEX
needs the MACROP to monitor plan execution. Note that the times and the
search tree sizes are all smaller when MACROPS are used and that the
MACROPs allow lorger plans to be formed without necessarily incurring an
exponential increase in planning time.
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TABLE |
Statistics for STRIPS behavior

279

PROBLEM 1 PROBLEM 2 PROILEM 3 PROBLEM 4 PROBLEM 5

Without MACROPS
Total time (minutes) 3:05 9:42 7:03
Time to produce MACROP 1:00 1:28 1:11

Time to find unlifted plan 2:05 8:14 5:52

Total nodes in search tree 10 13 22

Nodes on solution path 9 13 11

Operators in plan 4 6 5
With MACROPS

Total time (minutes) 3:05 1:54 6:34

Time to produce MACROP ] :00 1:32 1:16
Time to find unlifted plan 2:05 2:22 5:18

Total nodes in search tree 10 9 14
Nodes on solution path 9 9 9
Opzrators in plan 4 6 5

14 : 09 -
1:43 -
12:26 -
51 -
15 -
7 -
437 9:13
1:37 3: 24
3:00 5:49
9 14
9 14
6 11

STRIPS is written in BBN-LISP and runs as compiled code on a PDP-10 computer under

the TENEX time-sharing system.
STRIPS could not solve Problem 5 without using MACROPs.

7.2.2. ANNOTATED TRACE OF SYSTEM BEHAVIOR FOR EACH EXAMPLE PROBLEM.

Problem 1

RRAM\|RCLK \|REDP \

a @
R

Gl1: INROOM(ROBOT,RRAM) A NEXTTO(BOXI1,BOX2)

L2222

G1 is the task statement.
Ll 12 T
G2: Preconditions for PUSHB(BOX2,BOX1)
G3: Preconditions for GOTOB3(BOX2)
Apply GOTOB(BOX2)
Apply PUSHB(BOX2,BOX1)
G4: Preconditions for GOTHRUDR(par18,RRAM)
G6: Preconditions for GOTOD(DRAMCLK)

et '

GS was the preconditior: for an operator that did not appear in the

completed plan. -
SESR®
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Apply GOTOD(DRAMCLK)
Apply GOTHRUDR(DRAMCLK ,RRAM)
Solution

Form MACROPI(par29,par17,par45,mr§4,par33)

Pl 22

The paramter list for a MACROP contains all the parameters that
accur in the triangle table.
Lt 211

GOTOB{par29)

PUSHB(par29,par37)

GOTOD(par45) .

GOTHRUDR(par45,par54}
L 22 2 1]
The generalized plan pushes two boxes together and takes the robot
into an a-djacent room, given that the robot and the boxes are initially
all in the same room. ;
(11217

Set first additions row of MACROPI to 3.
gk
STRIPS will consider only rows numbered 3 and higher as add lists
during planning. Rows 1 and 2 of a triangle table are never considered
as add lists since tizere are no add clauses in Row 1, and the add clauses
in Row 2 are redundant with respect to the operator description of the

first operator in the MACROP.
Problem 2 A
RAM\{RCIK RPDP
- | > @
[~ @ | I l

Gl: INROOM(ROBOT,R’;PDP) A NEXTTO(BOX2,BOX3)

ssden
G1 is the task stutement.

*Shan

C2: Preconditions for MACROPI :5(BOX3,BCX2,par3, RPDP,par$)

kR

The notation MIACROP!:S means that Row 5 of MACROPI is
selected as a relevant add list. MACROPI is instantiated so that Row 5
contains the relevant clauses INROOM(ROBOT,RPDP) added by
GOTHRUDR(paﬂ RPDP) and NEXTTO(BOX2,BOX3) added by
PUSHB(BOX3,B0X2). All four operators in MACROPI are needed
to produce these: relevant clauses. No kernels in the triangle table are
satisfied. A difference consisting of the single clause INROOM
(ROROT,RCLK) is extracted from the first kernel.

2%
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G3: Preconditions for MACROP! :5(part7,parl18,parl9,RCLK, par21)
[ 2114 .
Row 5 of MACROPI is again selected us a relevant add list. MACROP!
is instantiated so that Row § contains the relevant clause INROOM-
(ROBOT,RCLK) added by GOTHRUDR(parl13,RCLK). Only the
Jast two operators in MACROPI are needed to produce the relevant
clause.
[ 112 1]

Kernel 3 satisfied
Shang

Kernel 3 is the precondition for the last two operators in MACROPI,
*PEES
Apply GOTOD(DRAMCLK)
Apply GOTHRUDR(DRAMCLK,RCLK)
Kemel 1 satisfied
Apply GOTOB(BOX3)
Apply PUSHB(BOX3,BOX2)
Apply GOTOD(DPDPCLK)
Apply GOTHRUDR(DPDPCLK,RPDP)
Solation

Form MACROPF2(par27,par52,par72,nar91,parl 11,par38,pardd)

GOTOD(par27)

GOTHRUDR(par27,pard0)

GOTOB(par52)

PUSHB(par52,par72)

GOTOD(par91)

GOTHRUDR(par91,parl11)
sesEs
The generalized plan takes the robot from one room into an adjacent
room, pushes two boxes together in the second rcom, and then takes
the robot into a third room adjacent to the second.
E L 212 ]

Erase MACROPI.

see0s

MACROPI is completely contained in MACROP2.

shsks

Set first additions row of MACROPZ to 4.

Se9%E

The first two operators of MACROP2 match the last two operators of
MACROP2,

2SN

Problem 3
xm\] RCIK RPDP q \'

»
~| gl |
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G1: INROOM(ROBOT,EPDP)

skbsE

G: is the task s:atement.
ks

G2: Preconditions for MACRCOP2:7(parl,par,par3,pard RPDP,par6,par7)

ETET L I

Row 7.of MACROP2 is selected as a relevant add list. MACROP2? is
instant:ated so that Row 7 contains the relevant clause INROOM-
(ROBOT,RPDP) added by GOTHRUDR(par4,RPDP). Only the first,
second, fifth, and sixth operators are needed to produce this relevant
clause. No kernels in the triangle table are satisfied. A difference
consisting of the single clause STATUS(DPDPCLK OPEN) is ex-

tracted from the first kernel.
2RSS .

G5: Preconditions for OPEN(DPDPCLK)

RNE

After considering two other relevant operators for achieving GI,
STRIFS returns to tke solution path. OPEN(DPDPCLK) is found to
be a relevant operator and a difference consisting of the single clause
NEXTTO(ROBOT,DPDPCLK) is extracted from the preconditions.

LR

G9: Preconditions for MACROP2:6(par15,par16,parl 7,DPDPCLK ,pas19,
par20,par21)’

(i i 22

After considering three other relevant operators for achieving GS,
STRIPS selects Row 6 of MACROP2 as a relevant add list. MACROP2
is instantiated so that Row 6 contains the relevant clause NEXTTO-
(ROBOT,DPDPCLK) added by GOTOD(DPDPCLK). Only the

first, second, and fifth operators are needed to produce this relevant
clause.
EEhse

Kernel 1 satisfied. :
Apply GOTOD(DRAMCLK)
Apply GOTHRUDR(DRAMCLK,RCLK)
Apply GOTOD(DPDPCLEK)
Apply OPEN(DPDPfCLK)

Kernel 6 satisfied

L2 0

A PLANEX scan is used so that all kerneis are checked. Kernel 6 is the

precondition for the final operator in the relevant instance of
MACROP2,

L2

Apply GOTHRUDR(DPDPC LK,RPDP)

Solution

Form MAcnops(parz4;,par59,pm82,paraz,par42)

GOTOD(p7arz4)

GOTHRUDR(par24,rard2)

GOTOD(par59)
OPEN(par59)

GOTHRUDR(parW,parSZ)
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Rekid

The generalized plan takes the robot from one room into an adjacent
room, then to a ciosed door in the second room, opens thé closed door,

and ther: takes the robot through the opened door into-a third room.
E 22 2 4]

Set first additions row of MACROPS3 to 4.

*RERE

The first two operators of MACROP3 match the first twb operators of

MACROP2. : '
Problem 4 |
RRAM\] RCIK [RPDP ]
= | (1 \ > \ % \I
) @ | | = |

Gl1: NEXTTO(BOX1,BOX2) A NEXTTO(BOX2,BOX3)

L2 2 21

G1 is the task statement.
L2 E 11

G2: Preconditions for MACROPZ:S(parI,BOXZ,BOX],par4,par5,par6,pér7)
L3 PR :
Row 5 of MACRORP2 is selected as a relevant add list. MACROP2 is
instantiated so tl.at Row § contains the relevant ciause NEXTTO-
(BOX1,BOX2) added by PUSHB(BOX2,BOX]1). All of the first four

operators in MACROP2 are needed to produce this relevant clause.
phkE

Kernel 1 satisfied

Apply GOTOD(DRAMCLK)

Apply GOTHRUDR(DRAMCLK,RCLK)

Apply GOTOB(BOX2)

Apply PUSHB(BOX2,BOX1)

G3: Preconditions for MACROP2:5(par19,BOX3,BOX2,par22,par23,par24,par25)
Rk
Row 5 of MACROF2 is selected as before. The instantiation is so that
Row 5 contains the relevant ciause NEXTTO(BOX2,BOX3) added by
PUSHB(BOX3,BOX2). Again all of the first four operators are included
in the relevant instance of MACROP2,
SsE38% '

Kernel 3 satisfied
2 22 7]
A PLANEX scan is used so that all kernels are checked. Kernel 3 is the

precondition for the third and fourth operators.
REESE

Apply GOTOB(B3JX3)
Apply PUSHB(BOX3,BOX2)
Solution
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Form MACROP4(par37,par80,pari02,pari23,pari34,par57,par59)
GOTOD(par37)
GOTHRUDR({par37,par59)
GOTOB(par80)
PUSHB(par80,pari02)
GOTOB(par123)
PUSHB(parl23,parl34)

L2 ]2

The generalized plan takes the robot from one room into an adjacent
room, pushes one box to a second box, and then pushes a third boxtoa
fourth box.

L 222 L

Set first additions row of MACROP2 to 6.

L1222

The first 4 operators of MACROP2 match the first 4 operators of
MACROP4.

8598

Set first additions row of MACROP4 t0 4.

L L2 2 2

The first 2 operators of MACROP4 match the last 2 operators of

MACROP2,
Problem 5
Rau.\l nnm}acm\lnpéri N \I \l \l -
| | | B® ]| som

Gl1: NEXTTO(BOX1,B0X2) A NEXTTO(BOX3,BOX4)

Lo 2 4 2

G1 is the task statement.
L2231

G2: Preconditions for MACROP4:7(par13,BOX2,B0X1,BOX3,BOX4,pari8,parl9)
SEaRy
Row 7 of MACROPA is selected as a relevant add list. MACROP4 is
instantiated so that Row 7 contains the relevant clauses NEXTTO
(BOX1,BOX2) added by PUSHB(BOXZ,BOX1) and NEXTTO
(BOX3,BOX4) added by PUSHB(BOX3,B0X4). All six operators in
MACROP4 are needed to produce these relevant clauses. No kernels in
the triangle teble are satisfied. A difference consisting of the singie
clause INROOM(ROBOT,RCLK) is extracted from the first kernel.

Ll 222

G3: Preconditions for MACROP3:6(par27,par28,RCLK ,par30,par3t)
L L2 21
Row 6 of MACROP3 is selected as a relcvant add list. MACROP3 is
instantiated so that Row 6 contains the relevant clause INROOM
(ROBOT,RCLK) added by GOTHRUDR(par28,RCLK). All five
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operators in MACROP3 are needed to produce this relevant clause.
(2211 : .

Kernei 1 satisfied

Apply GOTOD(DRAMHAL)

Apply GOTHRUDR(DRAMHAL,RRAM)
Apply GOTOD(DRAMCLK)

Apply OPEN(DRAMCLK)

Apply GOTHRUDR(DRAMCLK,RCLK)

Kemel 1 satisfied

Apply GOTOD(DPDPCLK)

Apply GOTHRUDR(DPDPCLK,RPDP)
Apply GOTOB(BOX2)

Apply PUSHB(BOX2,B0X1)y

Apply GOTOB(BOX3)

Apply PUSHB(BOX3,BOX4)

Solution

Form MACROPS5(pard4d,par87,parl51,par208,par237,par265,par294,par1 80,parl 30,

par64,paré6)
GOTOD(par44)

GOTHRUDR(par44,par66)

GOTOD(par87)
OPEN(par87)

GOTHRUDR(par87,par130)

GOTOD(parl51)

GOTHRUDR(parl51,par180)

GOTOB(par208)

PUSHB(nar208,par237)

GOTOB(par265)

PUSHB(par265,par294)

Erase MACROP3.
Erase MACROP4.

0k

The generalized plan takes the robot from cne room into a second
room, opens a door leading to a third room, takes the robot through
the third room into a fourth room, and then pushes together two pairs
of boxes.

5588

shkkEk

- MACROP3 and MACROP4 are corhpletely contained in MACROPS.

Sk

Set first additions row of MACROPS to 4.

25553

The first two operators of MACROPS match the sixth and seventh
operators of MACROPS.

E L 22 0

7.3. Further Experiments

In another set of
goal was to prod

22

experiments that were run with the new system, the primary
uce long plans. We ran a sequence of eight problems in our
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robot environment that culminated in the production of a 19-operator plan
for fetching three boxes from three different rooms and then pushing the three
boxes together. This final MACROP subsumed the seven earlier ones so that
only one MACROP was retained by the system. Subsequences of the 19-step
MACROP could be used io fetch boxes, push boxes together, move the robot
from room to rogm, etc.

The experiments we have been discussing show the use of MACROPs
during planning. We have also run experiments with PLANEX to illustrate
the use of MACROPs during plan execution. One such experiment is docu-
mented in a report [4] and film [5] that illustrate how PLANEX monitors
robot task execution in the seven-room experimental environment. One
interesting sequence in this experiment involves the robot attempting to go
from one room through a second room into a third room. After entering the
second room, the robot discovers that a box is blocking the door that leads
into the third room. Since PLANEX is working with a generalized plan, the
difficulty can be overcome by finding a different instance of the plan’s first
kernel that is satisfied. This new instantiation of the plan’s parameters causes
the robot to be sent from the second room into a fourth room and then into
the target third room.

8. Conclusions

We have presented in considerable detail methods by which a problem-
solving program can ““learn” old solutions and use them both to monitor
real-world execution and to aid in the solution of new problems. We view
these methods as representing only a preliminary excursion into an area that,
in the long run, may held high potential for the design of “intelligent™ robots.
Before such potential is realized, however, there are a number of substantial
technical problems to b solved; in this final section we briefly point out a few
of these.

8.1. Abstracting Preconditions

It is a commonplace cbservation that successful problem solvers (human or
machine) must plan at a level of detail appropriate to the problem at hand.
In typical problem-solving programs, the level of detail is set a priori by
the experimenter when he carefully selects the representations employed.
This situatiou changes when the problem solver can create its own MAC-
ROPS. Now we have the possibility of creating powerful macro operators
whose specification is at the same level of detail as each component operator.
In terms of our system, we may create a large triangle table whose precon-
ditions (its first kernel) is the conjunction of so many literals that the theorem
prover has little hope of success. What we need is a way of appropriately
Artificial Intelligence 3 (1972), 251-286
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abstracting the preconditions of a MACROP so that only its “main” pre-
conditions remain. A plan would first be attempted using these absiract
preconditions; if successful, a subsequent planning process would fill in the
details (and perhaps suggest changes to the abstract plan) as needed. As a
rough example of the sort of process we have in mind, suppose we have a
MACRGQP that requires the robot to travel through several doors. An abstract
precondition for the MACROP might not contain the requirement that the
doors be open on the supposition that, should they be closed, the robot could
easily open them at the appropriate time. In whatever manner such a scheme
is ultimately implemented, it seems clear that a problem solver will be able to
increase its power with experience only if it can use this experience at an
appropriate level of abstraction.

We discussed previously a method for discarding a MACROP when it is
subsumed by another, more powerful MACROP. In general, any system that
learns plans must also either incorporate a mechanism for forgetting old
plans or else face the danger of being swamped by an cver-increasing reper-
toire of stored plans. One straightforward approach to this problem would be
to keep some statistics on the frequencies with which the various MACROPS
are used, and discard those that fall below some threshold. We have not,
however, experimented with any such mechanisms.

8.3. Other Forms of Learning

The generalization scheme discussed in this paper is but one of many possible
forms of machine learning. Another form of learning that would be inter-
esting to investigate involves reconciling predicted and observed behavior.
Suppose, by way of example, that an operator OP is originaliv thought to add
Clause C whenever it is applied, but suppose we notice that the action
corresponding to C.P consistently fails to add C. We would like the system to
remedy this situation by taking one of three steps: drop C from the add list of
OP, restrict the preconditions of OP to those (if any) that guarantee that C is
added by the action, or change the actual action routine so that it does in fact
bebave as originally advertised. While we offer no algorithms for accomplish-
ing these forms of learning, it is interesting to note that the problem itself
arises only when we deal with real, as opposed to simulated, robot systems.
It is the occurrence of problems of this sort that persuades us of the contin-
uing interest and importance of robot problem solving.
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