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Abstract: We consider a one-dimensional periodic potential, or "superlattice," in monocrystalline semiconductors formed by a periodic
variation of alloy composition or of impurity density introduced during epitaxial growth. If the period of a superlattice, of the order
of looA, is shorter than the electron mean free path, a series of narrow allowed and forbidden bands is expected due to the subdivision
of the Brillouin zone into a series of minizones. If the scattering time of electrons meets a threshold condition, the combined effect of the
narrow energy band and the narrow wave-vector zone makes it possible for electrons to be excited with moderate electric fields to an
energy and momentum beyond an inflection point in the E-k:relation; this results in a negative differential conductance in the direction
of the superlattice. The study of superlattices and observations of quantum mechanical effects on a new physical scale may provide a
valuable area of investigation in the field of semiconductors.

Introduction
We consider theoretically a one-dimensional periodic po
tential, or "superlattice," in monocrystalline semiconduc
tors. This superlattice potential would be obtained by a
periodic variation of alloy composition or of impurity
density introduced during epitaxial growth. This technique
would enable one to vary arbitrarily the amplitude and
periodicity of the superlattice potential over a range of
values, although one period probably could not be made
much shorter than tOOA (about 20 times as long as the
lattice constant of the host crystal). If this distance, which
is comparable to the junction width in a tunnel diode,' is
shorter than the electron mean free path, one may
expect to observe strong energy dispersion effects in the
proposed structure. These effects would allow observation
offamiliar quantum mechanical properties in a new domain
of physical scale, due to very narrow allowed and for
bidden energy bands associated with a series of minizones
in the Brillouin zone, not seen in the host crystal. It should
be possible to obtain a novel class of man-made semicon
ductor materials, at least as far as electronic properties
are concerned, and one expects the properties to depend
not only on the band parameters of the host crystal, but
also on the characteristics of the superlattice.

We have analyzed the dynamics of conduction electrons
in a superlattice structure which, we think, is realizable
with techniques described here. Although the one-dimen-
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sional lattice per se is an elementary subject, the results
contain important implications for the direction of experi
mental effort. We have found that, in the direction of the
superlattice (perpendicular to the superlattice planes), the
narrow wave-vector zones and the narrow energy bands
make it possible for electrons to be excited beyond the
energy corresponding to an £-vs.-k inflection point with
moderate electric fields. The resulting negative conduc
tance could lead to new ultra-high-speed devices.t These
deviceswould have virtually no frequency limitation except
when the energy quantum for the frequency involved is a
significant fraction of the width of the narrow energy band.
Since the potentials envisioned are small compared with
band gap energies of the host semiconductors, and since
the properties depend on a sustained periodic variation,
the structure should be viewed as a perturbed bulk crystal
rather than as a series of junctions.

Materials
The achievement of a well-defined superlattice structure
with a period of, say, lOoA will require considerable effort
even with the use of the most advanced epitaxial thin-film
technologies. The materials should be well-known semi
conductors and their alloys; for examples, Ge, Si, Ge-Si
alloys, III-V compounds and their alloys, II-VI com-

t H. Kromer proposed using the heavy hole band in Ge, Si and other
semiconductors for a negative mass amplifier, wherein transverse effective
masses were said to become negative for excited electrons (actually holes)
[Phys. Rev. 109. 1856 (1958)J. Application of the effect. however. has not
turned out to be practical. 61
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Figure 1 Electron energy in the valence and conduction
bands as a function of distance in the direction of the
superlattice for (a) alternation of donor and acceptor im
purities and (b) periodic variation of alloy composition.
Solid and dashed lines represent sinusoidal and periodic
square-well potentials, respectively. The E; are the mag
nitudes of the energy gap in the semiconductor materials
used and V, is the amplitude of the periodic superlattice
potential.

pounds and their alloys, etc. There may be a number of
ways to form a superlattice structure.* We considered
two methods: (1) a periodic variation of donor or acceptor
impurities, alternately, in a single semiconductor; and (2) a
periodic variation of alloy composition, introduced during
the crystal growth. Both methods could be used simul
taneously and it would be advantageous to carry out the
epitaxial growth at a relatively low temperature" to mini
mize the thermal diffusion of impurities or alloy constit
uents, which would tend to wash out the desired potential
profile. In this context, it is more desirable to apply method
(2) because of the lower diffusion coefficients in alloys.

• Some crystals such as hexagonal SiC have a number of different structural
forms known as polytypes, in which one sees a kind of one-dimensional
superlattice structure. The periods range from 15 to 53A. depending on the
type of crystal. The potential amplitude and resulting energy gap are probably
too small to demonstrate any of the effects described here.

In the alternating impurity system (Fig. la), the peak
to-peak amplitude of the periodic potential can be chosen,
in principle, as any value up to that of the energy gap,
whereas, in the alternating alloy composition system (Fig.
1b), the value would be limited to about half of the differ
ence between the energy gaps ofthe two materials involved.
It would not be possible to obtain the desired superlattice
structure (with a 100-A. period and a O.1-eV potential
amplitude) with relatively light doping because of space
charge effects.

We considered two potential functions, a sinusoidal wave
and a periodic square wave, as illustrated in Fig. I, and
two typical values of effective mass, O.025mo and 0.07mo,

which are applicable to the InAs-based alloy and GaAs
based alloy systems, respectively. The Ge-GeSi system is
also attractive, particularly from an experimental point of
view. We would choose relatively pure elemental or binary
compound semiconductors as the narrower gap semicon
ductor, corresponding to the valleys in the potential profile,
to obtain a favorable electron scattering time.

Band structure
We are concerned with the energy bands in a one-dimen
sional superlattice represented by a periodic potential
Vex) = vex + nd) with a period d typically 10 to 20 times
greater than the lattice constant a in the host crystaL The
usual Brillouin zone will be subdivided into minizones as
shown in Fig. 2a. Since we are interested only in the first
minizone, because of low carrier concentrations we may
assume that the E-k relation in the directions parallel to
the superlattice planes is parabolic as usual. For the sinu
soidal potential Vex) = Vl [cos (27rx/ d) - 1], the wave
equation in the direction of the superlattice, denoted by x,
has the form of Mathieu's equation and has been studied
in great detail by Slater. 3

The reduced energy and amplitude of the perturbing
periodic potential are defined by 1/ = 1/(kx) == (Ex - Vl)!Eo

and v == Vl/Eo, respectively, where V l is the amplitude of
the periodic superlattice potential and Eo == Jtk~/2m; here
kd = 7r/ d and m is the effective mass. In Fig. 2b we plot
1/ VS. 'Y for the sinusoidal potential, using a parameter
{3 == kx/kd • The allowed solutions of the wave equation
are represented by the non-shaded regions, while the for
bidden solutions fall in the shaded regions. For the case of
'Y = 0.5, 1/ vs. {3 is plotted in Fig. 2a.

We also calculated the energy-momentum relation for
the periodic square-well potential," using the expression
given by Smith." A comparison of the E-vs.-k curves
for the two potentials is shown in Fig. 3, where d = IOOA.,
V l = O.1eV, and m = 0.025mo (Fig. 3a) and O.07mo

(Fig. 3b). The zeros of the energy scales in Fig. 3 are
set at the bottom of the conduction band in the narrower
energy-gap material. Therefore the first band is moved
up by an amount slightly less than Vl. In the case of
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Transport properties
We used a simplified path integration method" to obtain a
relation between the applied field F in the direction of the
superlattice and the average drift velocity Vd' The equations
of motion are

alternating impurities, the energy gap is narrowed slightly
by the introduction of the superlattice structure.

The energy band width E 1 == E(1r/d) - E(O) decreases
as l' increases from 0.667 to 1.85; i.e., electrons are pro
gressively more localized in the direction of the super
lattice as the periodic perturbing potential increases. At
l' = 4, E1 is only one-tenth the unperturbed energy band
width in the first minizone, which means that the effective
mass in the superlattice direction is ten times greater than
the unperturbed value. This trend leads to virtually a two
dimensional electron gas system.6

For large 1', and particularly for the periodic square
well potential, the E-k relation can be approximated by a
sinusoidal form, Ex = !E1(1 - cos kxd); the inflection
point is located at the center, 1r/2d, of the first minizone.
In general, each carrier with a definite effective mass
interacts with the superlattice and generates a correspond
ing set of energy bands. Therefore, whenever more than
one effective mass is involved, the total population of
carriers is redistributed among the respective bands.
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Figure 3 Electron energy E. as a function of wave vector
k» in the direction of the superlattice. Solid curves are for
the sinusoidal potential, long-dash curves are for the periodic
square-well potential, and the short-dash curves are for the
unperturbed cases. The arrows refer to the points of inflec
tion. Values of the parameters are V, = 0.1 eV and (a)
m = 0.025mo, 'Y ::::: 0.667; (b) m :::::; 0.07mo, 'Y ::::: 1.85.

Figure 2 Reduced energy '1 as a function of (a ) wave
vector k; or reduced wave vector f3 for 'Y 0.5 and (b)
reduced amplitude 'Y of the sinusoidal superlattice potential;
TJ == (Ex - V,) /Eo, 'Y V,fEo and f3 == k.jk•.

(2)

(1)

the velocity increment in a time interval dt is

do", = eFJt-z(ilE
x/8k;) dt.

The average drift velocity, taking into account the scat
tering time T, is written as
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(3)

(4)

(5)

[ '"-2 2 2= eFJt . Q (8 Ex/ok",) exp (-t/T) dt.

Using the sinusoidal E-k approximation, we obtain

and

where ~ = eFT/Jtkd k,/kd ; the effective mass m(O) is
determined by the curvature of E(k) and is equal to
2Jt2/E1d

2. The function g(~) (shown as the dashed curve
in Fig. 4) has a maximum at ~ = 1/1r and thereafter
decreases, corresponding to a decreasing average drift
velocity, which results in a negative differential conduct
ance because the current is proportional to Vd. At high
fields the current is proportional to (FTr

1
• The value

~ = 1/1r corresponds to eFrd/Jt = 1. This threshold

Vd = ge~)(Jtkd/meO)]
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boundary could be a dominant factor in the case of small
amplitude of the periodic potential. If, however, the ampli
tude VI is of the order of O.leV and the applied field is
of the order of 103V/cm, the tunneling probability can
be kept negligibly small. If the electron scattering time is
sufficiently long, electrons will undergo rf oscillation due
to the reflection at the minizone boundaries, the so-called
"Bloch oscillation." This occurs for eFrd/lt > 211", which
is several times the threshold value for negative conduct
ance. The frequency of the Bloch oscillator is eFd/h = 250
GHz for F = 103V/ em and d = 100 A. The scattering
time then should be greater than 4 psec.

Discussion
In obtaining the solutions for the average drift velocity,
Eqs. 4 and 6, we made two assumptions; namely, that
k; = eFt/lt and that r is time-independent. The former
assumption implies that k; = 0 at t = 0, which is justifiable
in relatively lightly doped semiconductors." The latter
assumption is a reasonable approximation in the case in
which the allowed band width is made narrow. In the two
examples, m = 0.025mo and 0.07mo, the smaller mass
case requires an electron temperature close to 1000oK,
whereas the larger mass case requires only 100oK, to
reach the negative differential conductivity region. This
electron temperature, which is also a function of the ampli
tude and the profile of the periodic potential, could be
kept very low with proper design of the structure. In such
cases the specimen could be operated with low electric
fields at cryogenic temperatures; lower temperatures are
helpful in obtaining longer scattering times.

Using the Heisenberg uncertainty principle we estimated
the values of electron scattering time r and the mean free
path I that are required for these quantum mechanical
effects. For t:.E = O.1EI = 0.003 eV and Sk = O.lkd =
3 X 105 ern-I, the inequalities are I ~ 330A and r ~ 0.22
psec. This indicates that the mean free path should be at
least three times as long as the superlattice spacing. The
scattering time here is about one-third of that previously
estimated for obtaining a negative differential conductance.

The scattering time is an important factor in the effects
described and more-detailed calculations are being made
to verify the model. If the superlattice were perfect, the
scattering time would be infinite, as is the case with an
ideal crystal lattice. Small deviations from the perfect
periodic potential, even when the long-range order is pre
served, act as localized scattering centers. If the super
lattice structure is prepared by a periodic variation of
alloy composition, there will be unavoidable random varia
tions in the magnitude of the thereby introduced super
lattice potential maxima (at x = d/2,3d/2, ... ). However,
the probability density of conduction electrons in the
superlattice structure of the sinusoidal potential indicates
that electrons in the conduction band would be bunched

1.51.00.5

0.2

The function 1m is plotted in Fig. 4 for k j k d = 0.82 (y =
0.667) and 0.50 ('Y = 1.85). These curves also indicate the
existence of negative conductance, but the threshold value,
~ ~ 0.4 or eFrd/h ~ 1.26 for the top curve, is slightly
greater than for the sinusoidal E-k relation. Since the
inflection point is shifting toward the minizone boundary,
it is understandable that higher fields or longer scattering
times are required to obtain negative conductance.

As the applied voltage is increased, however, effects such
as Zener tunneling, avalanching and impact ionization set
in; eventually the negative conductance would be offset
by these effects. The possibility of Zener tunneling to the
second minizone when electrons reach the first minizone

--f<O

-----g(~)

condition can be achieved with an electric field strength
F = 103 V/em and a scattering time r = 0.67psec.

For small 'Y, when E(k) is not a sinusoidal function,
the E-k relation was approximated by sections of two
parabolas of opposite curvature, joined at the inflection
point (E;, k;). For the average drift velocity in this case
we obtained

Figure 4 Drift velocity amplitudes as functions of the
reduced parameter ~ = 2eFrd/h == k-fk«: (a) sinusoidal
potential; (b) periodic square-well potential for k,/k. =
0.5; and (c) periodic square-well potential for k,/k. =
0.82. Here k, is the wave vector at the inflection point of
the E-k curve. Arrows indicate the peaks of the drift
velocity functions.

j et ) = t[l + 2k d sinh (kjkdO
<; <; k d - k , exp (2/~) - I

- k d exp (-k;/kdO]' (7)
k d - k i
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in the potential minima at x = 0, d, 2d, .... Therefore,
small variations in the magnitude of the potential maxima,
where the electron probability distribution has minima,
would have little effect.

If the deviation from an ideal superlattice becomes so
large that the long-range order is no longer preserved, a
disordered system will be obtained, which might be called
a disordered one-dimensional superlattice. Even this struc
ture, however, may provide a testing ground for mathe
matical models used in the study of one-dimensional
disordered systems," Correlation betweentheory and exper
iment on a disordered superlattice would lead to better
understanding of a three-dimensional disordered system,
i.e., an amorphous substance. Although it may be a for
midable task to construct the proposed superlattice, we
believe that efforts directed to this end will open new areas
of investigation in the field of semiconductor physics.
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