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Summary—The following is a brief description of the basiz
principles and applications of the parametron, which is a digital com-
puter element invented by the author in 1954. A parametron element
is essentially a resonant circuit with a nonlinear reactive element
which oscillates at one-half the driving frequency. The oscillation is
used to represent a binary digit by the choice between two stationary
phases = radians apart. The basic principle of logical circuits using
the parametron is explained, and research on and applications of
parametrons in Japan are described.

I. INTRODUCTION
N keeping with the remarkable progress of clec-
tronic computers in recent vears, studies on digital
computing elements and memory devices have been
energetically conducted in various laboratories. Among
them, one will find new applications of physical phe-
nomena and effects that have never before been utilized
in the field of electronics; the cryotron, which uses su-
perconductivity, and the spin echo memory are typical
examples.
In 1954 the author discovered that a phenomenon

called parametric oscillation, which had been known

for many years, can be utilized to perform logical opera-
tions and memory functions, and gave the name “Pa-
rametron” to the new digital component made on this
principle [1], [21]-]23].

A digital computing circuit made ol parametrons
mav consist only of capacitors, ferrite-core coils and
resistors, while diodes and rectifiers may be dispensed
with. The parametron, therefore, is considered to be
extremely sturdy, stable, durable, and inexpensive.
Owing to these advantages, intensive studies have
started in several laboratories in Japan to apply param-
etrons to various digital systems. At present, nearly
half of the Japanese electronic computers in operation
use parametrons for logical elements. Further applica-
tions have been made to such devices as telegraphic
equipments, telephone switching systems and numerical
control of machine tools.

Parametric oscillation, from which the name “P

a-
rametron” derives, is not a unfamiliar phienomenon—a
playground swing and Melde's experiment are exam-
ples of parametric oscillations in mechanical systems.

[n order to drive a swing, the rider bends and then
straightens his body and thereby changes the length /
between the center of gravity of his body and the ful-
crum of the ropes. The swing is a mechanical resonant
svstem and its resonant frequency is determined by this

* Original manuscript received by the IRE, December 9, 1958;
revised manuscript received, May 14, 1959.
+ Dept. of Physics, University of Tokyo, Tokyo, Japan.

length / and the gravitational constant g. The oscilla-
tion ol the swing is energized by the periodic variation
of the parameter [ which determines the resonant fre-
quency. Similarly, in Melde's experiment, shown in Iig.
1, a periodic variation is given to the tension, which is a
parameter that determines the resonant frequency of
the string. In this case, the exciting energy which varies
the tension is supplied from a tuning fork of resonant

frequency 2f, which is twice the resonant frequency f

of the string. In other words, the oscillating frequency of
the string is a subharmonic equal to hall the frequency
of the energy source, that is, it is the second subhar-
monic. The mechanism ol building up of this subhar-
monic isshown in Iig. 2. As the string moves away from
the equilibrium position, the tension is weakened and
the maximum amplitude increases; as the string returns
to the center position, the tension is strengthened and
the kinetic energyv increases.
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Fig. 1—NM\lclde's experiment.
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Fig. 2—Build up of oscillation of the string.

In an electrical system, inductance and capacitance
are the parameters which determine the resonant [re-
quency. Parametric oscillation therefore can be pro-
duced in a resonant circuit by periodically varying one
of the reactive elements composing the resonant circuit
[18].

A parametron element is essentially a resonant circuit
with a reactive element varving periodically at fre-
quency 2f which generates a parametric oscillation at
the subharmonic frequency f. In practice, the periodic
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variation is accomplished by applying an exciting cur-
rent ol frequency 2f to a balanced pair of nonlinear re-
actors, such as [errite-core coils and noulinear capacitors
made of ferroelectric material or ol the barrier capaci-
tance of semiconductor junctions.

The subharmonic parametric oscillation thus gen-
erated has a remarkable property in that the oscillation
will be stable in either of two phases which differ by =
radians with respect to each other. Utilizing this fact, a
parametron represents and stores one binary digit, “0”
or “1,” by the choice between these two phases, 0 or 7
radians. The solid line and the dotted line in Fig. 2 il-
lustrate the building up of these two kinds of oscillation.

Under certain resonance conditions, tle oscillation
generated in the parametron is “solt,” that is, it is easily
self-started from any small initial amplitude. In this
case, the choice between the two stable phases of the os-
cillation having a large amplitude can be made by con-
trolling the phases of the small initial oscillation. This
fact may be regarded as amplification and its mechanism
may best be understood as superregeneration with the
phase of the oscillation quantized to two states. In order
to make use of this effectively, quenching means are
provided in parametron circuits to interrupt para-
metric oscillation. Besides the memory and amplifying
action, parametrons can also perform various logical
operations based on a majority principle by applying
the algebraic sum of oscillation voltages of an odd num-
ber of parametrons to another parametron in which the
algebraic sum voltage works as the small initial oscilla-
tion voltage.

Mathematical studies on parametric oscillations of
small amplitude in a linear region have been conducted
in detail in the past. The results will be found in text-
books on differential equations under such headings as
linear differential equations with periodic coefficients,
Mathicu's equation, Hill's equation, and Floque's
theorem [16], [17]. However, in order to describe the
actual behavior of parametrons quantitatively, one has
to take nonlinecarity into consideration, and this will
be treated in the Appendix.

The application of parametric oscillation to amplify-
g electrical signals is not a new idea. We find in
Peterson’s patent of 1932 [29], an idea for an amplifier
based on the same principle as the parametric amplifier,
which is now one of the most discussed topics in the
field of electronics. In a parametric amplifier, two reso-
nant circuits, respectively tuned to signal frequency f,
and idling frequency f;, are coupled together regenera-
tively through a nonlinear reactor to which is applied a
voltage of pumping frequency f,, satis{ying the condi-
tion fp=f:+f.. A parametric amplifier performs re-
generative amplification ol signals and may produce,
as well, a pair of spontaneous oscillations at frequency
[ and f.

A parametron producing a subharmonic oscillation
may be regarded as a degenerative case of a parametric
amplifier, in which the two resonant circuits for f; and f;

are reduced to a single common circuit, so that f,=f;=/,
and f,=2f. Consequently, the basic principle of the am-
plifying mechanism of the parametron may be consid-
ered the same as that of the parametric amplifier. The
degeneracy in the number of resonant circuits, however,
makes possible the phase quantizing nature of the os-
cillation. While this is generally unfavorable for am-
plifying ordinary continuous waves, it is very useful for
representing and storing a binary digit in the parame-
tron.

Parametric oscillation of the second subharmonic
mode in an electrical system has been known for many
vears and has been applied to frequency dividers [18].
On the other hand, the idea that two stable phases exist
and can be applied to digital operations can be found
only in a patent [30] of the late Professor von Neumann,
so far as the author knows. Von Neumann proposed,
completely independent of the author, a scheme similar
to the parametron. His idea, however, seems to have not
yet been developed into practical use.

If the resonance condition of a circuit which pro-
duces the subharmonic parametric oscillation is slightly
altered, a “hard” oscillation, .., not self-starting, will
be produced. This circuit, generally, has three stable
states, namely, “no oscillation,” “oscillating at 0 phase,”
and “oscillating at m-radian phase.” In Japan such an
element is usually called a “tristable parametron,”
while in the case of “soft” oscillation it is called a “bi-
stable parametron.” In the hard oscillation circuit, i.c.,
the tristable parametron, a binary digit can be repre-
sented by the presence or absence of oscillation. This
scheme has also been proposed independently by Clary

[31].

II. Basic PrivcrrLE

The parametron is essentially a resonant circuit in
which either the inductance or the capacitance is made
to vary periodically. ig. 3 shows circuit diagrams for
parametron elements. The parametron element in Fig.
3(a) consists of coils wound around two magnetic ferrite
toroidal cores /"1 and F2, a capacitor C, and a damping
resistor R, and a small toroidal transformer 7°. Each of
the cores /1 and F2 has two windings and these are
connected together in a balanced configuration, one
winding L=_L'+L" forming a resonant circuit with the
capacitor C and being tuned to frequency f. An exciting
current, which is a superposition of a dc bias and a
radio frequency current of frequency 2f, is applied to
the other winding, //-1"’, causing periodic variation in
the inductance L=71'+71"" of the resonant circuit at
frequency 2f.

The parametron in Fig. 3(b) consists of two nonlinear
capacitors C’ and C’' which form the resonant circuit
with the inductance L. An exciting voltage of frequency
2f is supplied between the neutral point of the two non-
linear capacitors C’, C’’ and the neutral point of the
inductance L, causing periodic variation in the tuning
capacitance C(1/C=1/C"+41/C"") at frequency 2f. As
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Fig. 3— Circuit dingram ol parametrons, (a) Magnetic type.
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the results are entirely analogous in both cases, the
following explanations will be given only for the former
case,

The operation of the parametron is based on a spon-
tancous generation of a second-subharmonic parametric
oscillation, that is a self-starting oscillation of frequency

)

foin the resonant circuit. Parametric oscillation is

usually treated and explained in terms of Matheiu's
cquation. A more intuitive explanation, however, may
he obtained by the following consideration.

Let the inductance L of the resonant circuit be varied

as
L = Ly(1 4 2T sin 2w/) (1)

where w= 2w/, and let us assume the presence of a sinus-
oidal ac current /; in the resonant circuit at [requency
f, which can be broken down into two components as
follows:

Iy = I, sin (wl) + I, cos (). (2)

Then, assuming that the rate of the variation of ampli-
tudes of the sine and cosine components, [, and 7., are
small compared with w, the induced voltage 17 will be
given by

Vo= d/di(LI;) = wLy(I, cos ol — I, sin wl)
+ 3lwLo(Z, sin 3wl -+ 1. cos 3wl)
+ Twlo(— 1, sin wl + I, cos wl). 3)
The first term shows the voltage due to a constant in-
ductance Ly, and the second term or the third harmonic

term may be neglected in our approximation, since it is
off resonance. The third term, which is essential for the

generation of the seccond subharmonic, shows that the
variable part of the inductance behaves like a negative
resistance —7= —T'wl, for the sine component 7, but
behaves like a positive resistance +r=TwL, lor the co-
sine component 7,

Therefore, provided that the circuit |[FFig. 3(a)] is
nearly tuned to /, the sine component 7, of any small
oscillation (® in Fig. 4), will build up exponentially (=
in Fig. 4), while its cosine component will damp out rap-
idly. If the circuit were exactly linear, the amplitude
would continue to grow indefinitely. Actually, the non-
linear B-IT curve of the cores causes detuning of the
resonance circuit and hysteresis loss also increases with
increasing amplitude, so that a stationary state (@ in
Fig. 4) will rapidly be established, as in vacuum-tube
oscillators. Details of the amplitude limiting mecha-
nism, which is essentially a nonlinear problem, will be
treated in the Appendix, The solution of the problem
will be illustrated most intuitively by showing the
locus of the sine and cosine components, 7, and 7, in the
(Z,, I.) plane. Fig. 5 shows an example of such loci for a
typical case a=0, 6=1/2 (¢/. Appendix). The abscissa
represents the sine component [/, and the ordinate, the
cosine component Z.. If we introduce polar coordinates
(R, ¢) in the (I, 1.) plane, it will be scen casily from
(1) that R and ¢, respectively, indicate the instantane-
ous amplitude and phase ol the oscillation. The saddle
point at the origin indicates the exponential build up of
oscillation which is in a definite phase relation to the
excitation wave of frequency 2f. Spiral points [ and .1’
in the figure indicate the stable states of stationary os-
cillation. The existence ol two possible phases in this os-
cillation which differ by 7 radians from cach other, cor-
responding to .1 and .1’ should be noted. These two
modes of oscillation are respectively shown by the solid
line and dotted line in Fig. 4. An especially important
feature is that the choice between these two modes of
stationary oscillation is effected entirely by the sign of
the sine component of the small initial oscillations that
have existed in the circuit (.1 in IFig. 4). In other words,
the choice between o1 and .17 in Fig. 5 depends on which
side of the thick curve B-B’ (called separatrix) the
point representing the initial state les. An initial oscil-
lation of quite small amplitude is sufficient to control
the mode or the phase of stationary oscillation of large
amplitude which is to be used as the output signal.
Hence, the parametron has an amplifying action which
may be understood as superregeneration. The upper
limit of this superregenerative amplification is believed
to be determined only by the inherent noise, and an
amplification of as high as 100 db has been reported.!

The existence of dual mode of stationary oscillation
can be made use ol to represent a binary digit, “0” and
“17 in a digital system, and thus a parametron can store

LA personal communication from Z. Kivasu, of Electrical Com-

munication Laboratory, Nippon Telephone and Telegraph Co.,
Tokyo, Japan.
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L bit of information. However, oscillation of parame-
trons in this stationary state is extremely stable, and
il one should try to change the state of an oscillating
parametron from one mode to aunother just by directly
applying a control voltage to the resonant circuit, a
signal source as powerful as the parametron itself would
be necessary. This difficulty can be got around by pro-
viding a meauns for quenching the oscillation, and mal-
ing the choice between the two modes, i.e., the rewriting
of information, by a weak control voltage applied at the
beginning of each building up period, making use of the
superregenerative action.

Actually, this is done by modulating the exciting
wave by a periodic square wave which also serves as the
clock pulse of the computer. Hence, for each parame-
tron there is an alternation of active and passive periods,
corresponding to the switching on and off of the exciting
current. Usually, the parametron device uses three
clock waves, labeled I, IT and III, all having the same
pulse recurrence frequency, but switched on and off one
alter another in a cyclic manner as shown in Fig. 6.
This method of exciting each of the parametrons in a
digital system with either one of the three exciting
waves [, IT and 11T is usually called the “three beat” or
the “three subclock” excitation.

[T1. Basic Dicrrar OpERrATIONS
BY PARAMETRONS
Digital systems can be constructed using parametrons
by intercoupling parametron elements in different

Fig. 6—The exciting current of thrée groups, [, II and [11,

groups by a coupling element, the toroidal transformers
shown in Fig. 3.

Figs. 7 to 9 show the basic parametron circuits.

The parametron is a synchronous device and operates
in rhythm with the clock pulse. Each parametron takes
in a new binary digit (“1” or “0”) at the beginning of
every active period, and transmits it to the parametrons
of the next stage with a delay of one-third of the cloclk
period. This delay can be used to form a delay line. Fig.
7 shows one such delay line which consists of parame-
trons simply coupled in a chain, each successive param-
etron element belonging each to the groups, I, 11, 111,
[, - -+ . Hence, the phase of oscillation of a parametron
in the succeeding stage will be controlled by that in the
preceding stage, and a binary signal x applied to the
leftmost parametron will be transmitted along the chain
rightwards in synchronism with the switching of the
exciting currents. Hence, the circuit may be used as a
delay line or a dynamic memory circuit.

Fig. 8 shows how logical operations can be performecd
using parametrons. In the figure, the outputs of the
three parametrons X, ¥ and Z in stage I, which are all
oscillating at a voltage V, are coupled to the single
parametron U in stage [I with a coupling factor k. As the
effective phase control signal acting on U is the alge-
braic sum of the three signals from X, ¥ and Z, each of
which has the value +£1 or —£T1’, the mode of U rep-
resenting a binary signal « will be determined according
to the majority of the three binary signals x, v and z,
respectively represented by the oscillation modes of X,
Yand Z. It would be possible, in principle, to general-
ize the majority circuit of Fig. 8(a) to 5, 7, 9, - + - in-
puts, that is, to any odd number of inputs. In practice,
however, the nonuniformity in the characteristics of
each parametron causes disparity in the input signals
and makes the majority decision inaccurate, and this
fact limits the allowable number of inputs to 3 or 3 in
most cases.

[t is easily seen that the majority operation just out-
lined includes the basic logical operations “and” and
“or” as special cases. Suppose that one of the three in-
puts in Fig. 8(a), say g, is fixed to a constant value “1,”
then we obtain a biased majority decision on the re-
maining two inputs x and v, and the resulting circuit
gives “x or y” as shown in Fig. 8(c). Similarly, if z is
fixed to a constant value “0,” we obtain a circuit for “x
and y” as shown in Fig. 8(d). These constant signals are
actually derived from a special parametron called con-
stant parametron, or some other voltage source equiva-
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lent to it. 1 2 out of 3 inputs in a “S-input majority

operation” are made constants, cither “1”7 or “0,” we
shall obtain cither a “or”
for three input variables x, 3 and £, as shown in Figs.
8(e) and 8(f).

“Complementation” or “not” operation can be made
most simply in parametron circuits. In order to change

or “and” circuit respectively

the binary signal “1” into “0” and vice versa, we have
only to reverse the polarity of the input signal, and this
can be done by coupling two parametrons in reversed
polarity as shown in IMig. 9. Tn the schematic diagram,
such coupling in reversed polarity will be indicated by

- ashort bar in the coupling line as shown in Fig. 9,

Since a digital system of any complexity can be syn-
thesized by combining the four basic circuit elements,
namely “delay,” “and,” “or,” and “not,” it will be seen
that a complete digital system, e.g., a general purpose
clectronic computer, can in principle be constructed us-
ing only one kind of circuit element—the parametron.
It should be noted that the above conclusion presup-
poses that some means for logical branching, that is
amplification of signal power, is provided. Now param-
ctrons have a large superregenerative amplification
and the output of a single parametron can supply input
signals to a rather large number of parametrons in the
next stage. IFor the parametrons currently used, the
maximum allowable number of the branching is [rom
10 to 20. This feature adds flexibility in design of
digital svstems using parametrons.

IV, Snene Exavrrnis orF ParavieTroN CIRCUITS

A complete digital apparatus may consist of hundreds
or thousands of parametrons, coupled to cach other by
wires (via resistors and transformers) to form a net-
work. Such a network of parametrons may be conveni-
ently described by a schematic diagram.

At this point we will give a short summary of the
rules and conventions for schematic diagrams currently
inuse in Japan.

Fach parametron is represented by a small circle, as
shown in the figures. Each pair of circles is connected
by a line i corresponding parametrons are coupled, one
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Fig. 9—(a) A “not” circuit. (b) The schematic diagram
of the “not” circuit (a).

line being used per ux}it' coupling intensity. Hence, a
double line between circles will indicate that both pa-
rametrons are coupled at double coupling intensity (cf.
Iig. 14). A short bar across any coupling line denotes
complementation, that is, both parametrons are coupled
with reversed polarity (Fig. 9), and otherwise it is under-
stood that they are coupled in the same polarity.

If not specified, parametrons are supposed to be ex-
cited with the three-beat excitation. Accordingly, only
parametrons belonging to different groups (I, I1 and
I1T) can be coupled, and the information is transmitted
along these lines always in the direction: I—I1, [1—I11I
and [1T—1. Therefore, each coupling line has a definite
direction of transmission, and to show this direction,
usually the output lines from a parametron will come
from the right side of the circle and go into the left side
of another circle as input to it. As has been explained in
Section 11, there may be many parametrons which take
some of their input signals [rom special parametrons
called constant parametrons. These belong to a special
triplet of parametrons, connected in a ring and always
holding the digit “1,” and serving as the phase reference,
Since there may be a great many lines that come from
these constant parametrons, these lines are usually
omitted from the diagram, in order to avoid complica-
tion, and one “+" symbol is inscribed in the circle per
unit constant input of positive polarity, and also one
“—" symbol is inscribed per unit constant input of
negative polarity, Accordingly, a circle with a “4-»
having two input lines corresponds to an “or” element,

“—" having two input lines corresponds

a circle with a
to an “and” element, and a circle with ¢4+ having
three input lines corresponds to o 3-input “or” element,
cte. It should be noted that the distinction between
<07 and “1” in a parametron circuit is only possible by
referring to the oscillation phase of these constant pa-
rametrons, since the phase is a relative concept.

The following higures show some simple examples of
actual parametron circuits in schematic diagrams. The
reader will not find it difficult to trace the functioning

of these circuits. Fig. 10 shows a parametron {lip-flop
or a 1-bit memory circuit. Three parametrons, coupled
in ring form, are required to store 1 bit of information.
In Figs. 10(a) and 10(b) it is assumed that the signals
in the set and reset inputs are both normally “0.” The
flip-flop will be set to “1” when a “1” signal is applied to
the set input, and the flip-flop will be reset to “0” when
a “1” signal is applied to the reset input. The functional
difference between Figs. 10(a) and 10(b) consists in
that, when both the set and the reset signal are applied
simultaneously, the stored information will not change
in the circuit of Fig. 10(a), but it will be reset to “0”
in the circuit of Fig. 10(b).

IFig. 10(c) shows a flip-flop with a gate. As long as “0”
is applied to the gate, the stored information does not
change, but when “1” is applied to the gate, the signal
from the input is transferred to the flip-flop.

Ilig. 11 shows three stages of binary counting circuits
connected in cascade, thus forming a scale-of-8 counter.
Three flip-flops are included in this circuit to store
3-bit count. In the quiescent state, in which “0” is ap-
plied to the input, the bits stored in each flip-flop do not
change, but each time a “1” is applied to the input for
a single clock period, the registered binary number is
increased by 1 (mod 8). Figs. 12, 13 and 14 show re-
spectively a binary full-adder circuit for three input
signals, a parity check circuit for five input signals and
a circuit for “x and (y or 2).” These examples will show
how majority operations can be made use of advanta-
geously compared tothe “and” and “or” operations. These
circuits would have required many more parametrons
il they were composed of “and” and “or” operations as
in the usual diode networks, Flexibility of circuit design
by uscof a three- or five-input majority operation will be
regarded as one of the characteristic features of param-
etron circuits.

The reason for the necessity of three subclock waves
I, Il and 111, shown in Fig. 4, will be shown in Fig. 15.
In g, 15, P1, P2, etc., indicate parametrons and C1,
C2, ete,, indicate coupling elements provided between
parametrons, Each of the parametrons is supposed to
be excited with either one of the two kinds of radio-
[requency waves, 17, and [17, as shown in Fig. 16. These
two waves are switched on and off alternately aund
will be called the two subclock exciting waves. If the
coupling between two parametrons consists of a passive
linear circuit, which is essentially a bilateral system, and
if the two parametrons P1 and P3 in [ig. 15 are gen-
crating oscillations, voltages will be transmitted to 22
from both P1 and P3 with substantially the same in-
tensity, and the phase-controlling action of P2 will be-
come uncertain. Therefore, in order to use the two sub-
clock exciting waves I’, and I1’ in a parametron circuit,
it is necessary to use unilateral coupling means. This
may be accomplished by using a unilateral element,
such as vacuum tubes and transistors, or by varying the
coupling coefficient of the coupling elements as K1 and
K2 in Fig. 16 by means of applying a gating signal to

[
[#%)

RESET ~
~
A
(\J ~
1 11 1881
RESET
Re
SET ~_ p
o
S
1 11 111
INPUT

s DSy
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Ilig. 12—A binary full-adder circuit.

nonlinear elements, such as diodes and magnetic cores
[27].

In the three-beat or the three-subclock exciting
method, each of the parametrons will be excited once
in every clock cycle at a definite time. In this respect
the method may be called stationary excitation. On the
other hand, we may think of a more general method,
usually called “non-stationary excitation” or “gated
excitation” in Japan, in which the excitation of param-
etrons is switched in accordance with gating signals
[28]. Fig. 17 shows a sclecting circuit using the “gated
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excitation.” S;, Sa, -+ - | .S, indicate binary phased in-
formation sources and £y, P, -, P, are gating pa-
rametrons. Supposing that the exciting wave I is applied
selectively to only one of the gating parametrons, say
Py, by controlling the excitation with a gating signal
so as to produce oscillation only in P, the information
from Sy will be selectively transmitted to the parame-
tron P, since the oscillation of P is controlled by .S, and
the oscillation of P is controlled by that of Py. For com-
parison, Fig. 18 shows a selecting circuit for one out of
four channels using the three-subclocls (stationary) ex-
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Fig. 17—Channel-selecting circuit using gated excitation.
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Fig. 18—Channel-selecting circuit using three-beat excitation.

citation. The channel selecting arrangement using
gated excitation will generally reduce the access time
and the number of parametrons at the expense of em-
ploying rather complicated exciting circuits.

V. CHARACTERISTIC FEATURES OF PARAMETRONS

+ Iig. 19 shows a commercial unit composed of 25 pa-
rametrons and the component parts. In this unit a ferrite
disc with two small holes (known as a “binocular type
core” [7]) is used instead of the two toroids in Fig. 3.
The coupling transformer consists of a single-turn coil
wound on a ferrite toroid and is connected in series to
the resonant circuit as shown in Fig. 20. As the life of
parametrons is considered to be practically permanent,
the parametron units are usually not made in a “plug-
in” style, but are directly wired into the logical net-
works.

As may be seen from Figs. 3, 7, and 8, the wiring of
parametron circuits is done in an unusual way. A wire
connected to the output terminal of a parametron in a
preceding stage is passed through the coupling trans-
formers of all the parametrons in the succeeding stage
which are to receive the input signal from the pa-
rametron in the preceding stage. This has resulted in a re-
markable simplification in the construction of complex
logical networks, such as general purpose computers,
since the whole system can be assembled from identical
standardized units, and the units can be wired to form
the specific machine using only wires and with a mini-
mum number of soldering points. Table I shows the

INPUT WIRES

A
i ouTPUT
r TERMINAL

COUPLING
TRANSFORMER

/

"BINOGULAR TYPE CORE"

EXCITING
CURRENT

Fig. 20—The circuit of a parametron with a “binocular type core”
and a series type coupling transformer.

TABLE I
CHARACTERISTICS OF COMMERCIAL PARAMETRON UNITS
High S Low
Speed btfl’" ‘_d": d Power
Type ¥pe Type
Exciting frequency 2f 6 mc 2 mc 200 ke
Maximum clock frequency 140 ke 25 ke 2 ke
Exciting power per one pa-
rametron for continuous
excitation 120 mw 30 mw 5 mw
bias 0.6 amp 0.6 amp 0.6 amp
Maximum number of inputs 3ors Jord Jord
Maximum number of out-
put branching 12 15 15
Coupling coefficient* —35 db —40 db —40 db

* Note: The coupling coefficient % is defined as the ratio:

voltage of unit input voltage of
k=measured at the stationary
resonant circuit oscillation

typical characteristics of commercial parametrons in
Japan.

For application to digital computers we are most con-
cerned in the speed of operation, which is essentially
determined by the clock frequency F.. The upper limit
of Fiis limited by the rates of building up and damping
of parametric oscillation,

From (3) it follows that the oscillation builds up pro-
portionally to e™7¢ (¢f. Appendix), and hence the maxi-
mum clock frequency will be proportional to the prod-
uct I'f, which we call the “hgure of merit” of the pararm-
etron, owing to its analogy to the figure ol merit of
vacuum tubes g, /27 C.
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The figure of merit of a parametron naturally de-

pends on the frequency and amplitude of the exciting
current, and the value for conventional parametrons
in normal operation lies between 20kc and 1.5 mc. For
reliable operation, the clock frequency should be chosen
around Pf/10 if the coupling factor is k=1/50 (— 34 db),
and hence the upper limit for the clock frequency is
about 150 ke for commercial parametron units.

In the past, most effort has been made to develop
parametrons using variable inductance, but it is ap-
parent that the same principle applies when the capac-
itor is the variable element. Parametrons using ceramic
nonlinear capacitors (barium titanate) have been stud-
ied by Oshima and Kiyasu [8].

Studies of parametrons using the variable barrier ca-
pacitance of germanium and selenium diodes have also
been made, and a parametric oscillation at f=60 mc
has been realized [5], [9].

and will limit their use in small-scale digital devices.
At the present stage, parametrons secem to be unfavor-
ably compared with vacuum tubes and transistors in
speed of operation, but this point may be much im-
proved by further development.

VI. APPLICATION

All the characteristics of parametrons just mentioned
make them ideally suited to applications in large-scale
digital devices, and particularly to general purpose
digital computers. Soon alter the invention of param-
etrons in 1954, a project was launched to construct
general purpose computers using control and arithmetic
units entirely composed of parametrons. At present,
nearly hall of the digital electronic computers built in
Japan are parametron computers [11], [14]. Table 1]
shows the characteristics of these computers.

TABLE 11
T CHARACTERISTICS OF GENERAL PURPOSE PARAMETRON COMPUTERS

The Speed of Operation
) Number of o (Tor Fi..w!l Point)
Type (DZIVLC of T‘_Izlcc o.f P‘:n'nmctmns F?xr(‘mng . ‘.C!nck ' Including Access Main Memory Power
Completion) Installation T .1 Frequency | Frequency
(Number o Multipli-
System) Addition cation
FACONM 212 Fuji Elec. Co. 8000 2 mc 10 ke 4 ms l 15 mis 49 words 5 kw
(March, 1959) | Kawasaki (Decimal) | Core Matrix
HIPAC-1 Cint. Lab, 4400 2 me 10 ke 10 ms 19 ms 1024 words 0 kw
(December, Hitachi Elec. Co. (Binary) Magnet Drum
1957) Kokubuniji, Tokyo
MUSASINO-1 | Elec. Communication Lab. 5400 2 me 0 ke 4 ms 20 ms 256 words 5 kw
(March, 1957) | Musasino, Tokyo (Binary) Core Matrix
NEAC-1101 Cent. Lab. 3600 2 me 20 ke 3.5ms 81ms 128 words 5 kw
(April, 1958) Nippon Elec. Co. (Binary) Core Matrix
Kawasaki
PC-1 ] 4200 2 me 15 ke 270 us 3.4 ms 256 words 3 kw
(March, 1958) || Department of Physics (Binary) Core Matrix
o University of Tokyo
PC-2* i1 Tokyo 9600 6 mc 100 ke 40 s 340 ps 1024 words 10 kw
(August, 1959)] (Binary) Core Matrix
SENAC-1 [Zlec. Communication Lab. 9600 2 mc 20 ke 2 ms 3ms 160 words I 15 kw
(November, University of Tohoku (Binary) Magnetic Drum;
}958) Sendai I

* Note: The construction of PC-2 will be completed in August 1959,

Parametrons are composed of capacitors, resistors
and coils with ferromagnetic cores which are all stable
and durable components. Unlike the more conventional
switching circuits using magnetic amplifiers, parame-
trons require no diodes for their operation. These
features guarantee for parametron circuits extremely
high reliability and long life. In several digital com-
puters now in operation in Japan, troubles with pa-
rametrons are extremely rare.

The necessity of a high-frequency power supply may
be one of the inherent disadvantages of parametrons

In the core matrix memory of these parametron com-
puters, an entirely new method, proposed by the author
in 1955 [24]-[26], is emploved both for reading and
writing. Writing is effected by impressing on cach
memory core the superposition of two ac currents, sup-
plied from parametrons and having frequencies of [ and
/2. Reading is also effected with parametrons by am-
plifying and sensing the phase of the second harmonic
component of frequency J which is generated in cach
memory core by impressing an ac current of frequency
f/2 on it.
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The new method is called “dual frequency memory
svstem,” and the following are considered to be char-
acteristic features:

1) Memory cores are driven by output ac currents of

parametrons.

2) Only two windings, X and Y, pass through each

memory core.

3) Reading is nondestructive.

The details will be discussed in a separate paper to
follow.

The application of parametrons to other digital de-
vices has also been made in a number of laboratories.
The Japan Overseas Telephone and Telegraph Com-
pany has constructed regenerative repeaters, telegraph
code converters which convert Morse code to five-unit
teleprinter code [6], and ARQ (automatic request)
systems, which have all been in commercial use for
some years,

The Japan Telegraph and Telephone Corporation has
built a number of experimental common-control tele-
phone switching svstems, employing parametrons in
control circuits [15]. The Fuji Electric Company and
the Government Mechanical Laboratory have built
experimental numerically controlled machine tools [13],
in which parametrons are used for all numerical and
control operations. Among other applications are auto-
matic recording systems for a mesoen monitor used in
cosmic-ray observation and multichannel pulse-height
analyzers for nuclear research [4].

APPENDIX

AMPLITUDE LIMITING MECHANISM

OF THE PArRAMETRON
IFirst, we shall derive the equation gov erning the os-
cillation in a parametric resonant circuit including a

variable inductance L(7) as shown in Fig. 21,

Wi Loof ]
|

C R

Fig. 21—\ parametrically-excited resonant circuit.

The voltage T7in the resonant circuit will be given by
5 ([ 7
¥ = 7 (Li) )
where 7 is the current passing through the inductance.
From Kirchhofl’s law, we obtain
i it +Len o ()
R dl

We shall assume that the inductance is varying as

L{l) = Lo(1 4 2T sin 2w/). (6)
Putting
L . . .
I =—1q= (144 2T sin 2w!): @)
—~1)
1 1 ‘
0= —— = — (8)
oCR
! (1 + @)
—— = o}(1 + a) (9)
C‘Ln ¢ e (

and assuming that T' and « are much smaller than unity

so that (1+4a) (1420 sin 2w)~' may be replaced by
14+a— 2T sin 2wt, (6) will be rewritten as

d? d
,:"'“_; + 6w — 4+ (1 + o — 2T sin 2(0/)]] =0. (10)
ar dl

We may call § the loss [actor, « the detuning of the res-
onant circuit from the second-subharmonic frequency
w, I' the modulation index of the inductance and Ly the
constant part of the inductance. As the difference be-
tween 7 defined by (7) and the actual current ¢ is of the
order of I', the results to be obtained from the following
analysis of 7 may be regarded as substantially the same
as that of the actual current 7 when T is small.

In case a and § are constants, (10) represents a linear
differential equation, well known as Mathieu’s equation
[16]-[18]. In practice, however, ferromagnetic cores
are used in the inductance to effect the variation, and
with increasing amplitude the nonlinear B-II curve
will cause detuning of the resonant circuit and hys-
teresis loss will also increase. Consequently, the loss
and the detuning a of (10) will generally be functions of
the amplitude I* and (10) becomes a nonlinear differ-
ential equation.

Now, we shall assume the presence of nonlinearity of
the form 877 as the detuning. Then (10) becomes

d? d
l:—-}— 0w —— + (1 + « + B7/% — 2I' sin 7()/] ). (11)
dr di

Breaking down 7 into two sinusoidal components as
I = 1I,sin 4 I, cos wl, (12)
(11) will be rewritten as
[27 04802+ aw? T, — T2, 301,241, )[ | cos wi
+ [ =270 — 602+ aw? [, — T T, + 38w (1,2+ 1,21, ] sin o
+ 1. +dwl,] cos wi
+ [I b0l ] sin w/
+ [T +1Bw2 3 — 2121, ] cos 3ot
+ [ —Tw L, — 1wl 4-21,1,2] sin 3wl = 0. (13)
In order to obtain an approximate solution of the

nonlinear differential equations (11) or (13),
assume that o, T' and § are much smaller than unity.

we shall
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Then 7, and 7, in (13) will vary much more slowly than
w, and the third and fourth terms of (13) may be neg-
lected since they are much smaller than w? The third
harmonic terms may also be neglected since they are
off resonance and thus we will obtain the following ap-
proximate equations for [ and 7,.:

2,
— Iy = = 8L+ T — (a4 18132 + 1)L,
w &,
4
— J,= — 8, — 7+ (a4 38(12+ I.0)1,. (14)
w ¢

lLach term of (14) has the following intuitive mean-
mg: the first term with § represents the loss in the cir-
cuit; the second term with T indicates negative resist-
ance effect for the sine component I, and damping
(positive resistance) effect for the cosine component I,;
and the third term with o and 8 represents detuning
of the resonant circuit which is a function of the ampli-
tude R,

In case of no detuning, i.e., =0, and of small ampli-
tude, the solution of (14) is given simply by

I

Is = Taexp (nf(T — 8)1)
I, = I, exp (—a(l 4+ 8)i) (13)

where w= 27/, Therelore, in case I'>6>0 holds, the sine
component 7. will increase exponentially as described
in Section 11, while the cosine component 7, decreases
exponentially.

The solution of a nonlinecar differential equation such
as (14) will be presented as integral curves or loct in the
(I, 1.) planc and the behavior of these curves will be
characterized by the singular points, i.c., points in (7,
1) plane where both 7, and 7, vanish (/. [19], [20]).
, The singular points of (14) will be obtained by placing
[i=1.=0into (14) and the result may be classified into
three cases 1, 2 and 3 depending on the m‘u;'nitudc of
the parameters «, I' and 8, as shown in Fig. 22. In Fig.
22, the abscissa represents —ea and the ordinate, §,
where e=+1ilB>0and e= —1if B/§ 0. The character-
istic curves which form the boundary lines of the three
cases are two half-lines parallel to the e axis and a circle
of radius I with its center at the origin. These three
cases will be characterized by the following leatures.

Case 1

There are three singular points: One unstable saddle
point at the origin /,=17,=0, and two stable nodal or
spiral points at

UT + 5)
I,=+ 4/~ /T? — 52
‘/\31‘!;8[ et g g

2(I' — §)
3rl gl

(—ea 4+ /T? = 59). (16)

I. = ie,‘/

o

Augist

The integral curves of this case 1 have been shown in
Iig. 5 for typical values a =0, § =1'/2, 8 <0. The exist-
ence ol two stable states, the exponential build up of
the small initial oscillation and all other characteristic
features of parametrons described in Sections 1T and V
will be explained by the behaviors of the integral curves
of this Case 1.

28
P CASE 3
Y o CASE 2
= GASE| 1 -3 151<ITE, «B <0
= 0 } A
\/%/ \\\
2.9 2
s +81<r \
<& \
-7

£ = +t, if B>0
€= -1, if p<o

Fig. 22—Classification of the three cases of
singuilar points in (&, §) plane.

Case 2

There are five singular points: One stable nodal or
spiral point at the origin /,=7,=0, and two unstable
saddle points at

I, = + ‘/7“1 + 5) (—ea — /T — §2)

I, =

-+l

€ 1/_&,, 5) — (—ex — /=3 8% (17)

and two stable nodal or spiral points at

L=t f/ S (e V)

7(1‘ — 6) I
L=+ / ~ (—am+ VTE= 8. (18)
Y 3lplT
The integral curves of this Case 2 are shown in Fig. 23
for tvpical values §=T1/2, a=7T"/4, and 8<0. In Iig.
23, S, S” Indicate the two unstable saddle points and
A, A" indicate the two stable spiral points. The presence
of thg stable ‘sﬂg"(ﬁk e point at the origin O indicates that
the oscillation is not self-starting. If a suitable initiating
voltage is applied to the circuit so as to place the point
representing  the initial oscillation either in the -+
region or in the — region of Fig. 23, stationary oscilla-
tion respectively represented by point A or A’ will be
produced. On the other hand, if the point representing
the initial oscillation were within the O-region, even a
voltage ol very large amplitude would not initiate sta-
tionary oscillation. As there are three stable states re-
spectively represented by O, A, 47 in this Case 2, param-
etron elements corresponding to this case are usually
called “tristable” or “ternary” parametrons, while
those corresponding to Case 1 are called “bistable” or
“binary” parametrons. In principle, a tristable param-
etron element may either represent a ternary digit by

S

=
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Fig. 23—Integral curves of a tristable parametron.

the choice among the three stable states or a binary
digit by the choice between the two states, namely
« . ‘. . o . . . 2
no oscillation (0)” and “in oscillation (4 and A4’).”

Cuse 3

.Thcrc is only one stable singular point at the ori-
gin. As the magnitude of the parameters o, I' and § are
inappropriate, stationary oscillation is not produced in
this case.

- Now, the Tunctions of the damping will be considered.,
If there were no damping in (14), i.c., =0, the permis-
sible types (¢f. [19],[20]) of singular points will be un-
stable saddle points and elliptic points, the stability of
the latter being neutral. Fig. 24 shows the inte;gral
curves for a case in which a=§=0, I'>0, 8<0. 0 indi-
cates a saddle point at the origin and A, 4’ indicate
two elliptic plints. (I'or a point P on each curve
AP-A'"P=constant is satisfied, and the curves ur(Z
known as Cassini's ovals.) The point in the (Z,, I.)
plane, representing both the phase and the amplitude of
lh(" oscillation, will oscillate indefinitely around the
points or point <L and/or 4’, and a generally stationary
state ol oscillation with a definite amplitude and phase
}\'1[1 never be reached. Further, if there were no damp-
ing, the oscillation in a parametron would never damp
out, even il the parametric excitation were interrupted
and it would be impossible to make use of the super-
regenerative amplification explained in Section 11.

. H.CI}L‘C, we come to the following conclusion—damp-
Lingis indispensable both for amplitude stabilization and
iterruption of parametric oscillation.

(')11. the other hand, if the damping is too large, the
butl(.lmg-up rate exp (mf (I'—=4)) of the sine component
I, given by (15), will become so small as to reduce the
speed of the superregencrative action. Therefore, there

K
/> Is
"
Fig. 24—Integral curves for a loss-free case,
AMPLITUDE OF -
OSCILLATION ,,———r -
THEORETICAL
—ACTUAL
TRISTABLE
BISTABLE | REGION REGION DETUNING
Fi 0 F2 F3 o
B <o

Tl 25— Ttiide : istic of
Fig. 25—Amplitude to detuning characteristic of a parametron,

should exist an optimum value of the magnitude of the
damping and experimental results show that the opti-
mum value lies in the range T'/4 <8 <I'/2.

Fig. 25 shows a typical example of the amplitude to
detuning characteristic of an actual parametron ele-
ment. In the figure, the abscissa represents the detuning
a ancl_the ordinate represents the amplitude ol oscilla-
tion of a parametron element. In practice, the detuning
a may be varied either by varying the tuning capaci-
ance Cin I'ig. 3(a), or the tuning inductance L in Fig.
3(b), or by varying the frequency or the de¢ bias of the
’e:\‘(‘iting current in the cases of both Figs. 3(a) and 3(b).
I'he region F1 to F2 in Fig. 25 corresponds to the
a.bove.mentioued case 1 and is called “bistable region”
since 1t represents a bistable parametron. The region
F2 to I3, corresponding to Case 2, is called “ristable
rc:gion,” since it represents a tristable parametron.
When « is varied continuously a hysteresis jump will
occur at the boundary 772 between the bistable and
tl:lstélble region, as indicated by the arrows in Fig. 25,
IT we assume the presence of nonlinearity only in the
dfetuning as in (11) and (14), the theoretical results in-
dicate that the tristable region should extend indefi-
nitely, asshown by the dotted linein Fig. 25 or by the two
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half-lines in Fig. 22. Actually, there exists an upper
limit 723 and this fact will be explained by introducing
nonlinearity also in the damping, for example by replac-
ing & in (11) and (14) by §+6/7° For bistable parame-
trons, however, the present analysis assuming the pres-
ence of nonlinearity only in the detuning is in good
agreement with the experimental facts and generally it
is considered satistactory.

In regard to the nonlinearity of the detuning 873, one
might think it were caused by gaturation of the mag-
netic cores. If this were the case, 8 should be positive
since the inductance would decrease and the detuning
would inerease with increasing amplitude. Experiments
made on various ferrite and lerroelectric materials,
however, show that 8 is always negative for these ma-
terials. On the other hand, it is observed that 8 is always
positive for parametrons using barrier capacitance of
semiconductor junctions.
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