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Abstract 

In this paper we study in what order a crawler should visit the URLs it has seen, in order to obtain more “important” 
pages first. Obtaining important pages rapidly can be very useful when a crawler cannot visit the entire Web in a reasonable 
amount of time. We define several importance metrics, ordering schemes, and performance evaluation measures for this 
problem. We also experimentally evaluate the ordering schemes on the Stanford University Web. Our results show that a 
crawler with a good ordering scheme can obtain important pages significantly faster than one without. 0 1998 Published by 
Elsevier Science B.V. All rights reserved. 
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1. Introduction 

A crawler is a program that retrieves Web pages, 
commonly for use by a search engine [5]. Roughly, 
a crawler starts off with the URL for an initial page 
PO. It retrieves PO, extracts any URLs in it, and adds 
them to a queue of URLs to be scanned. Then the 
crawler gets URLs from the queue (in some order), 
and repeats the process. 

Crawlers are widely used today. Crawlers for the 
major search engines (e.g., Altavista ‘, and Excite 3, 
attempt to visit most text Web pages, in order to build 
content indexes. At the other end of the spectrum, we 
have personal crawlers that scan for pages of interest 
to a particular user, in order to build a fast access 
cache (e.g. NetAttache “) 
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The design of a good crawler presents many 
challenges. Externally, the crawler must avoid over- 
loading Web sites or network links as it goes about 
its business [2]. Internally, the crawler must deal 
with huge volumes of data. Unless it has unlimited 
resources and time, it must carefully decide what 
URLs to scan and in what order. The crawler must 
also decide how frequently to revisit pages it has 
already seen, in order to keep its client informed of 
changes on the Web. 

In this paper we address one of these important 
challenges: How should a crawler select URLs to 
scan from its queue of known URLs? If a crawler 
intends to perform a single scan of the entire Web, 
then any URL order will suffice. That is, eventually 
every single known URL, will be visited, so the 
order is not critical. However, most crawlers will not 
be able to visit every possible page for two main 
reasons: 
l Their client may have limited storage capacity, 

and may be unable to index or analyze all pages. 
Currently the Web contains about 1STB and is 
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growing rapidly, so it is reasonable to expect that 
most clients will not want or will not be able to 
cope with all that data [ 11. 

l Crawling takes time. so at some point the crawler 
may need to start revisiting previously scanned 
pages, to check for changes. This means that 
it may never get to some pages. It is currently 
estimated that over 600GB of the Web changes 
every month [ 11. 
In either case, it is important for the crawler to 

visit “important” pages first, so that the fraction 
of the Web that is visited is more meaningful. In 
this paper we present several useful definitions of 
importance, and develop crawling priorities so that 
important pages have a higher probability of being 
visited first. We also present experimental results 
from crawling the Stanford University Web pages 
that show how effective the different crawling strate- 
gies are. (An extended version of this paper, with 
additional results, can be found at http://www-db.sta 
nford.edu/-cho/crawler-paper/complete-paper.html.) 

Of course, a crawler must also avoid overload- 
ing target sites’ important pages. In this paper we 
do not address this issue. That is, we assume that 
URLs selected for scanning may be delayed by a 
crawler component that monitors site loads, but we 
do not study here how this delay component works. 
Similarly, we do not consider in this paper rescan- 
ning pages. In practice one may of course wish to 
start rescanning important pages even before a crawl 
is completed. but this is beyond the scope of this 
paper. 

2. Importance metrics 

Not all pages are of equal interest to the crawler’s 
client. For instance. if the client is building a special- 
ized database on a particular topic, then pages that 
refer to that topic are more important, and should 
be visited as early as possible. Similarly, a search 
engine may use the number of Web URLs that point 
to a page, the so-called backlink coun?, to rank user 
query results. 

Given a Web page P, we can define the impor- 
tance of the page, I(P), in one of the following ways 
(these metrics can be combined, as will be discussed 
later): 

(1) Similarity to a Driving Query Q. A query Q 
drives the crawling process, and I(P) is defined 
to be the textual similarity between P and Q. 
Similarity has been well studied in the Infor- 
mation Retrieval (IR) community [6]. We use 
IS(P) to refer to the importance metric in this 
case. 
To compute similarities, we can view each doc- 
ument (P or Q) as an In-dimensional vector 
(wt. . . . . w,*). The term w; in this vector rep- 
resents the significance of the ith word in the 
vocabulary. One common way to compute the 
significance 1~1, is to multiply the number of 
times the ith word appears in the document by 
the inverse document frequency (id! of the ith 
word. The idf factor is one divided by the number 
of times the word appears in the entire “docu- 
ment collection”. The similarity between P and 
Q can then be defined as the inner product of the 
P and Q vectors. 
Note that if we use idf terms in our similar- 
ity computation, we need global information to 
compute the importance of a page. During the 
crawling process we have not seen the entire col- 
lection, so we have to estimate the idffactors. We 
use IS’(P) to refer to the estimated importance 
of page P, which is different from the actual im- 
portance IS(P). If idf factors are not used, then 
1st P) = 1st P). 

(2) BackZink Count. The value of I(P) is the number 
of links to P that appear over the entire Web. 
We use ZB( P) to refer to this importance metric. 
Intuitively, a page P that is linked to by many 
pages is more important than one that is seldom 
referenced. On the Web, fBf P) is useful for 
ranking query results, giving end-users pages 
that are more likely to be of general interest. 
Note that evaluating ZB(P) requires counting 
backlinks over the entire Web. A crawler may 
estimate this value with ZB’(P), the number of 
links to P that have been seen so far. 

(3) PageRank. The IB( P) metric treats all links 
equally. Thus, a link from the Yahoo home page 
counts the same as a link from some individual’s 
home page. However, since the Yahoo home 
page is more important (it has a much higher 
IB count), it would make sense to value that 
link more highly. The PageRank backlink metric, 
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II?(P), recursively defines the importance of a 
page to be the weighted sum of the backlinks 
to it. Such a metric has been found to be very 
useful in ranking results of user queries [4]. We 
use ZR’(P) for the estimated value of IR(P) 
when we have only a subset of pages avail- 
able. 
More formally, if a page has no outgoing link, 
we assume that it has outgoing links to every 
single Web page. Next, consider a page P that 
is pointed at by pages Tt, . . . . T,. Let ci be the 
number of links going out of page T;. Also, let 
d be a damping factor (whose intuition is given 
below). Then, the weighted backlink count of 
page P is given by 

[R(P) = (I-d)+d 

This leads to one equation per Web page, with an 
equal number of unknowns. The equations can 
be solved for the IR values. They can be solved 
iteratively, starting with all IR values equal to 1. 
At each step, the new ZR(P) value is computed 
from the old ZR(q) values (using the equation 
above), until the values converge. 
One intuitive model for PageRank is that we 
can think of a user “surfing” the Web, starting 
from any page, and randomly selecting from that 
page a link to follow. When the user reaches a 
page with no outlinks, he jumps to a random 
page. Also, when the user is on a page, there 
is some probability, d, that the next visited page 
will be completely random. The ZR( P) values we 
computed above give US the probability that our 
random surfer is at P at any given time. 

(4) Location Metric. The IL(P) importance of page 
P is a function of its location, not of its contents. 
If URL u leads to P, then IL(P) is a function of 
L(. For example, URLs ending with “.com” may 
be deemed more useful than URLs with other 
endings, or URL containing the string “home” 
may be more of interest than other URLs. An- 
other location metric that is sometimes used con- 
siders URLs with fewer slashes more useful than 
those with more slashes. All these examples are 
local metrics since they can be evaluated simply 
by looking at the URL II. 

3. Problem definition 

Our goal is to design a crawler that if possible 
visits high I(P) pages before lower ranked ones, for 
some definition of I(P). Of course, the crawler will 
only have available I’(P) values, so based on these 
it will have to guess what are the high Z(P) pages to 
fetch next. 

Our general goal can be stated more precisely in 
three ways, depending on how we expect the crawler 
to operate. (In our evaluations of Sections 6 and 7 
we use the second model in most cases, but we do 
compare it against the first model in one experiment. 
Nevertheless, we believe it is useful to discuss all 
three models to understand the options.) 

Crawl 8z Stop. Under this model, the crawler C 
starts at its initial page PO and stops after visiting 
K pages. At this point a perfect crawler would have 
visited pages RI, . . . . RK, where RI is the page with 
the highest importance value, Rz is the next highest. 
and so on. We call pages RI through RK the hot 
pages. The K pages visited by our real crawler will 
contain only M pages with rank higher than or equal 
to Z(RK). We define the performance of the crawler 
C to be PCs(C) = (M. 100)/K. The performance ot 
the ideal crawler is of course 100%. A crawler that 
somehow manages to visit pages entirely at random 
would have a performance of (K . lOO)/ T, where T 
is the total number of pages in the Web. 

Crawl & Stop with Threshold. We again as- 
sume that the crawler visits K pages. However, we 
are now given an importance target G, and any page 
with I(P) 2 G is considered hot. Let us assume 
that the total number of hot pages is H. The per- 
formance of the crawler. PST(C), is the percentage 
of the H hot pages that have been visited when the 
crawler stops. If K < H, then an ideal crawler will 
have performance (K . 100)/H. If K 2 H, then 
the ideal crawler has 100% performance. A purely 
random crawler that revisits pages is expected to 
visit (H/T) . K hot pages when it stops. Thus, its 
performance is (K . I OO)/ T. 

Limited Buffer Crawl. In this model we con 
sider the impact of limited storage on the crawling 
process. We assume that the crawler can only keep 
B pages in its buffer. Thus, after the buffer fills up, 
the crawler must decide what pages to flush to make 
room for new pages. An ideal crawler could simply 



164 J. Cho ef al. /Computer Networks and ISDN Systetns 30 (1998) 161-172 

drop the pages with lowest Z(P) value, but a real 
crawler must guess which of the pages in its buffer 
will eventually have low I (P) values. We allow the 
crawler to visit a total of T pages, equal to the total 
number of Web pages. At the end of this process, the 
percentage of the B buffer pages that are hot gives 
us the performance P~c(c). The performances of an 
ideal and a random crawler are analogous to those in 
the previous cases. 

Note that to evaluate a crawler under any of these 
metrics, we need to compute the actual I(P) values 
of pages, and this involves crawling the “entire” 
Web. To keep our experiments (Sections 6 and 7) 
manageable, we define the entire Web to be the 
Stanford University pages, and we only evaluate 
performance in this context. In Section 6 we study 
the implications of this assumption by also analyzing 
a smaller Web within the Stanford domain, and 
seeing how Web size impacts performance. 

4. Ordering metrics 

A crawler keeps a queue of URLs it has seen 
during the crawl, and must select from this queue 
the next URL to visit. The ordering metric 0 is 
used by the crawler for this selection, i.e., it selects 
the URL u such that O(u) has the highest value 
among all URLs in the queue. The 0 metric can 
only use information seen (and remembered if space 
is limited) by the crawler. 

In our experiments, we explore the types of or- 
dering metrics that are best suited for either ZB(P) 
or IR( P). For similarity ZS( P) metrics, it is hard to 
devise an ordering metric since we have not seen P 
yet. As we will see, for similarity, we may be able to 
use the text that anchors the URL u as a predictor of 
the text that P might contain. 

5. Experimental setup 

To avoid network congestion and heavy loads on 
the servers, we did our experimental evaluation in 
two steps. In the first step, we physically crawled 
all Stanford Web pages and built a local repository 
of the pages. After we built the repository, we ran 
our virtuul crawlers on it to evaluate the different 

crawling schemes. Note that even though we had 
the complete image of the Stanford domain in the 
repository, our virtual crawler based its crawling 
decisions only on the pages it saw for itself. In 
this section we briefly discuss how the WebBase 
crawler operates, and how the particular database 
was obtained for our experiments. 

5.1. WebBase crawler 

The local repository was built with the Stanford 
WebBase [3], a system designed to create and main- 
tain large Web repositories. It runs several processes, 
which receive a list of URLS to be downloaded and 
return the full content of the HTML. It is capa- 
ble of large data repositories (currently 150GB of 
HTML), and high indexing speeds (about 50 pages 
per second), To prevent slowing down servers with 
WebBase crawler, we use load balancing in our sys- 
tem. 

The actual data the system is allowed to get is re- 
duced for two reasons. The first is that many heuris- 
tics are needed to avoid automatically generated. and 
potentially infinite, sets of pages. For example, any 
URLs containing “/cgi-bin/” are not crawled. Sev- 
eral other heuristics based on the Locution Metric 
described above are used to weed out URLs which 
look undesirable. 

5.2. Description of dataset 

To download an image of the Stanford Web pages, 
we started WebBase with an initial list of “stan- 
ford.edu” URLs. These 89,119 URLs were obtained 
from an earlier crawl. During the crawl, non-Stan- 
ford URLs were ignored. At the end of the process, 
we had 784,592 known URLs to Stanford pages. 
Even though the crawl was stopped before it was 
complete, most of the uncrawled URLs were on only 
a few servers so we believe the dataset we used to be 
a reasonable representation of the stanford.edu Web. 
This dataset consisted of about 225,000 crawled 
valid HTML pages. 

We should stress that the virtual crawlers that will 
be discussed next do not use WebBase directly. As 
stated earlier, they use the dataset collected by the 
WebBase crawler, and do their own crawling on it. 
The virtual crawlers are simpler than the Web Base 



J. Cho et al. /Computer Networks und ISDN Systrms 30 (1998) 161- I72 165 

Crawling algorithm (backward link based) 
enqueue(url-queue, starting-url); 
while (not emptyCurl_queue)) 1 

url = dequeueturl-queue) ; 
page = crawlqagetur1); 
enqueue(crawled_pages, (url, page) ); 
url-list = extract-urls(page); 
for each u in url-list 

enqueue(links, (url, u) 1 ; 
if [u not in url-queue1 and 

[ (u, -) not in crawled_pagesl 
enqueue(url-queue, u) ; 

reorder-queue(url-queue); 

Function description 
enqueuecqueue, element): append element at the end of queue 
dequeue(queue): remove the element at the beginning of queue and return it 
reorder-queue(queue) : reorder queue using information in links: refer to Fig. 2 

Fig. I. Basic crawling algorithm. 

crawler. For instance, they do not need to distribute 
the load to visited sites. This kind of simplification is 
fine, since the virtual crawlers are only used to evalu- 
ate ordering schemes, and not to do real crawling. 

6. BackLink-based crawlers 

In this section we study the effectiveness of vari- 
ous ordering metrics, for the scenario where impor- 
tance is measured through backlinks (i.e., either the 
ZB( P) or IR( P) metrics). We start by describing the 
structure of the virtual crawler, and then consider the 
different ordering metrics. Unless otherwise noted, 
we use the Stanford dataset described in Section 5, 
and all crawls are started from the Stanford home- 
page5. For the PageRank metric we use a damping 
factor d of 0.9 (for both M(P) and D?‘(P)), for all 
of our experiments (including those of the following 
section). 

Figure I shows our basic virtual crawler. The 
crawler manages three main data structures. Queue 
url-queue contains the URLs that have been seen 

5 http://www-db.stanford.edu 

and need to be visited. Once a page is visited, it is 
stored (with its URL ) in crawledsages. Finally, 
1 inks holds pairs of the form (u 1, KZ), where URL 
u? was seen in the visited page with URL ui. The 
crawler’s ordering metric is implemented by the 
function, reorder-queue ( ), shown in Fig. 2. We 
used three ordering metrics: (1) breadth-first (2) 
backlink count, B’(P), and (3) PageRank, H?(P). 
The breadth-first metric places URLs in the queue 
in the order in which they are discovered, and this 
makes the crawler visit pages in breadth-first order. 

We start by comparing three different ordering 
metrics, breadth-first, backlink-count, and PageRank 
(corresponding to the three functions of Fig. 2) in 
Graph 1. In this scenario, the importance metric 
is the number of backlinks (1 (P) = B(P)), and 
we consider a Crawl & Stop with Threshold model 
(Section 3) with G = 100. (Recall that a page with 
G or more backlinks is considered important, i.e., 
hot.) Under this definition, 1,400 (0.8%) pages out 
of 179,000 valid pages were considered hot. (Out 
of 225,000 page dataset mentioned in Section 5, 
46,000 pages were unreachable from the Stanford 
homepage. So the total number of pages for the 
experiment is 179,000 pages.) 
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(1) breadth first 
do nothing. (null operation) 

(2) backlink count, IB’( P) 
for each u in url-queue ( 

backlink-count[u] = number of terms (-,u) in links; 
1 
sort url-queue by backlink-count[u]; 

(3) PageRank, IR’( P) 
solve the following set of equations { 

for each u in url-queue: 
pagerank[uI = (l-0.9) + 0.9. sum,(pagerank[v_]/c,) 

where (Vi, u) in links and 
Ci = number of links in the page vl; 

( SUmi (Pi) = P1 + P: + . . . + ?A, ) 

I 

sort url-queue by pagerank[ul; 

Fig. 2. Description of reorder-queue ( ) of each ordering metric 

In Graph 1, the horizontal axis is the percentage 
of the dataset that has been crawled over time. At 
the 100% mark, all 179,000 pages have been visited. 
For each visited fraction we report on the vertical 
axis PST, the percentage of the total hot pages that 
has been visited so far. Graph 1 also shows the 
performance of a random crawler. As discussed in 
Section 3, the performance of a random crawler is a 
straight diagonal line. An ideal crawler (not shown) 
would reach 100% performance when H pages have 
been crawled. 

The results are rather counter-intuitive. That is, 
intuitively one would expect that a crawler using an 
ordering metric B’(P) that matches the importance 
metric B(P) would perform the best. However, this 
is not the case, and the K’(P) metric outperforms 
the B’(P) one. To understand why, we manually 
traced the crawler’s operation. We noticed that often 
the ZB’(P) crawler behaved like a depth-first one, 
frequently visiting pages in one “cluster” before 
moving on to the next. On the other hand, the 
D?‘(P) crawler combined breadth and depth in a 
better way. To illustrate consider the Web fragment 
of Fig. 3. 

With /Z?‘(P) ordering, the crawler visits a page 
like the one labeled 1 and quickly finds a cluster 

100% 

80% 

60% 

40% 

20% 

0% 

Qrctarng O(u) is: 

-ej- pagerank 

-+- t3ackknk 

n breadth 

-..-tandem 

0% 20% 40% 60% 80% 100% 

Graph 1. Percentage of Stanford Web crawled vs. PST. I(P) = 
B(P); G = 100. 

A of pages that point to each other. The A pages 
temporarily have more backlinks than page 2, so the 
visit of page 2 is delayed. However, since the whole 
Web has not been crawled, it may be that page 2 
has more backlinks than the A pages. On the other 
hand, with ZR’(P) ordering, page 2 may have higher 
rank (because its link comes from a high ranking 
page) than the pages in cluster A (that only have 
pointers from low ranking pages within the cluster). 
Therefore, page 2 is reached faster. 
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Fip. 3. Crawling order. 

In summary, during the early stages of a crawl, the 
backlink information is biased by the starting point. 
If the crawler bases its decisions on this skewed in- 
formation, it tries getting locally hot pages instead of 
globally hot pages, and this bias gets worse as the 
crawl proceeds. On the other hand, the ZR’( P) PageR- 
ank crawler is not as biased towards locally hot pages, 
so it gives better results regardless of the starting point. 

Graph 2 shows the performance PCS of the crawl- 
ers under the Crawl & Stop model. The setting is 
the same as for Graph 1. Keep in mind that an ideal 
crawler would now have 100% performance at all 
times. The results are analogous to those of the Crawl 
& Stop with Threshold model. The key difference is 
that the Pcs results are not dependent on a G value. 
Thus, the metric PCS may be appropriate if we do 
not have a predefined notion of what constitutes a 
hot page. 

Returning to the Crawl & Stop with Threshold 
model, Graph 3 shows the results of using the ZR( P) 
PageRank importance metric. The results are similar 
to those of Graph 1, except that the D?‘(P) is even 
more effective now. 

As discussed in Section 1, in some cases the 
crawler’s client may only be interested in small 
portions of the Web. For instance, the client may be 
interested in a single site (to create a mirror, say). In 
our next experiment we evaluate the ordering metrics 
in such a scenario. The results will also let us study 
the impact of the differences in scale. 

.--.+ backlink 

-.--random 

0% j,’ 
0% 20% 40% 60% 80% 100% 

Graph ?. Stanford Web crawled vs. PC-$. I ( P ) = /H( P) 

100% 

80% 

60% 

40% 

20% 

-+-pwemnk 

--ri-- backllnk 

0% 

0% 20% 40% 60% 80% 100% 

Graph 3. Stanford Web crawled vs. PST. I(P) = IR( P); G = 13. 

For this experiment we only crawled the pages 
of the Stanford Database Group6. This subset of 
the Stanford pages consists of about 1,100 valid 
HTML pages. In general, crawling performance is 
not as good on the smaller subset. Graph 4 shows 
one representative result. In this case, we use the 
Crawl & Stop with Threshold model with G = 5. 
The importance metric is B(P). The graph shows 
that performance can be even worse than that of a 
random crawler at times, for all ordering metrics. 

The reason for this poor performance is that 
ZB(P) is not a good importance metric for a small 
domain. To see this, Graph 5 shows the histogram 
for the number of backlinks, in our sample domain. 
The vertical axis shows the number of pages for each 
backlink count. From this histogram we can see that 

’ http://www-db.stanford.edu 
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60% 

0% 20% 40% 60% 80% 100% 

Graph 4. DB Web crawled vs. P,~T, I(P) = IB(P); G = 5. 
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Graph 5. Histogram of backlink counts (within DB group). 

most pages have fewer than 10 backlinks. In this 
range, the rank of each page varies greatly according 
to the style used by the creator of the Web pages. For 
instance, if the creator generates many cross links 
between his pages, then his pages have a high D?(P) 
rank, otherwise they do not. If the high rank pages do 
not have many links from outside the cluster created 
by this person, it will be hard to find them. In any 
case, the rank is not a good measure of the global 
importance of the pages. 

In Graph 4 we can see the impact of “locally 
dense” clusters. The performance of the backlink 
H?(P) crawler is initially quite flat. This is because 
it initially does a depth-first crawl for the first cluster 
it found. After visiting about 20% of the pages, 
the crawler suddenly discovers a large cluster, and 
this accounts for the jump in the graph there. On 
the other hand, the PageRank M’(P) crawler found 

this large cluster earlier, so its performance is much 
better initially. 

7. Similarity-based crawlers 

In the experiments of Section 6, we compared 
three different backlink-based crawlers. In this sec- 
tion, we present the results of our experiments on 
similarity-based crawlers. The similarity-based im- 
portance metric, IS(P), measures the relevance of 
each page to a topic or a query that the user has in 
mind. There are clearly many possible IS(P) metrics 
to consider, so our experiments here are not intended 
to be comprehensive. Instead, our goal is to briefly 
explore the potentid of various ordering schemes 
in some sample scenarios. In particular, for our first 
three experiments we consider the following IS(P) 
definition: A page is considered hot if it contains the 
word computer in its title or if it has more th an 10 
occurrences of computer in its body. 

For similarity-based crawling, the crawler of Fig. 
1 is not appropriate, since it does not take the content 
of the page into account. To give priority to the pages 
mentioning computer, we modified our crawler as 
shown in Fig. 4. This crawler keeps two queues 
of URLs to visit: hot-queue stores the URLs that 
have been seen in an anchor mentioning the word 
computer, or that have the word computer within 
them. The second queue, url-queue, keeps the rest 
of the URLs. The crawler first takes URL to visit 
from hot-queue. 

Graph 6 shows the PST results for this crawler, for 
the IS(P) importance metric defined above. The re- 
sults show that the backlink-count and the PageRank 
crawler behaved no better than a random crawler. 
Only the breadth-first crawler gave a reasonable re- 
sult. This is a rather unexpected result. That is, 
all these crawlers differ only in their ordering met- 
rics, which are neutral to the page content. All 
crawlers visited computer-related URLs immediately 
after their discovery. Therefore, all the schemes are 
theoretically equivalent and should give comparable 
results. 

The observed unexpected performance difference 
arises mainly from the breadth-first crawler’s FIFO 
nature. The breadth-first crawler fetches the pages 
in the order they are found. If a computer-related 
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Crawling algorithm (similarity-based) 
enqueue(url-queue, starting-url); 
while (not empty(hot-queue) and not empty(url-queue) 

url = dequeue2(hot_queue, url-queue) ; 
page = crawlgage(ur1); 
enqueue(crawledgages, (url, page)); 
url-list = extract-urls(page); 
for each u in url-list 

enqueue(links, (url, u)); 
if [u not in url-queue] and 

[u not in hot-queue] and 
[ (u, -) not in crawled_pagesl 
if [u contains computer in anchor or url 

enqueue(hot-queue, u); 
else 

enqueue(url-queue, u); 
reorder-queue(url-queue); 
reorder-queue(hot-queue); 

Function description 
dequeue2(queuel, queue2) : 

if (not empty(queue1)) dequeue(queue1); 
else dequeue(queue2); 

80% 

60% 

Fig. 4. Similarity-based crawling algorithm 
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Graph 6. Basic similarity-based crawler. Z(P) = IS(P): topic is 
computer. 

page is crawled earlier, then the crawler discovers 
and visits its child pages earlier as well. These pages 
have a tendency to also be computer related, so 
performance is better. Thus, the observed property is 
that if a page has a high IS(P) value, then its children 

are likely to have a higher IS(P) value too. Another 
reason for this difference is that more than a third 
of the hot pages have only one backlink to them. If 
the anchors of these pages do not contain the word 
computer and if they are far from hot pages, their 
crawling is delayed. Of course, it is questionable if 
these pages are actually important, since nobody has 
pointed to them. 

To take advantage of the first property, we mod- 
ified our crawler as shown in Fig. 5. This crawler 
places in the hot-queue URLs that have the target 
keyword in their anchor or within, or that are within 
3 links from a hot page. 

We also modified importance metric so that it 
takes into account similarity and backlink informa- 
tion. Under our new definition, a page is hot if it is 
on the computer topic (its title contains computer or 
its body has 10 or more occurrences of computer) 
and it has five or more backlinks. Graph 7 shows the 
PST results for this combined IS(P) and B(P) im- 
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Crawling algorithm (modified similarity-based) 
enqueue(url-queue, starting-url); 
while (not empty(hot-queue) and not empty(url-queue)) { 

url = dequeue2(hot_queue, url-queue); 
page = crawlgage(ur1); 
if [page contains 10 or more computer in body 

or one computer in title] 
hot[url] = TRUE; 

enqueue(crawled_pages, (url, page) ); 
url-list = extract-urls(page) ; 
for each u in url-list 

enqueue(links, Curl, u) 1; 
if [u not in url-queue] and 

[u not in hot-queue] and 
[ (u, - ) not in crawledgages] 
if [u contains computer in anchor or url] 

enqueue(hot-queue, u); 
else if [distance-from-hotpage < 31 

enqueue(hot-queue, u); 
else 

enqueue(url-queue, u) ; 
reorder-queue(url-queue); 
reorder-queue(hot-queue); 

I 

Function description 
distance-from-hotpage : 

return 0 if [hot[u] = TRUE]; 
return 1 if [hot[v] = TRUE] and [(v, u) in links] 

for some v; 
return 2 if [hot[v] = TRUEland [(v, w) in links] and [(w, u) in links] 

for some v, w; 

Fig. 5. Modified similarity-based crawling algorithm. 

portance metric. All crawlers showed significant im- 
provement now. Especially the results of the crawlers 
that order based on PageRank ZR’(P) and breadth- 
first order are very good. For instance, after having 
seen only 40% of the pages, these crawlers have 
obtained over 80% of the hot pages. After visiting 
60% of the pages, most of the hot pages have been 
gathered. 

of backlinks are important, it is effective to use a 
combined ordering metric that considers ZR’( P), the 
content of anchors. and the distance to pages known 
to be hot. 

8. Conclusion 

We repeated a similar experiment with a different In this paper we addressed the problem of order- 
query topic, admission. The performance details var- ing URLs for crawling. We listed different kinds of 
ied from the previous case, but the overall conclusion importance metrics, and built three models to eval- 
was the same: When both similarity and the number uate crawlers. We experimentally evaluated several 
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Graph 7. Modified similarity-based crawler. I(P) = combined 
IB(P ). ISC P): topic is compurrr. 

combinations of importance and ordering metrics, 
using the Stanford Web pages. 

In general our results show that PageRank, 
ZR’( P). is an excellent ordering metric when either 
pages with many backlinks or with high PageRank 
are sought. In addition, if the similarity to a driving 
query is important, then it is also useful to visit 
earlier URLs that: 
l Have anchor text that is similar to the driving 

query; 
l Have some of the query terms within the URL 

itself: or 
l Have a short link distance to a page that is known 

to be hot. 
With a good ordering strategy, it seems to be 

possible to build crawlers that can rather quickly 
obtain a significant portion of the hot pages. This 
can be extremely useful when we are trying to crawl 
large portions of the Web, when our resources are 
limited. or when we need to revisit pages often to 
detect changes. 

One limitation of our work is that it only used 
the Stanford Web pages. We believe that the Stan- 
ford pages are a representative sample: For example, 
they are managed by many different people, who 
structure their pages in a variety of ways. They in- 
clude many individual homepages, and also many 
clusters that are carefully managed by organizations. 
Nevertheless, in the future we plan to investigate 
non-Stanford Web pages to analyze structural differ- 
ences and their implication for crawling. 
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