
Computer Networks and ISDN Systems 30 (1998) 16 I- 172

Efficient crawling through URL ordering

Junghoo Cho *,I, Hector Garcia-Molina ’ , Lawrence Page ’
Department of Computer Science, Stanford University, CA 94305. USA

Abstract

In this paper we study in what order a crawler should visit the URLs it has seen, in order to obtain more “important”
pages first. Obtaining important pages rapidly can be very useful when a crawler cannot visit the entire Web in a reasonable
amount of time. We define several importance metrics, ordering schemes, and performance evaluation measures for this
problem. We also experimentally evaluate the ordering schemes on the Stanford University Web. Our results show that a
crawler with a good ordering scheme can obtain important pages significantly faster than one without. 0 1998 Published by
Elsevier Science B.V. All rights reserved.

Keywords: Crawling; URL ordering

1. Introduction

A crawler is a program that retrieves Web pages,
commonly for use by a search engine [5]. Roughly,
a crawler starts off with the URL for an initial page
PO. It retrieves PO, extracts any URLs in it, and adds
them to a queue of URLs to be scanned. Then the
crawler gets URLs from the queue (in some order),
and repeats the process.

Crawlers are widely used today. Crawlers for the
major search engines (e.g., Altavista ‘, and Excite 3,
attempt to visit most text Web pages, in order to build
content indexes. At the other end of the spectrum, we
have personal crawlers that scan for pages of interest
to a particular user, in order to build a fast access
cache (e.g. NetAttache “)

* Corresponding author.
’ E-mail: (cho,hector,page] @cs.stanford.edu
* http:Naltavista.digital.com/
-’ http://www.excite.com/
’ http:Nwww.tympani.com/products/NAPro/NAPro/NAPro.html

The design of a good crawler presents many
challenges. Externally, the crawler must avoid over-
loading Web sites or network links as it goes about
its business [2]. Internally, the crawler must deal
with huge volumes of data. Unless it has unlimited
resources and time, it must carefully decide what
URLs to scan and in what order. The crawler must
also decide how frequently to revisit pages it has
already seen, in order to keep its client informed of
changes on the Web.

In this paper we address one of these important
challenges: How should a crawler select URLs to
scan from its queue of known URLs? If a crawler
intends to perform a single scan of the entire Web,
then any URL order will suffice. That is, eventually
every single known URL, will be visited, so the
order is not critical. However, most crawlers will not
be able to visit every possible page for two main
reasons:
l Their client may have limited storage capacity,

and may be unable to index or analyze all pages.
Currently the Web contains about 1STB and is

0169-7552/98/$19.00 0 1998 Published by Elsevier Science B.V. All rights reserved
PII SO169-7552(98)00108-l

162 J. Cho rt al. /Computer Networks and ISDN Systems 30 (199X) 16/b172

growing rapidly, so it is reasonable to expect that
most clients will not want or will not be able to
cope with all that data [11.

l Crawling takes time. so at some point the crawler
may need to start revisiting previously scanned
pages, to check for changes. This means that
it may never get to some pages. It is currently
estimated that over 600GB of the Web changes
every month [11.
In either case, it is important for the crawler to

visit “important” pages first, so that the fraction
of the Web that is visited is more meaningful. In
this paper we present several useful definitions of
importance, and develop crawling priorities so that
important pages have a higher probability of being
visited first. We also present experimental results
from crawling the Stanford University Web pages
that show how effective the different crawling strate-
gies are. (An extended version of this paper, with
additional results, can be found at http://www-db.sta
nford.edu/-cho/crawler-paper/complete-paper.html.)

Of course, a crawler must also avoid overload-
ing target sites’ important pages. In this paper we
do not address this issue. That is, we assume that
URLs selected for scanning may be delayed by a
crawler component that monitors site loads, but we
do not study here how this delay component works.
Similarly, we do not consider in this paper rescan-
ning pages. In practice one may of course wish to
start rescanning important pages even before a crawl
is completed. but this is beyond the scope of this
paper.

2. Importance metrics

Not all pages are of equal interest to the crawler’s
client. For instance. if the client is building a special-
ized database on a particular topic, then pages that
refer to that topic are more important, and should
be visited as early as possible. Similarly, a search
engine may use the number of Web URLs that point
to a page, the so-called backlink coun?, to rank user
query results.

Given a Web page P, we can define the impor-
tance of the page, I(P), in one of the following ways
(these metrics can be combined, as will be discussed
later):

(1) Similarity to a Driving Query Q. A query Q
drives the crawling process, and I(P) is defined
to be the textual similarity between P and Q.
Similarity has been well studied in the Infor-
mation Retrieval (IR) community [6]. We use
IS(P) to refer to the importance metric in this
case.
To compute similarities, we can view each doc-
ument (P or Q) as an In-dimensional vector
(wt. w,*). The term w; in this vector rep-
resents the significance of the ith word in the
vocabulary. One common way to compute the
significance 1~1, is to multiply the number of
times the ith word appears in the document by
the inverse document frequency (id! of the ith
word. The idf factor is one divided by the number
of times the word appears in the entire “docu-
ment collection”. The similarity between P and
Q can then be defined as the inner product of the
P and Q vectors.
Note that if we use idf terms in our similar-
ity computation, we need global information to
compute the importance of a page. During the
crawling process we have not seen the entire col-
lection, so we have to estimate the idffactors. We
use IS’(P) to refer to the estimated importance
of page P, which is different from the actual im-
portance IS(P). If idf factors are not used, then
1st P) = 1st P).

(2) BackZink Count. The value of I(P) is the number
of links to P that appear over the entire Web.
We use ZB(P) to refer to this importance metric.
Intuitively, a page P that is linked to by many
pages is more important than one that is seldom
referenced. On the Web, fBf P) is useful for
ranking query results, giving end-users pages
that are more likely to be of general interest.
Note that evaluating ZB(P) requires counting
backlinks over the entire Web. A crawler may
estimate this value with ZB’(P), the number of
links to P that have been seen so far.

(3) PageRank. The IB(P) metric treats all links
equally. Thus, a link from the Yahoo home page
counts the same as a link from some individual’s
home page. However, since the Yahoo home
page is more important (it has a much higher
IB count), it would make sense to value that
link more highly. The PageRank backlink metric,

J. Cho rt ul./Cotnputer Networks and ISDN Systems 30 (1998) lhl-172

II?(P), recursively defines the importance of a
page to be the weighted sum of the backlinks
to it. Such a metric has been found to be very
useful in ranking results of user queries [4]. We
use ZR’(P) for the estimated value of IR(P)
when we have only a subset of pages avail-
able.
More formally, if a page has no outgoing link,
we assume that it has outgoing links to every
single Web page. Next, consider a page P that
is pointed at by pages Tt, T,. Let ci be the
number of links going out of page T;. Also, let
d be a damping factor (whose intuition is given
below). Then, the weighted backlink count of
page P is given by

[R(P) = (I-d)+d

This leads to one equation per Web page, with an
equal number of unknowns. The equations can
be solved for the IR values. They can be solved
iteratively, starting with all IR values equal to 1.
At each step, the new ZR(P) value is computed
from the old ZR(q) values (using the equation
above), until the values converge.
One intuitive model for PageRank is that we
can think of a user “surfing” the Web, starting
from any page, and randomly selecting from that
page a link to follow. When the user reaches a
page with no outlinks, he jumps to a random
page. Also, when the user is on a page, there
is some probability, d, that the next visited page
will be completely random. The ZR(P) values we
computed above give US the probability that our
random surfer is at P at any given time.

(4) Location Metric. The IL(P) importance of page
P is a function of its location, not of its contents.
If URL u leads to P, then IL(P) is a function of
L(. For example, URLs ending with “.com” may
be deemed more useful than URLs with other
endings, or URL containing the string “home”
may be more of interest than other URLs. An-
other location metric that is sometimes used con-
siders URLs with fewer slashes more useful than
those with more slashes. All these examples are
local metrics since they can be evaluated simply
by looking at the URL II.

3. Problem definition

Our goal is to design a crawler that if possible
visits high I(P) pages before lower ranked ones, for
some definition of I(P). Of course, the crawler will
only have available I’(P) values, so based on these
it will have to guess what are the high Z(P) pages to
fetch next.

Our general goal can be stated more precisely in
three ways, depending on how we expect the crawler
to operate. (In our evaluations of Sections 6 and 7
we use the second model in most cases, but we do
compare it against the first model in one experiment.
Nevertheless, we believe it is useful to discuss all
three models to understand the options.)

Crawl 8z Stop. Under this model, the crawler C
starts at its initial page PO and stops after visiting
K pages. At this point a perfect crawler would have
visited pages RI, RK, where RI is the page with
the highest importance value, Rz is the next highest.
and so on. We call pages RI through RK the hot
pages. The K pages visited by our real crawler will
contain only M pages with rank higher than or equal
to Z(RK). We define the performance of the crawler
C to be PCs(C) = (M. 100)/K. The performance ot
the ideal crawler is of course 100%. A crawler that
somehow manages to visit pages entirely at random
would have a performance of (K . lOO)/ T, where T
is the total number of pages in the Web.

Crawl & Stop with Threshold. We again as-
sume that the crawler visits K pages. However, we
are now given an importance target G, and any page
with I(P) 2 G is considered hot. Let us assume
that the total number of hot pages is H. The per-
formance of the crawler. PST(C), is the percentage
of the H hot pages that have been visited when the
crawler stops. If K < H, then an ideal crawler will
have performance (K . 100)/H. If K 2 H, then
the ideal crawler has 100% performance. A purely
random crawler that revisits pages is expected to
visit (H/T) . K hot pages when it stops. Thus, its
performance is (K . I OO)/ T.

Limited Buffer Crawl. In this model we con
sider the impact of limited storage on the crawling
process. We assume that the crawler can only keep
B pages in its buffer. Thus, after the buffer fills up,
the crawler must decide what pages to flush to make
room for new pages. An ideal crawler could simply

164 J. Cho ef al. /Computer Networks and ISDN Systetns 30 (1998) 161-172

drop the pages with lowest Z(P) value, but a real
crawler must guess which of the pages in its buffer
will eventually have low I (P) values. We allow the
crawler to visit a total of T pages, equal to the total
number of Web pages. At the end of this process, the
percentage of the B buffer pages that are hot gives
us the performance P~c(c). The performances of an
ideal and a random crawler are analogous to those in
the previous cases.

Note that to evaluate a crawler under any of these
metrics, we need to compute the actual I(P) values
of pages, and this involves crawling the “entire”
Web. To keep our experiments (Sections 6 and 7)
manageable, we define the entire Web to be the
Stanford University pages, and we only evaluate
performance in this context. In Section 6 we study
the implications of this assumption by also analyzing
a smaller Web within the Stanford domain, and
seeing how Web size impacts performance.

4. Ordering metrics

A crawler keeps a queue of URLs it has seen
during the crawl, and must select from this queue
the next URL to visit. The ordering metric 0 is
used by the crawler for this selection, i.e., it selects
the URL u such that O(u) has the highest value
among all URLs in the queue. The 0 metric can
only use information seen (and remembered if space
is limited) by the crawler.

In our experiments, we explore the types of or-
dering metrics that are best suited for either ZB(P)
or IR(P). For similarity ZS(P) metrics, it is hard to
devise an ordering metric since we have not seen P
yet. As we will see, for similarity, we may be able to
use the text that anchors the URL u as a predictor of
the text that P might contain.

5. Experimental setup

To avoid network congestion and heavy loads on
the servers, we did our experimental evaluation in
two steps. In the first step, we physically crawled
all Stanford Web pages and built a local repository
of the pages. After we built the repository, we ran
our virtuul crawlers on it to evaluate the different

crawling schemes. Note that even though we had
the complete image of the Stanford domain in the
repository, our virtual crawler based its crawling
decisions only on the pages it saw for itself. In
this section we briefly discuss how the WebBase
crawler operates, and how the particular database
was obtained for our experiments.

5.1. WebBase crawler

The local repository was built with the Stanford
WebBase [3], a system designed to create and main-
tain large Web repositories. It runs several processes,
which receive a list of URLS to be downloaded and
return the full content of the HTML. It is capa-
ble of large data repositories (currently 150GB of
HTML), and high indexing speeds (about 50 pages
per second), To prevent slowing down servers with
WebBase crawler, we use load balancing in our sys-
tem.

The actual data the system is allowed to get is re-
duced for two reasons. The first is that many heuris-
tics are needed to avoid automatically generated. and
potentially infinite, sets of pages. For example, any
URLs containing “/cgi-bin/” are not crawled. Sev-
eral other heuristics based on the Locution Metric
described above are used to weed out URLs which
look undesirable.

5.2. Description of dataset

To download an image of the Stanford Web pages,
we started WebBase with an initial list of “stan-
ford.edu” URLs. These 89,119 URLs were obtained
from an earlier crawl. During the crawl, non-Stan-
ford URLs were ignored. At the end of the process,
we had 784,592 known URLs to Stanford pages.
Even though the crawl was stopped before it was
complete, most of the uncrawled URLs were on only
a few servers so we believe the dataset we used to be
a reasonable representation of the stanford.edu Web.
This dataset consisted of about 225,000 crawled
valid HTML pages.

We should stress that the virtual crawlers that will
be discussed next do not use WebBase directly. As
stated earlier, they use the dataset collected by the
WebBase crawler, and do their own crawling on it.
The virtual crawlers are simpler than the Web Base

J. Cho et al. /Computer Networks und ISDN Systrms 30 (1998) 161- I72 165

Crawling algorithm (backward link based)
enqueue(url-queue, starting-url);
while (not emptyCurl_queue)) 1

url = dequeueturl-queue) ;
page = crawlqagetur1);
enqueue(crawled_pages, (url, page));
url-list = extract-urls(page);
for each u in url-list

enqueue(links, (url, u) 1 ;
if [u not in url-queue1 and

[(u, -) not in crawled_pagesl
enqueue(url-queue, u) ;

reorder-queue(url-queue);

Function description
enqueuecqueue, element): append element at the end of queue
dequeue(queue): remove the element at the beginning of queue and return it
reorder-queue(queue) : reorder queue using information in links: refer to Fig. 2

Fig. I. Basic crawling algorithm.

crawler. For instance, they do not need to distribute
the load to visited sites. This kind of simplification is
fine, since the virtual crawlers are only used to evalu-
ate ordering schemes, and not to do real crawling.

6. BackLink-based crawlers

In this section we study the effectiveness of vari-
ous ordering metrics, for the scenario where impor-
tance is measured through backlinks (i.e., either the
ZB(P) or IR(P) metrics). We start by describing the
structure of the virtual crawler, and then consider the
different ordering metrics. Unless otherwise noted,
we use the Stanford dataset described in Section 5,
and all crawls are started from the Stanford home-
page5. For the PageRank metric we use a damping
factor d of 0.9 (for both M(P) and D?‘(P)), for all
of our experiments (including those of the following
section).

Figure I shows our basic virtual crawler. The
crawler manages three main data structures. Queue
url-queue contains the URLs that have been seen

5 http://www-db.stanford.edu

and need to be visited. Once a page is visited, it is
stored (with its URL) in crawledsages. Finally,
1 inks holds pairs of the form (u 1, KZ), where URL
u? was seen in the visited page with URL ui. The
crawler’s ordering metric is implemented by the
function, reorder-queue (), shown in Fig. 2. We
used three ordering metrics: (1) breadth-first (2)
backlink count, B’(P), and (3) PageRank, H?(P).
The breadth-first metric places URLs in the queue
in the order in which they are discovered, and this
makes the crawler visit pages in breadth-first order.

We start by comparing three different ordering
metrics, breadth-first, backlink-count, and PageRank
(corresponding to the three functions of Fig. 2) in
Graph 1. In this scenario, the importance metric
is the number of backlinks (1 (P) = B(P)), and
we consider a Crawl & Stop with Threshold model
(Section 3) with G = 100. (Recall that a page with
G or more backlinks is considered important, i.e.,
hot.) Under this definition, 1,400 (0.8%) pages out
of 179,000 valid pages were considered hot. (Out
of 225,000 page dataset mentioned in Section 5,
46,000 pages were unreachable from the Stanford
homepage. So the total number of pages for the
experiment is 179,000 pages.)

166 J. Cho rt al. / Cornpurer Nrrworks und ISDN S.wterns 30 (1998) 161-172

(1) breadth first
do nothing. (null operation)

(2) backlink count, IB’(P)
for each u in url-queue (

backlink-count[u] = number of terms (-,u) in links;
1
sort url-queue by backlink-count[u];

(3) PageRank, IR’(P)
solve the following set of equations {

for each u in url-queue:
pagerank[uI = (l-0.9) + 0.9. sum,(pagerank[v_]/c,)

where (Vi, u) in links and
Ci = number of links in the page vl;

(SUmi (Pi) = P1 + P: + . . . + ?A,)

I

sort url-queue by pagerank[ul;

Fig. 2. Description of reorder-queue () of each ordering metric

In Graph 1, the horizontal axis is the percentage
of the dataset that has been crawled over time. At
the 100% mark, all 179,000 pages have been visited.
For each visited fraction we report on the vertical
axis PST, the percentage of the total hot pages that
has been visited so far. Graph 1 also shows the
performance of a random crawler. As discussed in
Section 3, the performance of a random crawler is a
straight diagonal line. An ideal crawler (not shown)
would reach 100% performance when H pages have
been crawled.

The results are rather counter-intuitive. That is,
intuitively one would expect that a crawler using an
ordering metric B’(P) that matches the importance
metric B(P) would perform the best. However, this
is not the case, and the K’(P) metric outperforms
the B’(P) one. To understand why, we manually
traced the crawler’s operation. We noticed that often
the ZB’(P) crawler behaved like a depth-first one,
frequently visiting pages in one “cluster” before
moving on to the next. On the other hand, the
D?‘(P) crawler combined breadth and depth in a
better way. To illustrate consider the Web fragment
of Fig. 3.

With /Z?‘(P) ordering, the crawler visits a page
like the one labeled 1 and quickly finds a cluster

100%

80%

60%

40%

20%

0%

Qrctarng O(u) is:

-ej- pagerank

-+- t3ackknk

n breadth

-..-tandem

0% 20% 40% 60% 80% 100%

Graph 1. Percentage of Stanford Web crawled vs. PST. I(P) =
B(P); G = 100.

A of pages that point to each other. The A pages
temporarily have more backlinks than page 2, so the
visit of page 2 is delayed. However, since the whole
Web has not been crawled, it may be that page 2
has more backlinks than the A pages. On the other
hand, with ZR’(P) ordering, page 2 may have higher
rank (because its link comes from a high ranking
page) than the pages in cluster A (that only have
pointers from low ranking pages within the cluster).
Therefore, page 2 is reached faster.

J. Cho et al. /Computer Networks ad ISDN Systems 30 (lY98) 161-l 72

Fip. 3. Crawling order.

In summary, during the early stages of a crawl, the
backlink information is biased by the starting point.
If the crawler bases its decisions on this skewed in-
formation, it tries getting locally hot pages instead of
globally hot pages, and this bias gets worse as the
crawl proceeds. On the other hand, the ZR’(P) PageR-
ank crawler is not as biased towards locally hot pages,
so it gives better results regardless of the starting point.

Graph 2 shows the performance PCS of the crawl-
ers under the Crawl & Stop model. The setting is
the same as for Graph 1. Keep in mind that an ideal
crawler would now have 100% performance at all
times. The results are analogous to those of the Crawl
& Stop with Threshold model. The key difference is
that the Pcs results are not dependent on a G value.
Thus, the metric PCS may be appropriate if we do
not have a predefined notion of what constitutes a
hot page.

Returning to the Crawl & Stop with Threshold
model, Graph 3 shows the results of using the ZR(P)
PageRank importance metric. The results are similar
to those of Graph 1, except that the D?‘(P) is even
more effective now.

As discussed in Section 1, in some cases the
crawler’s client may only be interested in small
portions of the Web. For instance, the client may be
interested in a single site (to create a mirror, say). In
our next experiment we evaluate the ordering metrics
in such a scenario. The results will also let us study
the impact of the differences in scale.

.--.+ backlink

-.--random

0% j,’
0% 20% 40% 60% 80% 100%

Graph ?. Stanford Web crawled vs. PC-$. I (P) = /H(P)

100%

80%

60%

40%

20%

-+-pwemnk

--ri-- backllnk

0%

0% 20% 40% 60% 80% 100%

Graph 3. Stanford Web crawled vs. PST. I(P) = IR(P); G = 13.

For this experiment we only crawled the pages
of the Stanford Database Group6. This subset of
the Stanford pages consists of about 1,100 valid
HTML pages. In general, crawling performance is
not as good on the smaller subset. Graph 4 shows
one representative result. In this case, we use the
Crawl & Stop with Threshold model with G = 5.
The importance metric is B(P). The graph shows
that performance can be even worse than that of a
random crawler at times, for all ordering metrics.

The reason for this poor performance is that
ZB(P) is not a good importance metric for a small
domain. To see this, Graph 5 shows the histogram
for the number of backlinks, in our sample domain.
The vertical axis shows the number of pages for each
backlink count. From this histogram we can see that

’ http://www-db.stanford.edu

16X .I. Cho et al. /Computer Networks and ISDN Systems 30 (1998) 161-172

60%

0% 20% 40% 60% 80% 100%

Graph 4. DB Web crawled vs. P,~T, I(P) = IB(P); G = 5.

600

500

g 400

l?
a 300
23
& 200
D
f 100
c

0

1 3 5 7 3 II 13

number of backlinks

Graph 5. Histogram of backlink counts (within DB group).

most pages have fewer than 10 backlinks. In this
range, the rank of each page varies greatly according
to the style used by the creator of the Web pages. For
instance, if the creator generates many cross links
between his pages, then his pages have a high D?(P)
rank, otherwise they do not. If the high rank pages do
not have many links from outside the cluster created
by this person, it will be hard to find them. In any
case, the rank is not a good measure of the global
importance of the pages.

In Graph 4 we can see the impact of “locally
dense” clusters. The performance of the backlink
H?(P) crawler is initially quite flat. This is because
it initially does a depth-first crawl for the first cluster
it found. After visiting about 20% of the pages,
the crawler suddenly discovers a large cluster, and
this accounts for the jump in the graph there. On
the other hand, the PageRank M’(P) crawler found

this large cluster earlier, so its performance is much
better initially.

7. Similarity-based crawlers

In the experiments of Section 6, we compared
three different backlink-based crawlers. In this sec-
tion, we present the results of our experiments on
similarity-based crawlers. The similarity-based im-
portance metric, IS(P), measures the relevance of
each page to a topic or a query that the user has in
mind. There are clearly many possible IS(P) metrics
to consider, so our experiments here are not intended
to be comprehensive. Instead, our goal is to briefly
explore the potentid of various ordering schemes
in some sample scenarios. In particular, for our first
three experiments we consider the following IS(P)
definition: A page is considered hot if it contains the
word computer in its title or if it has more th an 10
occurrences of computer in its body.

For similarity-based crawling, the crawler of Fig.
1 is not appropriate, since it does not take the content
of the page into account. To give priority to the pages
mentioning computer, we modified our crawler as
shown in Fig. 4. This crawler keeps two queues
of URLs to visit: hot-queue stores the URLs that
have been seen in an anchor mentioning the word
computer, or that have the word computer within
them. The second queue, url-queue, keeps the rest
of the URLs. The crawler first takes URL to visit
from hot-queue.

Graph 6 shows the PST results for this crawler, for
the IS(P) importance metric defined above. The re-
sults show that the backlink-count and the PageRank
crawler behaved no better than a random crawler.
Only the breadth-first crawler gave a reasonable re-
sult. This is a rather unexpected result. That is,
all these crawlers differ only in their ordering met-
rics, which are neutral to the page content. All
crawlers visited computer-related URLs immediately
after their discovery. Therefore, all the schemes are
theoretically equivalent and should give comparable
results.

The observed unexpected performance difference
arises mainly from the breadth-first crawler’s FIFO
nature. The breadth-first crawler fetches the pages
in the order they are found. If a computer-related

J. Cho et al. /Computer Networks and ISDN Systems 30 (I 998) 161-I 72 169

Crawling algorithm (similarity-based)
enqueue(url-queue, starting-url);
while (not empty(hot-queue) and not empty(url-queue)

url = dequeue2(hot_queue, url-queue) ;
page = crawlgage(ur1);
enqueue(crawledgages, (url, page));
url-list = extract-urls(page);
for each u in url-list

enqueue(links, (url, u));
if [u not in url-queue] and

[u not in hot-queue] and
[(u, -) not in crawled_pagesl
if [u contains computer in anchor or url

enqueue(hot-queue, u);
else

enqueue(url-queue, u);
reorder-queue(url-queue);
reorder-queue(hot-queue);

Function description
dequeue2(queuel, queue2) :

if (not empty(queue1)) dequeue(queue1);
else dequeue(queue2);

80%

60%

Fig. 4. Similarity-based crawling algorithm

jr&ring O(u) is
+pagersnlc
--Cbacklrik

--n--breadth

-random

0% 20% 40% 60% 80% 100%

Graph 6. Basic similarity-based crawler. Z(P) = IS(P): topic is
computer.

page is crawled earlier, then the crawler discovers
and visits its child pages earlier as well. These pages
have a tendency to also be computer related, so
performance is better. Thus, the observed property is
that if a page has a high IS(P) value, then its children

are likely to have a higher IS(P) value too. Another
reason for this difference is that more than a third
of the hot pages have only one backlink to them. If
the anchors of these pages do not contain the word
computer and if they are far from hot pages, their
crawling is delayed. Of course, it is questionable if
these pages are actually important, since nobody has
pointed to them.

To take advantage of the first property, we mod-
ified our crawler as shown in Fig. 5. This crawler
places in the hot-queue URLs that have the target
keyword in their anchor or within, or that are within
3 links from a hot page.

We also modified importance metric so that it
takes into account similarity and backlink informa-
tion. Under our new definition, a page is hot if it is
on the computer topic (its title contains computer or
its body has 10 or more occurrences of computer)
and it has five or more backlinks. Graph 7 shows the
PST results for this combined IS(P) and B(P) im-

170 J. Cho et ul. /Computer Networks and ISDN S~stetm 20 (199X) 161-I 72

Crawling algorithm (modified similarity-based)
enqueue(url-queue, starting-url);
while (not empty(hot-queue) and not empty(url-queue)) {

url = dequeue2(hot_queue, url-queue);
page = crawlgage(ur1);
if [page contains 10 or more computer in body

or one computer in title]
hot[url] = TRUE;

enqueue(crawled_pages, (url, page));
url-list = extract-urls(page) ;
for each u in url-list

enqueue(links, Curl, u) 1;
if [u not in url-queue] and

[u not in hot-queue] and
[(u, -) not in crawledgages]
if [u contains computer in anchor or url]

enqueue(hot-queue, u);
else if [distance-from-hotpage < 31

enqueue(hot-queue, u);
else

enqueue(url-queue, u) ;
reorder-queue(url-queue);
reorder-queue(hot-queue);

I

Function description
distance-from-hotpage :

return 0 if [hot[u] = TRUE];
return 1 if [hot[v] = TRUE] and [(v, u) in links]

for some v;
return 2 if [hot[v] = TRUEland [(v, w) in links] and [(w, u) in links]

for some v, w;

Fig. 5. Modified similarity-based crawling algorithm.

portance metric. All crawlers showed significant im-
provement now. Especially the results of the crawlers
that order based on PageRank ZR’(P) and breadth-
first order are very good. For instance, after having
seen only 40% of the pages, these crawlers have
obtained over 80% of the hot pages. After visiting
60% of the pages, most of the hot pages have been
gathered.

of backlinks are important, it is effective to use a
combined ordering metric that considers ZR’(P), the
content of anchors. and the distance to pages known
to be hot.

8. Conclusion

We repeated a similar experiment with a different In this paper we addressed the problem of order-
query topic, admission. The performance details var- ing URLs for crawling. We listed different kinds of
ied from the previous case, but the overall conclusion importance metrics, and built three models to eval-
was the same: When both similarity and the number uate crawlers. We experimentally evaluated several

J. Cho et 01. /Computer Networks and ISDN Systems 30 (1998) 161-I 7-7 171

ii *A$ 20% 4 0 % 80% 80% 1009

Graph 7. Modified similarity-based crawler. I(P) = combined
IB(P). ISC P): topic is compurrr.

combinations of importance and ordering metrics,
using the Stanford Web pages.

In general our results show that PageRank,
ZR’(P). is an excellent ordering metric when either
pages with many backlinks or with high PageRank
are sought. In addition, if the similarity to a driving
query is important, then it is also useful to visit
earlier URLs that:
l Have anchor text that is similar to the driving

query;
l Have some of the query terms within the URL

itself: or
l Have a short link distance to a page that is known

to be hot.
With a good ordering strategy, it seems to be

possible to build crawlers that can rather quickly
obtain a significant portion of the hot pages. This
can be extremely useful when we are trying to crawl
large portions of the Web, when our resources are
limited. or when we need to revisit pages often to
detect changes.

One limitation of our work is that it only used
the Stanford Web pages. We believe that the Stan-
ford pages are a representative sample: For example,
they are managed by many different people, who
structure their pages in a variety of ways. They in-
clude many individual homepages, and also many
clusters that are carefully managed by organizations.
Nevertheless, in the future we plan to investigate
non-Stanford Web pages to analyze structural differ-
ences and their implication for crawling.

References

[I] B. Kahle. Archiving the Internet, extended version of the arti-

cle “Preserving the Internet” that appeared in Scienrific Ameri-
c(at, March 1997. Extended version available at http://www.al
exa.com/-brewster/essays/sciam-article.html (published ver-
sion at http://www.sciam.com/0397issue/0397kahle.htmll

121 M. Koster. Robots in the Web: threat or treat? ConneXions,

g(4). April 1995, http://info.webcrawler.com/mak/projects/ro
hots/threat-or-treathtml

131 S. Brin and L. Page, The anatomy of a search engine. in: Proc.

qf the 7th Internutional WWW Conference (WWW 9Ni. Bris-
bane. Australia. April 14-l 8. 1998: also C’ON~~. Nem~ttrk,)
/SDN S~.ste~>r.c. 30(l-7): 107-I 17 (this volume).

]4] L. Page. S. Brin. R. Motwani and T. Winograd. The
PageRank Citation Ranking: bringing order to the Web.
manuscript in progress. http://google.stanford.edu/-backrubl
pageranksubps

[5] B. Pinkerton. Finding what people want: experiences with the
WebCrawler. in: Proc. ofthr 2nd International WWW Cotfi~r-
PIICC. Chicago. USA, October 17-20. 1994.

]6] G. Salton. Automatic Tut Procrsshlg. Addison-Wesley. Rcad-
ing. MA. 1989.

Junghoo Cho is a Ph.D. student in
the Department of Computer Science
at Stanford University, Stanford. Cal-
ifornia. He is currently working on
Digital Library project and is do-
ing research on Web crawling and
archiving. He received a B.S. in phy-
its from Seoul National University in
1996. and he received a h1.S. in com-
puter science in 1997 from Stanford
University.

Hector Garcia-Molina is the
Leonard Bosack and Sandra Lerner
Professor in the Departments of
Computer Science and Electrical
Engineering at Stanford University.
Stanford. California. From 1979 to
1991 he was on the faculty of
the Computer Science Department
at Princeton University. Princeton,
New Jersey. His research interests in-
clude distributed computing systems.
database systems and digital libraries.

He received a BS in electrical engineering from the Institute
Tecnologico de Monterrey, Mexico. in 1974, From Stanford
University, Stanford, California, he received in 1975 a MS. in
electrical engineering and a Ph.D. in computer science in 1979.

112 J. Cho et d/Computer Networks and ISDN Systems 30 (1998) 161-172

Lawrence Page was born in East
Lansing. Michigan. and received a
B.S.E. in Computer Engineering at
the University of Michigan, Ann Ar-
bor in 1995. He is currently a Ph.D.
candidate in Computer Science at
Stanford University. Some of his re-
search interests include the link struc-
ture of the Web, human computer in-
teraction. search engines, scalability
of information access interfaces, and
personal data mining.

