Pseudo-Division Algorithms for Floating-Point Logarithms and
Exponentials

Prof. W. Kahan
Univ. of Calif. at Berkeley

May 20, 2001

Abstract

Among the CORDIC-like algorithms for computing elementary transcendental functions like log and
exp, certain pseudo-division algorithms are peculiarly well suited to implementation in microcode or
in conjunction with software-implemented floating-point arithmetic. These algorithms need tables of
comparatively modest size; they are almost as-fast as the fastest digit-by-digit algorithms known; and
they can achieve accuracy to within a unit or two in the last sig. bit carried. Algorithms like these are
used by the Intel 8087 family of numeric coprocessors. This document is for people who wish to imitate
or surpass them. : '

1 Introduction

In what follows, pseudo-division algorithms for exp(z), In(z), exp(x)—1 and In(1+ z) are described, and then
their accuracies are explained by a crude error-analysis. Because these algorithms are intended to cohabit
with binary floating-point arithmetic, the functions computed first are actually 27 , log,(x) , 2* — 1 and
logy(1 + z), from which the aforementioned functions are then derived. (The 2 will be dropped henceforth
from log,.) The motive for this indirect approach is a belief (perhaps mistaken) that y* might be easier to
compute accurately that way. The reason for including the functions 2 — 1 and log(1 + z) is the certainty
that their high relative accuracy simplifies similarly accurate programs for certain hyperbolic and financial
functions.

What makes the pseudo-division algorithms so attractive is their close resemblance to the simplest binary
multiplication and division algorithms; they differ mainly in the use of varying multiplicands or divisors drawn
from tables of constants. The tests, add/subtracts and shifts are otherwise very similar. But extra shifts have
to be introduced to maintain full accuracy of the kind expected from floating-point operations nowadays,
and these extra shifts complicate the algorithms’ descriptions more than they complicate the algorithms
themselves. That is why we shall begin by describing idealized algorithms that leave out the complicating
extra shifts at first. Practical algorithms will be described afterwards.

2 Idealized Algorithms for log(z) and txp(z) = 2°
(When z is a subscripted variable, typographical Hmitations compel us to introduce notations like txp(z)
for 2%, txpml(z) for 2® — 1, and lglp(z) for log(l + =) = In(1 + z)/In(2).)
What set of numbers y can satisfy an equation
. y=1/(Q+ a1/ + /91 +g/8)(.-)1+ q/25)(1 +...)
in which every pseudo-quotient bit gy is either 0 or 1? The smallest value y in that set must be

1/7(1) = 0.41942244... where n(t) = (1 + t/2)(1 + t/4)(1 + t/8)(1 + t/16)(..)(1 + £/2*)(1 + ...).

(An appendix, sect. n below, explains properties of 7(t).) It turns out that all values y between 1/9(1) and
1 belong to that set, many of them in more than one way. For-instance

2/3 1/(1+1/2)
/(1427 +273)+ 270 +278) A+ 27191 +..)).

Thanks to this non-uniqueness, a relatively simple pseudo-division algorithm described below can generate
pseudo-quotient bits ¢ from any given y in that set. From these, and from a table of precomputed log
constants log(1 + 2~%), we may compute

log(y) = —q110g(3/2) — g2 log(5/4) — ... — qx log(1 + 27%) — ..

by a process called pseudo-multiplication because its shifts and adds resemble binary integer multiplication.
To compute log(Y") for an arbitrary positive binary floating-point number V', we can first infer from its
exponent field an integer n for which

Un()<1/2<y =Y/2" <1,

and then compute log(Y) = n+log(y) by pseudo-division and pseudo-multiplication followed by an addition.
Conversely, if 0 < z < log(n(1)) = 1.253524... then a somewhat different pseudo-division process can
decompose z into
T = q110g(3/2) + g2 log(5/4) + ... + g log(1 +27%) + ...

with pseudo-quotient bits g, each either 0 or 1; and then a different pseudo-multiplication process can
compute
txp(z) = (1 +q1/2)(1 + ¢2/4)(1 + g3/8)(-.)1 + @ /2¥)(1 +...)

(recall txp(z) = 2%) using just one shift-and-add per factor. And for any floating-point number X = n + z,
with the integer n so chosen that 0 < z < 1 < log(n(1)) , txp(X) = 2™txp(z) can now be computed by
pseudo-division, pseudo-multiplication and an addition to the exponent field.

The algorithms for log(Y) and txp(X) both access the same table of log-constants log(l + 27%). Of
course only finitely many of these can be kept in storage. To compensate for the fact that the last of them
is log(1 + 2~%) for some positive integer L to be determined later, we introduce -

y(1+q1/2)(1 + g2/)(.-)1 + ¢2/2")
1/((1+ qraa /2571 + qre2/2972) (1 +..))
and verify that 1/9(27L) < y, < 1. Because y., lies so close to 1 when L is big enough, log{yr) can be

approximated well by some rational or polynomial function of y; perhaps as simple as y; — 1, as we shall
see. Therefore

YL

L
log(Y)=n-_ qlog(1+27%) +log(yr)
1

can be computed accurately enough from L pseudo-quotient bits and log-constants, and from such an ap-
proximation to log(yr).
Similarly, we find that

L o0
0<zr=z-)Y glogl+27%) = gqlog(l+27%) <log(n(2~%)),
1 L+1

so when L is big enough then z; is tiny enough that txp(zr) can be approximated well by some simple
rational or polynomial function of z; that we shall develop later; and then

txp(X) = 2% = 27(1 + 1/2)(1 + g2/4)(---) (1 + qu./2F)txp (L)

can be computed accurately enough from L pseudo-quotient bits and log-constants, and from an approxi-
mation to txp(zLr)-

3 Complications to Cope with Cancellation

Roundoff undermines accuracy in two ways, one associated with cancellation and the other with accumula-
tion. We shall deal with the cancellation problem first.

Consider what happens in the formulas for log(Y’) above when Y barely exceeds 1; say Y = 1 + ¢ for
some very tiny £. Then log(Y) = £/ In(2) very nearly. Now n = 1 for y = Y/2", s0 log(y) = —(1 — £/In(2))
very nearly. But if £ is tiny enough, a few orders of magnitude bigger than rounding errors in log(y), then
log(y) will round to —(1 — 5/ 1n(2)) instead, where 5 matches £ in at most its first few sig. bits even though
those sig. bits lie far to the right of the binary point, and then the value computed for log(Y) = 1 + log(y)
will be 9/ In(2) instead of ¢/ In(2), differing in all but the first few sig. bits. For instance, pretend arithmetic
is rounded to five sig. dec., and suppose that log(Y) = 0.00014426; then log(y) = —0.99985574 rounds to
-0.99986 to five sig. dec., and then the computed value of log(Y’) is 1 — 0.99986 = 0.00014000. As revealed
by cancellation, the absolute error is tiny but the relative error is tantamount to losing over half the sig.
dec. carried. There are calculations, for example those involving log(Y)/(Y — 1), where error like that could
have disconcerting consequences.

To avoid this error revealed by cancellation, we have to restrict the range of the reduced argument
y = Y/2", keeping it closer to 1. Two ways to do so come to mind. The simplest reduces y initially to
an interval that includes the range 1/v/2 < y < v/2 but not much more. If this reduced y < 1, proceed as
before; otherwise replace y by ¥’ = 1/y, computed actually from the formula 1 -y’ = (y—1)/y for reasons to
become clear later, and then replace log(y) by —log(y'). Thus, both y and y' are now restricted to numbers
between roughly 1/v/2 and 1, and when Y is close to 1 then n = 0 and severe cancellation need never occur.
The Intel 8087 family of numeric coprocessors do this to keep the error in their log functions below two
units in the last (64th) bit. But this first simple way to avoid severe cancellation costs an extra division to
compute 1 — 3.

The second way is subtle and requires another table of constants

—log(1-27%),

but may be faster because it needs no division by y. This time reduce ¥ to y = Y/2" in the range
2/3 < y < 4/3, and then examine y — 1. If nonzero, its floating-point exponent will tell which positive
integer M satisfies either

M y_1< 2 M-loroM-1cy_1<27M

If M = 1 here substitute M = 2 below. If y < 1, pseudo-divide as before except that the calculation of
pseudo-quotient bits can start with gy since every earlier g, = 0. But if y > 1 proceed differently: First
replace y — 1 by

y-1=(1-2"My-1=(@y-1) -2y

this will be calculated exactly in floating-point arithmetic, and y' will lie between 27/32 and 1, well within the
interval from 1/7(1/4) = 0.786417... to 1 wherein pseudo-division starting from g3 can succeed. Thereafter
do unto y' — 1 what would have been done unto y — 1; first determine from its floating-point exponent which
leading pseudo-quotient bits are predictably zero and so need not be generated, compute log(y'), and finally
get

log(y) = —log(1 - 2~*) +log(y"),

wherupon no more than a bit or two will be lost to cancellation.

A similar pair of tricks is available to ameliorate cancellation during the calculation of txpm1(z) = 2* -1
when z is a small negative number. As we shall see later, pseudo-division and pseudo-multiplication can
compute txpml(z’) directly only for some related z' > 0. One possibility is ' = —=z, from which first
t = txpml(z’) and then txpml(z) = —t/(1 + t) can be calculated at the cost of one extra division; this is
what the Intel 8087 family does. Another possibility is faster when the table of constants —log(1 — 2~%)
is available. By comparing the significand of x with 1/1In(2), find the integer M for which 2~~1/In(2) <
—z < 2= /In(2); set =’ = x —log(1 — 2~M) > 0; get t = txpm1(z’) by pseudo-division-and-multiplication;
and txpml(z) = ¢t — 2~*(1 +t) loses at most two bits to cancellation.

4 Reversing Order Reduces Roundoff’s Accumulation

If not by cancellation, another way to lose accuracy to rounding errors is to accumulate too many of them.
They do accumulate during the pseudo-division and pseudo-multiplication processes. For instance the sum
ZL 11 @ log(1 +27%) must suffer one rounding error in each log-constant and one in every addition in that
sum. How those rounding errors affect the final sum is determined mostly by the order of summation.

The natural order of summation would form that sum

(---(grrlog(1 +2™M) + gpryr log(1 +27M1)) +..) + g log(1 + 275)

simultaneously with the generation of the pseudo-quotient bits, adding the terms in the sum in order of
increasing subscripts (from left to right), so each pseudo-quotient bit is consumed as soon as it is generated.
This is the fastest way to compute log(y) but not the most accurate; it loses about log{L — M) of the
bits carried to an accumulation of rounding errors caused by adding L — M ever smaller terms to a slowly
changing sum. Just such errors degrade accuracy on the Motorola 68881 and 68882.

Better accuracy during pseudo-multiplication is achieved for the Intel 8087 family by adding the nonzero
terms in increasing order of magnitude but decreasing subscripts (right to left) thus:

gurlog(1 +27M) + (gars1 log(1 + 2771 + (.. + gz log(1 + 271))).

This process shifts earlier rounding errors off at the right, so the last rounding errors tend to drown out the
earlier ones. Now at most one or two bits can be lost to roundoff in the summation process, but the process
requires that the pseudo-quotient bits be saved to be consumed in the order opposite to their creation; that
is why this pseudo-multiplication process runs moderately slower than the natural order of summation.

Similar considerations arise during the pseudo-multiplication that generates 2 and 2* — 1. For small
positive values of z,

txpml(z) = 2% — 1 = (1+ ¢1/2)(1 + g2/4)(--)(1 + gz/2")(1 + txpml(zL)) — 1

can be calculated from left to right, using the pseudo-quotient bits g in the order of their creation, or from
right to left in reverse order. The latter order is slowed by having to wait until all pseudo-quotient bits have
been generated, but that way it accumulates less error. Here is how it works:

Compute txpm1(zxz) from some approximation valid for nonnegative tiny values zz < 2~%/In(2). Then
for k=L,L—1,L—2,...in turn until no nonzero g; is left unused, calculate

txpm1(z) = txpm1(2x41) + ge(L + txpml(zeya))/2;

finally txpm1(z) is the last of these calculated. This pseudo-multiplication process shifts earlier rounding
errors off at the right so that they do not accumulate beyond a bit or two.

Recurrences like this one for txpm1({zy), lying at the heart of pseudo-division and pseudo-multiplication,
can be carried out in either floating-point or fixed-point arithmetic. The former is simpler to program; the
latter is slightly faster and, when extra bits of precision are available, more accurate too. But the shifts that
would be handled automatically in floating-point have to be programmed explicitly in fixed-point lest the
accuracy gained by reversing order be lost. The shifts further complicate the algorithms’ descriptions.

5 Pseudo-Division in Fixed-Point Arithmetic

The idealized pseudo-division algorithm to compute log(y) began with a fraction y between 1/5(1) and 1,
and generated

v = y(1+a /20 + /(1 +a/8)(1 +..)(1 +ax/2%)
= L+ g1 /25 + qra2/2) (1 +) 2 1/n(27F)

for k=1,2,3,4,..,Lin turn. Each pseudo-quotient bit gy, is either 0 or 1 according to the following criteria:

If1/(1 +27%) < yx—1 < 1 then g& = 0 and yx = ye—1
so1/p(27 %) <1/(1+27%) <y < 1

if 1/9(2'%) < ye—1 < 1/n(27F) then gx =1 and v = yp—1(1 +27%)
sol/p2~ %) <y < 1.

These criteria would allow g; to be chosen arbitrarily as 0 or 1 when 1/9(27%) < yx—1 < 1/(1+ 27%), but
the choice has to be algorithmically simple. The following recurrence will do:

If y—1(1 +27%) > 1 then g = 0 and ¥ = y—1
else g =1 and yx = yp—1(1 +27F).

This recurrence still poses two problems. One is how to start it. The other is excessive accumulation of
roundoff for reasons like those above that motivated reversal of the order of consumption of pseudo-quotient
bits during pseudo-multiplication.

To inhibit excessive accumulation of roundoff, we introduce a new scaled variable

2k = 2k(1 - yk)-

We shall choose the first value ¥ = K later. Then the foregoing recurrence takes this form: for k =
K+1,K+2,..,Lin turn,
2k = 2251 + 2 ¥ quzi—1 — g1 2 0

with g = 1 unless that would violate the last inequality, in which case ¢, = 0. Later we shall see why
0 < z; < 1; this permits the 2-recurrence to be implemented using a fixed-point register to hold the fractions
2k, & right-shifter to form 2~%z;, an adder to add them, and a shift-register to save the pseudo-quotient bits
gx- Rounding errors do occur when bits of 2%z are shifted off, but bits shifted off in later stages lie far to
the right of bits shifted off in earlier stages, so they do not accumulate. At the end of pseudo-division, the
fraction 2y, is substituted into a polynomial or rational approximation to log(yz) = log(l — 27Lz1) to be
chosen later in section mmmm .

How should the z-recurrence start? Recall that pseudo-division is feasible if and only if 1/7(27%) <y <1
for every k, and this will be true for every k if it is true for the first. In terms of the scaled variables
2k, the condition necessary and sufficient for successful pseudo-division is 0 < 2z < ¢(27%) < 1 where
¢(t) = (1 —1/n(t))/t is discussed with n(t) in sect. n, the appendix. These inequalities will be satisfied for
all k if satisfied for the first, k = K. How shall that be arranged?

Depending upon which of the complications in sect. 2 have been chosen to cope with cancellation,
pseudo-division will begin with a floating-point fraction y that lies in an interval like

1/V2<y<lor2/3<y<lor27/32<y<L
That will put the floating-point difference z = 1 — y into one of three corresponding intervals, respectively
0<2<1/2+vV2)or0<2<1/30r0<2<5/32

The integer K that makes 1/4 < zx = 2Kz < 1/2 comes from the floating-point exponent of z. This is the
initial value for k in the z;-recurrence above except for two considerations. First, if gx = 0 advance K to
K + 1 until gx = 1 so that gx will be the first nonzero pseudo-quotient bit, and record this now to prevent
excessive right-shifting later that would lose accuracy. K will be advanced to K > 1 if z lies in the first two
intervals, to K > 2 if 2 lies in the third interval above (in which case log-constant A; = log(3/2) will not be
needed).

The second aspect of the initial k¥ = K to be considered is what happens in case K > L or z = 0. In these
cases both pseudo-division and pseudo-multiplication can be skipped. log(y) = 0 exactly if 2 = 0; otherwise
add 1 to K to get 1/2 < zx < 1 and use the aforementioned approximation to log(l — 2~ ¥ 2x).

The idealized pseudo-division algorithm to compute txpml(z) = 2% — 1 started with a sufficiently small
positive number x and used the log-constants log(1 + 27¥) to generate nonnegative numbers

zr = z-—qilog(l+271) —glog(l+272) — ... — g log(l+27F)
= gryrlog(l +27571) + gy log(l +27572) + grpalog(l +2757%) + ...

fork=1,2,3,4, ..., Lin turn. Each pseudo-quotient-bit g, is either 0 or 1 according to the following criterion:

if zj—1 <log(l+ 27%) then qx =0 and 23 = Ty
else g¢ = 1 and zy = 241 — log(1 +27F).

This recurrence is numerically satisfactory if carried out in floating-point arithmetic but then it would waste
time on exponent comparisons and normalization after cancellation. Faster fixed-point arithmetic requires
the introduction of a scaled variable s; = 2¢~1x; and scaled log-constants Ax = 2¥~1log(1 + 2~*) . These
log-constants form an increasing sequence of fractions

AL = 0.58496..., A2 = 0.64385..., Az = 0.67970..., ...

bounded above by Ao = 1/In(4) = 0.7213475.... (A1 may not be needed.) These scaled log-constants and
variable motivate the introduction of analytic functions A(¥) = log(l +)/(2t) and o(t) = log(n(t))/(2¢),
both discussed in the appendix, sect n. Apparently every s; < 6(2%) < a(0) = oo t00, 50 85 and \; can
be kept as fractions in fixed-point registers. Fixed-point arithmetic suffices to generate s; by recurrence:

fork=K+1,K+2,...,Lin turn, 8 = 28x—1 — grAx >0

with ¢, = 1 unless that would violate the last inequality, in which case ¢z = 0. Provided the fixed-point
registers are wide enough, no rounding errors occur during this recurrence, and rounding errors in later
log-constants Ay fall to the right of bits already rounded off in earlier ones without accumulating.

But how is the initial k = K chosen?

n. Appendix: Properties of 7(t), {(t), o(t) and A(?)

Assertions appearing herein without proof may be unobvious but, if so, they are tedious and routine appli-
cations of the calculus.

Definitions:
1) = (1+/2)(1+£/4) # (1 + ¢/8)(1 + ¢/16)(.)(L + £/2¥)(1 + ...)
¢(t) =1 -1/n))/t; ((0) =1. n(t) = 1/(1 = £((2)).
o(t) = log(n(t))/(2¢)- n(t) = 220,
A@) =log(1+¢)/(2t) =In(1+¢)/(tln4).
Log constants: Ax = A(27%); . = A(—=27F).
0(0) = M0) = Ao = o = 1/ In(4) = 0.72134752... .
Pseudo-Quotient Bits: ¢; = ¢7 = {Oor 1}.
Variables: y =27% =1 —2/2* z = —log(y) = 2! *s.
Scaled variables: z = 25(1 —y), s = 2F~1g.

Conditions for Decompositions:
1/y = (1 + gre1/25)(1 + g2 /2542) (1 + qur3/25F2) (1 + ...)
if and only if 1 < 1/y < 7(2~%). Equivalently,
1/(1=2/2%) = (1 + @ /25F1) (1 + @2/ 28V (L + qra3/25F3) (1 +)
if and only if 0 < z < {(2~%). Equivalently,
£ = get1 log(1+27571) + goyalog(L + 27%72) + gryalog(1 +2757%) + ...
if and only if 0 < z < log(n(2~*)). Equivalently,
8§ =37 Qi Me+5/27 if and only if 0 < s < o(27F).

Functional Equations:
7(0) = 1 and n(t) = (1 +¢/2)n(t/2).
¢(e) = (1 +¢(2/2)/(2 +).
o(t) =log(1+t/2)/(2t) + a(t/2) /2 = (Mt/2) + o(t/2))/2.

Power Series:
n(t) = ((((((... +1)t/63 + 1)¢/31 + 1)¢/15 + 1)¢/7 + 1)t /3 + 1)t + 1.
¢@®)= (((((... — 1)32¢/63 + 1)16t/31 — 1)8t/15 + 1)4t/7 — 1)2¢/3+ 1
=1/ + 1/(((((--- + 1)¢/31 + 1)¢/15 + 1)¢/7 + 1)¢/3 + 1)).
o(t) =30tV ((2 - 1jln4). Mt) =1 -t/2+8/3-3/4+ t4/5 - ...)/ In(4).

Inequalities and Monotonicity Properties:

For all t > -2,7/(t) > 0;

for all nonzero ¢t > —4, 7"(t) > 0and 1 + ¢ < n(t) < €.

For0 <t <1,¢'(t) <0< ¢"(t) and
1—14¢/(21 + 12¢) < (() < 1 — 26¢/(39 + 23t) < 1 = ((0).
(The rational expressions bracket {(t) within +0.005.)

For0<t<1,0'(t) <0< o"(t).

For -1 <t <1, N(t) <0< A(P)-

A Short Table:

n(=27"%) 9% ¢@F) o@27% Ak Pk
0.288788 2.384231 0.580578 0.626762 0.5 0
0.577576 1.589487 0.741733 0.668562 0.584963 1
0.770102 1.271590 0.854332 0.693267 0.643856 0.830075
0.880116 1.130302 0.922246 0.706834 0.679700 0.770580
0938791 1.063814 0.959773 0.713965 0.699703 0.744875
0.969074 1.031577 0.979533 0.717624 0.710306 0.732859
0.984456 1.015707 0.989676 0.719477 0.715770 0.727042
1 1 1 0.721348 0.721348 (.721348

DU W OIS

8

Miscellaneous Properties:

All but six of the entries in the table above have to be rounded off because they appear not to be
representable exactly as fixed- or floating-point numbers. Are appearances deceptive? It is not hard to
confirm that 7(£1) must be irrational, whence the same soon follows for 7(£2~*) and ((2~*) when & < oo.
Similarly for all Ax and py except Ag, po and ;. I don’t know about o(27*) yet.

Pseudo-division in this paper constrains the pseudo-quotient bits g; to the set {0,1}. Other sets work
too, but not so neatly. For example, if ¢; = —qf- ={0or —1} then

1/y = 1+ a1 /2571 + Gea2/2V2) (1 + qeqs/28P3) (1 + 0

must lie in the interval 7(—2~%) < 1/y < 1; but some values 1/y in that interval, for instance those in
1-27%1 < 1/y < p(=2"%-1), cannot be decomposed into the factorization shown above wherein no power
of 1/2 appears more than once. For another example, if g2 = 1 (so g; = *1) then 1/y must lie in the interval
n(-=27*%) < 1/y < n(27*); but some values 1/y in that interval cannot be decomposed without repeating
some powers of 1/2. An instance between n(—1) and 7(1) is 1/y = 0.48 because it has

1/((1-1/2)(1 - 1/4)y)
1/((1-1/2)(1 + 1/4)y)
so no factorization with every g; restricted to +1 can exist. Therefore, any advantage that might be secured

by using a set other than {0,1} for the pseudo-quotient bits ¢; must be purchased at the cost of a pseudo-
division scheme more complicated than is described in this paper.

1.28 > n(1/4) and
0.768 < n(—1/4),

