
inU

The
8086 Family
UseiisManual

Numerics Supplement

July 1980

44 Hartwell Ave., Lexington, Mass. 02173 (617) 861-92

©Intel Corporation 1980

121586-001 Rev A/ $2.00

Digitized by the Internet Archive

in 2014

https://archive.org/details/8086familyusersm00inte

inter

The
8086 Family
User^Manual

Numerics Supplement

July 1980

Additional copies of this manual or other Intel literature may be obtained from:

Literature Deparimeni

Intel Corporation

3065 Bowers Avenue
Santa Clara, CA9505I

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited

to, the implied warranties of merchantability and fitness for a particular purpose. Intel Corporation

assumes no responsibility for any errors that may appear in this document. Intel Corporation makes no

commitment to update nor to keep current the information contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in

an Intel product. No other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use,

duplication or disclosure is subject to restrictions stated in Intel's software license, or as defined in ASPR
7-104. 9(a)(9).

No part of this document may be copied or reproduced in any form or by any means without the prior

written consent of Intel Corporation.

The following are trademarks of Intel Corporation and may be used only to identify Intel products:

B\P
CREDIT iSBC

iSB.X

iniellec Mullibus

Mullimodule

PROMPT
Promware
RMX
UPl
(iScope

ICE
iCS

Insite

Inlel

Library Manager

MCS
Megachassis

Micromap
Inieles tsion

and the combination of ICE, ICS, iSBC, iSBX, MCS, or RMX and a numerical suffix.

ii

PREFACE

This supplement provides detailed information on
the 8087 Numeric Coprocessor extension to the

iAPX 86/10 and 88/10 CPUs. These processors

and their support circuits are described in detail in

the 8086 Family User's Manual, and discussions

in this supplement frequently reference this

manual. Below is a brief overview of architectural

concepts used throughout the family and the

system nomenclature used to describe particular

system configurations built around the four

iAPX 86, 88 family processors.

Microsystem 80 Nomenclature

Over the last several years, the increase in

microcomputer system and software complexity

has given birth to a new family of microprocessor

products oriented towards solving these increas-

ingly complex problems. This new generation of

microprocessors is both powerful and flexible and
includes many processor enhancements, such as

numeric floating point extensions, I/O pro-

cessors, and operating system functionality in

silicon.

As Intel's product line has grown and evolved, its

microprocessor product numbering system has

become inadequate to name VLSI solutions

involving the above enhancements.

In order to accommodate these new VLSI
systems, we've allowed the 8086 family name to

evolve into a more comprehensive numbering
scheme, while still including the basis of the

previous 8086 nomenclature.

We've adopted the following prefixes to provide

differentiation and consistency among our

Microsystem 80 related product lines:

iAPX — Processor Series

iRMX — Operating Systems

iSBC — Single Board Computers
iSBX — MULTIMODULE Boards

Concentrating on the iAPX Series, two Processor

Families are defined:

iAPX 86—8086 CPU based system

iAPX 88—8088 CPU based system

With additional suffix information, configura-

tion options within each iAPX system can be

identified, for example:

iAPX 86/10 CPU Alone (8086)

iAPX 86/ 1 1 CPU + lOP (8086 + 8089)

iAPX 88/20 CPU + Math Extension

(8088 + 8087)

iAPX 88/21 CPU + Math Extension +
lOP (8088 + 8087 + 8089)

This nomenclature is intended as an addition to

rather than a replacement for, Intel's current part

numbers. These new series level descriptions are

used to describe the functional capabilities pro-

vided by specific configurations of the processors

in the 8086 Family. The hardware used to imple-

ment each functional configuration is still

described by referring to the parts involved (as is

the case for the majority of the 8087 information

described in this supplement.)

This improved nomenclature provides a more
meaningful view of system capability and
performance within the evolving Microsystem 80

architecture.

iAPX 86, 88 Architecture

The components in the iAPX 86, 88 product lines

have been designed to operate together in diverse

combinations within the framework of the family

architecture, as shown in figure i. In this way a

single family of components can be used to solve

a wide array of microcomputing problems. A
component mix can be tailored to fit the per-

formance needs of an application precisely,

without having to pay for unneeded capabilities

that may be bundled into more monolithic, CPU-
centered architectures. Using the same family of

components across multiple systems limits the

learning curve problem and builds on past

experience. Finally, the modular structure of the

family architecture provides an orderly way for

systems to grow and change.

The iAPX 86, 88 product line architecture is

characterized by three major principles:

1. System functions are distributed among
specialized components.

m

2. Multiprocessing capabilities are inherent in

the hardware.

3. A hierarchical bus organization provides for

the complex data flows required by high-

performance systems without burdening

simpler systems w ith unneeded capabilities.

Microprocessors

At the core of the product line are four

microprocessors that share these characteristics:

• 5 MHz (200 ns cycle time) and 8 MHz (86/ 10)

are available.

• Systems can be constructed for both 8 & 16

bit data paths.

• Processors operate on 8-, 16-, 32-, 64-, 80-bit

character and string data lypes, internal data

paths are at least 16 bits w ide.

• Up to 1 megabyte of memory can be

addressed, along with a separate 64K byte

I/O space.

• The address/data and status interfaces of the

processors are compatible (the address and
data buses are time multiplexed at the

processor, allowing each to be compatible

with a common set of bipolar bus support

components.

Multiprocessing

Emplo\ing multiple processors in medium to

large systems offers several significant advantages

over the centralized approach that relies on a

single CPU and extremely fast memory:

• System tasks may be allocated to

special-purpose processors whose designs are

optimized to perform specific (or classes of)

tasks simply and efficiently;

• Very high levels of performance can be

attained when processors can execute

simultaneously (parallel /distributed

processing);

• Reliability can be improved by isolating

s>stem functions so that a failure or error in

one part of the system has a limited effect on

the rest of the system;

• The natural partitioning of the system

promotes parallel development of sub-

systems, breaks the application into smaller,

more manageable tasks, and helps isolate the

effects of system modifications.

iv

ADDRESS

Figure ii. iAPX 88 Allows for a Highly Integrated, High Performance
System Using 8085 Family of Components

The IAPX 86, 88 product line architecture is

explicitly designed to simplify the development of

multiple processor systems by providing facilities

for coordinating the interaction of the processors.

The architecture supports two types of pro-

cessors: independent processors and
coprocessors. An independent processor executes

its own instruction stream. The iAPX 86/10,

88/10, and lOP are examples of independent pro-

cessors. An iAPX 86/10 or iAPX 88/10 typically

executes a program in response to an interrupt.

The lOP starts its channels in response to an

interrupt-like signal called a channel attention;

this signal is typically issued by a CPU.

The iAPX 86, 88 product line architecture also

supports a second type of processor, called a

coprocessor. Coprocessor "hooks" have been

designed into the iAPX 86/10 and iAPX 88/10 to

allow this type of processor to be accommodated.
The coprocessor adds additional register,

datatype, and instruction resources directly to the

system. A coprocessor, in effect, extends the

instruction set (and architecture) of its host

processor.

The iAPX 86, 88 provides built-in solutions to

two classic multiprocessing coordination pro-

blems: bus arbitration and mutual exclusion. Bus
arbitration may be performed by the bus

request/grant logic contained in each of the pro-

cessors (local bus arbitration), by 8289 bus

arbiters (system bus arbitration), or by a com-
bination of the two when processors have access

to multiple shared buses. In all cases, the arbitra-

tion mechanism operates invisibly to software.

For mutual exclusion, each processor has a

LOCK (bus lock) signal which a program may
activate to prevent other processors from obtain-

ing a shared system bus. The lOP may lock the

bus during a DMA transfer to ensure both that

the transfer completes in the shortest possible

time and that another processor does not access

the target of the transfer (e.g., a buffer) while it is

being updated. Each of the processors has an

PRIVATE
MEMORY

PRIVATE
I/O

I

I

> UJ

IS
(/)

BUS
INTERFACE
GROUP

BUS
PROCESSOR INTERFACE

GROUP

LOCAL BUS

PROCESSING 1 PROCESSOR
j

i

1 PROCESSOR
j

MODULE

PUBLIC
MEMORY

PROCESSING
MODULE

Figure iii. Generalized iAPX 86, 88 Bus Structure

instruction that examines and updates a memory
byte with the bus locked. This instruction can be

used to implement a semaphore mechanism for

controlling the access of multiple processors to

shared resources. (A semaphore is a variable that

indicates whether a resource, such as a buffer or a

pointer, is "available" or "in use".)

Bus Organization

Figure iii summarizes the IAPX 86, 88 bus struc-

ture. There are two different types of buses:

system and local. Both buses may be shared by
multiple processors, i.e., both are multimaster

buses. Microprocessors are always connected to a

local bus, and memory and I/O components

usually reside on a system bus. The iAPX 86, 88

bus interface components link a local bus to a

system bus.

Local Bus

The local bus is optimized for use by the iAPX 86,

88 microprocessors. Since standard memory and

I/O components are not attached to the local bus,

information can be multiplexed and encoded to

make very efficient use of processor pins (certain

MCS-85 peripheral components can be directly

connected to the local bus). This allows several

pins to be dedicated to coordinating the activity

of multiple processors sharing the local bus.

Multiple processors connected to the same local

vi

bus are said to be local to each other; processors

on different local buses are said to be remote to

each other, or configured remotely. Both
independent processors and coprocessors may
share a local bus; on-chip arbitration logic deter-

mines which processor drives the bus. Because the

processors on the local bus share the same bus

interface components, the local configuration

of multiple processors provides a compact and
inexpensive multiprocessing system.

System Bus

A full implementation of an iAPX 86, 88 system

bus consists of the following five sets of signals:

address bus, data bus, control lines, interrupt

lines and arbitration lines. A group of bus inter-

face components transforms the signals of a local

bus into a system bus. The number of bus inter-

face components required to generate a system

bus depends on the size and complexity of the

system; reduced application needs translate

directly into reduced component counts. These
main variables determine the configuration of a

bus interface group: address space size (number
of latches), data bus width (number of

transceivers), and arbitration needs (presence of a

bus arbiter).

The iAPX 86, 88 system bus is functionally and
electrically compatible with the MULTIBUS
multimaster system bus used in Intel's iSBC line

of single board computing products. This com-
patiblity gives system designers access to a wide

variety of computer, memory, communications

and other modules that may be incorporated into

products, used for evaluation or for test vehicles.

Processing Modules and Bus Topology

The processor(s) and bus interface group(s) that

are connected by a local bus constitute a process-

ing module. A simple processing module could

consist of a single CPU and one bus interface

group. A more complex module would contain

multiple processors, such as two lOPs, a CPU
and one or two lOPs, or a CPU with a

coprocessor with/ without lOP. One bus interface

group typically links the processors in the module
to a public system bus. If there are multiple pro-

cessing modules in the system, all memory or I/O
connected to the public bus is accessible to all

processing modules on the public bus. 8289 bus

arbiters in each processing module control the

access of the modules to the public bus and hence

to the public memory and I/O.

A second bus interface group may be connected

to a processing module's local bus, generating a

demultiplexed bus. This bus can provide the pro-

cessing module with a private address space that is

not accessible to other processing modules.

Distributing memory and I/O resources in this

manner can improve system reliability by

isolating the effects of failures. It can also

increase system throughput dramatically. If pro-

cessor programs and local data are placed in

private memory, contention for use of the public

system bus can be held to a minimum to ensure

that shared resources are quickly available when
they are needed. In addition, processors in

separate modules can simultaneously fetch

instructions from private memory spaces to allow

multiple system tasks to proceed in parallel.

vii

Table of Contents

TITLE PAGE

Processor Overview S-

1

Evolution S-1

Performance S-3

Usability S-3

Applications S-4

Programming Interface S-5

Hardware Interface S7

Processor Architecture S-7

Control Unit S-8

Numeric Execution Unit S-9

Register Stack S-9

Status Word S-10

Control Word S-10

Tag Word S-10

Exception Pointers S-11

Computation Fundamentals S-11

Number System S-12

Data Types and Formats S- 1

3

Binary Integers S-14

Decimal Integers S-14

Real Numbers S-15

Special Values S-16

Rounding Control S-17

Precision Control S-17

Infinity Control S-18

Exceptions S-18

Memory S-21

Datastorage S-21

Storage Access S-22

Dynamic Relocation S-22

Dedicated and Reserved Memory Locations . . . S-22

Multiprocessing Features S-22

Instruction Synchronization S-23

Local Bus Arbitration S-24

System Bus Arbitration S-25

Controlled Variable Access S-25

Processor Control and Monitoring S-26

Initialization S-26

CPU Identification S-26

Interrupt Requests S-27

Interrupt Priority S-27

Endless Wait S-28

Status Lines S-29

TITLE PAGE

Instruction Set S-29

Data Transfer Instructions S-30

Arithmetic Instructions S-31

Comparison Instructions S-35

Transcendental Instructions S-36

Constant Instructions S-38

Processor Control Instructions S-39

Instruction Set Reference Information S-42

Execution Time S-44

Bus Transfers S-44

Instruction Length S-44

Programming Facilities S-58

PL/M-86 S-58

ASM-86 S-59

Defining Data S-60

Records and Structures S-60

Addressing Modes S-61

8087 Emulators S-61

Programming Example S-63

Special Topics S-66

Nonnormal Real Numbers S-67

Denormals S-67

Unnormals S-69

Zeros and Pseudo-zeros S-70

Inifinities S-72

NANs S-73

Data Type Encodings S-74

Exception Handling Details S-75

Programming Examples S-82

Conditional Branching S-82

ix

Tables

TITLE PAGE

S-1 8087/Emulator Speed Comparison S-3

S-2 Data Types S-6

S-3 Principal Instructions S-6

S-4 Real Number Notation S-15

S-5 Rounding Modes S-17

S-6 Exception and Response Summary S-20

S-7 Processor State Following

Initialization S-26

S-8 Bus Cycle Status Signals S-28

S-9 Data Transfer Instructions S-30

S-10 Arithmetic Instructions S-32

S-1 1 Basic Arithmetic Instructions

and Operands S-33

S-12 Comparison Instructions S-36

S-13 FXAM Condition Code Settings S-37

S-1 4 Transcendental Instructions S-37

S-15 Constant Instructions S-38

S-16 Processor Control Instructions S-39

S-17 Key to Operand Types S-42

S-18 Execution Penalties S-43

S-19 Instruction Set Reference Data S-44

S-20 PL/M-86 Built-in Procedures S-59

S-21 Storage Allocation Directives S-60

S-22 Addressing Mode Examples S-62

S-23 Denormalization Process S-68

S-24 Exceptions Due to Denormal

Operands S-69

S-25 Unnormal Operands and Results S-70

S-26 Zero Operands and Results S-71

S-27 Infinity Operands and Results S-72

S-28 Binary Integer Encodings S-75

S-29 Packed Decimal Encodings S-76

S-30 Real and Long Real Encodings S-76

S-31 Temporary Real Encodings S-77

S-32 Exception Conditions and Masked
Responses S-79

S-33 Masked Overflow Response for

Directed Rounding S-81

A-1. Instruction Encoding A-1

A-2. Machine Instruction Decoding

Guide A-2

Illustrations

TITLE PAGE

S-1 8087 Numeric Data Processor Pin

Diagram S-2

S-2 8087 Evolution and Relative

Performance S-2

S-3 NDP Interconnect S-7

S-4 8087 Block Diagram S-8

S-5 Register Structure S-9

S-6 Status Word Format S-10

S-7 Control Word Format S-11

S-8 Tag Word Format S-12

S-9 Exception Pointers Format S-12

S-10 8087 Number System S-13

S-11 Data Formats S-14

S-12 Projective Versus Affine Closure S-18

S-13 Storage of Integer Data Types S-21

S-14 Storage of Real Data Types S-21

S-15 Synchronizing Execution With

WAIT S-24

S-16 Interrupt Request Logic S-27

S-17 Interrupt Request Path S-29

S-18 FSAVE/FRSTOR Memory Layout S-41

S-19 FSTENV/FLDENV Memory Layout S-41

S-20 Sample 8087 Constants S-43

S-21 Status Word RECORD Definition S-62

S-22 Structure Definition S-62

S-23 Sample PL/M-86 Program S-64

S-24 Sample ASM-86 Program S-65

S-25 Instructions and Register Stack S-68

S-26 Conditional Branching for Compares S-82

S-27 Conditional Branching for FXAM S-83

S-28 Full State Exception Handler S-86

S-29 Latency Exception Handler S-87

S-30 Reentrant Exception Handler S-87

X

8087 Numeric
Data Processor

THE 8087 NUMERIC DATA PROCESSOR

This supplement describes the 8087 Numeric Data
Processor (NDP). Its organization is similar to

chapters 2 and 3 of The 8086 Family User's

Manual:

1 . Processor Overview

2. Processor Architecture

3. Computation Fundamentals

4. Memory

5. Multiprocessing Features

6. Processor Control and Monitoring

7. Instruction Set

8. Programming Facilities

9. Special Features

10. Programming Examples

Section 1 covers both hardware and software

topics at a general level. Sections 2 and 4 through

6 are largely hardware-oriented, while sections 3

and 7 through 10 are of greatest interest to pro-

grammers. Section 9 describes features of the

NDP that will be of interest to specialized groups

of users; it is not necessary to understand this sec-

tion to successfully use the 8087 in most applica-

tions. Hardware coverage in this supplement is

limited to discussing processor facilities in func-

tional terms. Timing, electrical characteristics,

and other physical interface data may be found in

Appendix B, as well as in Chapter 4 of The 8086
Family User's Manual

.

Note that throughout this supplement the term

"CPU" refers to either an 8086 or 8088 con-

figured in maximum mode. To make best use of

the material in this publication, readers should

have a good understanding of the operation of the

8086/8088 CPUs.

S.1 Processor Overview

The 8087 Numeric Data Processor is a

coprocessor that performs arithmetic and com-
parison operations on a variety of numeric data

types; it also executes numerous built-in

transcendental functions (e.g., tangent and log

functions). As a coprocessor to a maximum mode
8086 or 8088, the NDP effectively extends the

register and instruction sets of the host CPU and
adds several new data types as well. The pro-

grammer generally does not perceive the 8087 as a

separate device; instead, the computational

capabilities of the CPU appear greatly expanded.

The 8087 is the only chip required to add exten-

sive high-speed numeric processing capabilities to

an 8086- or 8088-based system. It is specifically

designed to deliver stable, correct results when
used in a straightforward fashion by program-
mers who are not expert in numerical analysis. Its

applicability to accounting and financial

environments, in addition to scientific and
engineering settings, further distinguishes the

8087 from the "floating point accelerators"

employed in many computer systems, including

minicomputers and mainframes. The NDP is

housed in a standard 40-pin dual in-line package
(figure S-1) and requires a single +5V power
source.

The description of the 8087 in this section

deliberately omits some operating details in order

to provide a coherent overall view of the

processor's capabilities. Subsequent sections of

the supplement describe these capabilities, and
others, in more detail.

Evolution

The performance of first- and second-generation

microprocessor-based systems was limited in

three principal areas: storage capacity,
input/output speed, and numeric computation.

The 8086 and 8088 CPUs broke the 64k memory
barrier, allowing larger and more time-critical

applications to be undertaken. The 8089
Input/Output Processor eliminated many of the

I/O bottlenecks and permitted microprocessors

to be employed effectively in I/O-intensive

designs. The 8087 Numeric Data Processor clears

the third roadblock by enabling applications with

significant computational requirements to be

implemented with microprocessor technology.

Figure S-2 illustrates the progression of Intel

numeric products and events that have led to the

development of the 8087. In the mid-1970's, Intel

S-1

8087 NUMERIC DATA PROCESSOR

vss [_ 40
1 vcc

A 1 ji / nu 1M 1 1/ U 1 H
1

39 1 A15/D15

A 1 1 /n 1 1 1A1 J/ U 1 J
1

36 1 A16/S3

A12/D12 ^ 4 37]^ A17/S4

A 1 1 / n 1 1 1 36 ^ A18/S5

A10/D10 6 35 ^ A19/S6

A9/D9 7 34 ^ BHE/S7

A8/D6 ^ 8 33 ^ RQ/GT1

A7/D7 9 32 n INT
—J

A6/D6 10 8087 31 RQ/GTO

A5/D5 \ 1 NDP 30 1 NC

Ml / H 1 12 29 1 NC

A3/D3 ^ 13 28 1 S2

A2/D2 ^ 14 27 "Isi—

1

A1/D1

Q

15 26 ^ SO

AO/DO C 16 25

17 24

NC 18 23 ^ BUSY

CLK {2 19 22 ^ READY

vssC 20 21 ^ RESET

NC = NO CONNECT

Figure S-1 . 8087 Numeric Data Processor Pin

Diagram

I I I I

1977 1978 1979 1980

YEAR INTRODUCED

Figure S-2. 8087 Evolution and Relative

Performance

made the commitment to expand the computa-

tional capabilities of microprocessors from
addition and subtraction of integers to an array of

widely useful operations on real numbers. (Real

numbers encompass integers, fractions, and
irrational numbers such as n and sfl.) In 1977,

the corporation adopted a standard for repre-

senting real numbers in a "floating point"

format. Intel's Floating Point Arithmetic Library

(FPAL) was the first product to utilize this stan-

dard format. FPAL is a set of subroutines for the

8080/8085 microprocessors. These routines per-

form arithmetic and limited standard functions

on single precision (32-bit) real numbers; an

FPAL multiply executes in about 1.5 ms (1.6

MHz 8080A CPU). The next product, the iSBC
310™ High Speed Math Unit, essentially

implements FPAL in a single iSBC^" card,

reducing a single-precision multiply to about 100

piS. The Intel " 8232 is a single-chip arithmetic pro-

cessor for the 8080/8085 family. The 8232 accepts

double precision (64-bit) operands as well as

single precision numbers. It performs a single

precision multiply in about 100 fis and multiplies

double precision numbers in about 875 f/s (2 MHz
version).

In 1979, a working committee of the Institute for

Electrical and Electronic Engineers (IEEE) pro-

posed an industry standard for minicomputer and

microcomputer floating point arithmetic*. The

intent of the standard is to promote portability of

numeric programs between computers and to pro-

vide a uniform programming environment that

encourages the development of accurate, reliable

software. The proposed standard specifies

requirements and options for number formats as

well as the results of computations on these

numbers. The floating point number formats are

identical to those previously adopted by Intel and

used in the products described in this section.

The 8087 Numeric Data Processor is the most

advanced development in Intel's continuing effort

to provide improved tools for numerically-

oriented microprocessor applications. It is a

single-chip hardware implementation of the

proposed IEEE standard, including all its options

for single and double precision numbers. As such,

it is compatible with previous Intel numerics

products; programs written for the 8087 will be

transportable to future products that conform to

* J. Coonen, W. Kahan, J. Palmer, T. Pittman, D. Stevenson, "A Proposed Standard for Binary Floating

Point Anlhmelk,'' ACM SIGNUM Newsletter, October 1979.

S-2

8087 NUMERIC DATA PROCESSOR

the proposed IEEE standard. The NDP also pro-

vides many additional functions that are

extensions to the proposed standard.

Performance

As figure S-2 indicates, the 8087 provides about
10 times the instruction speed of the 8232 and a

100-fold improvement over FPAL. The 8087

multiplies 32-bit and 64-bit real numbers in about

19 ^s and 27 pis,, respectively. Of course, the actual

performance of the NDP in a given system

depends on numerous application-specific

factors.

Table S-1 compares the execution times of several

8087 instructions with the equivalent operations

executed in software on a 5 MHz 8086. The soft-

ware equivalents are highly optimized assembly

language procedures from the 8087 emulator, an

NDP development tool discussed later in this

section.

The performance figures quoted in this section

are for operations on real (floating point)

numbers. The 8087 also has instructions that

enable it to utilize fixed point binary and decimal

integers of up to 64 bits and 18 digits, respec-

tively. Using an 8087, rather than multiple preci-

sion software algorithms for integer operations,

can provide speed improvements of 10-100 times.

The 8087's unique coprocessor interface to the

CPU can yield an additional performance incre-

ment beyond that of simple instruction speed. No
overhead is incurred in setting up the device for a

computation; the 8087 decodes its own instruc-

tions automatically in parallel with the CPU.
Moreover, built-in coordination facilities allow

the CPU to proceed with other instructions while

the 8087 is simultaneously executing its numeric

instruction. Programs can exploit this processor

parallelism to increase total system throughput.

Usability

Viewed strictly from the standpoint of raw speed,

the 8087 enables serious computation-intensive

tasks to be performed by microprocessors for the

first time. The 8087 offers more than just high

performance, however. By synthesizing advances

made by numerical analysts in the past several

years, the NDP provides a level of usability that

surpasses existing minicomputer and mainframe
arithmetic units. In fact, the charter of the 8087

design team was first to achieve exceptional func-

tionality and then to obtain high performance.

The 8087 is explicitly designed to deliver stable,

accurate results when programmed using

straightforward "pencil and paper" algorithms.

While this statement may seem trivial, experi-

enced users of "floating point processors" will

Table S-1 . 8087 Emulator Speed Comparison

Instruction

Approximate Execution Time (^s)

(5 MHz Clock)

8087
8086

Emulation

Multiply (single precision) 19 1,600

Multiply (double precision) 27 2,100

Add 17 1,600

Divide (single precision) 39 3,200

Compare 9 1,300

Load (single precision) 9 1,700

Store (single precision) 18 1,200

Square root 36 19,600

Tangent 90 13,000

Exponentiation 100 17,100

S-3

8087 NUMERIC DATA PROCESSOR

recognize its fundamental importance. For

example, most computers can overflow when two
single precision floating point numbers are

multiplied together and then divided by a third,

even if the final result is a perfectly valid 32-bit

number. The 8087 delivers the correctly rounded
result. Other typical examples of undesirable

machine behavior in straightforward calculations

occur when solving for the roots of a quadratic

equation:

-b ±Vb^ - 4ac

2a

or computing financial rate of return, which
involves the expression: (l+i)^. Straightforward

algorithms will not deliver consistently correct

results (and will not indicate when they are incor-

rect) on most machines. To obtain correct results

on traditional machines under all conditions

usually requires sophisticated numerical tech-

niques that are foreign to most programmers.
General application programmers using straight-

forward algorithms will produce much more
reliable programs on the 8087. This simple fact

greatly reduces the software investment required

to develop safe, accurate computation-based
products.

Beyond traditional numerics support for "scien-

tific" applications, the 8087 has built-in facilities

for "commerical" computing. It can process

decimal numbers of up to 18 digits without round-
off errors, and it performs exact arithmetic on
integers as large as 2^'*. Exact arithmetic is vital in

accounting applications where rounding errors

may introduce money losses that cannot be

reconciled.

The NDP contains a number of facilities that can
optionally be invoked by sophisticated users.

Examples of these advanced features include two
models of infinity, directed rounding, gradual
underflow, and traps to user-written exception

handling software.

Applications

The NDP's versatility and performance make it

appropriate to a broad array of numerically-

oriented applications. In general, applications

that exhibit any of the following characteristics

can benefit by implementing numeric processing

on the 8087:

• Numeric data vary over a wide range of

values, or include non-integral values;

• Algorithms produce very large or very small

intermediate results;

• Computations must be very precise, i.e., a
large number of significant digits must be
maintained;

• Performance requirements exceed the

capacity of traditional microprocessors;

• Consistently safe, reliable results must be

delivered using a programming staff that is

not expert in numerical techniques.

Note also that the 8087 can reduce software

development costs and improve the performance
of systems that do not utilize real numbers but

operate on multi-precision binary or decimal

integer values.

A few examples, which show how the 8087 might

be utilized in specific numerics applications, are

described below. In many cases, these types of

systems have been implemented in the past with

minicomputers. The advent of the 8087 brings the

size and cost savings of microprocessor

technology to these applications for the first time.

• Business data processing—The NDP's ability

to accept decimal operands and produce

exact decimal results of up to 18 digits greatly

simplifies accounting programming. Finan-

cial calculations which use power functions

can take advantage of the 8087's

exponentiation and logarithmic instructions.

• Process control—The 8087 solves dynamic

range problems automatically and its

extended precision allows control functions

to be fine-tuned for more accurate and effi-

cient performance. Control algorithms

implemented with the NDP also contribute

to improved reliability and safety, while the

8087's speed can be exploited in real-time

operations.

• Numerical control—The 8087 can move and

position machine tool heads with extreme

accuracy. Axis positioning also benefits from

the hardware trigonometric support provided

by the 8087.

S-4

8087 NUMERIC DATA PROCESSOR

• Robotics—Coupling small size and modest
power requirements with powerful computa-
tional abilities, the NDP is ideal for on-board
six-axis positioning.

• Navigation—Very small, light weight, and
accurate inertial guidance systems can be

implemented with the 8087. Its built-in

trigonometric functions can speed and
simplify the calculation of position from
bearing data.

• Graphics terminals—The 8087 can be used in

graphics terminals to locally perform many
functions which normally demand the atten-

tion of a main computer; these include rota-

tion, scaling, and interpolation. By also

including an 8089 Input/Output Processor to

perform high speed data transfers, very

powerful and highly self-sufficient terminals

can be built from a relatively small number
of 8086 family parts.

• Data acquisition—The 8087 can be used to

scan, scale, and reduce large quantities of

data as it is collected, thereby lowering

storage requirements as well as the time

required to process the data for analysis.

The preceding examples are oriented toward

"traditional" numerics applications. There are,

in addition, many other types of systems that do
not appear to the end user as "computational,"

but can employ the 8087 to advantage. Indeed,

the 8087 presents the imaginative system designer

with an opportunity similar to that created by the

introduction of the microprocessor itself. Many
applications can be viewed as numerically-based

if sufficient computational power is available to

support this view. This is analogous to the

thousands of successful products that have been

built around "buried" microprocessors, even

though the products themselves bear little

resemblance to computers.

Programming Interface

The combination of an 8086 or 8088 CPU and an

8087 generally appears to the programmer as a

single machine. The 8087, in effect, adds new
data types, registers, and instructions to the CPU.
The programming languages and the coprocessor

architecture take care of most interprocessor

coordination automatically.

Table S-2 lists the seven 8087 data types. Inter-

nally, the 8087 holds all numbers in the temporary

real format; the extended range and precision of

this format are key contributors to the NDP's
ability to consistently deliver stable, expected

results. The 8087's load and store instructions

convert operands between the other formats and
temporary real. The fact that these conversions

are made, and that calculations may be per-

formed on converted numbers, is transparent to

the programmer. Integer operands, whether

binary or decimal, yield correct integer results,

just as real operands yield correct real results.

Moreover, a rounding error does not occur when
a number in an external format is converted to

temporary real.

Computations in the 8087 center on the pro-

cessor's register stack. These eight 80-bit registers

provide the equivalent capacity of 40 of the 16-bit

registers found in typical CPUs. This generous

register space allows more constants and
intermediate results to be held in registers during

calculations, reducing memory access and conse-

quently improving execution speed as well as bus

availability. The 8087 register set is unique in that

it can be accessed both as a stack, with instruc-

tions operating implicitly on the top one or two
stack elements, and as a fixed register set, with

instructions operating on explicitly designated

registers.

Table S-3 lists the 8087's major instructions by

class. Assembly language programs are written in

ASM-86, the 8086/8088/8087 common assembly

language. ASM-86 provides directives for defin-

ing all 8087 data types and mnemonics for all

instructions. The fact that some instructions in a

program are executed by the 8087 and others by
the CPU is usually of no concern to the pro-

grammer. All 8086/8088 addressing modes may
be used to access memory-based 8087 operands,

enabling convenient processing of numeric
arrays, structures, based variables, etc.

NDP routines may also be written in PL/M-86,
Intel's high-level language for the 8086 and 8088

CPUs. PL/M-86 provides the programmer with

access to many 8087 facilities while reducing

the programmer's need to understand the

architecture of the chip.

Two features of the 8087 hardware further

simplify numeric application programming. First,

the 8087 is invoked directly by the programmer's
instructions. There is no need to write instructions

S-5

8087 NUMERIC DATA PROCESSOR

Table S-2. Data Types

Data Type Bits
Significant

Digits (Decimal)
Approximate Range (Decimal)

Word integer 16 4 -32,768< X< +32,767

Short integer 32 9 -2x109<X< +2x10^

Long integer RA
1 O —Qv1fl18 <- Y <- 1 Qvin18yxiu ^ A *5 + yx 1 u

Packed decinnal 80 18 -99...99<X< +99...99(18digits)

Short real* 32 6-7 8.43x10"2''< |X| < 3.37x10^8

Long real* 64 15-16 4.19x10"3°''< |X| < 1.67x10^08

Temporary real 80 19 3.4x10-4932 ^|X|<1. 2x104932

*The short and long real data types correspond to the single and double precision data types

defined in other Intel numerics products.

Table S-3. Principal Instructions

Class Instructions

Data Transfer Load (all data types), Store (all data types), Exchange

Arithmetic Add, Subtract, Multiply, Divide, Subtract Reversed,

Divide Reversed, Square Root, Scale, Remainder,

Integer Part, Change Sign, Absolute Value, Extract

Comparison Compare, Examine, Test

Transcendental Tangent, Arctangent, 2^ -1
,
Y»Log2(X + 1), Y«Log2(X)

Constants 0, 1, n, Logio2, Logg2, LogjIO, Logje

Processor Control Load Control Word, Store Control Word, Store Status

Word, Load Environment, Store Environment, Save,

Restore, Enable Interrupts, Disable Interrupts, Clear

Exceptions, Initialize

that "address" the NDP as an "I/O device", or

to incur the overhead of setting up a DMA opera-

tion to perform data transfers. Second, the NDP
automatically detects exception conditions that

can potentially damage a calculation at run-time.

On-chip exception handlers are automatically

invoked by default to field these exceptions so

that a reasonable result is produced and execution

may proceed without program intervention.

Alternatively, the 8087 can interrupt the CPU and
thus trap to a user procedure when an exception is

detected.

Besides the assembler and compiler, Intel

provides a software emulator for the 8087. The
8087 emulator (E8087) is a software package that

provides the functional equivalent of an 8087; it

executes entirely on an 8086 or 8088 CPU. The

emulator allows 8087 routines to be developed

and checked out on an 8086/8088 execution

vehicle before prototype 8087 hardware is opera-

tional. At the source code level, there is no

difference between a routine that will ultimately

run on an 8087 or on a CPU emulation of an

8087. At link time, the decision is made whether

to use the NDP or the software emulator; no re-

compilation or re-assembly is necessary. Source

programs are independent of the numeric execu-

tion vehicle: except for timing, the operation of

the emulated NDP is the same as for "real hard-

ware". The emulator also makes it simple for a

product to offer the NDP as a "plug-in"

performance option without the necessity of

maintaining two sets of source code.

S-6

8087 NUMERIC DATA PROCESSOR

Hardware Interface

As a coprocessor to an 8086 or 8088, the 8087 is

wired directly to the CPU as shown in figure S-3.

The CPU's queue status lines (QSO and QSl)
enable the NDP to obtain and decode instructions

in synchronization with the CPU. The NDP's
BUSY signal informs the CPU that the NDP is

executing; the CPU WAIT instruction tests this

signal to ensure that the NDP is ready to execute a

subsequent instruction. The NDP can interrupt

the CPU when it detects an exception. The NDP's
interrupt request line is typically routed to the

CPU through an 8259A Programmable Interrupt

Controller.

The NDP uses one of its host CPU's
request/grant lines to obtain control of the local

bus for data transfers (loads and stores). The
other CPU request/grant line is available for

general system use, for example, by a local 8089

Input/Output Processor. A local 8089 may also

be connected to the 8087's RQ/GTl line. In this

configuration, the 8087 passes the request/grant

handshake signals between the CPU and the lOP

when the 8087 is not in control of the local bus.

When it is in control of the bus, the 8087 relin-

quishes the bus (at the end of the current bus

cycle) upon a request from the connected lOP,

giving the lOP higher priority than itself. In this

way, two local 8089's can be configured in a

module that also includes a CPU and an 8087.

All processors utilize the same clock generator

and system bus interface components (bus con-

troller, latches, transceivers, and bus arbiter).

Thus, no additional hardware beyond the 8087

is required to add powerful computational

capabilities to an 8086- or 8088-based system.

8.2 Processor Architecture

As shown in figure S-4, the NDP is internally

divided into two processing elements, the control

unit (CU) and the numeric execution unit (NEU).
In essence, the NEU executes all numeric instruc-

tions, while the CU fetches instructions, reads

and writes memory operands, and executes the

processor control class of instructions. The two

8259A

I I

L .J.""- J

8284
CLOCK

GENERATOR

CLK

INTR

CLK 8086/8088
CPU

RQ/GT1
QSO QSl TEST

QSO QSl BUSY

RQ/GTO

CLK 8087
NDP

INT

RQ/GTl

MCLK

A

_y _
RQ/GT

8089
lOP

1^

:^
8

I H
w

IS

8086
FAMILY
BUS

INTERFACE
COMPONENTS

MULTIMASTER
SYSTEM
BUS

Figure S-3. NDP Interconnect

S-7

8087 NUMERIC DATA PROCESSOR

elements are able to operate independently of

one another, allowing the CU to maintain

synchronization with the CPU while the NEU
executes numeric instructions.

Control Unit

The CU keeps the 8087 operating in synchroniza-

tion with its host CPU. 8087 instructions are

intermixed with CPU instructions in a single

instruction stream fetched by the CPU. By
monitoring the status signals emitted by the CPU,
the NDP control unit can determine when an

instruction is being fetched. When the instruction

byte or word becomes available on the local bus,

the CU taps the bus in parallel with the CPU and

obtains that portion of the instruction.

The CU maintains an instruction queue that is

identical to the queue in the host CPU. By
monitoring the CPU's queue status lines, the CU
is able to obtain and decode instructions from the

queue in synchronization with the CPU. In effect,

both processors fetch and decode the instruction

stream in parallel.

The two processors execute the instruction stream

differently, however. The first five bits of all 8087
machine instructions are identical; these bits

designate the coprocessor escape (ESC) class of

instructions. The control unit ignores all instruc-

tions that do not match these bits, since these

instructions are directed to the CPU only. When
the CU decodes an instruction containing the

escape code, it either executes the instruction

itself, or passes it to the NEU, depending on the

type of instruction.

The CPU distinguishes between ESC instructions

that reference memory and those that do not. If

the instruction refers to a memory operand, the

CPU calculates the operand's address and then

performs a "dummy read" of the word at that

location. This is a normal read cycle, except that

the CPU ignores the data it receives. If the ESC
instruction does not contain a memory reference,

the CPU simply proceeds to the next instruction.

A given 8087 instruction (an ESC to the CPU) will

either require loading an operand from memory
into the 8087, or will require storing an operand

from the 8087 into memory, or will not reference

DATA

STATUS

ADDRESS

CONTROL UNIT NUMERIC EXECUTION UNIT

EXPONENT
BUS

CONTROL WORD

STATUS WORD

EXPONENT
MODULE f4

DATA
BUFFER

NEU INSTRUCTION MICROCODE
CONTROL

UNIT

OPERANDS
QUEUE

16,

FRACTION
BUS

INTERFACE

/

68

64.

ADDRESSING &
BUSTRACKING

EXCEPTION
POINTERS

L

T
A
G

W
0
R
D

ZPROGRAMMABLE /
SHIFTER /

— REGISTER STACK —

(7)

(6)

(5)

(1)

(3)

(2»

(1)

(0)

80 BITS

ARITHMETIC
MODULE

TEMPORARY
REGISTERS

J

Figure S-4. 8087 Block Diagram

S-8

8087 NUMERIC DATA PROCESSOR

memory at all. In the first two cases, the CU
makes use of the "dummy read" cycle initiated

by the CPU. The CU captures and saves the

operand address that the CPU places on the bus
early in the "dummy read". If the instruction is

an 8087 load, the CU additionally captures the

first (and possibly only) word of the operand
when it becomes available on the bus. If the

operand to be loaded is longer than one word, the

CU immediately obtains the bus from the CPU
and reads the rest of the operand in consecutive

bus cycles. In a store operation, the CU captures

and saves the operand address as in a load, and
ignores the data word that follows in the "dummy
read" cycle. When the 8087 is ready to perform
the store, the CU obtains the bus from the CPU
and writes the operand at the saved address using

as many consecutive bus cycles as are necessary to

store the operand.

Numeric Execution Unit

The NEU executes all instructions that involve

the register stack; these include arithmetic,

comparison, transcendental, constant, and data

transfer instructions. The data path in the NEU is

68 bits wide and allows internal operand transfers

to be performed at very high speeds.

Register Stack

Each of the eight registers in the 8087's register

stack is 80 bits wide, and each is divided into the

"fields" shown in figure S-5. This format

corresponds to the NDP's temporary real data

type that is used for all calculations. Section S.3

describes in detail how numbers are represented in

the temporary real format.

At a given point in time, the ST field in the status

word (described shortly) identifies the current

top-of-stack register. A load ("push") operation

decrements ST by 1 and loads a value into the new
top register. A store-and-pop operation stores the

value from the current top register and then

increments ST by 1. Thus, like 8086/8088 stacks

in memory, the 8087 register stack grows "down"
toward lower-addressed registers.

Instructions may address registers either implic-

itly or explicitly. Many instructions operate on the

register at the top of the stack. These instructions

implicitly address the register pointed to by ST.

79 64 63

1
EXPONENT SIGNIFICAND

SIGN

Figure S-5. Register Structure

For example, the ASM-86 instruction FSQRT
replaces the number at the top of the stack with its

square root; this instruction takes no operands

because the top-of-stack register is implied as the

operand. Other instructions allow the program-

mer to explicitly specify the register that is to be

used. Explicit register addressing is "top-

relative" where the ASM-86 expression ST
denotes the current stack top and ST(/) refers

to the ith register from ST in the stack (0< / <7).

For example, if ST contains OllB (register 3 is the

top of the stack), the following instruction would

add registers 3 and 5:

FADD ST, ST(2)

In typical use, the programmer may conceptually

"divide" the registers into a fixed group and an

adjustable group. The fixed registers are used like

the conventional registers in a CPU, to hold con-

stants, accumulations, etc. The adjustable group

is used like a stack, with operands pushed on and
results popped off. After loading, the registers in

the fixed group are addressed explicitly, while

those in the adjustable group are addressed

implicitly. Of course, all registers may be

addressed using either mode, and the "defini-

tion" of the fixed versus the adjustable areas may
be altered at any time. Section S.8 contains a pro-

gramming example that illustrates typical register

stack use.

The stack organization and top-relative address-

ing of the registers simplify subroutine

programming. Passing subroutine parameters on
the register stack eliminates the need for the

subroutine to "know" which registers actually

contain the parameters and allows different

routines to call the same subroutine without

having to observe a convention for passing

parameters in dedicated registers. So long as the

stack is not full, each routine simply loads the

parameters on the stack and calls the subroutine.

The subroutine addresses the parameters as ST,

ST(1), etc., even though ST may, for example,

refer to register 3 in one invocation and register 5

in another.

S-9

8087 NUMERIC DATA PROCESSOR

Status Word

The status word reflects the overall condition of

the 8087; it may be examined by storing it into

memory with an NDP instruction and then

inspecting it with CPU code. The status word is

divided into the fields shown in figure S-6. The
busy field (bit 15) indicates whether the NDP is

executing an instruction (B=l) or is idle (B=0).

Several 8087 instructions (for example, the com-
parison instructions) post their results to the

condition code (bits 14 and 10-8 of the status

word). The principal use of the condition code is

for conditional branching. This may be

accomplished by executing an instruction that sets

the condition code, storing the status word in

memory and then examining the condition code

with CPU instructions.

Bits 13-11 of the status word point to the 8087

register that is the current stack top (ST). Note
that if ST=OOOB, a "push" operation, which

decrements ST, produces ST=111B; similarly,

popping the stack with ST=1 1 IB yields ST=OOOB.

Bit 7 is the interrupt request field. The NDP sets

this field to record a pending interrupt to the

CPU.

Bits 5-0 are set to indicate that the NEU has

detected an exception while executing an instruc-

tion. Section S.3 explains these exceptions.

Control Word

To satisfy a broad range of application

requirements, the NDP provides several process-

ing options which are selected by loading a word
from memory into the control word. Figure S-7

shows the format and encoding of the fields in the

control word; it is provided here for reference.

Section S.3 explains the use of each of these 8087

facilities except the interrupt-enable control field,

which is covered in section S.6.

Tag Word

The tag word marks the content of each register

as shown in figure S-8. The principal function

15 7 0

B 03 ST
1 1

02 01 CO IR PE UE OE ZE DE

L EXCEPTION FLAGS (1 = EXCEPTION HAS OCCURRED)

INVALID OPERATION

I DENORMALIZED OPERAND

I ZERODIVIDE

' OVERFLOW

I UNDERFLOW

I PRECISION

' (RESERVED)

' INTERRUPT REQUEST

CONDITION CODEd)

STACK TOP P0INTER12>

BUSY

(1) See descriptions of compare, test, examine and remainder instructions in section S.7 for

condition code interpretation.

<2) ST values:
000 = register 0 Is stack top
001 = register 1 is stack top

111 = register 7 Is stack top

Figure S-6. Status Word Format

S-10

8087 NUMERIC DATA PROCESSOR

15

1 , ,

IC RC PC lEM PM UM OM ZM DM IM
1

L EXCEPTION MASKS (1 = EXCEPTION IS MASKED)

INVALID OPERATION

DENORMALIZED OPERAND

ZERODIVIDE

OVERFLOW

UNDERFLOW

PRECISION

(RESERVED)

INTERRUPT-ENABLE MASKd)

PRECISION C0NTR0L<2)

ROUNDING C0NTR0L(3)

INFINITY CONTROLO)

(RESERVED)

C) Interrupt-Enable Mask:
0 = Interrupts Enabled
1 = Interrupts Disabled (Masked)

(2) Precision Control:
00 = 24 bits

01 = (reserved)
10 = 53 bits

11 = 64 bits

(3) Rounding Control:
00 = Round to Nearest or Even
01 = Round Down (tow/ard -<»)

10 = Round Up (toward +«=)

11 = Chop (Truncate Toward Zero)

C) Infinity Control:
0 = Projective
1 = Affine

Figure S-7. Control Word Format

of the tag word is to optimize the NDP's
performance under certain circumstances and

programmers ordinarily need not be concerned

with it.

Exception Pointers

The exception pointers (see figure S-9) are pro-

vided for user-written exception handlers.

Whenever the 8087 executes an instruction, the

CU saves the instruction address and the instruc-

tion opcode in the exception pointers. In

addition, if the instruction references a memory
operand, the address of the operand is retained

also. An exception handler can store these

pointers in memory and thus obtain information

concerning the instruction that caused the

exception.

8.3 Computation
Fundamentals

This section covers 8087 programming concepts

that are common to all applications. It describes

the 8087's internal number system and the various

types of numbers that can be employed in NDP
programs. The most commonly used options for

rounding, precision and infinity (selected by fields

in the control word) are described, with

exhaustive coverage of less frequently used

facilities deferred to section S.9. Exception condi-

tions which may arise during execution of NDP
instructions are also described along with the

options that are available for responding to these

exceptions.

S-11

8087 NUMERIC DATA PROCESSOR

15

TAG(7)

I

TAG (6) TAG(5)

I

TAG(4) TAG(3)

U—
TAG(2)

I

TAG(1) TAG(O)
I

Tag values:
00 = Valid (Normal or Unnormal)
01 = Zero (True)
10 = Special (Not-A-Number, 0°, or Denormal)
11 = Empty

Figure S-8. Tag Word Format

OPERAND ADDRESS(^)

I
INSTRUCTION OPCODEtZ)

INSTRUCTION ADDRESSd)

10

(1)

(2)

20-bit physical address

1 1 least significant bits of opcode; 5 most significant bits are always 8087 hook (11011 B)

Figure S-9. Exception Pointers Format

Number System

The system of real numbers that people use for

pencil and paper calculations is conceptually

infinite and continuous. There is no upper or

lower limit to the magnitude of the numbers one
can employ in a calculation, or to the precision

(number of significant digits) that the numbers
can represent. When considering any real

number, there are always an infinity of numbers
both larger and smaller. There is also an infinity

of numbers between (i.e., with more significant

digits than) any two real numbers. For example,

between 2.5 and 2.6 are 2.51, 2.5897, 2.500001,

etc.

While ideally it would be desirable for a computer
to be able to operate on the entire real number
system, in practice this is not possible. Com-
puters, no matter how large, ultimately have
fixed-size registers and memories that limit the

system of numbers that can be accommodated.
These limitations proscribe both the range and the

precision of numbers. The result is a set of

numbers that is finite and discrete, rather than
infinite and continuous. This sequence is a subset

of the real numbers which is designed to form a

usqM approximation of the real number system.

Figure S-10 superimposes the basic 8087 real

number system on a real number line (decimal

numbers are shown for clarity, although the 8087

actually represents numbers in binary). The dots

indicate the subset of real numbers the 8087 can

represent as data and final results of calculations.

The 8087's range is approximately ±4.19x10'^°^

to ±1.67x10^°^. Applications that are required to

deal with data and final results outside this range

are rare. By comparison, the range of the IBM
370 is about ±0.54x10-^8 +o.72xlO''6

The finite spacing in figure S-10 illustrates that

the NDP can represent a great many, but not all,

of the real numbers in its range. There is always a

"gap" between two "adjacent" 8087 numbers,

and it is possible for the result of a calculation to

fall in this space. When this occurs, the NDP
rounds the true result to a number that it can

represent. Thus, a real number that requires more
digits than the 8087 can accommodate (e.g., a 20

digit number) is represented with some loss of

accuracy. Notice also that the 8087's represent-

able numbers are not distributed evenly along the

real number line. There are, in fact, an equal

number of representable numbers between suc-

cessive powers of 2 (i.e., there are as many
representable numbers between 2 and 4 as

between 65,536 and 131,072). Therefore, the

"gaps" between representable numbers are

S-12

8087 NUMERIC DATA PROCESSOR

Figure S-IO. 8087 Number System

"larger" as the numbers increase in magnitude.

All integers in the range ±2^"*, however, are

exactly representable.

In its internal operations, the 8087 actually

employs a number system that is a substantial

superset of that shown in figure S-10. The internal

format (called temporary real) extends the 8087's

range to about ±3.4x10-^^32 ±i.2xlO''^3^ and

its precision to about 19 (equivalent decimal)

digits. This format is designed to provide extra

range and precision for constants and

intermediate results, and is not normally intended

for data or final results.

From a practical standpoint, the 8087's set of real

numbers is sufficiently "large" and "dense" so

as not to limit the vast majority of microprocessor

applications. Compared to most computers,

including mainframes, the NDP provides a very

good approximation of the real number system. It

is important to remember, however, that it is not

an exact representation, and that arithmetic on

real numbers is inherently approximate.

Conversely, and equally important, the 8087 does

perform exact arithmetic on its integer subset of

the reals. That is, an operation on two integers

returns an exact integral result, provided that the

true result is an integer and is in range. For exam-
ple, 4-r2 yields an exact integer, 1-^3 does not, and
240 X 230 + 1 ^Qgg j^Qj^ because the result requires

greater than 64 bits of precision.

Data Types and Formats

The 8087 recognizes seven numeric data types,

divided into three classes: binary integers, packed
decimal integers, and binary reals. Section S.4

describes how these formats are stored in memory
(the sign is always located in the highest- address-

ed byte). Figure S-11 summarizes the format of

each data type. In the figure, the most significant

digits of all numbers (and fields within numbers)

are the leftmost digits. Table S-2 provides the

range and number of significant (decimal) digits

that each format can accommodate.

S-13

8087 NUMERIC DATA PROCESSOR

INCREASING SIGNIFICANCE

WORD INTFHPR s MAGNITUDE (TWOS
COMPLEMENT)

15 0

QWHRT IMTPfiPRonuni inicucn co MAGNITUDE TWOS
COMPLEMENT)

31 0

LONG INTEGER S MAGNITUDE TWOS
COMPLEMENT)

63 0

PACKED DECIMAL S X
MAGNITUDE

79 72

SHORT REAL

LONG REAL

BIASED
EXPONENT

31

63

SIGNIFICAND

23V̂— I 1

BIASED
EXPONENT

52ŷ— I k

SIGNIFICAND

TEMPORARY REAL

79

BIASED
EXPONENT

64 63'

SIGNIFICAND

NOTES:
S = Sign bit (0 = positive. 1 = negative)

''n = Decimal digit (two per byte)

X = Bits have no significance: 8087 ignores when loading, zeros when storing.

i = Position of implicit binary point

I Integer bit of signlficand: stored in temporary real, implicit in short and long real

Exponent Bias (normalized values):

Short Real: 127 (7FH)

Long Real: 1023 (3FFH)

Temporary Real: 16383 (3FFFH)

Figure S-11. Data Formats

Binary Integers

The three binary integer formats are identical

except for length, which governs the range that

can be accommo(date(j in each format. The left-

most bit is interpreted as the number's
sign: O=positive and l=negative. Negative
numbers are represented in standard two's com-
plement notation (the binary integers are the only

8087 format to use two's complement). The quan-
tity zero is represented w ith a positive sign (all bits

are 0). The 8087 word integer format is identical

to the 16-bit signed integer data type of the 8086

and 8088.

Decimal Integers

Decimal integers are stored in packed decimal

notation, with two decimal digits "packed" into

each byte, e.xcepi the leftmost byte, which carries

the sign bit (0 = positive, 1 = negative). Negative

S-14

8087 NUMERIC DATA PROCESSOR

numbers are not stored in two's complement form
and are distinguished from positive numbers only

by the sign bit. The most significant digit of the

number is the leftmost digit. All digits must be in

the range 0H-9H.

Real Numbers

The 8087 stores real numbers in a three-field

binary format that resembles scientific, or

exponential, notation. The number's significant

digits are held in the significand field, the

exponent field locates the binary point within the

significant digits (and therefore determines the

number's magnitude), and ihe sign field indicates

whether the number is positive or negative. (The

exponent and significand are analogous to the

terms "characteristic" and "mantissa" used to

describe floating point numbers on some com-
puters.) Negative numbers differ from positive

numbers only in their sign bits.

Table S-4 shows how the real number 178.125

(decimal) is stored in the 8087 short real format.

The table lists a progression of equivalent nota-

tions that express the same value to show how a

number can be converted from one form to

another. The ASM-86 and PL/M-86 language

translators perform a similar process when they

encounter programmer-defined real number con-

stants. Note that not every decimal fraction has

an exact binary equivalent. The decimal num.ber

1/10, for example, cannot be expressed exactly

in binary (just as the number 1/3 cannot be

expressed exactly in decimal). When a translator

encounters such a value, it produces a rounded
binary approximation of the decimal value.

The NDP usually carries the digits of the signifi-

cand in normalized form. This means that, except

for the value zero, the significand is an integer

and a fraction as follows:

l^fff.-.ff

where A indicates an assumed binary point. The
number of fraction bits varies according to the

real format: 23 for short, 52 for long and 63 for

temporary real. By normalizing real numbers so

that their integer bit is always a 1, the 8087

eliminates leading zeros in small values (ixj < 1).

This technique maximizes the number of signifi-

cant digits that can be accommodated in a

significand of a given width. Note that in the

short and long real formats the integer bit is

implicit and is not actually stored; the integer bit

is physically present in the temporary real format

only.

If one were to examine only the significand with

its assumed binary point, all normalized real

numbers would have values between 1 and 2. The
exponent field locates the actual binary point in

the significant digits. Just as in decimal scientific

notation, a positive exponent has the effect of

moving the binary point to the right and a

negative exponent effectively moves the binary

point to the left, inserting leading zeros as

necessary. An unbiased exponent of zero

Table S-4. Real Number Notation

Notation Value

Ordinary Decimal 178.125

Scientific Decimal 1^78125E2

Scientific Binary 1^0110010001 Bill

Scientific Binary

(Biased Exponent)
1^0110010001 El 00001 10

8087 Short Real

(Normalized)

Sign
Biased

Exponent
Significand

0 10000110 01100100010000000000000

t_ 1^ (implicit)

S-15

8087 NUMERIC DATA PROCESSOR

indicates that the position of the assumed binary

point is also the position of the actual binary

point. The exponent field, then, determines a real

number's magnitude.

In order to simplify comparing real numbers

(e.g., for sorting), the 8087 stores exponents in a

biased form. This means that a constant is added

to the true exponent described above. The value

of this bias is different for each real format (see

figure S-1 1). It has been chosen so as to force the

biased exponent to be a positive value. This

allows two real numbers (of the same format and

sign) to be compared as if they are unsigned

binary integers. That is, when comparing them

bitwis^e from left to right (beginning with the left-

most exponent bit), the first bit position that

differs orders the numbers; there is no need to

proceed further with the comparison. A number's

true exponent can be determined simply by sub-

tracting the bias value of its format.

The short and long real formats exist in memory
only. If a number in one of these formats is

loaded into a register, it is automatically

converted to temporary real, the format used for

all internal operations. Likewise, data in registers

can be converted to short or long real for storage

in memory. The temporary real format may be

used in memory also, typically to store

intermediate results that cannot be held in

registers.

Most applications should use the long real form
to store real number data and results; it provides

sufficient range and precision to return correct

results with a minimum of programmer attention.

The short real format is appropriate for applica-

tions that are constrained by memory, but it

should be recognized that this format provides a

smaller margin of safety. It is also useful for

debugging algorithms because roundoff problems
will manifest themselves more quickly in this for-

mat. The temporary real format should normally

be reserved for holding intermediate results, loop

accumulations, and constants. Its extra length is

designed to shield final results from the effects

of rounding and overflow/underflow in inter-

mediate calculations. When the temporary real

format is used to hold data or to deliver final

results, the safety features built into the 8087 are

compromised. Furthermore, the range and preci-

sion of the long real form are adequate for most
microcomputer applications.

Special Values

Besides being able to represent positive and
negative numbers, the 8087 data formats may be

used to describe other entities. These special

values provide extra flexibility but most users do
not need to understand them in detail to use the

8087 successfully. Accordingly, they are discussed

here only briefly; expanded coverage, including

the bit encoding of each value, is provided in

sections. 9.

The value zero may be signed positive or negative

in the real and decimal integer formats; the sign

of a binary integer zero is always positive. The
fact that zero may be signed, however, is

transparent to the programmer.

The real number formats allow for the representa-

tion of the special values +°° and -o°. The 8087

may generate these values as its built-in response

to exceptions such as division by zero, or the

attempt to store a result that exceeds the upper

range limit of the destination format. Infinities

may participate in arithmetic and comparison
operations, and in fact the processor provides two

different conceptual models for handling these

special values.

If a programmer attempts an operation for which

the 8087 cannot deliver a reasonable result, it will,

at the programmer's discretion, either request an

interrupt, or return the special value indefinite.

Taking the square root of a negative number is an

example of this type of invalid operation. The
recommended action in this situation is to stop

the computation by trapping to a user-written

exception handler. If, however, the programmer
elects to continue the computation, the specially

coded indefinite value will propagate through the

calculation and thus flag the erroneous computa-

tion when it is eventually delivered as the result.

Each format has an encoding that represents the

special value indefinite

.

In the real formats, a whole range of special

values, both positive and negative, is designated

to represent a class of values called NAN (Not-A-

Number). The special value indefinite is a

reserved NAN encoding, but all other encodings

are made available to be defined in any way by

application software. Using a NAN as an operand

raises the invalid operation exception, and can

trap to a user-written routine to process the NAN.
Alternatively, the 8087's built-in exception

S-16

8087 NUMERIC DATA PROCESSOR

Table S-5. Rounding Modes

RC Field Rounding IVIode Rounding Action

00 Round to nearest Closer to it) of a ore; if

equally close, select even

number (thie one whose
least significant bit is zero).

01 Round down (toward -<») a

10 Round up (toward +°°) c

11 Ciiop (toward 0) Smaller in magnitude of

a ore

Note: a <b <c;a and c are representable, b is not.

handler will simply return the NAN itself as the

result of the operation; in this way NANs,
including indefinite

,
may be propagated through

a calculation and delivered as a final, special-

valued, result. One use for NANs is to detect

uninitialized variables.

destination cannot exactly represent the infinitely

precise true result. For example, a real number
may be rounded if it is stored in a shorter real for-

mat, or in an integer format. Or, the infinitely

precise true result may be rounded when it is

returned to a register.

As mentioned earlier, the 8087 stores non-zero

real numbers in "normalized floating point"

form. It also provides for storing and operating

on reals that are not normalized, i.e., whose

significands contain one or more leading zeros.

Nonnormals arise when the result of a calculation

yields a value that is too small to be represented in

normal form. The leading zeros of nonnormals

permit smaller numbers to be represented, at the

cost of some lost precision (the number of signifi-

cant digits is reduced by the leading zeros). In

typical algorithms, extremely small values are

most likely to be generated as intermediate, rather

than final results. By using the NDP's temporary

real format for holding intermediates, values as

small as ±3.4xlO~'*^^2 can be represented; this

makes the occurrence of nonnormal numbers a

rare phenomenon in 8087 applications. Never-

theless, the NDP can load, store and operate on

nonnormalized real numbers.

Rounding Control

Internally, the 8087 employs three extra bits

(guard, round and sticky bits) which enable it to

represent the infinitely precise true result of a

computation; these bits are not accessible to

programmers. Whenever the destination can

represent the infinitely precise true result, the

8087 delivers it. Rounding occurs in arithmetic

and store operations when the format of the

The NDP has four rounding modes, selectable by

the RC field in the control word (see figure S-7).

Given a true result b that cannot be represented

by the target data type, the 8087 determines the

two representable numbers a and c that most

closely bracket b in value (a < b < c). The pro-

cessor then rounds (changes) to a or to c

according to the mode selected by the RC field as

shown in table S-5. Rounding introduces an error

in a result that is less than one unit in the last

place to which the result is rounded. "Round to

nearest" is the default mode and is suitable for

most applications; it provides the most accurate

and statistically unbiased estimate of the true

result. The "chop" mode is provided for integer

arithmetic applications.

"Round up" and "round down" are termed

directed rounding and can be used to implement

interval arithmetic. Interval arithmetic generates

a certifiable result independent of the occurrence

of rounding and other errors. The upper and

lower bounds of an interval may be computed by

executing an algorithm twice, rounding up in one

pass and down in the other.

Precision Control

The 8087 allows results to be calculated with 64,

53, or 24 bits of precision as selected by the PC
field of the control word. The default setting, and

S-17

8087 NUMERIC DATA PROCESSOR

the one that is best-suited for most applications, is

the full 64 bits. The other settings are required by

the proposed IEEE standard, and are provided to

obtain compatibility with the specifications of

certain existing programming languages. Specify-

ing less precision nullifies the advantages of the

temporary real format's extended fraction length,

and does not improve execution speed. When
reduced precision is specified, the rounding of the

fraction zeros the unused bits on the right.

Infinity Control

The 8087's system of real numbers may be closed

by either of two models of infinity. These two

means of closing the number system, projective

and affine closure, are illustrated schematically in

figure S-12. The setting of the IC field in the con-

trol word selects one model or the other. The
default means of closure is projective, and this is

recommended for most computations. When pro-

jective closure is selected, the NDP treats the

special values +°° and -°° as a single unsigned

infinity (similar to its treatment of signed zeros).

In the affine mode the NDP respects the signs of

+°° and -00.

While affine mode may provide more informa-

tion than projective, there are occasions when the

sign may in fact represent misinformation. For

example, consider an algorithm that yields an

intermediate result x of +0 and -0 (the same
numeric value) in different executions. If 1/x

were then computed in affine mode, two entirely

different values {+°° and -°o) would result from
numerically identical values of x. Projective

mode, on the other hand, provides less informa-

tion but never returns misinformation. In general,

then, projective mode should be used globally,

oo

0

PROJECTIVE CLOSURE

0

AFFINE CLOSURE

Figure S-12. Projective Versus Affine Closure

with affine mode reserved for local computations
where the programmer can take advantage of the

sign and knows for certain that the nature of the

computation will not produce a misleading result.

Exceptions

During the execution of most instructions,

the 8087 checks for six classes of exception

conditions.

The 8087 reports invalid operation if any of the

following occurs:

• An attempt to load a register that is not

empty, (e.g., stack overflow),

• An attempt to pop an operand from an
empty register (e.g., stack underflow),

• An operand is a NAN,

• The operands cause the operation to be

indeterminate (0/0, square root of a negative

number, etc.).

An invalid operation generally indicates a pro-

gram error.

If the exponent of the true result is too large for

the destination real format, the 8087 signals

overflow. Conversely, a true exponent that is too

small to be represented results in the underflow

exception. If either of these occur, the result of

the operation is outside the range of the destina-

tion real format.

Typical algorithms are most likely to produce

extremely large and small numbers in the calcula-

tion of intermediate, rather than final, results.

Because of the great range of the temporary real

format (recommended as the destination format

for intermediates), overflow and underflow are

relatively rare events in most 8087 applications.

If division of a finite non-zero operand by zero is

attempted, the 8087 reports the zerodivide

exception.

If an instruction attempts to operate on a denor-

mal, the NDP reports the denormalized

exception. This exception is provided for users

who wish to implement, in software, an option of

the proposed IEEE standard which specifies that

operands must be prenormalized before they are

used.

S-18

8087 NUMERIC DATA PROCESSOR

If the result of an operation is not exactly

representable in the destination format, the 8087
rounds the number and reports the precision

exception. This exception occurs frequently and
indicates that some (generally acceptable)

accuracy has been lost; it is provided for applica-

tions that need to perform exact arithmetic only.

Invalid operation, zerodivide, and denormalized
exceptions are detected before an operation

begins, while overflow, underflow, and precision

exceptions are not raised until a true result has

been computed. When a "before" exception is

detected, the register stack and memory have not

yet been updated, and appear as if the offending

instruction has not been executed. When an
"after" exception is detected, the register stack

and memory appear as if the instruction has run

to completion, i.e., they may be updated.

(However, in a store or store and pop operation,

unmasked over/underflow is handled like a

"before" exception; memory is not updated and
the stack is not popped.) In cases where multiple

exceptions arise simultaneously, one exception is

signalled according to the following precedence

sequence:

• Denormalized (if unmasked),

• Invalid operation,

• Zerodivide,

• Denormalized (if masked),

• Over/underflow,

• Precision.

(The terms "masked" and "unmasked" are

explained shortly.) This means, for example, that

zero divided by zero will result in an invalid

operation and not a zerodivide exception.

The 8087 reports an exception by setting the cor-

responding flag in the status word to 1. It then

checks the corresponding exception mask in the

control word to determine if it should "field" the

exception (mask=l), or if it should issue an inter-

rupt request to invoke a user-written exception

handler (mask=0). In the first case, the exception

is said to be masked (from user software) and the

NDP executes its on-chip masked response for

that exception. In the second case, the exception

is unmasked, and the processor performs its

unmasked response. The masked response always

produces a standard result and then proceeds with

the instruction. The unmasked response always

traps to user software by interrupting the CPU

(assuming the interrupt path is clear). These

responses are summarized in table S-6. Section

S.9 contains a complete description of all excep-

tion conditions and the NDP's masked responses.

Note that when exceptions are masked, the NDP
may detect multiple exceptions in a single instruc-

tion, since it continues executing the instruction

after performing its masked response. For

example, the 8087 could detect a denormalized

operand, perform its masked response to this

exception, and then detect an underflow.

By writing different values into the exception

masks of the control word, the user can accept

responsibility for handling exceptions, or delegate

this to the NDP. Exception handling software is

often difficult to write, and the 8087's masked
responses have been tailored to deliver the most

"reasonable" result for each condition. The
majority of applications will find that masking all

exceptions other than invalid operation will yield

satisfactory results with the least programming
investment. An invalid operation exception

normally indicates a fatal error in a program that

must be corrected; this exception should not

normally be masked.

The exception flags are "sticky" and can be

cleared only by executing the FCLEX (clear

exceptions) instruction, by reinitializing the pro-

cessor, or by overwriting the flags with an
FRSTOR or FLDENV instruction. This means
that the flags can provide a cumulative record of

the exceptions encountered in a long calculation.

A program can therefore mask all exceptions (ex-

cept, typically, invalid operation), run the

calculation and then inspect the status word to see

if any exceptions were detected at any point in the

calculation. Note that the 8087 has another set of

internal exception flags that it clears before each

instruction. It is these flags and not those in the

status word that actually trigger the 8087's excep-

tion response. The flags in the status word pro-

vide a cumulative record of exceptions for the

programmer only.

If the NDP executes an unmasked response to an
exception, it is assumed that a user exception

handler will be invoked via an interrupt from the

8087. The 8087 sets the IR (interrupt request) bit

in the status word, but this, in itself, does not

guarantee an immediate CPU interrupt. The
interrupt request may be blocked by the lEM
(interrupt-enaWe mask) in the 8087 control word,

S-19

8087 NUMERIC DATA PROCESSOR

Table S-6. Exception and Response Summary

Exception Masked Response Unmasked Response

Invalid

Operation

If one operand is NAN, return it; if

both are NANs, return NAN with

larger absolute value; if neither is

NAN, return indefinite

.

Request interrupt.

Zerodivide Return °o signed with "exclusive

or" of operand signs.

Request interrupt.

Denormalized Mennory operand: proceed as

usual. Register operand: convert

to valid unnormal, then re-evaluate

for exceptions.

Request interrupt.

Overflow Return properly signed °°. Register destination: adjust
exponent*, store result, request

interrupt. Mennory destination:

request interrupt.

Underflow Denormalize result. Register destination: adjust
exponent*, store result, request

interrupt. Memory destination:

request interrupt.

Precision Return rounded result. Return rounded result, request

interrupt.

*0n overflow, 24,576 decimal is subtracted from the true result's exponent; this forces the exponent back

into range and permits a user exception handler to ascertain the true result from the adjusted result that

is returned. On underflow, the same constant is added to the true result's exponent.

by the 8259A Programmable Interrupt Con-
troller, or by the CPU itself. If any exception flag

is unmaslced, it is imperative that the interrupt

path to the CPU is eventually cleared so that the

user's software can field the exception and the

offending task can resume execution. Interrupts

are covered in detail in section S.6.

A user-written exception handler takes the form
of an 8086/8088 interrupt procedure. Although
exception handlers will vary widely from one
application to the next, most will include these

basic steps:

• Store the 8087 environment (control, status

and tag -words, operand and instruction

pointers) as it existed at the time of the

exception;

• Clear the exception bits in the status word;

• Enable interrupts on the CPU;

• Identify the exception by examining the

status and control words in the saved

environment;

• Take application-dependent action;

• Return to the point of interruption, resuming

normal execution.

Possible "application-dependent actions"

include:

• Incrementing an exception counter for later

display or printing;

• Printing or displaying diagnostic
information (e.g., the 8087 environment and

registers);

• Aborting further execution of the calculation

causing the exception;

• Aborting all further execution;

• Using the exception pointers to build an

instruction that will run without exception

and executing it.

• Storing a diagnostic value (a NAN) in the

result and continuing with the computation.

S-20

8087 NUMERIC DATA PROCESSOR

Notice that an exception may or may not con-
stitute an error depending on the application. For
example, an invalid operation caused by a stack

overflow could signal an ambitious exception

handler to extend the register stack to memory
and continue running.

S.4 Memory
The 8087 can access any location in its host

CPU's megabyte memory space. Because it relies

on the CPU to generate the addresses of memory
operands, the NDP can take advantage of the

CPU's memory addressing modes and its ability

to relocate code and data during execution.

Data Storage

Figures S-13 and S-14 show how the 8087 data

types are stored in memory. The sign bit is always

located in the highest-addressed byte. The least

significant binary or decimal digits in a number

+ 1 sisi
|B|

II
+ 0 IS

IB

7 0

WORD INTEGER

+ 7

+ 6

+ 5

+ 4

+ 3

+ 2

+ 1

+ 0

'Ml

Sis I

+ 3

+ 2

+ 1

+ 0

lA
UJ
OC
Q
O
<

+ 9

+ 8

+ 7

+ 6

+ 5

= +4

+ 3

-t-2

+ 1

+ 0

sisl
|B|

+ 3 SjSI

ri
1l
IS

1«

+ 2
l'm'
sisl
E,F,

7 (

SHORT INTEGER
)

+ 1

'l

1

SI (X)

+ 0 IS

1 7 0

MSD
1

SHORT REAL

+ 7 Sisl
|E|

+ 6
'lX
islsl
|E|F,

+ 5

+ 4

+ 3

+ 2

+ 1

1 LSD + 0

II

IS
,F

+ 9

+ 8

+ 7

+ 6

+ 5

(/)

ui
</>

05
111

cc
o
a
<
tr.

UJ
X
o
5 +2

+ 4

+ 3

+ 1

+ 0

SIS I

|E|

IjSI

7 0

LONG INTEGER PACKED DECIMAL LONG REAL TEMPORARY REAL

S: Sign bit

MSB/LSB: Most/least significant bit

MSD/LSD: Most/least significant decimal digit

(X): Bits have no significance

S: Sign bit

MSE/LSE: Most/least significant exponent bit

MSF/LSF: Most/least significant fraction bit

I: Integer bit of significand

Figure S-13. Storage of Integer Data Types Figure S-14. Storage of Real Data Types

S-21

8087 NUMERIC DATA PROCESSOR

(or in a field in the case of reals) are those with the

lowest addresses. The word integer format is

stored exactly like an 8086/8088 16-bit signed

integer, and is directly usable by instructions

executed on either the CPU or the NDP.

A few special instructions access memory to load

or store formatted processor control and state

data. The formats of these memory operands are

provided with the discussions of the instructions

in section S.7.

Storage Access

The host CPU always generates the address of the

first (lowest-addressed) byte of a memory
operand: The CPU interprets an 8087 instruction

that references memory as an ESC (escape), and

generates the operand's effective and physical

addresses normally as discussed in section 2.3.

Any 8086/8088 memory addressing mode

—

direct, register indirect, based, indexed or based

indexed—can be used to access an 8087 operand

in memory. This makes the NDP easy to use with

data structures such as arrays, structures, and

lists.

When the CPU emits the 20-bit physical address

of the memory operand, the 8087 captures the

address and saves it. If the instruction loads

information into the NDP, the 8087 captures the

lowest-addressed word when it becomes available

on the bus as a result of the CPU's "dummy
read." (The "dummy read" may require either

one or two bus cycles depending on the CPU type

and the alignment of the operand.) If the operand
is longer than one word (all 8087 operands are an

integral number of words), the 8087 immediately

requests use of the local bus by activating its CPU
request/grant (RQ/GTO) line, as described in

section S.6. When the NDP obtains the buSj it

runs consecutive bus cycles incrementing the

saved address until the rest of the operand has

been obtained, returns the local bus to the CPU,
and then executes the instruction.

If an operation stores data from the NDP to

memory, the NDP and the CPU both ignore the

data placed on the bus by the CPU's "dummy
read." The NDP does not request the bus from
the CPU until it is ready to write the result of the

instruction to memory. When it obtains the bus,

the NDP writes the operand in successive bus
cycles, incrementing the saved address as in a

load.

As described in section S.6, the 8087 automati-

cally determines the identity of its host CPU.
When the NDP is wired to an 8088, it transfers

one byte per bus cycle in the same manner as the

CPU. When used with an 8086, the NDP again

operates like the CPU, accessing odd-addressed

words in two bus cycles and even-addressed words
in one bus cycle. If the 8087 is reading or writing

more than one word of an odd-addressed operand
in 8086 memory, it optimizes the transfer by
accessing a byte on the first transfer, forcing the

address to even, and then transferring words up
to the last byte of the operand.

To minimize operand transfer time and 8087 use

of the system bus, it is advantageous to align 8087

memory operands on even addresses when the

CPU is an 8086. Following the same practice for

8088-based systems will ensure top performance
without reprogramming if the application is

transferred to an 8086. The ASM-86 EVEN direc-

tive can be used to force word alignment.

Dynamic Relocation

Since the host CPU takes care of both instruction

fetching and memory operand addressing, the

NDP may be utilized in systems that alter pro-

gram addresses during execution. The only

restriction on the CPU is that it should not change

the address of an 8087 operand while the 8087 is

executing an instruction which stores a result to

that address. If this is done, the 8087 will store to

the operand's old address (the one it picked up

during the "dummy read").

Dedicated and Reserved

Memory Locations

The 8087 does not require any addresses in

memory to be set aside for special purposes. Care

should be taken, however, to respect the

dedicated and reserved areas associated with the

CPU and the lOP (see sections 2.3 and 3.3).

Using any of these areas may inhibit compatibility

with current or future Intel hardware and soft-

ware products.

8.5 Multiprocessing Features

As a coprocessor to an 8086 or 8088 CPU, the

NDP is by definition always used in a

multiprocessing environment. This section

S-22

8087 NUMERIC DATA PROCESSOR

describes the facilities built into the 8087 that

simplify the coordinaton of multiple processor

systems. Included are descriptions of instruction

synchronization, local and system bus arbitra-

tion, and shared resource access control.

Instruction Synchronization

In the execution of a typical NDP instruction, the

CPU will complete the ESC long before the 8087
finishes its interpretation of the same machine
instruction. For example, the NDP performs a

square root in about 180 clocks, while the CPU
will execute its interpretation of this same instruc-

tion in 2 clocks. Upon completion of the ESC, the

CPU will decode and execute the next instruction,

and the NDP's CU, tracking the CPU, will do the

same. (The NDP "executes" a CPU instruction

by ignoring it). If the CPU has work to do that

does not affect the NDP, it can proceed with a

series of instructions while the NDP is executing

in parallel; the NDP's CU will ignore these CPU-
only instructions as they do not contain the 8087

escape code. This asynchronous execution of the

processors can substantially improve the

performance of systems that can be designed to

exploit it.

There are two cases, however, when it is necessary

to synchronize the execution of the CPU to the

NDP:

1. An NDP instruction that is executed by the

NEU must not be started if the NEU is still

busy executing a previous instruction.

2. The CPU should not execute an instruction

that accesses a memory operand being

referenced by the NDP until the NDP has

actually accessed the location.

The 8086/8088 WAIT instruction allows software

to synchronize the CPU to the NDP so that the

CPU will not execute the following instruction

until the NDP is finished with its current (if any)

instruction.

Whenever the 8087 is executing an instruction, it

activates its BUSY line. This signal is wired to the

CPU's TEST input as shown in figure S-3. The
NDP ignores the WAIT instruction, and the CPU
executes it. The CPU interprets the WAIT
instruction as "wait while TEST is active." The
CPU examines the TEST pin every 5 clocks; if

TEST is inactive, execution proceeds with the

instruction following the WAIT. If TEST is

active, the CPU examines the pin again. Thus, the

effective execution time of a WAIT can stretch

from 3 clocks (3 clocks are required for decoding

and setup) to infinity, as long as TEST remains

active. The WAIT instruction, then, prevents the

CPU from decoding the next instruction until the

8087 is not busy. The instruction following a

WAIT is decoded simultaneously by both

processors.

To satisfy the first case mentioned above, every

8087 instruction that affects the NEU should be

preceded by a WAIT to ensure that the NEU is

ready. All instructions except the processor

control class affect the NEU. To simplify pro-

gramming, the 8086 family language translators

provide the WAIT automatically. When an

assembly language programmer codes:

FMUL ;(multiply)

FDIV ;(divicle)

the assembler produces four machine
instructions, as if the programmer had written:

WAIT
FMUL
WAIT
FDIV

This ensures that the multiply runs to completion
before the CPU and the 8087 CU decode the

divide.

To satisfy the second case, the programmer
should explicitly code the FWAIT instruction

immediately before a CPU instruction that

accesses a memory operand read or written by a

previous 8087 instruction. This will ensure that

the 8087 has read or written the memory operand
before the CPU attempts to use it. (The FWAIT
mnemonic causes the assembler to create a CPU
WAIT instruction that can be eliminated at link

time if the program is to run on an 8087 emulator.

See section S.8 for details.)

Figure S-I5 is a hypothetical sequence of

instructions that illustrates the effect of the

WAIT instruction and parallel execution of the

NDP with a CPU.

The first two instructions in the sequence (FMUL
and FSQRT) are 8087 instructions that illustrate

the ASM-86 assembler's automatic generation of

S-23

8087 NUMERIC DATA PROCESSOR

ASSUME 8087 REGISTER STACK IS LOADED WITH OPERANDS,
NEU IS NOT BUSY,
AND THAT 'ALPHA' AND 'BETA' ARE WORD
INTEGERS .

CONTINUE:

FMU L

FSQRT
CMP
J G

MOV
FIST
FWA I T

MOV

ALPHA , 1 00
CONTINUE
A LPHA , 1 00
BETA

AX , BETA

MULTIPLY TOP STACK
ELEMENTS
SQUARE ROOT OF PRODUCT
ALPHA > 100'
YES, LEAVE UNALTERED
NO, SET TO 100
STORE ROOT AS INTEGER WORD
WAIT FOR 8087 TO COMPLETE
STORE OF BETA
PROCEED TO PROCESS BETA

NOP: FMUL FSQRT FIST

BUSY-»TEST / W"
TEST: f N ' V7 V.

CPU: [wAItJ ESC [wAITj ESC
I I

CMP
I I

JG
I

[
MOV

I

[WAIT^ ESC
|

|
V\/A1T

|
|
MOV

|

NOTES:

• ^WAI^ = Assembler-generated instruction.

• Instruction execution times are not drawn to scale.

Figure S-1 5 . Synchronizing Execution With WAIT

a preceding WAIT, and the effect of the WAIT
when the NDP is, and is not, busy. Since the NDP
is not busy when the first WAIT is encountered,

the CPU executes it and immediately proceeds to

the next instruction; the NDP ignores the WAIT.
The next instruction is decoded simultaneously by

both processors. The NDP starts the multiplica-

tion and raises its BUSY line. The CPU executes

the ESC and then the second WAIT. Since TEST
is active (it is tied to BUSY), the CPU effectively

stretches execution of this WAIT until the NDP
signals completion of the multiply by lowering

BUSY. The next instruction is interpreted as a

square root by the NDP and another escape by
the CPU. The CPU finishes the ESC well before

the NDP completes the FSQRT. This time, in-

stead of waiting, the CPU executes three instruc-

tions (compare, jump if greater, and move) while

the 8087 is working on the FSQRT. The 8087
ignores these CPU-only instructions. The CPU
then encounters the third WAIT, generated by the

assembler immediately preceding the FIST (store

stack top into integer word). When the NDP
finishes the FSQRT, both processors proceed to

the next instruction, FIST to the NDP and ESC to

the CPU. The CPU completes the escape quickly

and then executes an explicit programmer-coded
FWAIT to ensure that the 8087 has updated
BETA before it moves BETA'S new value to

register AX.

The 8087 CU can execute most processor control

instructions by itself regardless of what the NEU
is doing: thus the 8087 can, in these cases, poten-

tially execute two instructions at once. The
ASM-86 assembler provides separate "wait" and

"no wait" mnemonics for these instructions. For

example, the instruction that sets the 8087 inter-

rupt enable mask, and thus disables interrupts,

can be coded as FDISI or FNDISI. The assembler

does not generate a preceding WAIT if the second

form is coded, so that interrupts can be disabled

while the NEU is busy executing a previous

instruction. The no-wait forms are principally

used in exception handlers and operating systems.

Local Bus Arbitration

Whenever an NDP instruction writes data to

memory, or reads more than one word from

memory, the NDP forces the CPU to relinquish

the local bus. It does this by means of the

request/grant facility built into all 8086 family

processors. For memory reads, the NDP requests

the bus immediately upon the CPU's completion

of its "dummy read" cycle; it follows from this

that the CPU may "immediately" update a

variable read by the NDP in the previous instruc-

tion with the assurance that the NDP will have

obtained the old value before the CPU has altered

it. For memory writes, the NDP performs as

Mnemonics © Intel 1978, 1980
S-24

8087 NUMERIC DATA PROCESSOR

much processing as possible before requesting the

bus. In all cases, the 8087 transfers the data in

back-to-back bus cycles and then immediately
releases the bus.

The 8087's RQ/GTO line is wired to one of the

CPU's request/grant lines. Connecting it to

RQ/GTl on the CPU (see figure S-3) leaves the

higher priority RQ/GTO open for possible attach-

ment of a local 8089 to the CPU. Note that an
8089 on RQ/GTO will obtain the bus if it requests

it simultaneously with an 8087 attached to

RQ/GTl; it cannot, however, preempt the 8087 if

the 8087 has the bus. The NDP requests the local

bus by pulsing its RQ/GTO line. If the CPU has

the bus, it will grant it to the NDP by pulsing the

same request/grant line. The CPU grants the bus
immediately unless it is running a bus cycle, in

which case the grant is delayed until the bus cycle

is completed. The NDP releases the bus back to

the CPU by sending a final pulse on RQ/GTO
when it has completed the transfer.

The 8087 provides a second request/grant line,

RQ/GTl, that may be used to service local bus
requests from an 8089 Input/Output Processor

(see figure S-3). By using this line, a CPU, two
lOPs (one is attached directly to the CPU) and an
NDP can all reside on the same local bus, sharing

a single set of system bus interface components.

When the 8087 detects a bus request pulse on
RQ/GTl, its response depends on whether it is

idle, executing, or running a bus cycle. If it is idle

or executing, the 8087 passes the bus request

through to the CPU via RQ/GTO. The sub-

sequent grant and release pulses are also passed

between the CPU and the requesting device. If the

8087 is running a bus cycle (or a series of bus

cycles), it has already obtained the bus from the

CPU so it grants the bus directly at the end of the

current bus cycle rather than passing the request

on to the CPU. When the 8089 releases the bus,

the 8087 resumes the series of bus cycles it was

running before it granted the bus to the 8089.

Thus, to an 8089 attached to the 8087's RQ/GTl
line, the NDP appears to be a CPU. An lOP
attached to an NDP also effectively has higher

local bus priority than the NDP, since it can force

the NDP to relinquish the bus even in the midst of

a multi-cycle transfer. This satisfies the typical

system requirement for I/O transfers to be ser-

viced as soon as possible.

System Bus Arbitration

A single 8288 Bus Controller (plus latches and
tranceivers as required) links both the host CPU
and the NDP to the system bus. The 8087 per-

forms system bus transfers exactly the same as its

CPU; status, address, and data signals and timing

are identical.

In systems that allow multiple processing modules
on separate local buses common access to a public

system bus, the 8087 also shares its host CPU's
8289 Bus Arbiter. The 8289 operates identically

regardless of whether the system bus request is

initiated by the CPU or the NDP. Since only one
of the processors in the module will have control

of the local bus at the time of a request to access

the system bus, the transfer will be between the

controlling processor and the system bus. If the

8289 does not obtain the system bus immediately,

it causes the bus to appear "not ready" (as if a

slow memory were being accessed), and the 8087
will stretch the bus cycle by adding the wait states.

Because it presents the same system bus interface

as a maximum mode 8086 family CPU, the NDP
is also electrically compatible with Intel's

Multibus^'^ shared system bus architecture. This

means that the 8087 can be utilized in systems that

are based on the broad line of iSBC^^ single

board computers, controllers, and memories.

Controlled Variable Access

If an 8087 and a processor other than its host

CPU can both update a variable, access to that

variable should be controlled so that one
processor at a time has exclusive rights to it. This

may be implemented by a semaphore convention

as described in section 2.5. However, since the

8087 has no facility for locking the system bus
during an instruction, the host CPU should
obtain exclusive rights to the variable before the

8087 accesses it. This can be done using an XCHG
instruction prefixed by LOCK as discussed in

section 2.5. When the NDP no longer needs the

controlled variable the CPU should clear the

semaphore to signal other processors that the

variable is again available for use.

S-25

8087 NUMERIC DATA PROCESSOR

8.6 Processor Control and
Monitoring

The FINIT (intialize) and FSAVE (save state)

instructions also initialize the processor. Unlike a
RESET pulse, software initialization does not
affect the 8087's tracking of the CPU.

Initialization

The NDP may be initialized by hardware or soft-

ware. Hardware initialization occurs in response

to a pulse on the 8087's RESET line. When the

processor detects RESET going active, it suspends

all activities. When RESET subsequently goes

inactive, the NDP initializes itself. The state of

the NDP following initialization is shown in table

S-7. Hardware initialization also causes the 8087

to identify its host CPU and begin to track its

instruction fetches and execution. Initialization

does not affect the content of the registers or of

the exception pointers (these have indeterminate

values immediately following power up).

However, since the stack is effectively emptied by
initialization (ST = 0, all registers tagged empty),

the contents of the registers should normally be

considered "destroyed" by initialization.

CPU Identification

The 8087's bidirectional BHE (bus high enable)

line is tied to pin 34 of the CPU (BHE on the

8086, SSO on the 8088). The 8088 always holds

SSO = 1 . The 8086 emits a 0 on BHE whenever it

is accessing an even-addressed word or an odd-

addressed byte.

Following RESET, the CPU always performs a

word fetch of its first instruction from the

dedicated memory location: FFFFOH. The 8087

identifies its host CPU by monitoring BHE
during the CPU's first fetch following RESET. If

BHE =1, the CPU is an 8088; if BHE =0, the

CPU is an 8086 (because the first fetch is an even-

addressed word). Note that to ensure proper

operation, the same pulse must reset both the

8087 and its host CPU.

Table S-7, Processor State Following Initialization

Field Value Interpretation

Control Word

Infinity Control 0 Projective

Rounding Control 00 Round to nearest

Precision Control 11 64 bits

Interrupt-enable Mask 1 Interrupts disabled

Exception Masks 111111 All exceptions masked

Status Word

Busy 0 Not busy

Condition Code ???? (Indeterminate)

Stack Top 000 Empty stack

Interrupt Request 0 No interrupt

Exception Flags 000000 No exceptions

Tag Word

Tags 11 Empty

Registers N.C. Not changed

Exception Pointers

Instruction Code N.C. Not changed

Instruction Address N.C. Not changed

Operand Address N.C. Not changed

S-26

8087 NUMERIC DATA PROCESSOR

Interrupt Requests

The 8087 can request an interrupt of its host CPU
via the 8087 INT (interrupt request) pin. This

signal is normally routed to the CPU's INTR
input via an 8259A Programmable Interrupt

Controller (PIC). The 8087 should not be tied to

the CPU's NMI (non-maskable interrupt) line.

All 8087 interrupt requests originate in the detec-

tion of an exception. The interrupt request logic is

illustrated in figure S-16. The interrupt request

is made if the exception is unmasked and 8087
interrupts are enabled, i.e., both the relevant

exception mask and the interrupt-enable mask are

clear (0). If the exception is masked, the processor

executes its masked response and does not set the

interrupt request bit.

If the exception is unmasked but interrupts are

disabled (lEM = 1), the 8087's action depends on
whether the CPU is waiting (the 8087 "knows" if

the CPU is waiting because it decodes the WAIT
instruction in parallel with the CPU). If the CPU
is not waiting, the 8087 assumes that the CPU
does not want to be interrupted at present and
that it will enable interrupts on the 8087 when it

does. The 8087 sets the interrupt request bit and
holds its BUSY line active. The 8087 CU con-

tinues to track the CPU, and if an 8087

instruction (without a preceding WAIT) comes
along, it will be executed. Normally in this situa-

tion the instruction would be FNENI (enable

interrupts without waiting). This will clear the

interrupt-enable mask and the 8087 will then

activate INT. However, any instruction will be

executed, and it is therefore conceivably possible

to abort the interrupt request before it is ever

handled. Aborting an interrupt request in this

manner, however, would normally be considered

a program error.

If the CPU is waiting, then the processors are in

danger of entering an endless wait condition

(discussed shortly). To prevent this condition, the

8087 ignores the fact that interrupts are disabled

and activates INT even though the interrupt-

enable mask is set.

The interrupt request bit remains set until it is

explicitly cleared (if INT is not disabled by lEM,

it will remain active also). This can be done by the

FNCLEX, FNSAVE, or FNINT instructions. The

interrupt procedure that fields the 8087's inter-

rupt request, i.e., the exception handler, must

clear the interrupt request bit before returning to

normal execution on the 8087. If it does not, the

interrupt will immediately be generated again and

the program will enter an endless loop.

Interrupt Priority

Most systems can be viewed as consisting of two

distinct classes of software: interrupt handlers

and application tasks. Interrupt handlers execute

in response to external events; in the 8086 family

they are implemented as interrupt service

procedures. (Of course, the CPU interrupt

instructions allow interrupt handlers to respond

to internal "events" also.) A hardware interrupt

controller, such as the 8259A, usually monitors

the external events and invokes the appropriate

interrupt handler by activating the CPU INTR
line, and passing a code to the CPU that identifies

the interrupt handler that is to service the event.

Since the 8259A typically monitors several events,

a priority-resolving technique is used to select one

ACTIVATE
INT

CwaitforN
EXCEPTION I

RESPONSE/

Figure S-16. Interrupt Request Logic

S-27

8087 NUMERIC DATA PROCESSOR

event when several occur simultaneously. Many
systems allow higher-priority interrupts to

preempt lower-priority interrupt handlers. The
8259A supports several priority-resolving techni-

ques; a system will normally select one of these by

programming the 8259A at initialization time.

Application tasks execute only when no external

event needs service, i.e., when no interrupt

handler is running. Application tasks are invoked

by software, rather than hardware; typically a

scheduling or dispatching algorithm is used to

select one task for execution. In effect, any inter-

rupt handler has higher priority than any applica-

tion task, since the recognition of an interrupt will

invoke the interrupt handler, preempting the

application task that was running.

There are two important questions to consider

when assigning a priority to the 8087's interrupt

request:

• Who can cause 8087 exceptions—only

application tasks, or interrupt handlers as

well?

• Who should be preempted by NDP
exceptions—only applications tasks, or inter-

rupt handlers as well?

Given these considerations, the 8087 should

normally be assigned the lowest priority of any
interrupting device in the system. This allows the

interrupt handler (i.e., the NDP exception

handler) to preempt any application task that

generates an 8087 exception, and at the same time

prevents the exception NDP handler from
interfering with other interrupt handlers.

If an interrupt handler uses the 8087 and requires

the service of the exception handler, it can effec-

tively "raise" the priority of the exception

handler by disabling all interrupts lower than

itself and higher than the 8087. Then, any un-

masked exception caused by the interrupt handler

will be fielded without interference from lower-

priority interrupts.

If, for some reason, the 8087 must be given higher

priority than another interrupt source, the inter-

rupt handler that services the lower-priority

device may want to prevent interrupts from the

8087 (which may originate in a long instruction

still running on the 8087 when the interrupt

handler is invoked) from preempting it. This

should be done by executing the FNSTCW and
FNDISI instructions before enabling CPU inter-

rupts. Before returning, the interrupt handler

should restore the original control word in the

8087 by executing FLDCW.

Users should consult "Using the 8259A Program-
mable Interrupt Controller'', Intel Application

Note No. AP-59, for a description of the 8259A's
various modes of operation.

Endless Wait

The 8087 and its host CPU can enter an endless

wait condition when the CPU is executing a

WAIT instruction and a pending interrupt request

from the 8087 is prevented from being recognized

by the CPU. Thus, the CPU will wait for the 8087

to lower its BUSY line, while the NDP will wait

for the CPU to invoke the exception handler

interrupt procedure, and the task which has

generated the exception will be blocked from
further execution.

Figure S-17 shows the typical path of an interrupt

request from the 8087 to the interrupt procedure

which is designated to field NDP exceptions. The
interrupt request can be potentially blocked at

three points along the path, creating an endless

wait if the CPU is executing a WAIT instruction.

The first block can occur at the 8087's interrupt-

enable mask (lEM). If this mask is set, the inter-

rupt request is blocked except that the 8087 will

override the mask if the CPU is waiting (the 8087

decodes the WAIT instruction simultaneously

with the CPU). Thus, the 8087 detects and

prevents one of the endless wait conditions.

A given interrupt request, IRn, can be masked on

the 8259A by setting the corresponding bit in the

PlC's interrupt mask register (IMR). This will

prevent a request from the 8087 from being

passed to the CPU. (The 8259A's normal priority-

resolving activity can also block an interrupt

request.) Finally, the CPU can exclude all

interrupts tied to INTR by clearing its interrupt-

enable flag (IF). In these two cases, the CPU can

"escape" the endless wait only if another inter-

rupt is recognized (if IF is cleared, the interrupt

must arrive on NMI, the CPU's non-maskable

interrupt line). Following execution of the inter-

rupt procedure and resumption of the WAIT, the

endless wait will be entered again, unless, as part

of its response to the interrupt it recognizes, the

CPU clears the interrupt path from the 8087.

S-28

8087 NUMERIC DATA PROCESSOR

A user-written exception handler can itself cause

an unending wait. When the exception handler

starts to run, the 8087 is suspended with its BUSY
line active, waiting for the exception to be

cleared, and interrupts on the CPU are disabled.

If, in this condition, the exception handler issues

any 8087 instruction, other than a no-wait form,

the result will be an unending wait. To prevent

this, the exception handler should clear the excep-

tion on the 8087 and enable interrupts on the

CPU before executing any instruction that is

preceded by a WAIT.

More generally, an instruction that is preceded by

a WAIT (or an FWAIT instruction) should never

be executed when CPU interrupts are disabled

and there is any possibility that the 8087's BUSY
line is active.

Status Lines

When the 8087 has control of the local bus, it

emits signals on status lines S2-S0 to identify

the type of bus cycle it is running. The 8087

generates the restricted (compared to a CPU) set

of encodings shown in table S-8. These lines

correspond exactly to the signals output by the

8086 and 8088 CPU's, and are normally decoded

by an 8288 Bus Controller.

Table S-8, Bus Cycle Status Signals

So Type of Bus Cycle

1 0 1 Read Memory

1 1 0 Write Memory

1 1 1 Passive; no bus cycle

Status line S7 is currently identical to BHE of the

same bus cycle, while S4 and S3 are both currently

1; however, these signals are reserved by Intel for

possible future use. Status line S6 emits 1 and S5

emits 0.

8.7 Instruction Set

This section describes the operation of each of the

8087's 69 instructions. The first part of the

section describes the function of each instruction

in detail. For this discussion, the instructions are

divided into six functional groups: data transfer,

arithmetic, comparison, transcendental, con-

stant, and processor control. The second part

provides instruction attributes such as execution

speed, bus transfers, and exceptions, as well

as a coding example for each combination of

operands accepted by the instruction. This

information is concentrated in a table, organized

alphabetically by instruction mnemonic, for easy

reference.

Throughout this section, the instruction set is

described as it appears to the ASM-86 program-

mer who is coding a program. Appendix A covers

the actual machine instruction encodings, which

are principally of use to those reading unfor-

matted memory dumps, monitoring instruction

fetches on the bus, or writing exception handlers.

The instruction descriptions in this section con-

centrate on describing the normal function of

each operation. Table S-19 lists the exceptions

that can occur for each instruction and table S-32

details the causes of exceptions as well as the

8087's masked responses.

The typical NDP instruction accepts one or twc

operands as "inputs", operates on these, am
produces a result as an "output". Operands are

CD

CPU

. EXCEPTION
> HANDLER

Figure S-1 7. Interrupt Request Path

S-29

8087 NUMERIC DATA PROCESSOR

most often (the contents of) register or memory
locations. The operands of some instructions are

predefined; for example, FSQRT always takes the

square root of the number in the top stack ele-

ment. Others allow, or require, the programmer
to explicitly code the operand(s) along with the

instruction mnemonic. Still others accept one

explicit operand and one implicit operand, which

is usually the top stack element.

Whether supplied by the programmer or utilized

automatically, there are two basic types of

operands, sources and destinations . A source

operand simply supplies one of the "inputs" to

an instruction; it is not altered by the instruction.

Even when an instruction converts the source

operand from one format to another (e.g., real to

integer), the conversion is actually performed in

an internal work area to avoid altering the source

operand. A destination operand may also provide

an "input" to an instruction. It is distinguished

from a source operand, however, because its con-

tent may be altered when it receives the result

produced by the operation; that is, the destination

is replaced by the result.

Many instructions allow their operands to be cod-

ed in more than one way. For example, FADD
(add real) may be written without operands, with

only a source or with a destination and a source.

The instruction descriptions in this section

employ the simple convention of separating alter-

native operand forms with slashes; the slashes,

however, are not coded. Consecutive slashes in-

dicate an option of no explicit operands. The
operands for FADD are thus described as:

//source/destination, source

This means that FADD may be written in any of

three ways:

FADD
FADD source
?kDD destination, source

When reading this section, it is important

to bear in mind that memory operands may be

coded with any of the CPU's memory addressing

modes. To review these modes—direct, register

indirect, based, indexed, based indexed— refer to

sections 2.8 and 2.9. Table S-22 in this chapter

also provides several addressing mode examples.

Data Transfer Instructions

These instructions (summarized in table S-9)

move operands among elements of the register

stack, and between the stack top and memory.
Any of the seven data types can be converted to

temporary real and loaded (pushed) onto the

stack in a single operation; they can be stored to

memory in the same manner. The data transfer

instructions automatically update the 8087 tag

word to reflect the register contents following the

instruction.

FLD source

FLD (load real) loads (pushes) the source operand
onto the top of the register stack. This is done by
decrementing the stack pointer by one and then

copying the content of the source to the new stack

top. The source may be a register on the stack

(ST(i)) or any of the real data types in memory.
Short and long real source operands are converted

to temporary real automatically. Coding FLD
ST(0) duplicates the stack top.

Table S-9. Data Transfer Instructions

Real Transfers

FLD Load real

FST Store real

FSTP Store real and pop

FXCH Exchange registers

Integer Transfers

FILD Integer load

FIST Integer store

FISTP Integer store and pop

Packed Decimal Transfers

FBLD Packed decimal (BCD) load

FBSTP Packed decimal (BCD) store and pop

FST destination

FST (store real) transfers the stack top to the

destination, which may be another register on the

stack or a short or long real memory operand. If

the destination is short or long real, the signifi-

cand is rounded to the width of the destination

Mnemonics £ Intel1980

S-30

8087 NUMERIC DATA PROCESSOR

according to the RC field of the control word,
and the exponent is converted to the width and
bias of the destination format.

If, however, the stack top is tagged special (it con-
tains °o, a NAN, or a denormal) then the stack

top's significand is not rounded but is chopped
(on the right) to fit the destination. Neither is the

exponent converted, but it also is chopped on the

right and transferred "as is". This preserves the

value's identification as <» or a NAN (exponent
all ones) or a denormal (exponent all zeros) so

that it can be properly loaded and tagged later in

the program if desired.

FSTP destination

FSTP (store real and pop) operates identically to

FST except that the stack is popped following the

transfer. This is done by tagging the top stack

element empty and then incrementing ST. FSTP
permits storing to a temporary real memory
variable while FST does not. Coding FSTP ST(0)
is equivalent to popping the stack with no data
transfer.

FXCH //destination

FXCH (exchange registers) swaps the contents of

the destination and the stack top registers. If the

destination is not coded explicitly, ST(1) is used.

Many 8087 instructions operate only on the stack

top; FXCH provides a simple means of effectively

using these instructions on lower stack elements.

For example, the following sequence takes the

square root of the third register from the top:

FXCH ST(3)

FSQRT
FXCH ST(3)

FILD source

FILD (integer load) converts the source memory
operand from its binary integer format (word,

short, or long) to temporary real and loads

(pushes) the result onto the stack. The (new) stack

top is tagged zero if all bits in the source were

zero, and is tagged valid otherwise.

F\SJ destination

FIST (integer store) rounds the content of the

stack top to an integer according to the RC field

of the control word and transfers the result to the

destination. The destination may define a word or

short integer variable. Negative zero is stored in

the same encoding as postive zero: 0000...00.

FISTP destination

FISTP (integer store and pop) operates like FIST
and also pops the stack following the transfer.

The destination may be any of the binary integer

data types.

FBLD source

FBLD (packed decimal (BCD) load) converts the

content of the source operand from packed

decimal to temporary real and loads (pushes) the

result onto the stack. The sign of the source is

preserved, including the case where the value is

negative zero. FBLD is an exact operation; the

source is loaded with no rounding error.

The packed decimal digits of the source are

assumed to be in the range 0-9H. The instruction

does not check for invalid digits (A-FH) and the

result of attempting to load an invalid encoding is

undefined.

FBSTP destination

FBSTP (packed decimal (BCD) store and pop)
converts the content of the stack top to a packed
decimal integer, stores the result at the destination

in memory, and pops the stack. FBSTP produces

a rounded integer from a non-integral value by
adding 0.5 to the value and then chopping. Users

who are concerned about rounding may precede

FBSTP with FRNDINT.

Arithmetic Instructions

The 8087's arithmetic instruction set (table S-10)

provides a wealth of variations on the basic add,

subtract, multiply, and divide operations, and a

number of other useful functions. These range

from a simple absolute value to a square root

instruction that executes faster than ordinary divi-

S-31
Mnemonics © Intel 1980

8087 NUMERIC DATA PROCESSOR

Table S-10. Arithmetic Instructions

Addition

FADD Add real

FADDP Add real and pop
FIADD Integer add

Subtraction

FSUB Subtract real

FSUBP Subtract real and pop
FISUB Integer subtract

FSUBR Subtract real reversed

FSUBRP Subtract real reversed and pop
FISUBR Integer subtract reversed

Multiplication

FMUL Multiply real

FMULP Multiply real and pop
FIMUL Integer multiply

Division

FDIV Divide real

FDIVP Divide real and pop
FIDIV Integer divide

FDIVR Divide real reversed

FDIVRP Divide real reversed and pop
FIDIVR Integer divide reversed

Other Operations

FSQRT Square root

FSCALE Scale

FPREM Partial remainder
FRNDINT Round to integer

FXTRACT Extract exponent and significand

FABS Absolute value

FCHS Change sign

sion; 8087 programmers no longer need to spend
valuable time eliminating square roots from
algorithms because they run too slowly. Other
arithmetic instructions perform exact modulo
division, round real numbers to integers, and
scale values by powers of two.

The 8087's basic arithmetic instructions (addi-

tion, subtraction, multiplication, and division)

are designed to encourage the development of

very efficient algorithms. In particular, they allow

the programmer to minimize memory references

and to make optimum use of the NDP register

stack.

Table S-11 summarizes the available opera-
tion/operand forms that are provided for basic

arithmetic. In addition to the four normal opera-
tions, two "reversed" instructions make sub-

traction and division "symmetrical" like addition

and multiplication. The variety of instruction and
operand forms give the programmer unusual
flexibility:

• operands may be located in registers or

memory;

• results may be deposited in a choice of

registers;

• operands may be a variety of NDP data

types: temporary real, long real, short real,

short integer or word integer, with automatic

conversion to temporary real performed by
the 8087.

Five basic instruction forms may be used across

all six operations, as shown in table S-11. The
classical stack form may be used to make the 8087

operate like a classical stack machine. No
operands are coded in this form, only the instruc-

tion mnemonic. The NDP picks the source

operand from the stack top and the destination

from the next stack element. It then pops the

stack, performs the operation, and returns the

result to the new stack top, effectively replacing

the operands by the result.

The register form is a generalization of the

classical stack form; the programmer specifies the

stack top as one operand and any register on the

stack as the other operand. Coding the stack top

as the destination provides a convenient way to

access a constant, held elsewhere in the stack,

from the stack top. The converse coding (ST is the

source operand) allows, for example, adding the

top into a register used as an accumulator.

Often the operand in the stack top is needed for

one operation but then is of no further use in the

computation. The register pop form can be used

to pick up the stack top as the source operand,

and then discard it by popping the stack. Coding
operands of ST(1),ST with a register pop
mnemonic is equivalent to a classical stack opera-

tion: the top is popped and the result is left at the

new top.

Mnemonics © Intel 1980

S-32

8087 NUMERIC DATA PROCESSOR

Table S-1 1 . Basic Arithmetic Instructions and Operands

Instruction Form
Mnemonic

Form
Operand Forms

destination, source
ASM-86 Example

classical siaCK Fop loin)iO 1 J rAUU

Register Fop ST(i),STorST,ST(i) FSUB ST,ST(3)

Register pop FopP ST(i),ST FMULP ST(2),ST

Real memory Fop {ST,> short-real /long-real FDIV AZIMUTH

Integer memory Flop CST,> word-integer/short-integer FIDIV N_PULSES

NOTES: Braces { > surround implicit operands; these are not coded, and are shown
here for information only.

op = ADD destination <- destination + source

SUB destination «- destination - source

SUBR destination «- source - destination

MUL destination <- destination • source

DIV destination «- destination ^ source

DIVR destination «- source ^ destination

The two memory forms increase the flexibility of

the 8087's arithmetic instructions. They permit a

real number or a binary integer in memory to be

used directly as a source operand. This is a very

useful facility in situations where operands are

not used frequently enough to justify holding

them in registers. Note that any memory address-

ing mode may be used to define these operands,

so they may be elements in arrays, structures or

other data organizations, as well as simple

scalars.

The six basic operations are discussed further in

the next paragraphs, and descriptions of the

remaining seven arithmetic operations follow.

Addition

FADD //source/destination, source
FADDP destination, source
FIADD source

Normal Subtraction
FSU B //source/destination, source
FSUBP destination, source
FISUB source

The normal subtraction instructions (subtract

real, subtract real and pop, integer subtract) sub-

tract the source operand from the destination and
return the difference to the destination.

Reversed Subtraction
FSU BR //source/destination, source
FSUBRP destination, source
FISUBR source

The reversed subtraction instructions (subtract

real reversed, subtract real reversed and pop,

integer subtract reversed) subtract the destination

from the source and return the difference to the

destination.

The addition instructions (add real, add real and

pop, integer add) add the source and destination

operands and return the sum to the destination.

The operand at the stack top may be doubled by

coding:

FADD ST,ST(0)

Multiplication

FM U L //source/destination, source
FMULP destination, source
FIMUL source

The multiplication instructions (multiply real,

multiply real and pop, integer multiply) multiply

the source and destination operands and return

S-33
Mnemonics © Intel 1980

8087 NUMERIC DATA PROCESSOR

the product to the destination. Coding

FMUL ST,ST(0) squares the content of the

stack top.

Normal Division

FDIV //source/destination, source
FDIVP destination, source
FID IV source

The normal division instructions (divide real,

divide real and pop, integer divide) divide the

destination by the source and return the quotient

to the destination.

Reversed Division

FDIVR //source/destination, source
FDIVRP destination, source
FIDIVR source

The reversed division instructions (divide real

reversed, divide real reversed and pop, integer

divide reversed) divide the source operand by

the destination and return the quotient to the

destination.

FSQRT

FSQRT (square root) replaces the content of the

top stack element with its square root. (Note: the

square root of -0 is defined to be -0.)

FSCALE

FSCALE (scale) interprets the value contained in

ST(1) as an integer, and adds this value to the

exponent of the number in ST. This is equivalent

to:

ST<-ST*2ST(1)

thus, FSCALE provides rapid multiplication or

division by integral powers of 2. It is particularly

useful for scaling the elements of a vector.

Note that FSCALE assumes the scale factor

in ST(1) is an integral value in the range

-215^X< 2»5. If the value is not integral, but is

in-range and is greater in magnitude than 1,

FSCALE uses the nearest integer smaller in

magnitude, i.e., it chops the value toward 0. If the

value is out of range, or 0<
| X |

< 1, the instruc-

tion will produce an undefined result and will not

signal an exception. The recommended practice is

to load the scale factor from a word integer to

ensure correct operation.

FPREIVI

FPREM (partial remainder) performs modulo
division of the top stack element by the next stack

element, i.e., ST(1) is the modulus. FPREM pro-

duces an exact result; the precision exception does

not occur. The sign of the remainder is the same
as the sign of the original dividend.

FPREM operates by performing successive scaled

subtractions; obtaining the exact remainder when
the operands differ greatly in magnitude can con-

sume large amounts of execution time. Since the

8087 can only be preempted between instructions,

the remainder function could seriously increase

interrupt latency in these cases. Accordingly, the

instruction is designed to be executed iteratively in

a software-controlled loop.

FPREM can reduce a magnitude difference of up
to 2^^ in one execution. If FPREM produces a

remainder that is less than the modulus, the func-

tion is complete and bit C2 of the status word
condition code is cleared. If the function is

incomplete, C2 is set to 1; the result in ST is then

called the partial remainder. Software can inspect

C2 by storing the status word following execution

of FPREM and re-execute the instruction (using

the partial remainder in ST as the dividend), until

C2 is cleared. Alternatively, a program can deter-

mine when the function is complete by comparing

ST to ST(1). If ST>ST(1) then FPREM must be

executed again; if ST=ST(1) then the remainder is

0; if ST<ST(1) then the remainder is ST. A higher

priority interrupting routine which needs the 8087

can force a context switch between the instruc-

tions in the remainder loop.

An important use for FPREM is to reduce

arguments (operands) of periodic transcendental

functions to the range permitted by these

instructions. For example, the FPTAN (tangent)

instruction requires its argument to be less than

n/4. Using n/4 as a modulus, FPREM will reduce

an argument so that it is in range of FPTAN.
Because FPREM produces an exact result, the

argument reduction does not introduce roundoff

error into the calculation, even if several itera-

tions are required to bring the argument into

range. (The rounding of n does not create the

effect of a rounded argument, but of a rounded

period.)

Mnemonics C£) Intel 1980

S-34

8087 NUMERIC DATA PROCESSOR

FPREM also provides the least-significant three

bits of the quotient generated by FPREM (in C3,

C,, Cq). This is also important for transcendental

argument reduction since it locates the original

angle in the correct one of eight ti/4 segments of

the unit circle.

FRNDINT

FRNDINT (round to integer) rounds the top

stack element to an integer. For example, assume
that ST contains the 8087 real number encoding

of the decimal value 155.625. FRNDINT will

change the value to 155 if the RC field of the con-

trol word is set to down or chop, or to 156 if it is

set to up or nearest.

FXTRACT

EXTRACT (extract exponent and significand)

"decomposes" the number in the stack top into

two numbers that represent the actual value of the

operand's exponent and significand fields. The
"exponent" replaces the original operand on the

stack and the "significand" is pushed onto the

stack. Following execution of FXTRACT, ST
(the new stack top) contains the value of the

original significand expressed as a real number:

its sign is the same as the operand's, its exponent

is 0 true (16,383 or 3FFFH biased), and its signifi-

cand is identical to the original operand's. ST(1)

contains the value of the original operand's true

(unbiased) exponent expressed as a real number.

If the original operand is zero, FXTRACT pro-

duces zeros in ST and ST(I) and both are signed

as the original operand.

To clarify the operation of FXTRACT, assume

ST contains a number whose true exponent is +4

(i.e., its exponent field contains 4003H). After

executing FXTRACT, ST(1) will contain the real

number +4.0; its sign will be positive, its exponent

field will contain 400 IH (+2 true) and its signifi-

cand field will contain I^00...00B. In other

words, the value in ST(1) will be 1.0 x 2^ = 4. If

ST contains an operand whose true exponent is

-7 (i.e., its exponent field contains 3FF8H), then

FXTRACT will return an "exponent" of -7.0;

after the instruction executes, ST(l)'s sign and

exponent fields will contain COOIH (negative

sign, true exponent of 2) and its significand will

be 1^1 IOO...OOB. In other words the value in

ST(1) will be -1.11 x 2^ = -7.0. In both cases,

following FXTRACT, ST's sign and significand

fields will be the same as the original operand's,

and its exponent field will contain 3FFFH,
(0 true).

FXTRACT is useful in conjunction with FBSTP
for converting numbers in 8087 temporary real

format to decimal representations (e.g., for

printing or displaying). It can also be useful for

debugging since it allows the exponent and signifi-

cand parts of a real number to be examined

separately.

FABS

FABS (absolute value) changes the top stack ele-

ment to its absolute value by making its sign

positive.

FCHS

FCHS (change sign) complements (reverses) the

sign of the top stack element.

Comparison Instructions

Each of these instructions (table S-12) analyzes

the top stack element, often in relationship to

another operand, and reports the result in the

status word condition code. The basic operations

are compare, test (compare with zero), and
examine (report tag, sign, and normalization).

Special forms of the compare operation are pro-

vided to optimize algorithms by allowing direct

comparisons with binary integers and real

numbers in memory, as well as popping the stack

after a comparison.

The FSTSW (store status word) instruction may
be used following a comparison to transfer the

condition code to memory for inspection. Section

S.IO contains an example of using this technique

to implement conditional branching.

Note that instructions other than those in the

comparison group may update the condition

code. To insure that the status word is not altered

inadvertently, store it immediately following a

comparison operation.

S-35
Mnemonics © Intel 1980

8087 NUMERIC DATA PROCESSOR

FCOM //source

FCOM (compare real) compares the stack top to

the source operand. The source operand may be a

register on the stack, or a short or long real

memory operand. If an operand is not coded,

ST is compared to ST(1). Positive and negative

forms of zero compare identically as if they were

unsigned. Following the instruction, the condi-

tion codes reflect the order of the operands as

follows:

C3 CO Order

0 0 ST > source

0 1 ST < source
"1

0 ST = source

1 1 ST? source

NANs and «» (projective) cannot be compared
and return C3=C0=1 as shown above.

Table S-12. Comparison Instructions

FCOM Compare real

FCOMP Compare real and pop
FCOMPP Compare real and pop twice

FICOM Integer compare
FICOMP Integer compare and pop
FTST Test

FXAM Examine

FCOMP //source

FCOMP (compare real and pop) operates like

FCOM, and in addition pops the stack.

FCOMPP

FCOMPP (compare real and pop twice) operates

like FCOM and additionally pops the stack twice,

discarding both operands. The comparison is of

the stack top to ST(1); no operands may be

explicitly coded.

FICOM source

FICOM (integer compare) converts the source

operand, which may reference a word or short

binary integer variable, to temporary real and
compares the stack top to it.

FICOMP sot/rce

FICOMP (integer compare and pop) operates

identically to FICOM and additionally discards

the value in ST by popping the stack.

FTST

FTST (test) tests the top stack element by compar-
ing it to zero. The result is posted to the condition

codes as follows:

C3 CO Result

0 0 ST is positive and

nonzero

0 1 ST is negative and

nonzero

1 0 ST is zero (+ or-)

1 1 ST is not com-
parable (i.e., it is a

NAN or projective

CO)

FXAM

FXAM (examine) reports the content of the top

stack element as positive/negative and NAN/
unnormal/denormal/normal/zero, or empty.

Table S-13 lists and interprets all the condition

code values that FXAM generates. Although four

different encodings may be returned for an empty
register, bits C3 and CO of the condition code are

both 1 in all encodings. Bits C2 and CI should be

ignored when examining for empty.

Transcendental Instructions

The instructions in this group (table S-14) per-

form the time-consuming core calculations for all

common trigonometric, inverse trigonometric,

hyperbolic, inverse hyperbolic, logarithmic and

exponential functions. Prologue and epilogue

software may be used to reduce arguments to the

range accepted by the instructions and to adjust

the result to correspond to the original arguments

if necessary. The transcendentals operate on the

top one or two stack elements and they return

their results to the stack also.

Mnemonics £ Intel 1980
S-36

8087 NUMERIC DATA PROCESSOR

Table S-13. FXAM Condition Code Settings

Condition Code
interpretation

C3 C2 CI CO

0 0 0 0 + Unnormal

0 0 0 1 + NAN

0 0 1 0 - Unnormal

0 0 1 1 - NAN

L) 1 0 0 + Normal

0 1 0 1

U
•1

1

4
1

A
u - Normal

0 1 1 1
— 00

A
u u

A
u + 0

0 0 1 Empty

0 1 0 - 0

0 1 1 Empty

1 0 0 + Denormal

1 0 1 Empty

1 1 0 - Denormal

1 1 1 Empty

Table S-14. Transcendental Instructions

FPTAN Partial tangent

FPATAN Partial arctangent

F2XM1 2X_1

FYL2X Y« logjX

FYL2XP1 Y« log2(X + 1)

The transcendental instructions assume that their

operands are valid and in-range. The instruction

descriptions in this section provide the range of

each operation. To be considered valid, an

operand to a transcendental must be normalized;

denormals, unnormals, infinities and NANs are

considered invalid. (Zero operands are accepted

by some functions and are considered out-of-

range by others.) If a transcendental operand is

invalid or out-of-range, the instruction will

produce an undefined result without signalling an

exception. It is the programmer's responsibility to

ensure that operands are valid and in-range

before executing a transcendental. For periodic

functions, FPREM may be used to bring a valid

operand into range.

FPTAN

FPTAN (partial tangent) computes the function

Y/X = TAN (0). 0 is taken from the top stack

element; it must lie in the range 0 < 0 < n/4. The
result of the operation is a ratio; Y replaces 0 in

the stack and X is pushed, becoming the new
stack top.

The ratio result of FPTAN and the ratio argu-

ment of FPATAN are designed to optimize the

calculation of the other trigonometric functions,

including SIN, COS, ARCSIN and ARCCOS.
These can be derived from TAN and ARCTAN
via standard trigonometric identities.

FPATAN

FPATAN (partial arctangent) computes the func-

tion 0 = ARCTAN (Y/X). X is taken from the

top stack element and Y from ST(1). Y and X
must observe the inequality 0 < Y < X < oo. The
instruction pops the stack and returns 0 to the

(new) stack top, overwriting the Y operand.

F2XM1

F2XM1 (2 to the X minus 1) calculates the func-

tion Y = 2^ -1
. X is taken from the stack top and

must be in the range 0 < X < 0.5. The result Y
replaces X at the stack top.

This instruction is designed to produce a very

accurate result even when X is close to zero. To
obtain Y=2^, add 1 to the result delivered by
F2XM1.

The following formulas show how values other

than 2 may be raised to a power of X:

10X = 2><*'-OG2iO

gx - 2x»LOG2e

yX = 2X»LOG2y

S-37
Mnemonics ^ Intel1980

8087 NUMERIC DATA PROCESSOR

As shown in the next section, the 8087 has built-in

instructions for loading the constants LOGjlO
and L0G2e, and the FYL2X instruction may be

used to calculate X'LOGjY.

FYL2X

FYL2X (Y log base 2 of X) calculates the function

Z = Y^LOGjX. X is taken from the stack top and
Y from ST(1). The operands must be in the ranges

0 < X < oo and - «> < Y < + w. The instruction

pops the stack and returns Z at the (new) stack

top, replacing the Y operand.

This function optimizes the calculation of log to

any base other than two since a multiplication is

always required:

L0G^2« LOGjX

FYL2XP1

FYL2XP1 (Y log base 2 of (X + 1)) calculates

the function Z = Y»L0G2 (X+1). X is taken

from the stack top and must be in the range

0 < |X| < (1 -(^2/2)). Y is taken from ST(1) and
must be in the range - <» < Y < <». FYL2XP1
pops the stack and returns Z at the (new) stack

top, replacing Y.

This instruction provides improved accuracy over

FYL2X when computing the log of a number very

close to 1, for example 1 + i where £ << 1.

Providing £ rather than 1 + £ as the input to the

function allows more significant digits to be

retained.

Constant Instructions

Each of these instructions (table S-15) loads

(pushes) a commonly-used constant onto the

stack. The values have full temporary real preci-

sion (64 bits) and are accurate to approximately

19 decimal digits. Since a temporary real constant

occupies 10 memory bytes, the constant instruc-

tions, which are only two bytes long, save storage

and improve execution speed, in addition to

simplifying programming.

Table S-15. Constant Instructions

FLDZI L_ L— Load -t- 0 0

FLD1 Load -t- 1 0

FLDPI Load 71

FLDL2T Load logjIO

FLDL2E Load logje

FLDLG2 Load log^Q2

FLDLN2 Load logg2

FLDZ

FLDZ (load zero) loads (pushes) +0.0 onto the

stack.

FLD1

FLDl (load one) loads (pushes) +1.0 onto the

stack.

FLDPI

FLDPI (load n) loads (pushes) n onto the stack.

FLDL2T

FLDL2T (load log base 2 of 10) loads (pushes) the

value LOG2IO onto the stack.

FLDL2E

FLDL2E (load log base 2 of e) loads (pushes) the

value LOG2e onto the stack.

FLDLG2

FLDLG2 (load log base 10 of 2) loads (pushes)

the value L0G,q2 onto the stack.

FLDLN2

FLDLN2 (load log base e of 2) loads (pushes) the

value LOGg2 onto the stack.

Mnemonics i Intel 1980

S-38

8087 NUMERIC DATA PROCESSOR

Processor Control Instructions

Most of these instructions (table S-16) are not

used in computations; they are provided prin-

cipally for system-level activities. These include

initialization, exception handling and task

switching.

As shown in table S-16, an alternate mnemonic is

available for many of the processor control

instructions. This mnemonic, distinguished by a

second character of "N", instructs the assembler

to not prefix the instruction with a CPU WAIT
instruction (instead, a CPU NOP precedes the

instruction). This "no-wait" form is intended for

use in critical code regions where a WAIT instruc-

tion might precipitate an endless wait. Thus,

when CPU interrupts are disabled, and the NDP
can potentially generate an interrupt, the no-wait

form should be used. When CPU interrupts are

enabled, as will normally be the case when an

application task is running, the "wait" forms of

these instructions should be used.

Except for FNSTENV and FNSAVE, all instruc-

tions which provide a no-wait mnemonic are self-

synchronizing and can be executed back-to-back

in any combination without intervening FWAITs.
These instructions can be executed by the 8087

CU while the NEU is busy with a previously

decoded instruction. To insure that the processor

control instruction executes after completion of

any operation in progress in the NEU, the "wait"

form of that instruction should be used.

FINIT/FNINIT

FINIT/FNINIT (initialize processor) performs

the functional equivalent of a hardware RESET
(see section S.6), except that it does not affect the

instruction fetch synchronization of the 8087 and

its CPU.

For compatibility with the 8087 emulator, a

system should call the INIT87 procedure in lieu of

executing FINIT/FNINIT when the processor is

first initialized (see section S.8 for details). Note

that if FNINIT is executed while a previous 8087

memory referencing instruction is running, 8087

bus cycles in progress will be aborted.

FDISI/FNDISI

FDISI/FNDISI (disable interrupts) sets the inter-

rupt enable mask in the control word and

prevents the NDP from issuing an interrupt

request.

Table S-16. Processor Control Instructions

FENI/FNENI

FENI/FNENI (enable interrupts) clears the inter-

rupt enable mask in the control word, allowing

the 8087 to generate interrupt requests.

FLDCVJ source

FLDCW (load control word) replaces the current

processor control word with the word defined by

the source operand. This instruction is typically

used to establish, or change, the 8087's mode of

operation. Note that if an exception bit in the

status word is set, loading a new control word
that unmasks that exception and clears the inter-

rupt enable mask will generate an immediate
interrupt request before the next instruction is

executed. When changing modes, the recom-

mended procedure is to first clear any exceptions

and then load the new control word.

FINIT/FNINIT Initialize processor

FDISI/FNDISI Disable interrupts

FENI/FNENI Enable interrupts

FLDCW Load control word

FSTCW/FNSTCW Store control word

FSTSW/FNSTSW Store status word

FCLEX/FNCLEX Clear exceptions

FSTENV/FNSTENV Store environment

FLDENV Load environment

FSAVE/FNSAVE Save state

FRSTOR Restore state

FINCSTP Increment stack pointer

FDECSTP Decrement stack pointer

FFREE Free register

FNOP No operation

FWAIT CPU wait

S-39
Mnemonics © Intel 1980

8087 NUMERIC DATA PROCESSOR

FSTCW/FNSTCW destination

FSTCW/FNSTCW (store control word) writes

the current processor control word to the memory
location defined by the destination.

FSTSW/FNSTSW destination

FSTSW/FNSTCW (store status word) writes the

current value of the 8087 status word to the

destination operand in memory. The instruction

has many uses:

• to implement conditional branching

following a comparison or FPREM instruc-

tion <FSTSW);

• to poll the 8087 to determine if it is busy

(FNSTSW);

• to invoke exception handlers in environments

that do not use interrupts (FSTSW).

FCLEX/FNCLEX

FCLEX/FNCLEX (clear exceptions) clears all

exception flags, the interrupt request flag and the

busy flag in the status word. As a consequence,

the 8087's INT and BUSY lines go inactive. An
exception handler must issue this instruction

before returning to the interrupted computation,

or another interrupt request will be generated

immediately, and an endless loop may result.

FSAVE/FNSAVE destination

FSAVE/FNSAVE (save state) writes the full 8087

state—environment plus register stack—to the

memory location defined by the destination

operand. Figure S-18 shows the layout of the 94-

byte save area; typically the instruction will be

coded to save this image on the CPU stack. If an

instruction is executing in the 8087 NEU when
FNSAVE is decoded, the CPU queues the

FNSAVE and delays its execution until the run-

ning instruction completes normally or

encounters an unmasked exception. Thus, the

save image reflects the state of the NDP following

the completion of any running instruction. After

writing the state image to memory,
FSAVE/FNSAVE initializes the 8087 as if

FINIT/FNINIT had been executed.

FSAVE/FNSAVE is useful whenever a program
wants to save the current state of the NDP and
initialize it for a new routine. Three examples are:

• an operating system needs to perform a

context switch (suspend the task that had

been running and give control to a new task);

• an interrupt handler needs to use the 8087;

• an application task wants to pass a "clean"

8087 to a subroutine.

FNSAVE must be "protected" by executing it in

a critical region, i.e., with CPU interrupts dis-

abled. This prevents an interrupt handler from
executing a second FNSAVE (or other "no-wait"

processor control instruction that references

memory) which could destroy the first FNSAVE
if it is queued in the 8087. An FWAIT should be

executed before CPU interrupts are enabled or

any subsequent 8087 instruction is executed.

(Because the FNSAVE initializes the NDP, there

is no danger of the FWAIT causing an endless

wait.) Other CPU instructions may be executed

between the FNSAVE and the FWAIT; this

parallel execution will reduce interrupt latency if

the FNSAVE is queued in the 8087.

FRSTOR source

FRSTOR (restore state) reloads the 8087 from the

94-byte memory area defined by the source

operand. This information should have been writ-

ten by a previous FSAVE/FNSAVE instruction

and not altered by any other instruction. CPU
instructions (that do not reference the save image)

may immediately follow FRSTOR, but no NDP
instruction should be without an intervening

FWAIT or an assembler-generated WAIT.

Note that the 8087 "reacts" to its new state at the

conclusion of the FRSTOR; it will for example,

generate an immediate interrupt request if the

exception and mask bits in the memory image so

indicate.

FSTENV/FNSTENV destination

FSTENV/FNSTENV (store environment) writes

the 8087's basic status—control, status and tag

words, and exception pointers— to the memory
location defined by the destination operand.

Typically the environment is saved on the CPU
stack. FSTENV/FNSTENV is often used by

Mnemonics © Intel 1980

S-40

8087 NUMERIC DATA PROCESSOR

exception handlers because it provides access to

the exception pointers which identify the offend-

ing instruction and operand. After saving the

environment, FSTENV/FNSTENV sets all excep-

tion masks in the processor; it does not affect the

interrupt-enable mask. Figure S-19 shows the for-

mat of the environment data in memory. If

FNSTENV is decoded while another instruction is

executing concurrently in the NEU, the 8087

queues the FNSTENV and does not store the

environment until the other instruction has com-
pleted. Thus, the data saved by the instruction

reflects the 8087 after any previously decoded
instruction has been executed.

INCREASING ADDRESSES

15

INSTRUCTION
POINTER

OPERAND
POINTER

TOP STACK
ELEMENT;ST

NEXT STACK
ELEMENT:ST(1)

LAST STACK
ELEMENT:ST(7)

CONTROL WORD

STATUS WORD

TAG WORD

IP15-0

IP19-16 OPCODE

OP15-0

OP19-16

SIGNIFICAND 15-0

SIGNIFICAND 31-16

SIGNIFICAND 47-32

SIGNIFICAND 63-48

EXPONENT 14-0

SIGNIFICAND 15-0

SIGNIFICAND 31-16

SIGNIFICAND 47-32

SIGNIFICAND 63-48

EXPONENT 14-0

SIGNIFICAND 15-0

SIGNIFICAND 31-16

SIGNIFICAND 47-32

SIGNIFICAND 63-48

EXPONENT 14-0

+ 0

+ 2

+ A

+ 6

+ B

+ 10

+ 12

+ 14

+ 16

+ 18

+ 20

+ 22

+ 24

+ 26

+ 28

+ 30

+ 32

+ 84

+ 86

+ 88

+ 90

+ 92

NOTES:

S = Sign

Bit 0 of each field is rigtitmost, least significant bit of corresponding

register field.

Bit 63 of significand is integer bit (assumed binary point is immediately

to the right).

Figure S- 1 8 . FSAVE/FRSTOR Memory
Layout

FSTENV/FNSTENV must be allowed to com-
plete before any other 8087 instruction is

decoded. When FSTENV is coded, an explicit

FWAIT, or assembler-generated WAIT, should

precede any subsequent 8087 instruction. An
FNSTENV must be executed in a critical region

that is protected from interruption, in the same

manner as FNSAVE. (There is no risk of the

following FWAIT causing an endless wait,

because FNSTENV masks all exceptions, thereby

preventing an interrupt request from the 8087.)

INCREASING ADDRESSES

15

INSTRUCTION
POINTER

OPERAND
POINTER

CONTROL WORD

STATUS WORD

TAG WORD

IP15-0

IP19-16 OPCODE

OP15-0

OP19-16

+ 0

+ 2

+ 4

+ 6

+ 8

+ 10

+ 12

Figure S-19. FSTENV/FLDENV Memory
Layout

FLDENV source

FLDENV (load environment) reloads the 8087

environment from the memory area defined by

the source operand. This data should have been

written by a previous FSTENV/FNSTENV
instruction. CPU instructions (that do not

reference the environment image) may
immediately follow FLDENV, but no subsequent

NDP instruction should be executed without an

intervening FWAIT or assembler-generated

WAIT.

Note that loading an environment image that con-

tains an unmasked exception will cause an

immediate interrupt request from the 8087

(assuming IEM=0 in the environment image).

FINCSTP

FINCSTP (increment stack pointer) adds 1 to the

stack top pointer (ST) in the status word. It does

not alter tags or register contents, nor does it

transfer data. It is not equivalent to popping the

stack since it does not set the tag of the previous

stack top to empty. Incrementing the stack

pointer when ST=7 produces ST=0.

S-41
Mnemonics © Intel 1980

8087 NUMERIC DATA PROCESSOR

FDECSTP

FDECSTP (decrement stack pointer) subtracts 1

from ST, the stack top pointer in the status word.

No tags or registers are altered, nor is any data

transferred. Executing FDECSTP when ST=0
produces ST=7.

FFREE destination

FFREE (free register) changes the destination

register's tag to empty; the content of the register

is unaffected.

FNOP

FNOP (no operation) stores the stack top to the

stack top (FST ST,ST(0)) and thus effectively

performs no operation.

FWAIT (CPU instruction)

FWAIT is not actually an 8087 instruction, but an

alternate mnemonic for the CPU WAIT instruc-

tion described in section 2.8. The FWAIT
mnemonic should be coded whenever the pro-

grammer wants to synchronize the CPU to the

NDP, that is, to suspend further instruction

decoding until the NDP has completed the current

instruction. A CPU instruction should not

attempt to access a memory operand that has

been read or written by a previous 8087 instruc-

tion until the 8087 instruction has completed. The
following coding shows how FWAIT can be used

to force the CPU instruction to wait for the 8087:

FNSTSW STATUS
FWAIT ;Wait for FNSTSW
MOV AX.STATUS

Programmers should not code WAIT to

synchronize the CPU and the NDP. The routines

that alter an object program for 8087 emulation

eliminate FWAITs (and assembler-generated

WAITs) but do not change any explicitly coded
WAITs. The program will wait forever if a WAIT
is encountered in emulated execution, since there

is no 8087 to drive the CPU's TEST pin active.

Instruction Set Reference Information

Table S-19 lists the operating characteristics of all

the 8087 instructions. There is one table entry for

each instruction mnemonic; the entries are in

alphabetical order for quick lookup. Each entry

provides the general operand forms accepted by

the instruction as well as a list of all exceptions

that may be detected during the operation.

There is one entry for each combination of

operand types that can be coded with the

mnemonic. Table S-17 explains the operand iden-

tifiers allowed in table S-19. Following this entry

are columns that provide execution time in clocks,

the number of bus transfers run during the opera-

tion, the length of the instruction in bytes, and an

ASM-86 coding sample.

Table S-17. Key to Operand Types

Identifier Explanation

ST Stack top; the register currently at the top of the stack.

ST(i) A register in the stack i (0<i<7) stack elements from the

top. ST(1) is the next-on-stack register, ST(2) is below

ST(1),etc.

Short-real A short real (32 bits) number in memory.

Long-real A long real (64 bits) number in memory.

Temp-real A temporary real (80 bits) number in memory.

Packed-decimal A packed decimal integer (18 digits, 10 bytes) in memory.

Word-integer A word binary integer (16 bits) in memory.

Short-integer A short binary integer (32 bits) in memory.

Long-integer A long binary integer (64 bits) in memory.

nn-bytes A memory area nn bytes long.

Mnemonics © Intel 1980
S-42

8087 NUMERIC DATA PROCESSOR

Execution Time

The execution of an 8087 instruction involves

three principal activities, each of which may con-

tribute to the total duration (execution time) of

the operation:

• Instruction fetch

• Instruction execution

• Operand transfer

The CPU and NDP simultaneously prefetch and
queue their common instruction stream from
memory. This activity is performed during spare

bus cycles and proceeds in parallel with the execu-

tion of instructions from the queue. Because of

their complexity, 8087 instructions typically take

much longer to execute than to fetch. This means
that in a typical sequence of 8087 instructions the

processors have a relatively large amount of time

available to maintain full instruction queues.

Instruction fetching is therefore fully overlapped

with execution and does not contribute to the

overall duration of a series of instructions. Fetch

time does become apparent when a CPU jump or

call instruction alters the normal sequential

execution. This empties the queues and delays

execution of the target instruction until it is

fetched from memory. The time required to fetch

the instruction depends on its length, the type of

CPU, and, if the CPU is an 8086, whether the

instruction is located at an even or odd address.

(Slow memories, which force the insertion of wait

states in bus cycles, and the bus activities of other

processors in the system, may also lengthen fetch

time.) Section 2.7 covers this topic in more detail.

Table S-19 quotes a typical execution time and a

range for each instruction. Dividing the figures in

the table by 5 (assuming a 5 MHz clock) produces

execution time in microseconds. The typical case

is an estimate for operand values that normally

characterize most applications. The range

encompasses best- and worst-case operand values

that may be found in extreme circumstances.

Where applicable, the figures //ic/ude all overhead

incurred by the CPU's execution of the ESC
instruction, local bus arbitration (request/grant

time), and the average overhead imposed by a

preceding WAIT instruction (half of the 5-clock

cycle that it uses to examine the TEST pin).

The execution times assume that no exceptions

are detected. Invalid operation, denormalized

(unmasked), and zerodivide exceptions usually

decrease execution time from the typical figure,

but it will still fall within the quoted range. The
precision exception has no effect on execution

time. Unmasked overflow and underflow, and
masked denormalized exceptions, impose the

penalties shown in table S-18. Absolute worst-

case execution time is therefore the high range

figure plus the largest penalty that may be

encountered.

For instructions that transfer operands to or from
memory, the execution times in table S-19 show
that the time required for the CPU to calculate

the operand's effective address (EA) should be

added. Effective address calculation time varies

according to addressing mode; table 2-20 supplies

the figures.

Table S-18. Execution Penalties

Exception Additional Clocks

Overflow (unmasked) 14

Underflow (unmasked) 16

Denormalized (masked) 33

Bus Transfers

Instructions that reference memory execute bus

cycles to transfer operands. Each transfer

requires one bus cycle. The number of transfers

depends on the length of the operand, the type of

CPU, and the alignment of the operand if the

CPU is an 8086. The figures in table S-19 include

the "dummy read" transfer(s) performed by the

CPU in its execution of the escape instruction that

corresponds to the 8087 instruction. The first

8086 figure is for even-addressed operands, and
the second is for odd-addressed operands.

A bus cycle (transfer) consumes four clocks if the

bus is immediately available and if the memory is

running at processor speed, without wait states.

Additional time is required if slow memories are

employed, because these insert wait states into the

bus cycle. In multiprocessor environments, the

bus may not be available immediately if a higher

priority processor is using it; this also can increase

effective transfer time.

S-43

8087 NUMERIC DATA PROCESSOR

Instruction Length

Instructions that do not reference memory are

two bytes long. Memory reference instructions

vary between two and four bytes. The third and

fourth bytes are used for 8- or 16-bit displacement

values; the assembler generates the short displace-

ment whenever possible. No displacements are

required in memory references that use only CPU
register contents to calculate an operand's effec-

tive address.

Table S-19. Instruction Set Reference Data

FABS FABS (no operands)

Absolute value
Exceptions: 1

Operands
Execution Clocks Transfers

Bytes Coding Example
Typical Range 8086 8088

(no operands) 14 10-17 0 0 2 FABS

FADD FADD //source/destination,source

Add real
Exceptions: 1, D, 0, U, P

Operands
Execution Clocks Transfers

Bytes Coding Example
Typical Range 8086 8088

//ST,ST(l)/ST(i),ST 85 70-100 0 0 2 FADD ST,ST(4)

short-real 105+EA 90-120+EA 2/4 4 2-4 FADD AIR_TEMP [SI]

long-real 110+EA 95-125+EA 4/6 8 2-4 FADD [BXj.MEAN

FADDP FADDP destination, source

Add real and pop
Exceptions: 1, D, 0, U, P

Operands
Execution Clocks Transfers

Bytes Coding Example
Typical Range 8086 8088

ST(i),ST 90 75-105 0 0 2 FADDP ST(2),ST

FBLD FBLD source

Packed decimal (BCD) load
Exceptions: 1

Operands
Execution Clocks Transfers

Bytes Coding Example
Typical Range 8086 8088

packed-decimal 300+EA 290-31 0+EA 5/7 10 2-4 FBLD YTD SALES

Note that the lengths quoted in table S-19 do not

include the one byte CPU WAIT instruction that

the assembler automatically inserts in front of all

NDP instructions (except those coded with a "no-
wait" mnemonic).

Mnemonics © Intel 1980
S-44

8087 NUMERIC DATA PROCESSOR

Table S-19. Instruction Set Reference Data (Cont'd.)

FBSTP FBSTP destination

Packed decimal (BCD) store and pop
Exceptions: 1

Operands
Execution Clocks Transfers

Bytes Coding Example
Typical Range 8086 8088

packed-decimal 530+EA 520-540+EA 6/8 12 2-4 FBSTP [BX].FORECAST

FCHS FCHS (no operands)

Change sign
Exceptions: 1

Operands
Execution Clocks Transfers

Bytes Coding Example
Typical Range 8086 8088

(no operands) 15 10-17 0 0 2 FCHS

FCLEX/FNCLEX FCLEX (no operands)

Clear exceptions
Exceptions: None

Operands
Execution Clocks Transfers

Bytes Coding Example
Typical Range 8086 8088

(no operands) 5 2-8 0 0 2 FNCLEX

FCOM FCOM //source

Compare real
Exceptions: 1, D

Operands
Execution Clocks Transfers

Bytes Coding Example
Typical Range 8086 8088

//ST(I) 45 40-50 0 0 2 FCOM ST(1)

short-real 65+EA 60-70+EA 2/4 4 2-4 FCOM [BP].UPPER_„LIMIT

long-real 70-i-EA 65-75-^EA 4/6 8 2-4 FCOM WAVELENGTH

FCOMP FCOMP //source

Compare real and pop
Exceptions: 1, D

Operands
Execution Clocks Transfers

Bytes Coding Example
Typical Range 8086 8088

//ST(I) 47 42-52 0 0 2 FCOMP ST(2)

short-real 68-t-EA 63-73+EA 2/4 4 2-4 FCOMP [BP-i-2].N_READINGS

long-real 72+EA 67-77-1- EA 4/6 8 2-4 FCOMP DENSITY

S-45
Mnemonics ^ Intel1980

8087 NUMERIC DATA PROCESSOR

Table S-19. Instruction Set Reference Data (Cont'd.)

FCOMPP FCOMPP (nooperands)

Compare real and pop twice
Exceptions: 1, D

Operands
Execution Clocks Transfers

Bytes Coding Example
Typical Range 8086 8088

(no operands) 50 45-55 0 0 2 FCOMPP

FDECSTP FDECSTP (nooperands)

Decrement stack pointer
Exceptions: None

Operands
Execution Clocks Transfers

Bytes Coding Example
Typical Range 8086 8088

(no operands) 9 6-12 0 0 2 FDECSTP

FDISI/FNDISI FDISI (nooperands)

Disable interrupts
Exceptions: None

Operands
Execution Clocks Transfers

Bytes Coding Example
Typical Range 8086 8088

(no operands) 5 2-8 0 0 2 FDISI

FDIV FDIV //source/destination, source

Divide real
Exceptions: 1, D, Z, 0, U, P

Operands
Execution Clocks Transfers

Bytes Coding Example
Typical Range 8086 8088

//ST(i),ST 198 193-203 0 0 2 FDIV

stiort-real 220+EA 215-225+EA 2/4 4 2-4 FDIV DISTANCE
long-real 225+EA 220-230-^EA 4/6 8 2-4 FDIV ARC [Dl]

FDIVP FDIVP destination,source

Divide real and pop
Exceptions: 1, D, Z, 0, U, P

Operands
Execution Clocks Transfers

Bytes Coding Example
Typical Range 8086 8088

ST(i),ST 202 197-207 0 0 2 FDIVP ST(4),ST

Mnemonics <9 Intel 1980
S-46

8087 NUMERIC DATA PROCESSOR

Table S- 1 9 . Instruction Set Reference Data (Cont'd .)

FDIVR FDIVR //source/destination,source

Divide real reversed
Exceptions: 1, D,Z, 0, U, P

Operands
Execution Clocks Transfers

Bytes Coding Example
Typical Range 8086 8088

//ST,ST(i)/ST(i),ST 199 194-204 0 0 2 FDIVR ST(2),ST

short-real 221+EA 216-226+EA 2/4 6 2-4 FDIVR [BX].PULSE_RATE
long-real 226+EA 221-231 +EA 4/6 8 2-4 FDIVR RECORDER.FREQUENCY

FDIVRP FDIVRP destination, source

Divide real reversed and pop
Exceptions: 1, D, Z, 0, U, P

Operands
Execution Clocks Transfers

Bytes Coding Example
Typical Range 8086 8088

ST(i),ST 203 198-208 0 0 2 FDIVRP ST(1),ST

FENI/FNENI FEN! (no operands)

Enable interrupts
Exceptions: None

Execution Clocks Transfers

Operands Bytes Coding Example
Typical Range 8086 8088

(no operands) 5 2-8 0 0 2 FNENI

FFREE FFREE destination

Free register
Exceptions: None

Operands
Execution Clocks Transfers

Bytes Coding Example
Typical Range 8086 8088

ST(i) 11 9-16 0 0 2 FFREE ST(1)

FIADD FIADD source

Integer add
Exceptions: 1, D, 0, P

Operands
Execution Clocks Transfers

Bytes Coding Example
Typical Range 8086 8088

v>/ord-integer

short-integer

120+EA
125+EA

102-137+EA

108-143+EA

1/2

2/4

2

4

2-4

2-4

FIADD DISTANCE_TRAVELLED
FIADD PULSE_COUNT [SI]

S-47
Mnemonics © Intel 1980

8087 NUMERIC DATA PROCESSOR

Table S-19. Instruction Set Reference Data (Cont'd.)

FICOM FICOM source

Integer compare
Exceptions: 1, D

Operands
Execution Clocks Transfers

Bytes Coding Example
Typical Range 8086 8088

word-integer

short-integer

80+ EA
85+EA

72-86+EA

78-91 +EA
1/2

2/4

2

4

2-4

2-4

FICOM TOOL.N_PASSES
FICOM [BP + 4].PARM_C0UNT

FICOMP FICOMP source

Integer compare and pop
Exceptions: 1, D

Operands
Execution Clocks Transfers

Bytes Coding Example
Typical Range 8086 8088

word-integer

short-integer

82+EA
87+EA

74-88+EA
80-93+EA

1/2

2/4

2

4

2-4

2-4

FICOMP
FICOMP

[BP]. LIMIT [SI]

N_SAMPLES

FID IV FIDIV source ^
, r, , ^ ., r,

, Exceptions: ,D,Z, 0, U,P
Integer divide

*^

Operands
Execution Clocks Transfers

Bytes Coding Example
Typical Range 8086 8088

word-integer

short-integer

230+EA

236+EA

224-238+EA

230-243+EA

1/2

2/4

2

4

2-4

2-4

FIDIV SURVEY.OBSERVATIONS
FIDIV RELATIVE_ANGLE [Dl]

FIDIVR FIDIVR source

Integer divide reversed
Exceptions: 1, D, Z, 0, U, P

Operands
Execution Clocks Transfers

Bytes Coding Example
Typical Range 8086 8088

word-integer

short-integer

230+EA

237+EA

225-239+EA

231-245+EA

1/2

2/4

2

4

2-4

2-4

FIDIVR [BPj.X^COORD
FIDIVR FREQUENCY

FILD FILD source

Integer load
Exception: 1

Operands
Execution Clocks Transfers

Bytes Coding Example
Typical Range 8086 8088

word-integer

short-integer

long-integer

50+EA
56+EA
64+EA

46-54+EA

52-60+ EA
60-68+EA

1/2

2/4

4/6

2

4

8

2-4

2-4

2-4

FILD [BX].SEQUENCE
FILD STANDOFF [Dl]

FILD RESPONSE.CQUNT

Mnemonics © Intel 1980

S-48

8087 NUMERIC DATA PROCESSOR

Table S-19. Instruction Set Reference Data (Cont'd.)

FIMUL FIMUL source

Integer multiply
Exceptions: 1, D, 0, P

Operands
Execution Clocks Transfers

Bytes Coding Example
Typical Range 8086 8088

word-integer

short-integer

130+EA

136+EA

124-138+EA

130-144+EA

1/2

2/4

2

4

2-4

2-4

FIMUL BEARING
FIMUL POSITION.Z_AXIS

FINCSTP FINCSTP (no operands)

Increment stack pointer
Exceptions: None

Operands
Execution Clocks Transfers

Bytes Coding Example
Typical Range 8086 8088

(no operands) 9 6-12 0 0 2 FINCSTP

FINIT/FNINIT FINIT (no operands)

Initialize processor
Exceptions: None

Operands
Execution Clocks Transfers

Bytes Coding Example
Typical Range 8086 8088

(no operands) 5 2-8 0 0 2 FINIT

FIST FIST destination
,

. . Exceptions: 1, P
Integer store

Operands
Execution Clocks Transfers

Bytes Coding Example
Typical Range 8086 8088

word-integer

short-integer

86+EA
88+EA

80-90+EA

82-92+EA

2/4

3/5

4

6

2-4

2-4

FIST DBS.COUNT [Si]

FIST [BP].FACTORED_PULSES

FISTP FISTP destination,44^ Exceptions: 1, P
Integer store and pop

Operands
Execution Clocks Transfers

Bytes Coding Example
Typical Range 8086 8088

word-integer

short-integer

long-integer

88+EA
90+EA
100+EA

82-92+EA

84-94+EA

94-105+EA

2/4

3/5

5/7

4

6

10

2-4

2-4

2-4

FISTP [BX1.ALPHA_C0UNT [SI]

FISTP CORRECTED_TIME
FISTP PANEL.N_READINGS

S-49
Mnemonics <& Intel 1980

8087 NUMERIC DATA PROCESSOR

Table S-19. Instruction Set Reference Data (Cont'd.)

FISUB FISUB source ^
, ^ „ „

i^t^^^r ^..t,*Ko^f Exceptions: 1, D, 0, P
Integer subtract

Operands
Execution Clocks Transfers

Bytes Coding Example
Typical Range 8086 8088

word-integer

short-integer

120+EA
125+EA

102-137+EA

108-143+EA

1/2

2/4

2

4

2-4

2-4

FISUB BASE FREQUENCY
FISUB TRAIN_S1ZE [Dl]

FISUBR FISUBR source

Integer subtract reversed
Exceptions: 1, D, 0, P

Operands
Execution Clocks Transfers

Bytes Coding Example
Typical Range 8086 8088

word-integer

short-integer

120+EA
125+EA

103-139+EA

109-144+EA

1/2

2/4

2

4

2-4

2-4

FISUBR FLOOR [BX] [SI]

FISUBR BALANCE

FLD FLD source

Load real
Exceptions: 1, D

Operands
Execution Clocks Transfers

Bytes Coding Example
Typical Range 8086 8088

ST(i) 20 17-22 0 0 2 FLD ST(0)

short-real 43+EA 38-56+EA 2/4 4 2-4 FLD READING [SI].PRESSURE
long-real 46+EA 40-60+EA 4/6 8 2-4 FLD [BP].TEMPERATURE
temp-real 57+EA 53-65+EA 5/7 10 2-4 FLD SAVEREADING

FLDCW FLDCW source

Load control word
Exceptions: None

Operands
Execution Clocks Transfers

Bytes Coding Example
Typical Range 8086 8088

2-bytes 10+EA 7-14+EA 1/2 2 2-4 FLDCW CONTROL _WORD

FLDENV FLDENV source

Load environment
Exceptions: None

Operands
Execution Clocks Transfers

Bytes Coding Example
Typical Range 8086 8088

14-bytes 40+EA 35-45+EA 7/9 14 2-4 FLDENV [BP + 6]

Mnemonics © Intel 1980
S-50

8087 NUMERIC DATA PROCESSOR

Table S-19. Instruction Set Reference Data (Cont'd.)

FLDLG2 FLDLG2 (no operands)

Load log,Q2
Exceptions: 1

Operands
Execution Clocks Transfers

Bytes Coding Example
Typical Range 8086 8088

(no operands) 21 18-24 0 0 2 FLDLG2

FLDLN2 FLDLN2 (no operands)

Load loQg 2
Exceptions: 1

Operands
Execution Clocks Transfers

Bytes Coding Example
Typical Range 8086 8088

(no operands) 20 17-23 0 0 2 FLDLN2

FLDL2E FLDL2E (no operands)

Load lOQj e
Exceptions: 1

Operands
Execution Clocks Transfers

Bytes Coding Example
Typical Range 8086 8088

(no operands) 18 15-21 0 0 2 FLDL2E

FLDL2T FLDL2T (no operands)

Load lOQjlO
Exceptions: 1

Operands
Execution Clocks Transfers

Bytes Coding Example
Typical Range 8086 8088

(no operands) 19 16-22 0 0 2 FLDL2T

FLDPI FLDPI (no operands)

Load Tt

Exceptions: 1

Operands
Execution Clocks Transfers

Bytes Coding Example
Typical Range 8086 8088

(no operands) 19 16-22 0 0 2 FLDPI

S-51
Mnemonics © Intel 1980

8087 NUMERIC DATA PROCESSOR

Table S-19. Instruction Set Reference Data (Cont'd.)

FLDZ (no operands)

Load +0.0
Exceptions: 1

Operands
Execution Clocks Transfers

Bytes Coding Example
Typical Range 8086 8088

(no operands) 14 11-17 0 0 2 FLDZ

FLD1 FLD1 (no operands)

Load +1.0
Exceptions: 1

Operands
Execution Clocks Transfers

Bytes Coding Example
Typical Range 8086 8088

(no operands) 18 15-21 0 0 2 FLD1

FMUL FMUL //source/destination. source

Multiply rea
Exceptions: 1, D, O, U, P

Operands
Execution Clocks Transfers

Bytes Coding Example
Typical Range 8086 8088

//ST(i),ST/ST,ST(i)' 97 90-105 0 0 2 FMUL ST,ST(3)

//ST(i),ST/ST,ST(i) 138 130-145 0 0 2 FMUL ST,ST(3)

short-real 118+EA 110-125+EA 2/4 4 2-4 FMUL SPEED_FACTOR
long-real' 120+EA 112-126+EA 4/6 8 2-4 FMUL [BP].HEIGHT
long-real 161+EA 1 54-1 68+ EA 4/6 8 2-4 FMUL [BP].HEIGHT

' occurs when one or both operands is "short"—it has 40 trailing zeros in its fraction (e.g., it was loaded from a short-real

memory operand).

FMULP FMULP destination,source

Multiply real and pop
Exceptions: 1, D, 0, U, P

Operands
Execution Clocks Transfers

Bytes Coding Example
Typical Range 8086 8088

ST(i),ST'

ST(i),ST

100

142

94-108

134-148

0

0

0

0

2

2

FMULP ST(1),ST

FMULP ST(1),ST

occurs when one or both operands is "short'

memory operand).

—it has 40 trailing zeros in its fraction (e.g., it was loaded from a short-real

Mnemonics © Intel 1980
S-52

8087 NUMERIC DATA PROCESSOR

Table S-19. Instruction Set Reference Data (Cont'd.)

FNOP FNOP (no operands)

No operation
Exceptions: None

Operands
Execution Clocks Transfers

Bytes Coding Example
Typical Range 8086 8088

(no operands) 13 10-16 0 0 2 FNOP

FPATAN FPATAN (no operands)

Partial arctangent
Exceptions: U, P (operands not checked)

Operands
Execution Clocks Transfers

Bytes Coding Example
Typical Range 8086 8088

(no operands) 650 250-800 0 0 2 FPATAN

FPREM FPREM (no operands)

Partial remainder
Exceptions: 1, D, U

Operands
Execution Clocks Transfers

Bytes Coding Example
Typical Range 8086 8088

(no operands) 125 15-190 0 0 2 FPREM

FPTAN FPTAN (no operands)

Partial tangent
Exceptions: I, P (operands not checked)

Operands
Execution Clocks Transfers

Bytes Coding Example
Typical Range 8086 8088

(no operands) 450 30-540 0 0 2 FPTAN

FRNDINT FRNDINT (no operands)

Round to integer
Exceptions: 1, P

Operands
Execution Clocks Transfers

Bytes Coding Example
Typical Range 8086 8088

(no operands) 45 16-50 0 0 2 FRNDINT

S-53
Mnemonics © Intel 1980

8087 NUMERIC DATA PROCESSOR

Table S-19. Instruction Set Reference Data (Cont'd.)

FRSTOR FRSTOR source

Restore saved state
Exceptions: None

Operands
Execution Clocks Transfers

Bytes Coding Example
Typical Range 8086 8088

94-bytes 210+EA 205-21 5+EA 47/49 96 2-4 FRSTOR [BP]

FSAVE/FNSAVE FSAVE destination

Save state
Exceptions: None

Operands
Execution Clocks Transfers

Bytes Coding Example
Typical Range 8086 8088

94-bytes 210+EA 205-21 5+EA 48/50 94 2-4 FSAVE [BP]

FSCALE FSCALE (no operands)

Scale
Exceptions: 1, 0, U

Operands
Execution Clocks Transfers

Bytes Coding Example
Typical Range 8086 8088

(no operands) 35 32-38 0 0 2 FSCALE

FSQRT FSQRT no operands) ^ , ^ „
„ . Exceptions: 1, D, P
Square root ^

Operands
Execution Clocks Transfers

Bytes Coding Example
Typical Range 8086 8088

(no operands) 183 180-186 0 0 2 FSQRT

FST FST destination ^
, ^ .. r.

Store real
Exceptions: 1,0, U,P

Operands
Execution Clocks Transfers

Bytes Coding Example
Typical Range 8086 8088

ST(i)

short-real

long-real

18

87+EA
100+EA

15-22

84-90+EA

96-1 04+ EA

0

3/5

5/7

0

6

10

2

2-4

2-4

FST ST(3)

FST CORRELATION [Dl]

FST MEAN_READING

Mnemonics © Intel 1980
S-54

8087 NUMERIC DATA PROCESSOR

Table S-19. Instruction Set Reference Data (Cont'd.)

FSTCW/FN^TPW FSTCW destination

Store control word
Exceptions: None

Operands
Execution Clocks Transfers

Bytes Coding Example
Typical Range 8086 8088

2-bytes 15+EA 12-18+EA 2/4 4 2-4 FSTCW SAVE_CONTROL

FSTENV/FNSTENV FSTENV destination

Store environment
Exceptions: None

Operands
Execution Clocks Transfers

Bytes Coding Example
Typical Range 8086 8088

14-bytes 45+EA 40-50+EA 8/10 16 2-4 FSTENV [BP]

FSTP FSTP destination

Store real and pop
Exceptions: 1, 0, U, P

Operands
Execution Clocks Transfers

Bytes Coding Example
Typical Range 8086 8088

ST(i) 20 17-24 0 0 2 FSTP ST(2)

short-real 89+EA 86-92+EA 3/5 6 2-4 FSTP [BX].ADJUSTED^RPM
long-real 102+EA 98-1 06+ EA 5/7 10 2-4 FSTP TOTAL_DOSAGE
temp-real 55+EA 52-58+EA 6/8 12 2-4 FSTP REG_SAVE[SI]

FSTSW/FNSTSW FSTSW destination

Store status word
Exceptions: None

Operands
Execution Clocks Transfers

Bytes Coding Example
Typical Range 8086 8088

2-bytes 15+EA 12-18+EA 2/4 4 2-4 FSTSW SAVE_STATUS

FSUB FSUB //source/destination,source

Subtract real
Exceptions: l,D,0,U,P

Operands
Execution Clocks Transfers

Bytes Coding Example
Typical Range 8086 8088

//ST,ST(i)/ST{i),ST 85 70-100 0 0 2 FSUB ST,ST{2)

short-real 105+EA 90-120+EA 2/4 4 2-4 FSUB BASE_VALUE
long-real 110+EA 95-1 25+EA 4/6 8 2-4 FSUB COORDINATE.

X

S-55
Mnemonics <& Intel 1980

8087 NUMERIC DATA PROCESSOR

Table S-19. Instruction Set Reference Data (Cont'd.)

FSUBP FSUBP destination,source

Subtract real and pop
Exceptions: l,D,0,U,P

Operands
Execution Clocks Transfers

Bytes Coding Example
Typical Range 8086 8088

ST(i),ST 90 75-105 0 0 2 FSUBP ST(2),ST

FSUBR FSUBR //source/destination, source

Subtract real reversed
Exceptions: l,D,0,U,P

Operands
Execution Clocks Transfers

Bytes Coding Example
Typical Range 8086 8088

//ST,ST(i)/ST(i),ST 87 70-100 0 0 2 FSUBR ST,ST(1)

short-real 105+EA 90-120+EA 2/4 4 2-4 FSUBR VECTOR[SI]

long-real 110+EA 95-125+EA 4/6 8 2-4 FSUBR [BX]. INDEX

FSUBRP FSUBRP destination,source

Subtract real reversed and pop
Exceptions: l,D,0,U,P

Operands
Executon Clocks Transfers

Bytes Coding Example
Typical Range 8086 8088

ST(i),ST 90 75-105 0 0 2 FSUBRP ST(1),ST

FTST FTST (no operands)

Test stack top against +0.0
Exceptions: 1, D

Operands
Execution Clocks Transfers

Bytes Coding Example
Typical Range 8086 8088

(no operands) 42 38-48 0 0 2 FTST

FWAIT FWAIT (no operands)

(GPU) Wait while 8087 is busy
Exceptions: None (CPU instruction)

Operands
Execution Clocks Transfers

Bytes Coding Example
Typical Range 8086 8088

(no operands) 3+5n* 3+5n* 0 0 1 FWAIT

*n = number of times CPU examines TEST line before 8087 lowers BUSY.

Mnemonics © Intel 1980

S-56

8087 NUMERIC DATA PROCESSOR

Table S-19. Instruction Set Reference Data (Cont'd.)

FXAM FXAM {no operands)

Examine stack top
Exceptions : None

Operands
Execution Clocks Transfers

Bytes Coding Example
Typical Range 8086 8088

(no operands) 17 12-23 0 0 2 FXAM

FXCH FXCH //destination

Exchange registers
Exceptions: 1

Operands
Execution Clocks Transfers

Bytes Coding Example
Typical Range 8086 8088

//ST(i) 12 10-15 0 0 2 FXCH ST(2)

FXTRACT FXTRACT (no operands)

Extract exponent and significand
Exceptions: 1

Operands
Execution Clocks Transfers

Bytes Coding Example
Typical Range 8086 8088

(no operands) 50 27-55 0 0 2 FXTRACT

FYL2X FYL2X (no operands)

Y» Log^X
Exceptions: P (operands not checked)

Operands
Execution Clocks Transfers

Bytes Coding Example
Typical Range 8086 8088

(no operands) 950 900-1100 0 0 2 FYL2X

FYL2XP1 FYL2XP1 (no operands)

Y»log2(X + 1)
Exceptions: P (operands not checked)

Operands
Execution Clocks Transfers

Bytes Coding Example
Typical Range 8086 8088

(no operands) 850 700-1000 0 0 2 FYL2XP1

S-57
Mnemonics © Intel 1980

8087 NUMERIC DATA PROCESSOR

Table S-19. Instruction Set Reference Data (Cont'd.)

F2XM1 F2XM1 {no operands)
Exceptions: U, P (operands not checked)

Operands
Execution Clocks Transfers

Bytes Coding Example
Typical Range 8086 8088

(no operands) 500 310-630 0 0 2 F2XM1

Mnenrionics © Intel, 1980

8.8 Programming Facilities

Writing programs for the 8087 is a natural exten-

sion of the process described in section 2.9, just as

the NDP itself is an extension to the CPU. This

section describes how PL/M-86 and ASM-86 pro-

grammers work with the 8087 in these languages.

It also covers the 8087 software emulators

provided for both translators.

The level of detail in this section is intended to

give programmers a basic understanding of the

software tools that can be used with the 8087, but

this information is not sufficient to document the

full capabilities of these facilities. The definitive

description of ASM-86 and the full 8087 emulator

is provided in MCS-86 Assembly Language
Reference Manual, Order No. 9800640, and
MCS-86 Assembler Operating Instructions for

ISIS-II Users, Order No. 9800641. PL/M-86 and
the partial emulator are documented in PL/M-86
Programming Manual, Order No. 9800466 and
ISIS-II PL/M-86 Compiler Operator's Manual,
Order No. 9800478. These publications may be

ordered from Intel's Literature Department.

Readers should be familiar with section 2.9 of the

8086 Family User's Manual in order to benefit

from the material in this section.

PL/M-86

High level language programmers can access a

useful subset of the 8087's (real or emulated)

capabilities. The PL/M-86 REAL data type

corresponds to the NDP's short real (32-bit) for-

mat. This data type provides a range of about
8.43*10'" < |x| < 3.38*1038, with about seven

significant decimal digits. This representation is

adequate for the data manipulated by many
microcomputer applications.

The utility of the REAL data type is extended by
the PL/M-86 compiler's practice of holding

intermediate results in the 8087's temporary real

format. This means that the full range and preci-

sion of the processor may be utilized for

intermediate results. Underflow, overflow, and
rounding errors are most likely to occur during

intermediate computations rather than during

calculation of an expression's final result.

Holding intermediate results in temporary real

format greatly reduces the likelihood of overflow

and underflow and eliminates roundoff as a

serious source of error until the final assignment

of the result is performed.

The compiler generates 8087 code to evaluate

expressions that contain REAL data types,

whether variables or constants or both. This

means that addition, subtraction, multiplication,

division, comparison, and assignment of REALs
will be performed by the NDP. INTEGER expres-

sions, on the other hand, are evaluated on the

CPU.

Five built-in procedures (table S-20) give the

PL/M-86 programmer access to 8087 functions

manipulated by the processor control instruc-

tions. Prior to any arithmetic operations, a

typical PL/M-86 program will setup the NDP
after power up using the INIT$REAL$MATH
$UNIT procedure and then issue
SET$REAL$MODE to configure the NDP.
SETSREALSMODE loads the 8087 control word,

and its 16-bit parameter has the format shown in

figure S-7. The recommended value of this

parameter is 033EH (projective closure, round to

nearest, 64-bit precision, interrupts enabled, all

exceptions masked except invalid operation).

Other settings may be used at the programmer's

discretion.

Mnemonics © Intel 1980
S-58

8087 NUMERIC DATA PROCESSOR

Table S-20. PL/M-86 Built-in Procedures

Procedure 8087 Instruction Description

INIT$REAL$MATH$UNIT(1'

SET$REAL$MODE

GET$REAL$ERR0R<2)

SAVE$REAL$STATUS

RESTORE$REAL$STATUS

FINIT

FLDCW

FNSTSW & FNCLEX

FNSAVE

FRSTOR

Initialize processor.

Set exception masks, rounding

precision, and infinity controls.

Store, then clear, exception

flags.

Save processor state.

Restore processor state.

*^'Also initializes interrupt pointers for emulation.

^^'Returns low-order byte of status word.

If any exceptions are unmasked, an exception

handler must be provided in the form of an inter-

rupt procedure that is designated to be invoked by

CPU interrupt pointer (vector) number 16. The
exception handler can use the GET$REAL
SERROR procedure to obtain the low-order byte

of the 8087 status word and to then clear the

exception flags. The byte returned by
GETSREALSERROR contains the exception

flags; these can be examined to determine the

source of the exception.

The SAVESREALSSTATUS and RESTORE
SREALSSTATUS procedures are provided for

multi-tasking environments where a running task

that uses the 8087 may be preempted by another

task that also uses the 8087. It is the responsibility

of the preempting task to issue
SAVESREALSSTATUS before it executes any

statements that affect the 8087; these include the

INITSREALSMATHSUNIT and SETSREAL
SMODE procedures as well as arithmetic expres-

sions. SAVESREALSSTATUS saves the 8087

state (registers, status, and control words, etc.) on

the CPU's stack. RESTORESREALSSTATUS
reloads the state information; the preempting task

must invoke this procedure before terminating in

order to restore the 8087 to its state at the time the

running task was preempted. This enables the

preempted task to resume execution from the

point of its preemption.

Note that the PL/M-86 compiler prefixes every

8087 instruction with a CPU WAIT. Therefore,

programmers should not code PL/M-86

statements that generate 8087 instructions if the

NDP can request an interrupt and that interrupt is

blocked (this may result in the endless wait

condition described in section S.6.)

ASM-86

The ASM-86 assembly language provides a single

uniform set of facilities for all combinations of

the 8086/8088/8087 processors. Assembly
language programs can be written to be com-
pletely independent of the processor set on which

they are destined to execute. This means that a

program written originally for an 8088 alone will

execute on an 8086/8087 combination without

re-assembling. The programmer's view of the

hardware is a single machine with these resources:

160 instructions

12 data types

8 general registers

4 segment registers

8 floating-point registers, organized as a

stack

The combination of the assembly language and

the 8087 emulator decouple the source code from

the execution vehicle. For example, the assembler

automatically inserts CPU WAIT instructions in

front of those 8087 instructions that require them.

If the program actually runs with the emulator

rather than the 8087, the WAlTs are auto-

matically removed at link time (since there is no
NDP for which to wait).

S-59
Mnemonics © Intel 1980

8087 NUMERIC DATA PROCESSOR

Defining Data

The ASM-86 directives shown in table S-21

allocate storage for 8087 variables and constants.

As with other storage allocation directives, the

assembler associates a type with any variable

defined with these directives. The type value is

equal to the length of the storage unit in bytes (10

for DT, 8 for DQ, etc.). The assembler checks the

type of any variable coded in an instruction to be

certain that it is compatible with the instruction.

For example, the coding FIADD ALPHA will be

flagged as an error if ALPHA'S type is not 2 or 4,

because integer addition is only available for

word and short integer data types. The operand's

type also tells the assembler which machine
instruction to produce; although to the pro-

grammer there is only an FIADD instruction, a

different machine instruction is required for each

operand type.

On occasion it is desirable to use an instruction

with an operand thajt has no declared type. For

example, if register BX points to a short integer

variable, a programmer may want to code

FIADD [BX]. This can be done by informing the

assembler of the operand's type in the instruction,

coding FIADD DWORD PTR [BX]. The
corresponding overrides for the other storage

allocations are WORD PTR, QWORD PTR, and

TBYTE PTR.

The assembler does not, however, check the types

of operands used in processor control instruc-

tions. Coding FRSTOR [BP] implies that the pro-

grammer has set up register BP to point to the

stack location where the processor's 94-byte state

record has been previously saved.

The initial values for 8087 constants may be

coded in several different ways. Binary integer

constants may be specified as bit strings, decimal

integers, octal integers, or hexadecimal strings.

Packed decimal values are normally written as

decimal integers, although the assembler will

accept and convert other representations of

integers. Real values may be written as ordinary

decimal real numbers (decimal point required), as

decimal numbers in scientific notation, or as hex-

adecimal strings. Using hexadecimal strings is

primarily intended for defining special values

such as infinities, NANs, and nonnormalized

numbers. Most programmers will find that

ordinary decimal and scientific decimal provide

the simplest way to initialize 8087 constants.

Figure S-20 compares several ways of setting the

various 8087 data types to the same initial value.

Note that preceding 8087 variables and constants

with the ASM-86 EVEN directive ensures that the

operands will be word-aligned in memory. This

will produce the best performance in 8086-based

systems, and is good practice even for 8088 soft-

ware, in the event that the programs are trans-

ferred to an 8086. All 8087 data types occupy

integral numbers of words so that no storage is

"wasted" if blocks of variables are defined

together and preceded by a single EVEN
declarative.

Records and Structures

The ASM-86 RECORD and STRUC (structure)

declaratives can be very useful in NDP program-

ming. The record facility can be used to define the

bit fields of the control, status, and tag words.

Figure S-21 shows one definition of the status

word and how it might be used in a routine that

polls the 8087 until it has completed an instruc-

tion.

Because structures allow different but related

data types to be grouped together, they often pro-

vide a natural way to represent ''real world" data

organizations. The fact that the structure

template may be "moved" about in memory adds

to its flexibility. Figure S-22 shows a simple struc-

Table S-21 . 8087 Storage Allocation Directives

Directive Interpretation 8087 Data Types

DW Define Word Word integer

DD Define Doubleword Short integer, short real

DQ Define Quadword Long integer, long real

DT Define Tenbyte Packed decimal, temporary real

S-60

8087 NUMERIC DATA PROCESSOR

; THE FOLLOWING ALL ALLOCATE THE CONSTANT: -126
; NOTE TWO'S COMPLEMENT STORAGE OF NEGATIVE BINARY INTEGERS.

;EVEN ;FORCEWORDALIGNMENT
WORO_INTEGER DW 1 1 1 1 1 1 1 1 1 0 0 0 0 1 0 B ; BIT STRING
SHORT_ INTEGER DD 0FFFFFF82H ; HEX STRING MUST START WITH DIGIT
L0NG_INTE6ER DQ -126 ; ORDINARY DECIMAL
SHORT_REAL DD -126.0 ; NOTE PRESENCE OF '.'

LONG_REAL DD -1.26E2 ; ''SCIENTIFIC'
PACKED_DEC IMAL DT -126 ; ORDINARY DECIMAL INTEGER
; IN THE FOLLOWING, SIGN AND EXPONENT IS 'C005',

SIGNIFICAND IS '7E00...00', 'R' INFORMS ASSEMBLER THAT
THE STRING REPRESENTS A REAL DATA TYPE.

TEMP_REAL OT 0C0057E00000000000000R ; HEX STRING

Figure S-20. Sample 8087 Constants

; RESERVE SPACE FOR STATUS WORD
STATUS_WORD OW ->

; LAY OUT STATUS WORD FIELDS
STATUS RECORD

BUSY : 1 ,

& COND C0DE3: 1.
s STACK TOP: 3.
s COND C0DE2: 1.
s COND C0DE1 : 1.
s COND CODEC: 1.
s INT REQ: 1.
& RESERVED: 1 ,

s P FLAG 1.
g U FLAG 1,
g 0 FLAG 1.
g Z FLAG 1.
g D F LAG 1.
& I F LAG 1

t POLL STATUS WORD UNTIL 8087 IS NOT BUSY
POLL: FNSTSW STATUS_WORD

TEST STATUS_WORD, MASK BUSY
JNZ POLL

Figure S-21 . Status Word RECORD Definition

SAMPLE STRUG

N_OBS DD ' ;SHORT INTEGER
MEAN DQ ' ;LONG REAL
MODE DW ' ;WORO INTEGER
STO_DEV DQ ' ;LONG REAL
; ARRAY OF OBSERVATIONS -- WORD INTEGER
TEST_SCORES DW 1000 DUP C)

SAMPLE ENDS

Figure S-22. Structure Definition

ture that might be used to represent data con-

sisting of a series of test score samples. A struc-

ture could also be used to define the organization

of the information stored and loaded by the

FSTENV and FLDENV instructions.

Addressing Modes

8087 memory data can be accessed with any of the

CPU's five memory addressing modes. This

means that 8087 data types can be incorporated in

data aggregates ranging from simple to complex

according to the needs of the application. The
addressing modes, and the ASM-86 notation used

to specify them in instructions, make the access-

ing of structures, arrays, arrays of structures, and

other organizations direct and straightforward.

Table S-22 gives several examples of 8087 instruc-

tions coded with operands that illustrate different

addressing modes.

8087 Emulators

Intel offers two software products that provide

the functional equivalent of an 8087,

implemented in 8086/8088 software. The full

emulator (E8087) emulates all 8087 instructions.

The partial emulator (PE8087) is a smaller version

that implements only the instructions needed to

support PL/M-86 programs. The full emulator

adds about 16k bytes to a program, while the

partial emulator executes in about 8k. Any
emulated program will deliver the same results

(except for timing) if it is executed on 8087

hardware.

The emulators may be viewed as consisting of

emulated hardware and emulated instructions.

The emulators establish in CPU memory the

equivalent of the 8087 register stack, control, and

status words and all other programmer-accessible

elements of the NOP architecture. The emulator

instructions utilize the same algorithms as their

hardware counterparts. Emulator instructions are

actually implemented as CPU interrupt pro-

cedures. During relocation and linkage the 8087

machine instructions generated by the ASM-86
and PL/M-86 translators are changed to software

interrupt (INT) instructions which invoke these

procedures as the CPU processes its instruction

stream.

S-61
Mnemonics Intel 1978, 1980

8087 NUMERIC DATA PROCESSOR

Table S-22. Addressing Mode Examples

Coding Interpretation

FIADD ALPHA ALPHA is a simple scalar (mode is

direct).

FDIVR ALPHA. BETA BETA is a field in a structure that is

"overlaid" on ALPHA (mode is

direct).

FMUL QWORD PTR [BX] BX contains the address of a long real

variable (mode is register indirect).

FSUB ALPHA [SI] ALPHA is an array and SI contains the

offset of an array element from the

start of the array (mode is indexed).

FILD [BP]. BETA BP contains the address of a

structure on the CPU stack and BETA
is a field in the structure (mode is

based).

FBLD TBYTE PTR [BX] [Dl] BX contains the address of a packed
decimal array and Dl contains the off-

set of an array element (mode is

based indexed).

Since the decision to produce real or emulated

8087 instructions is made at link time, a program
may be switched from one mode to the other

without retranslating the source code. When the

PL/M-86 compiler or ASM-86 assembler places

an 8087 machine instruction into an object

module, it also inserts a special external reference.

This reference is satisfied by linking the object

module to one of two Intel-supplied libraries: the

real library, or the emulator library. If the real

library is specified, LINK-86 simply deletes the

external references, leaving the original 8087

machine instructions.

To run on an emulated 8087, the object program
is linked to the emulator library and to a file con-

taining the code of either the full or the partial

emulator. LINK-86 then adds the emulator code
to the program and changes the 8087 machine
instructions (and their preceding WAITs) to CPU
software interrupt instructions. Any FWAIT
instructions are also changed to CPU NOPs.

Note that an explicitly-coded CPU WAIT instruc-

tion will not be changed; if it is executed under
emulation, the CPU will wait forever. This is why

the FWAIT mnemonic should always be used

when the external processor that the CPU is to

wait for is an 8087.

In order to be compatible with E8087, ASM-86
programs should observe the following

conventions:

• Their stack segment and class should be

named STACK.

• Interrupt pointer (vector) 16 should be

designated for the user's exception handler

interrupt procedure.

• The external procedure INIT87 should be

called in the program's initialization (power-

up) sequence. If the emulator is being used,

this procedure will initialize CPU interrupt

pointers 20-31 to the addresses of emulator

procedures and will execute an (emulated)

FINIT instruction. If the program is not

being emulated, 1NIT87 simply executes the

FINIT instruction.

PL/M-86 automatically observes corresponding

conventions.

Mnemonics © Intel 1980
S-62

8087 NUMERIC DATA PROCESSOR

Programming Example

Figures S-23 and S-24 show the PL/M-86 and
ASM-86 code for a simple 8087 program, called

ARRSUM. The program references an array

(XSARRAY), which contains 0-100 short real

values; the integer variable NOFX indicates the

number of array elements the program is to

consider. ARRSUM steps through XSARRAY
accumulating three sums:

• SUMSX, the sum of the array values;

• SUMSINDEXES, the sum of each array

value times its index, where the index of the

first element is 1 , the second is 2, etc.;

• SUMSSQUARES, the sum of each array

element squared.

(A true program, of course, would go beyond
these steps to store and use the results of these

calculations.) The control word is set with the

recommended values: projective closure, round to

nearest, 64-bit precision, interrupts enabled, and
all exceptions masked except invalid operation. It

is assumed that an exception handler has been

written to field the invalid operation, if it occurs,

and that it is invoked by interrupt pointer 16.

Either version of the program will run on an

actual or an emulated 8087 without altering the

code shown.

The PL/M-86 version of ARRSUM (figure S-23)

is very straightforward and illustrates how easily

the 8087 can be used in this language. After

declaring variables the program calls built-in

procedures to initialize the processor (or its

emulator) and to load the control word. The pro-

gram clears the sum variables and then steps

through XSARRAY with a DO-loop. The loop

control takes into account PL/M-86's practice of

considering the index of the first element of an

array to be 0. In the computation of

SUMSINDEXES, the built-in procedure FLOAT
converts I+l from integer to real because the

language does not support "mixed mode"
arithmetic. One of the strengths of the NDP, of

PL/M-86 COMPILER ARRAYSUM

ISI3-II PL/M-86 DEBUG V2.1 COMPILATION OF MODULE ARRAYSUM
OBJECT MODULE PLACED IN : F4 : ARRSUM . OBJ
COMPILER INVOKED BY: :P0:PLM86 : P4 : ARRSUM . P86 XREF

» »

* ARRAYSUM. MOD *

» *

»* »«•»»»»»»»*»»»»»*#»»»**»*»»»*#**/

1 ARRAY$SUM: DO;

2 1 DECLARE (SUMSX , SUMSINDEXES , SUMSSQUARES) REAL;
3 1 DECLARE XSARRAY (100) REAL;
4 1 DECLARE (NSOFSX.I) INTEGER;
5 1 DECLARE C0NTR0L$87 LITERALLY •033EH';

/» ASSUME XSARRAY AND NSOPSX ARE INITIALIZED »/

/* PREPARE THE 8087, OR ITS EMULATOR »/
6 1 CALL INITSREALSMATriSUNIT;
7 1 CALL SETSREALSM0DE(C0NTR0L$a7);

/• CLEAR SUMS »/

8 1 SUMSX, SUMSINDEXES, SUMSSQUARES = 0.0;

/• LOOP THROUGH XSARRAY, ACCUMULATING SUMS /
9 1 DO I = 0 TO NSOPSX - 1 ;

10 2 SUMSX = SUMSX + XSARRAY(I);
11 2 SUMSINDEXES = SUMSINDEXES +

(XSARRAYd) * PLOATd + 1));
12 2 SUMSSQUARES = SUMSSQUARES + (XSARRAY(I) » XSARRAY(I));
13 2 END;

/» ETC. . .»/

14 1 END ARRAYSSUM;

Figure S-23. Sample PL/M-86 Program

S-63

8087 NUMERIC DATA PROCESSOR

PL/M-86 COMPILER ARRAYSUM

CrtOSS-REPSRENCE LISTING

PN ADDR SIZE rtAME, ATTRIBUTES, AND REFERENCES

1 0002

H

151 PROCEDURE STACK^=0002

H

5 CONTROLS?. . . . , LITERALLY 7
FLOAT BUILTIN 1 1

4 019EH 2 I INTEGER 9
INITREALMATHUNIT , BUILTIN 6

4 019CH 2 NOPX , INTEGER 9
3ETHEALM0DE. . . . BUILTIN 7

2 0004

H

4 SUMINDEXES . . . , REAL 8 1

1

2 0008

H

4 SUMSQUARES . . . , REAL 8 1 2

2 OOOOH 4 REAL 8 10

3 OOOCH 400 XARRAY REAL ARRAY(IOO)

MODULE INFORMATION:

CODS AREA SIZE = 0099H 1 53D
CONSTANT AREA SIZE = 0004H 4D
VARIABLE AREA SIZE = 01 AOH 41 6D
llAXIMUM STACK SIZE = 0002H 2D
33 LINES READ
0 PROGRAM ERROR(S)

END OP PL/M-85 COMPILATION

Figure S-23. Sample PL/M-86 Program (Com'd.)

course, is that it does support arithmetic on mixed

data types, and assembly language programmers
can take advantage of this facility.

The ASM-86 version (figure S-24) defines the

external procedure INIT87, which makes the dif-

ferent initialization requirements of the processor

and its emulator transparent to the source code.

After defining the data, and setting up the seg-

ment registers and stack pointer, the program

calls INIT87 and loads the control word. The

computation begins with the next three instruc-

tions, which clear three registers by loading

(pushing) zeros onto the stack. As shown in figure

S-25, these registers remain at the bottom of the

stack throughout the computation while tem-

porary values are pushed on and popped off the

stack above them.

8086/3087/8038 MACRO ASSEMBLER ARRSUM

ISIS-II 8086/8087/8088 MACRO ASSEMBLER V3.0 ASSEMBLY OF MODULE ARRSUM
OBJECT MODULE PLACED IN : F1 : ARRSUM . OBJ
ASSEMBLER INVOKED BY: :F0:ASMa6 : F1 : ARRSUM . Ag6 XREP

LOC OBJ LINE SOURCE

0000 3E03
0002 ????
0004 (100

•?'>'>'>'>'}•>•>

)

0194 ????????
0198 ????????
01 9C ????????

9
10
11

12

;DEPINE INITIALIZATION ROUTINE
EXTRN INIT87:PAR

SEGMENT PUBLIC 'DATA'
; ALLOCATE SPACE FOR DATA

DATA
C0NTR0L_87 Dtf 033EH
N OF X DM ?

X ART^AY DD 100 DUP (?)

SUH_X
SUM_INDEXES
SUM_SQUARES
DATA

DD
DD
DD
ENDS

Figure S-24. Sample ASM-86 Program

Mnemonics © Intel 1978, 1980
S-64

8087 NUMERIC DATA PROCESSOR

8086/8087/8088 MACRO ASSEMBLSR ARRSJM

LOG OBJ

0000 (200
•>'>'>'>....

0190

0000
0000 B8 R
0003 BEDS
0005 B8 B
0008 8ED0
OOOA BC9001 R

OOOD 9A0000
001 2 9BD92EOOO0

0017 9BD9EE
001 A 9BD9ES
001 D 9BD9EE

0020 8B020200
0024 E329
0026 B80400
0029 P7E9
002B 8BP0

002D
002D 83EE04
0030 9BD9840400 R
0035 9BDCC3
0038 9BD9C0
003B 9BDCC8
003E 9BDEC2

0041 9BDE0E0200 R
0046 9BDEC2

0049 PP0E0200 R
004 D 32DE

004

P

004P 9BD91E9C01 R

0054 9BD91 E9801 R

0059 9BD91E9401 R

0000

LINE

13
14
15
16

17
18
19
20
21

22
23
24
25
26
27
28
29
30
51
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
43
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

72
73
74
75
76
77
78
79
80

SOURCE

; ALLOCATE CPU STACK SPACE
STACK SEGMENT STACK ' STACK'

DW

; LABEL INITIAL TOP OP STACK
3TACK_T0P LABEL
STACK ENDS

200 DUP (?)

WORD

CODE SEGMENT PUBLIC 'CODE'
ASSU."1E CS : CODE , DS : DAT A , SS : STACK , ES : NOTHING

START:
MOV AX, DAT

A

MOV DS.AX
MOV AX, STACK
MOV S3, AX
MOV SP,OFPSET STACK_TOP

ASSUME X_ARRAY 4 N OP_X ARE INITIALIZED.
NOTE: PROGRiM ZEROS N_OP_X

PREPARE THE 8087 OR ITS EMULATOR.

CALL
PLDCW

INIT87
CONTROL 87

; CLEAR 3 REGISTERS TO HOLD RUNNING SUMS.

PLDZ
PLDZ
PLDZ

; SETUP CX AS LOOP COUNTER * SI AS INDEX TO X ARRAY.

MOV CX , N_OP_X
JCXZ POP RESULTS
MOV AX,Type x_array
IMUL CX
MOV 31, AX

;SI NOW CONTAINS INDEX OF LAST ELEMENT
;LOOP THRU X ARRAY ACCUMULATING SUMS.
3UM_NEXT:

SUB SI, TYPE X_ARRAY
PLD X ARRAY[SI]
PADD 3T(3),ST
FLD ST
PMUL ST, ST
FADDP ST(2),ST

;EXIT EARLY IP X ARRAY EMPTY

+ 1 ,

PIMUL
PADDP

DEC
LOOP

;POP RUNNING
POP_RESULTS:

FSTP
PSTP
PSTP

ETC. .

.

CODE ENDS

END

N OP X
ST(2T,ST

N OP X
STJM_FEXT

SUMS INTO MEMORY

SUM_SQUARBS
SUM INDEXES
SUM X

BACKUP ONE ELEMENT
PUSH IT ONTO STACK
ADD INTO SUM OP X
DUPLICATE X ON TOP
SQUARE IT
ADD INTO SUM OP SQUARES

AND DISCARD
GET X TIMES ITS INDEX
ADD INTO SUM OP (INDEX • X)

AND DISCARD
REDUCE INDEX FOR NEXT ITERATION
CONTINUE

START

Figure S-24. Sample ASM-86 Program (Cont'd.)

S-65
Mnemonics © Intel 1978, 1980

8087 NUMERIC DATA PROCESSOR

8086/8087/8088 MACRO ASSEMBLER ARRSOM

XREF SYMBOL TABLE LISTIN5

NAME TYPE VALUE ATTRIBUTES, XREPS

??SEG . . . SEGMENT SIZS=OOOOH PARA PUBLIC
CODE. . . . SEGMENT SIZE=005EH PARA PUBLIC • CODE' 22# 23 78
CONTROL 87. V rfORD- OOOOH DATA 6# 37
DATA. . . . SEGMENT SIZE=01A0H PARA PUBLIC ' DATA 3# 12 23
INIT87. . . L PAR OOOOH EXTRN 211 36
H OP X. . . V WORD 0002

H

DATA 1§ 47 63 66
pT5p Results L NEAR 004PH CODE 48 70*
staTTk . . . SEGMENT SIZE=0190H PARA STACK STACK'
stack top . V WORD 0190H STACK 19# 30
start . . . L NEAR OOOOH CODE 25# 80
SUM INDEXES V DWORD 0198H DATA 10# 72
SUM NEXT. . L NEAR 002DH CODE 55i» 67
SUM~SQUARES V DWORD 019CH DATA n# 71
SUM~X . . . V DWORD 0194H DATA 9* 73
X ARRAY . . V DWORD 0004H DATA 8# 49 56 57

ASSEMBLY COMPLETE, NO ERRORS POUND

Figure S-24. Sample ASM-86 Program (Cont'd.)

The program uses the CPU LOOP instruction to

control its iteration through X ARRAY; register

CX, which LOOP automatically decrements, is

loaded with N OF X, the number of array

elements to be summed. Register SI is used to

select (index) the array elements. The program

steps through X ARRAY from "back to

front", so SI is initialized to point at the element

just beyond the first element to be processed. The

ASM-86 TYPE operator is used to determine the

number of bytes in each array element. This per-

mits changing X ARRAY to a long real array by

simply changing its definition (DD to DQ) and

re-assembling.

Figure S-25 shows the effect of the instructions in

the program loop on the NDP register stack. The

figure assumes that the program is in its

first iteration, that N_OF_X is 20, and that

X_ARRAY(19) (the 20th element) contains the

value 2.5. When the loop terminates, the three

sums are left as the top stack elements so that the

program ends by simply popping them into

memory variables.

8.9 Special Topics

This section describes features of the 8087 which

will be of interest to groups of users who have

special requirements. Most users will not need to

understand this material in detail in order to

utilize the NDP successfully. Most readers, then,

can either browse this section, or skip it altogether

in favor of the programming examples in section

S.IO.

The first four topics in this section cover the

8087's generation and handling of nonnormalized

real values, zeros, infinities and NANs. In the

great majority of applications, these special

values will either not appear at all, or in the case

of zeros, will function according to the normal

rules of arithmetic. Next the bit encodings of each

data type are summarized in table form, including

special values. This information may be of use to

programmers who are sorting these data types or

are decoding unformatted memory dumps or data

monitored from the bus. At the end of the section

is a table that lists all 8087 exception conditions

by class, and the processor's masked response to

each exception. This information will principally

be of use to writers of exception handlers and to

anyone else interested in ascertaining the exact

conditions under which the NDP signals a given

type of exception.

Mnemonics 1 Intel 1978. 1980

S-66

8087 NUMERIC DATA PROCESSOR

F LDZ , F LOZ , F LDZ FLD X_ARRAY[SI]

ST(0) 0.0 SUM SQUARES ST(0) 2.5 X ARRAY (19)

ST(1) 0.0 SUM INDEXES ST(1) SUM^SQUARES

ST(2) 0.0 SUM X ST(2) 0.0 SUM_INDEXES

ST(3) 0.0 SUM_X

FADD ST(3),ST FLD ST

ST(0) 2.5 X ARRAY (19) ST(0) 2.5 X ARRAY (19)

ST(1) 0.0 SUM SQUARES ST(1) 2.5 X ARRAY (19)

ST(2) 0.0 SUM INDEXES ST(2) 0.0 SUM SQUARES

ST(3) 2.5 SUM_X ST(3) 0.0 SUM_INDEXES

ST(4) 2.5 SUM_X

FMUL ST , ST FADDP ST (2) , ST

ST(0) 6.25 X ARRAY(19)2 ST(0) 2.5 X ARRAY(19)

ST(1) 2.5 X_ARRAY(19) ST(1) 6.25 SUM SQUARES

ST(2) 0.0 SUM SQUARES ST(2) 0.0 SUM INDEXES

ST(3) 0.0 SUM INDEXES ST(3) 2.5 SUM_X

ST(4) 2.5 SUM X

FIMUL N_OF_X ^— FADDP ST(2),ST

ST(0) 50.0 X ARRAY(19)*20 ST(0) 6.25 SUM SQUARES

ST(1) 6.25 SUM SQUARES ST(1) 50.0 SUM INDEXES

ST(2) 0.0 SUM INDEXES ST(2) 2.5 SUM _X

ST(3) 2.5 SUM_X

Figure S-25 . Instructions and Register Stack

Nonnormal Real Numbers

As discussed in section S.3, the 8087 generally

stores nonzero real numbers in normalized

floating point form; that is, the integer (leading)

bit of the significand is always a 1. This bit is

explicitly stored in the temporary real format, and

is implicit in the short and long real forms. Nor-

malized storage allows the maximum number of

significant digits to be held in a significand of a

given width, because leading zeros are eliminated.

Denormals

A denormal is the result of the NDP's masked
response to an underflow exception. Underflow
occurs when the exponent of a true result is too

small to be represented in the destination format.

For example, a true exponent of -130 will cause

underflow if the destination is short real, because
-126 is the smallest exponent this format can

accommodate. (No underflow would occur if the

destination were long or temporary real since

these can handle exponents down to -1023 and
-16,383, respectively.)

S-67

8087 NUMERIC DATA PROCESSOR

The NDP's unmasked response to underflow is to

stop and request an interrupt if the destination is

a memory operand. If the destination is a register,

the processor adds the constant 24,576 (decimal)

to the true result's exponent, returns the result,

and then requests an interrupt. The constant

forces the exponent into the range of the tem-

porary real format, and an exception handler can

subtract out the constant to ascertain the true

exponent. Thus, execution always stops when
there is an unmasked underflow.

The intent of the masked response to underflow is

to allow computation to continue without pro-

gram intervention, while introducing an error that

carries about the same risk of contaminating the

final result as roundoff error. Roundoff (preci-

sion) errors occur frequently in real number
calculations; sometimes they spoil the result of

computation, but often they do not. Recognizing

that roundoff errors are often non-fatal, com-
putation usually proceeds and the programmer
inspects the final result to see if these errors have

had a significant effect. The 8087's masked
underflow response allows programmers to treat

underflows in a similar manner; the computation
continues and the programmer can examine the

final result to determine if an underflow has had
important consequences. (If the underflow has

had a significant effect, an invalid operation will

probably be signalled later in the computation.)

Most computers underflow "abruptly"; they

simply return a zero result, which is likely to pro-

duce an unacceptable final result if computation
continues. The 8087, on the other hand,

underflows "gradually" when the underflow

exception is masked. Gradual underflow is

accomplished by denormalizing the result until it

is just within the exponent range of the destina-

tion. Denormalizing means incrementing the true

result's exponent and inserting a corresponding
leading zero in the significand, shifting the rest of
the significand one place to the right. Table S-23

illustrates how a result might be denormalized to

fit a short real destination.

Denormalization produces a denormal or a zero.

Denormals are readily identified by their

exponents, which are always the minimum for

their formats; in biased form, this is always the

bit string: 00...00. This same exponent value is

also assigned to the zeros, but a denormal has a

nonzero significand. A denormal in a register is

tagged special.

The denormalization process may cause the loss

of low-order significand bits as they are shifted

off the right. In a severe case, all the significand

bits of the true result are shifted out and replaced

by the leading zeros. In this case, the result of

denormalization is a true zero, and if the value is

in a register, it is tagged as such. However, this is

a comparatively rare occurrence, and in any case

is no worse than "abrupt" underflow.

Denormals are rarely encountered in most
applications. Typical debugged algorithms

generate extremely small results during the

evaluation of intermediate subexpressions; the

final result is usually of an appropriate magnitude

for its short or long real destination. If

intermediate results are held in temporary real, as

is recommended, the great range of this format

Table S-23. Denormalization Process

Operation Sign Exponent'^' Significand

True Result 0 -129 1y^01011100...00

Denormalize 0 -128 0^101011100. ..00

Denormalize 0 -127 0^0101011100. ..00

Denormalize 0 -126 0^001 01 01 11 00...00

Denormal Result*^* 0 -126 0^001 01 01 11 00...00

Notes:

'^'expressed as unbiased, decimal number

*2>Before storing, significand is rounded to 24 bits, integer bit is dropped, and exponent is
•

biased by adding 126.

S-68

8087 NUMERIC DATA PROCESSOR

makes underflow very unlikely. Denormals are

likely to arise only when an application generates

a great many intermediates, so many that they

cannot be held on the register stack or in

temporary real memory variables. If storage

limitations force the use of short or long reals for

intermediates, and small values are produced,

underflow may occur, and if masked, may
generate denormals.

Accessing a denormal may produce an exception

as shown in table S-24. (The denormalized excep-

tion signals that a denormal has been fetched.)

Denormals may have reduced significance due to

lost low-order bits, and an option of the proposed

IEEE standard precludes operations on non-

normalized operands. This option may be

implemented in the form of an exception handler

that responds to unmasked denormalized excep-

tions. Most users will mask this exception so that

computation may proceed; any loss of accuracy

will be analyzed by the user when the final result

is delivered.

As table S-24 shows, the division and remainder

operations do not accept denormal divisors and

raise the invalid operation exception. Recall, also,

that the transcendental instructions require

normalized operands and do not check for excep-

tions. In all other cases, the NDP converts denor-

mals to unnormals, and the unnormal arithmetic

rules then apply.

Unnormals

An unnormal is the "descendent" of a denormal
and therefore of a masked underflow response.

An unnormal may exist only in the temporary real

format; it may have any exponent that a normal
may have, but it is distinguished from a normal
by the integer bit of its significand, which is

always 0. An unnormal in a register is tagged

valid.

Unnormals allow arithmetic to continue follow-

ing an underflow while still retaining their identity

as numbers which may have reduced significance.

That is, unnormal operands generate unnormal

results, so long as their unnormality has a signifi-

cant effect on the result. Unnormals are thus

prevented from "masquerading" as normals,

numbers which have full significance. On the

other hand, if an unnormal has an insignificant

effect on a calculation with a normal, the result

will be normal. For example, adding a small

unnormal to a large normal yields a normal

result. The converse situation yields an unnormal.

Table S-25 shows how the instruction set deals

with unnormal operands. Note that the unnormal
may be the original operand or a temporary

created by the 8087 from a denormal.

Table S-24. Exceptions Due to Denormal Operands

Operation Exception Masked Response

FLD (short/long real) D Load as equivalent unnormal

arithmetic (except following) D Convert (in a work area) denormal to equivalent

unnormal and proceed

Compare and test D Convert (in a work area) denormal to equivalent

unnormal and proceed

Division or FPREM with

denormal divisor

1 Return real indefinite

S-69
Mnemonics © Intel 1980

8087 NUMERIC DATA PROCESSOR

Table S-25 . Unnormal Operands and Results

Operation Result

MUUIUUi 1/ oUUUaOllUli iNUiiiiaii^dUUii Ut U^cidilU Willi Iciiyt^l dUoUlUlt;

value determines normatization of result.

Ml iltinlip^itinn If pithpr nnprsnri \^ iinnnrmjil rp<5iiltII ^ILII^I W|J^ICtll\J lO UIIMI^IIIICll, Iv^OUIl lO

unnormal.

ni\/i^inn hinnnrmal riix/irlpnH nnl\/^ Rp<?iilt 1"? iinnnrmal

FPREM (unnormal dividend only) Result is normalized.

Division/FPREM (unnormal

U 1 VtoUi /

Signal invalid operation.

Compare/FTST Normalize as much as possible before making
comparison.

FRNDINT Normalize as much as possible before

rni I nri i nn

rovj<ri 1
^innal in\/;^li(H nnpr^tinn

COT pCTD /chnrt/lnnn rpal

destination)

II value loCLUUVCUCoUIIClllVJII oUIIUv^lll^W

boundary, then signal invalid operation; else

signal underflow.

FSTP (temporary real destination) Store as usual.

FIST, FISTP, FBSTP Signal invalid operation.

FLD Load as usual.

FXCH Exchange as usual.

Transcendental instructions Undefined; operands must be normal and are

not checked.

Zeros and Pseudo-Zeros

As discussed in section S.3, the real and packed
decimal data types support signed zeros, while the

binary integers represent a single zero, signed

positive. The signed zeros behave, however, as

though they are a single unsigned quantity. If

necessary, the FXAM instruction may be used to

determine a zero's sign.

The zeros discussed above are called true zeros; if

one of them is loaded or generated in a register,

the register is tagged zero. Table S-26 lists the

results of instructions executed with zero

operands and also shows how a true zero may be

created from nonzero operands. (Nonzero

operands are denoted "X" or "Y" in the table.)

Only the temporary real format may contain a

special class of values called pseudo-zeros. A
pseudo-zero is an unnormal whose significand is

all zeros, but whose (biased) exponent is nonzero

(true zeros have a zero exponent). Neither is a

pseudo-zero's exponent all ones, since this

encoding is reserved for infinities and NANs. A
pseudo-zero result will be produced if two

unnormals, containing a total of more than 64

leading zero bits in their significands, are

multiplied together. This is a remote possibility in

most applications, but it can happen.

Mnemonics £ Intel 1980

S-70

8087 NUMERIC DATA PROCESSOR

Table S-26. Zero Operands and Results

Operation/Operands Result Operation/Operands Result

FLD, FBLDd) Division

+0 +0 ±0-1- ±0 Invalid operation
-0 -0 ±X^±0 Zerodivide

FILD<2) +0^+X, -0^-X +0
+0 +0 +0 ^ -X, -0 ^ +X -0

FST, FSTP -X ^ -Y, +X ^ +Y +0, underflow (8)

+0 +0 -X +Y, +X -Y -0, underflow
-0 -0

+X <3) +0 FPREM
-X (3) -0 ±0 rem ±0 Invalid operation

FBSTP ±X rem ±0 Invalid operation
+0 +0 +0 rem +X, +0 rem -X +0
-0 -0 -0 rem +X, -0 rem -X -0

FIST, FISTP +X rem +Y, +X rem -Y +0 (9)

+0 +0 -X rem -Y, -X rem +Y -0 (9)

-0 +0
+x w +0 FSQRT
-X w +0 -0 -0

+0 +0
Addition

+0 plus +0 +0 Compare
-0 plus -0 -0 ±0:+X A< B
+0 plus -0, -0 plus +0 ±0: ±0 A = B
-X plus +X,+X plus -X ±0 : -X A> B
±0 plus ±X, ±X plus ±0 tX <6)

FTST
Subtraction ±0 Zero
+0 minus -0 +0 FCHS
-0 minus +0 -0 +0 -0

+0 minus +0, -0 minus -0 *0<5) -0 +0
+X minus +X, -X minus -X *0(5) FABS
±0 minus ±X, ±X minus ±0 tX (6) ±0 +0

F2XM1
Multiplication +0 +0

+0 • +0, -0 • -0 +0 -0 -0

+0 • -0, -0 • +0 -0 FRNDINT
+o»+x,+x»+o +0 +0 +0

+0»-X, -X»+0 -0 -0 -0

-0 • +X, +X • -0 -0 FXTRACT
-0 • -X, -X • -0 +0 +0 Both +0

+X»+Y,-X»-Y +0, underflow (7) -0 Both -0

+X«-Y,-X»+Y -0, underflow

Notes:
C) Arithmetic and compare operations with real memory operands interpret the memory operand signs in

the same way.

<2> Arithmetic and compare operations with binary integers interpret the integer sign in the same manner.

'3> Severe underflows in storing to short or long real may generate zeros.

Small values (|x| < 1) stored into integers may round to zero.

Sign is determined by rounding mode:
* = + for nearest, up or chop
* = - for down

(6)
t = signofX.

S-71
Mnemonics © Intel 1980

8087 NUMERIC DATA PROCESSOR

Very small values of X and Y may yield zeros, after rounding of true result. NDP signals underflow to

warn that zero has been yielded by nonzero operands.

Very small X and very large Y may yield zero, after rounding of true result. NDP signals underflow to

warn that zero has been yielded from nonzero operands.

When Y divides into X exactly.

Pseudo-zero operands behave like unnormals,

except in the following cases where they produce

the same results as true zeros:

• compare and test instructions

• FRNDINT (round to integer)

• division, where the dividend is either a true

zero or a pseudo-zero (the divisor is a

pseudo-zero).

In addition and subtraction of a pseudo-zero and

a true zero or another pseudo-zero, the pseudo-

zero(s) behave like unnormals, except for the

determination of the result's sign. The sign is

determined as shown in table S-26 for two true

zero operands.

Infinities

The real formats support signed representations

of infinities. These values are encoded with a

biased exponent of all ones and a significand of

1^00...00; if the infinity is in a register, it is

tagged special. The significand distinguishes

infinities from NANs, including real indefinite

.

A programmer may code an infinity, or it may be

created by the NDP as its masked response to an
overflow or a zerodivide exception. Note that

when rounding is up or down,- the masked
response may create the largest valid value

representable in the destination rather than infin-

ity. See table S-33 for details. As operands,

infinities behave somewhat differently depending

on how the infinity control field in the control

word is set (see table S-27). When the projective

model of infinity is selected, the infinities behave

as a single unsigned representation; because of

this, infinity cannot be compared with any value

except infinity. In affine mode, the signs of the

infinities are observed, and comparisons are

possible.

Table S-27. Infinity Operands and Results

Operation Projective Result Affine Result

Addition
-1-00 plus +00 Invalid operation +00

-oo plus -00 Invalid operation — oo

+00 plus -oo Invalid operation Invalid operation
-00 plus +00 Invalid operation Invalid operation
±oo plus ±X •oo *00

±X plus ±0° *00 *00

Subtraction
+0O minus -oo Invalid operation + 00

-00 minus +oo Invalid operation — 00

+00 minus +oo Invalid operation Invalid operation
-oo minus -oo Invalid operation Invalid operation
±00 minus ±X *00 *00

±X minus ±oo too too

Multiplication
+ 00 • +00 ® oo 0OO
±00 • +Y Qoo 0OO

±0 • ±oo, ±00 * +0 Invalid operation Invalid operation

S-72

8087 NUMERIC DATA PROCESSOR

Table S-27. Infinity Operands and Results (Cont'd.)

Operation Projective Result Affine Result

Division
-t-00 — +00 IllVallU upclciUUII IllVallU UpcldllUII
+00 - +y Q 00

+y _:_ _i_oo

FSQRT
—00 Invalid operation Invalid operation
+00 Invpiliri nnpraton +00

FPREM
-i-oo rom --00 IllVdllU W|JCICIUL/II InvaliH nnPratiAnIIIVClllU U^JCIdUL/ll

4-oorpm -f-X Invalid nnpratinn Invalid nnpratinn
-f-Y rom H-oo_L 1 1 C 1 1 1 — *Y *Y

V

FRNDINT
+ 00 * 00 *oo

rbUALt
+00 <5ra|pfi hv +00 Invalid onpration Invalid oneration

±00 scaieu Dy ±A * CO *oo

Xu oodicu uy *n

-t-Y qp^iIpH hv +00X 1 oociicvj uy x*-^ Invalirl nnpratinn Invalirl nnpratinn

FXTRACT
+00 Invalid operation Invalid operation

Compare
+00 ' +00 A — Rr\ — LJ

—00 <^ -f"Oo

±00 : ±Y A ? B (and) invalid

operation -00 < Y < +00

±0° : ±0 A ? B (and) invalid

operation -00 < 0 < +°°

FTST A ? B (and) invalid

±°° operation *oo

Notes: X = zero or nonzero operand

Y = nonzero operand

* = sign of original operand

t = sign is complement of original operand's sign

©= sign is "exclusive or" original operand signs (+ if operands had same sign,

- if operands had different signs)

NANS

A NAN (Not-A-Number) is a member of a class

of special values that exist in the real formats

only. A NAN has an exponent of 11...11B, may
have either sign, and may have any significand

except 1^00...00B, which is assigned to the

infinities. A NAN in a register is tagged special.

The 8087 will generate the special NAN, real

indefinite, as its masked response to an invalid

operation exception. This NAN is signed

negative; its significand is encoded 1^100...00.

All other NANs represent programmer-created

values.

Whenever the NDP uses an operand that is a

NAN, it signals invalid operation. Its masked
response to this exception is to return the NAN as

the operation's result. If both operands of an

instruction are NANs, the result is the NAN with

the larger absolute value. In this way, a NAN that

enters a computation propagates through the

computation and will eventually be delivered as

S-73
Mnemonics © Intel 1980

8087 NUMERIC DATA PROCESSOR

the final result. Note, however, that the tran-

scendental instructions do not check their

operands, and a NAN will produce an undefined

result.

creating a different NAN for each error. When
the program ended, the NAN results could be

used to access the diagnostic data saved at the

time the errors occurred. Many errors could thus

be diagnosed and corrected in one test run.

By unmasking the invalid operation exception,

the programmer can use NANs to trap to the

exception handler. The generality of this

approach and the large number of NAN values

that are available, provide the sophisticated pro-

grammer with a tool that can be applied to a

variety of special situations.

For example, a compiler could use NANs to

references to uninitialized (real) array elements.

The compiler could pre-initialize each array ele-

ment with a NAN whose significand contained

the index (relative position) of the element. If an

application program attempted to access an ele-

ment that it had not initialized, it would use the

NAN placed there by the compiler. If the invalid

operation exception were unmasked, an interrupt

would occur, and the exception handler would be

invoked. The exception handler could determine

which element had been accessed, since the

operand address field of the exception pointers

would point to the NAN, and the NAN would
contain the index number of the array element.

NANs could also be used to speed up debugging.

In its early testing phase a program often contains

multiple errors. An exception handler could be

written to save diagnostic information in memory
whenever it was invoked. After storing the

diagnsotic data, it could supply a NAN as the

result of the erroneous instruction, and that NAN
could point to its associated diagnostic area in

memory. The program would then continue.

Data Type Encodings

Tables S-28 through S-31 summarize how various

types of values are encoded in the seven NDP data

types. In all tables, the less significant bits are to

the right and are stored in the lowest memory
addresses. The sign bit is always the left-most bit

of the highest-addressed byte.

Notice that in every format one encoding is inter-

preted as representing the special value indefinite

.

The 8087 produces this encoding as its response to

a masked invalid operation exception. In the case

of the reals, indefinite can be loaded and stored

like any NAN and it always retains its special

identity; programmers are advised not to use this

encoding for any other purpose. Packed decimal

indefinite may be stored by the NDP in a FBSTP
instruction; attempting to use this encoding in

a FBLD instruction, however, will have an

undefined result. In the binary integers, the same
encoding may represent either indefinite or the

largest negative number supported by the format
(-2'^ -231 or -2^3). The 8087 will store this

encoding as its masked response to an invalid

operation, or when the value in a source register

represents, or rounds to, the largest negative

integer representable by the destination. In situa-

tions where its origin may be ambiguous, the

invalid operation exception flag can be examined

to see if the value was produced by an exception

response. When this encoding is loaded, or used

by an integer arithmetic or compare operation, it

is always interpreted as a negative number; thus

indefinite cannot be loaded from a packed

decimal or binary integer.

S-74

8087 NUMERIC DATA PROCESSOR

Table S-28. Binary Integer Encodings Exception Handling Details

Class oign IVlay nilUQc

in (Largest) 0
•

11. ..11

•

o
•

•

•

•
Q.

(Smallest) 0 00. ..01

Zero 0 00. ..00

(/> (Smallest) 1

•

11. ..11

•

Negativ

(LargestlIndefinite *

)

•

•

1

•

•

00. ..00

Word: -*-15bits-^
Short: -*-31 bits-^
Long: -^63 bits-^

If this encoding is used as a source operand

(as in an integer load or integer arithmetic

instruction), the 8087 interprets it as the

largest negative number representable in the

format: -2^^^ -2^\ or -2". The 8087 will deliver

this encoding to an integer destination in two

cases:

1) if the result is the largest negative

number,

Table S-32 lists every exception condition that the

NDP detects and describes the processor's

response when the relevant exception mask is set.

The unmasked responses are described in table

S-6. Note that if an unmasked overflow or

underflow occurs in an FST or FSTP instruction,

no result if stored, and the stack and memory are

left as they existed before the instruction was

executed. This gives an exception handler the

opportunity to examine the offending operand on

the stack top.

When rounding is directed (the RC field of the

control word is set to "up" or "down"), the 8087

handles a masked overflow differently than it

does for the "nearest" or "chop" rounding

modes. Table S-33 shows the NDP's masked
response when the true result is too large to be

represented in it's destination real format. For a

normalized result, the essence of this response is

to deliver «» or the largest valid number represen-

table in the destination format, as dictated by the

rounding mode and the sign of the true result.

Thus, when RC=down, a positive overflow is

rounded down to the largest positive number.

Conversely, when RC=up, a negative overflow is

rounded up to the largest negative number. A
properly signed °° is returned for a positive

overflow with RC=up, or a negative overflow

with RC=down. For an unnormalized result, the

action is similar except that the the unnormal

character of the result is preserved if the sign and

rounding mode do not indicate that «» should be

delivered.

2) as the response to a masked invalid

operation exception, in which case it

represents the special value integer

indefinite

.

In all masked overflow responses for directed

rounding, the overflow flag is not set, but the

precision exception is raised to signal that the

exact true result has not been returned.

S-75

8087 NUMERIC DATA PROCESSOR

Table S-29. Packed Decimal Encodings

Class Sign
Magnitude

digit digit digit digit . . . digit

Positives

(Largest)

(Smallest)

0

•

•

•

0

0000000
•

•

•

UUUUUuU

1001100110011001. ..1001
•

•UUUUUUUUUUUUUUUU...UUU1
Zero 0 0000000 0000000000000000. ..0000

Negatives

Zero 0000000 0000000000000000. ..0000
(Smallest)

(Largest)

0000000
•

•

•

0000000

0000000000000000. ..0001
•

•

1001100110011001. ..1001
Indefinite* 1 1111111 11111111UUUUUUUU...UUUU

M 1 byte 9 bytes

* The pacl<ed decimal indefinite encoding is stored by FBSTP in response to a masked invalid

operation exception. Attempting to load this value via FBLD produces an undefined result.

Note: "UUUU" means bit values are undefined and may contain any value.

Table S-30. Real and Long Real Encodings

Class Sign
Biased

Exponent

Significand*

Aff...ff

0 11. ..11 11. ..11

• • •

NANS •

•

0

•

•

11. ..11

•

•

00. ..01

00 0 11. ..11 00. ..00

(A
0)

0 11. ..10 11. ..11

> • • •

Posit

«
(0
0)

CC

Normals •

•

0

•

•

00. ..01

•

•

00. ..00

0 00. ..00 11. ..11

• • •

Denormals •

•

0

•

•

00. ..00

•

•

00. ..01

Zero 0 00. ..00 00. ..00

S-76

8087 NUMERIC DATA PROCESSOR

Table S-30. Real and Long Real Encodings (Cont'd.)

Class Sign
Biased

Exponent

Significand*

Aff...ff

Zero 00...UU 0U...00

00. ..00 00.. .01

• • •

<n

Denormals
•

•

•

•

•
CO
0)

QC
00 00\J\J . . .\J\J 11 11

1 1 ... 1 1

UU...U1 f\f\ r\f\
UU.. .UU

• • •

latives

Normals

1

•

•

11. ..10

•

•

11. ..11

0)

z
oo 11. ..11 00. ..00

:

11. ..11 00...01

• •

• •

(/>

• •

z
< Indefinite 11. ..11 10. ..00

•

•

•

11. ..11

•

•

•

11. ..11

Short: 1-^—8 bits h*-23 bits

Long: |-*—11 bits-H— 52 bits—

^

* Integer bit is implied and not stored.

Table S-3 1 . Temporary Real Encodings

Class Sign
Biased

Exponent

Significand

lAff..ff

Positives

NANs

0
•

•

•

0

11. ..11

•

•

•

11. ..11

111. ..11

•

•

•

100. ..01

oo 0 11. ..11 100... 00

S-77

8087 NUMERIC DATA PROCESSOR

Table S-3 1 . Temporary Real Encodings (Cont'd .)

Class Sign
Biased

Exponent

Significand

lAff...ff

0

•

•

11. ..10

•

•

Normals

111 11
1 1 1 ... M

•

•

•

•

100. ..00

• • Unnormals

iitives

•

•

•

• 011. ..11

in
O
a.

•

•

•

0

•

•

•

00. ..01

•

•

•

000. ..00

Denormals

0 00...00 Oil. ..11

• • •

• • •

0 00. ..00 000. ..01

Reals
Zero 0 00. ..00 000. ..00

Zero 1 00...00 000. ..00

Denormals

1 00...00 000. ..01

• • •

• • •

• • •

1 00. ..00 Oil ...11

1 00. ..01 Unnormals

tives

• 000. ..00

•

Nega

•

•

•

•

•

•

•

•

•

011. ..11

• • Normals

100. ..00

•

•

•

1 11. ..10 111. ..11

oo 1 11. ..11 100. ..00

s-78

8087 NUMERIC DATA PROCESSOR

Table S-3 1 . Temporary Real Encodings (Cont'd.)

Class Sign
Biased

txponeni

Significand

1 ft ti

Negatives

•

11. ..11

•

•

•

100. ..00

•

•

•

NANs Indefinite 11. ..11 110. ..00

•

•

•

11. ..11

•

•

•

111. ..11

-*—15 bits— —64 bits

Table S-32. Exception Conditions and Masked Responses

Condition Masked Response

Invalid Operation

Source register is tagged empty (usually

due to stack underflow).

Return real indefinite.

Destination register is not tagged empty
(usually due to stack overflow).

Return real indefinite (overwrite

destination value).

One or both operands is a NAN. Return NAN with larger absolute value

(ignore signs).

(Compare and test operations only):

one or both operands is a NAN.
Set condition codes "not comparable".

(Addition operations only): closure is

affine and operands are opposite-signed

infinities; or closure is projective and both

operands are °° (signs immaterial).

Return real indefinite

(Subtraction operations only): closure is

affine and operands are like-signed

infinities; or closure is projective and both

operands are <» (signs immaterial).

Return real indefinite.

(Multiplication operations only): <» * 0; or

0 * °°.

Return real indefinite.

(Division operations only): 0° -f 0°; or 0 0;

or 0 pseudo-zero; or divisor is denormal

or unnormal.

Return real indefinite.

(FPREM instruction only): modulus
(divisor) is unnormal or denormal;

ordividend is °°.

Return rea\ indefinite , set condition code
= "complete remainder".

(FSORT instruction only): operand is

nonzero and negative; or operand is

denormal or unnormal; or closure is affine

and operand is -°o; or closure is projective

and operand is °o.

Return real indefinite.

S-79
Mnemonics £ Intel 1980

8087 NUMERIC DATA PROCESSOR

Exception Conditions and Masked Responses (Cont'd.)

Invalid Operation

(Compare operations only): closure is

projective and °° \s being connpared with 0

or a normal, or <».

(FTST instruction only): closure is

projective and operand is <».

(FIST, FISTP instructions only): source

register is empty, or a NAN, or denormal,

or unnormal, or °o, or exceeds represent-

able range of destination.

(FBSTP instruction only): source register

is empty, or a NAN, or denormal, or

unnormal, or «>, or exceeds 18 decimal

digits.

(FST, FSTP instructions only): destination

is short or long real and source register is

an unnormal with exponent in range.

(FXCH instruction only): one or both

registers is tagged empty.

Set condition code = "not comparable"

Set condition code = "not comparable".

Store mteger indefinite.

Store packed decimal indefinite.

Store real indefinite.

Change empty register(s) to real indefinite

and then perform exchange.

Denormalized Operand

(FLD instruction only): source operand is

denormal.

(Arithmetic operations only): one or both

operands is denormal.

(Compare and test operations only): one
or both operands is denormal or unnormal
(other than pseudo-zero).

No special action; load as usual.

Convert (in a worl< area) the operand to the

equivalent unnormal and proceed.

Convert (in a work area) any denormal to

the equivalent unnormal; normalize as

much as possible, and proceed with

operation.

Zerodivide

(Division operations only): divisor = 0. Return «> signed with "exclusive or" of

operand signs.

Overflow

(Arithmetic operations only): rounding is

nearest or chop, and exponent of true

result > 16,383.

(FST, FSTP instructions only): rounding is

nearest or chop, and exponent of true

result > +127 (short real destination)

or > +1023 (long real destination).

Return properly signed ooand signal

precision exception.

Return properly signed °° and signal

precision exception.

Mnemonics © Intel 1980
S-80

8087 NUMERIC DATA PROCESSOR

Exception Conditions and Masked Responses (Cont'd.)

Underflow

(Arithmetic operations only): exponent of

true result <-16, 382 (true).

Denormalize until exponent rises to

-16,382 (true), round significand to 64 bits.

If denormalized rounded significand = 0,

then return true 0; else, return denormal

(tag = special, biased exponent =0).

(FST, FSTP instructions only): destination

is short real and exponent of true result

<— \Zo (true).

Denormalize until exponent rises to -126

(true), round significand to 24 bits, store

true 0 if denormalized rounded significand

= 0; else, store denormal (biased expo-

nent =0).

(FST, FSTP instructions only): destination

is long real and exponent of true result

<-1022 (true).

Denormalize until exponent rises to -1022

(true), round significand to 53 bits, store

true 0 if rounded denormalized significand

= 0; else, store denormal (biased expo-

nent = 0).

Precision

True rounding error occurs. No special action.

Masked response to overflow exception

earlier in instruction.

No special action.

Table S-33. Masked Overflow Response for Directed Rounding

True Result Rounding
Result Delivered

Normalization Sign Mode

Normal + Up +00

Normal + Down Largest finite positive number*^'

Normal Up Largest finite negative number*^'

Normal Down — 00

Unnormal -1- Up +00

Unnormal Down Largest exponent, result's significand*^'

Unnormal -1- Up Largest exponent, result's significand*^*

Unnormal Down — oo

The largest valid representable reals are encoded:

exponent: 11...10B

significand: (1)^11. ..10B

The significand retains its identity as an unnormal; the true result is rounded as usual

(effectively chopped toward 0 in this case). The exponent is encoded 11...10B.

S-81
Mnemonics ® Intel 1980

8087 NUMERIC DATA PROCESSOR

8.10 Programming Examples

Conditional Branching

As discussed in section S.7, the comparison

instructions post their results to the condition

code bits of the 8087 status word. Although there

are many ways to implement conditional branch-

ing following a comparison, the basic approach is

as follows:

• execute the comparison,

• store the status word,

• inspect the condition code bits,

• jump on the result.

Figure S-26 is a code fragment that illustrates how
two memory-resident long real numbers might be

compared (similar code could be used with the

FTST instruction). The numbers are called A and

B, and the comparison is A to B. The comparison

itself simply requires loading A onto the top of

the 8087 register stack and then comparing it to B
and popping the stack in the same instruction.

The status word is written to memory and the

code waits for completion of the store before

attempting to use the result.

There are four possible orderings of A and B, and
bits C3 and CO of the condition code indicate

which ordering holds. These bits are positioned in

the upper byte of the status word so as to corres-

pond to the CPU's zero and carry flags (ZF and
CF), if the byte is written into the flags (see

figures 2-32 and S-6). The code fragment, then,

sets ZF and CF to the values of C3 and CO and
then uses the CPU conditional jumps to test the

flags. Table 2-15 shows how each conditional

jump instruction tests the CPU flags.

The FXAM instruction updates all four condition

code bits. Figure S-27 shows how a jump table

can be used to determine the characteristics of the

value examined. The jump table (FXAM TBL)
is initialized to contain the 16-bit displacement of

16 labels, one for each possible condition code
setting. Note that four of the table entries contain

the same value, since there are four condition

code settings that correspond to "empty."

The program fragment performs the FXAM and
stores the status word. It then manipulates the

condition code bits to finally produce a number in

register BX that equals the condition code times

2. This involves zeroing the unused bits in the byte

that contains the code, shifting C3 to the right so

that it is adjacent to C2, and then shifting the

code to multiply it by 2. The resulting value is

used as an index which selects one of the

displacements from FXAM TBL (the

multiplication of the condition code is required

because of the 2-byte length of each value in

FXAM TBL). The unconditional JMP instruc-

tion effectively vectors through the jump table to

the labelled routine that contains code (not shown
in the example) to process each possible result of

the FXAM instruction.

A DQ ?

B DQ ?

STAT 87 DW ?

FLD A ;LOAD A ONTO TOP OF 87 STACK
FCOMP B ; COMPARE A:B, POP A

FSTSW STAT_87 ; STORE RESULT
FWAIT rWAIT FOR STORE

Figure S-26. Conditional Branching for Compares

Mnemonics £ Intel 1978, 1980
S-82

8087 NUMERIC DATA PROCESSOR

;LOAD CPU REGISTER AH WITH BYTE OF

; STATUS WORD CONTAINING CONDITION CODE
MOV AH, BYTE PTR STAT_87+1

;LOAD CONDITION CODES INTO CPU FLAGS
SAHF

;USE CONDITIONAL JUMPS TO DETERMINE
; ORDERING OF A AND B

JB A_LESS_OR_UNORDERED
; C F (CO) = 0

JNE A_GREATER
A_EQUAL:

;CF (CO) = 0, ZF (C3) = 1

A_GREATER :

; CF (CO) =0, ZF (C3) = 0

A_LESS_OR_UNORDERED

:

; CF (CO) = 1 , TEST ZF (C3)
JNE A_LESS

A_B_UNORDERED :

; CF (CO) = 1 , ZF (C3) = 1

A_LESS

:

; CF (CO) = 1 , ZF (C3) = 0

Figure S-26. Conditional Branching for Compares (Cont'd.)

FXAM_TBL
&

&

&

&

STAT 87

DW POS_UNNORM, POS_NAN, NEG_UNNORM,
NEG_NAN, POS_NORM, POS_I N F I N I T Y

,

NEG_NORM, NEG_INFINITY, POS_ZERO,
EMPTY, NEG_ZERO, EMPTY, POS_DENORM,
EMPTY, NEG_DENORM, EMPTY

DW ?

Figure S-27. Conditional Branching for FXAM

S-83
Mnemonics S Intel 1978, 1980

8087 NUMERIC DATA PROCESSOR

;EXAMINE ST, STORE RESULT, WAIT FOR COMPLETION
FXAM
FSTSW STAT_87
FWAIT

; CLEAR UPPER HALF OF BX, LOAD CONDITION CODE
; IN LOWER HALF

MOV BH,0
MOV BL, BYTE PTR STAT_87+1

;COPY ORIGINAL IMAGE
MOV AL,BL

;CLEAR ALL BITS EXCEPT C2-C0
AND BL,00000111B

;CLEAR ALL BITS EXCEPT C3
AND AL,01000000B

;SHIFT C3 TWO PLACES RIGHT
SHR AL,1
SHR AL,1

;SHIFT C2-C0' ONE PLACE LEFT (MULTIPLY BY 2)

SAL BX,1
;DROP C3 BACK IN ADJACENT TO C2 (OOOXXXXO)

OR BL,AL
;JUMP TO THE ROUTINE ' ' A D D R E S S E D ' ' BY CONDITION CODE

JMP FXAM_TBL[BX]

•HERE ARE THE JUMP TARGETS, ONE TO HANDLE
EACH POSSIBLE RESULT OF FXAM

POS UNNORM:

POS NAN:

NEG UNNORM

NEG NAN

POS NORM

POS INFINITY:

NEG NORM

NEG INFINITY

Figure S-27. Conditional Branching for FXAM (Cont'd.)

Mnemonics © Intel 1978, 1980
S-84

8087 NUMERIC DATA PROCESSOR

POS_ZERO

:

EMPTY

:

NEG_ZERO

:

POS_DENORM:

NEG_DENORM:

Figure S-27. Conditional Branching for FXAM (Cont'd.)

Exception Handlers

There are many approaches to writing exception

handlers. One useful technique is to consider the

exception handler interrupt procedure as con-

sisting of "prologue," "body" and "epilogue"

sections of code. (For compatibility with the 8087

emulators, this procedure should be invoked by

interrupt pointer (vector) number 16.)

At the beginning of the prologue, CPU interrupts

have been disabled by the CPU's normal interrupt

response mechanism. The prologue performs all

functions that must be protected from possible

interruption by higher-priority sources. Typically

this will involve saving CPU registers and

transferring diagnostic information from the 8087

to memory. When the critical processing has been

completed, the prologue may enable CPU inter-

rupts to allow higher-priority interrupt handlers

to preempt the exception handler.

The exception handler body examines the

diagnostic information and makes a response that

is necessarily application-dependent. This

response may range from halting execution, to

displaying a message, to attempting to repair the

problem and proceed w^ith normal execution.

The epilogue essentially reverses the actions of the

prologue, restoring the CPU and the NDP so that

normal execution can be resumed. The epilogue

must not load an unmasked exception flag into

the 8087 or another interrupt will be requested

immediately (assuming 8087 interrupts are also

loaded as unmasked).

Figures S-28 through S-30 show the ASM-86
coding of three skeleton exception handlers. They
show how prologues and epilogues can be written

for various situations, but only provide comments
indicating where the application-dependent

exception handling body should be placed.

Figures S-28 and S-29 are very similar; their only

substantial difference is their choice of instruc-

tions to save and restore the 8087. The tradeoff

here is between the increased diagnostic infor-

mation provided by FNSAVE and the faster

execution of FNSTENV. For applications that are

sensitive to interrupt latency, or do not need to

examine register contents, FNSTENV reduces the

duration of the "critical region," during which

the CPU will not recognize another interrupt

request (unless it is a non-maskable interrupt).

After the exception handler body, the epilogues

prepare the CPU and the NDP to resume execu-

tion from the point of interruption (i.e., the

instruction following the one that generated the

unmasked exception). Notice that the exception

flags in the memory image that is loaded into the

8087 are cleared to zero prior to reloading (in

fact, in these examples, the entire status word

S-85
Mnemonics © Intel 1978, 1980

8087 NUMERIC DATA PROCESSOR

image is cleared). The prologue also provides for

indicating to the interrupt controller hardware

(e.g., 8259A) that the interrupt has been pro-

cessed. The actual processing done here is

application-dependent, but might typically

involve writing an "end of interrupt" command
to the interrupt controller.

the general approach shown in figure S-30 can be

employed. The basic technique is to save the full

8087 state and then to load a new control word in

the prologue. Note that considerable care should

be taken when designing an exception handler of

this type to prevent the handler from being

reentered endlessly.

The examples in figures S-28 and S-29 assume
that the exception handler itself will not cause an

unmasked exception. Where this is a possibility,

SAVE ALL PROC

SAVE CPU
FOR 8087

PUSH

REGISTERS, ALLOCATE STACK SPACE
STATE IMAGE

BP

MOV
SUB

BP , SP
SP , 94

;SAVE FULL 8087 STATE, WAIT FOR COMPLETION,
; ENABLE CPU INTERRUPTS

FNSAVE [BP-94]
FWAIT
STI

; APPLI CAT ION-DEPENDENT EXCEPTION HANDLING
;CODE GOES HERE

; CLEAR EXCEPTION FLAGS IN STATUS WORD
; RESTORE MODIFIED STATE
; IMAGE

MOV BYTE PTR [BP-92], OH
FRSTOR [BP-94]

;WAIT FOR RESTORE TO FINISH BEFORE RELEASING MEMORY
FWAIT

;DE-ALLOCATE STACK SPACE, RESTORE CPU REGISTERS
MOV SP,BP

POP BP

;CODE TO SEND ''END OF INTERRUPT'' COMMAND TO
;8259A GOES HERE

; RETURN TO INTERRUPTED CALCULATION
I RET

SAVE ALL ENDP

Figure S-28. Full State Exception Handler

Mnemonics © Intel 1978, 1980
S-86

8087 NUMERIC DATA PROCESSOR

SAVE_ENVIRONMENT PROC

;SAVE CPU REGISTERS, ALLOCATE STACK SPACE
;FOR 8087 ENVIRONMENT

PUSH BP

MOV BP,SP
SUB SP , 1

4

;SAVE ENVIRONMENT, WAIT FOR COMPLETION,
.-ENABLE CPU INTERRUPTS

FNSTENV [BP-14]
FWAIT
.ST I

;APPLICATION E X C E PT I ON - H A N D L I N G CODE GOES HERE

;CLEAR EXCEPTION FLAGS IN STATUS WORD
; RESTORE MODIFIED
.•ENVIRONMENT IMAGE

MOV BYTE PTR [BP-12], OH
FLDENV [BP-14]

;WAIT FOR LOAD TO FINISH BEFORE RELEASING MEMORY
FWAIT

;DE-ALLOCATE STACK SPACE, RESTORE CPU REGISTERS
MOV SP,BP

POP BP

;CODE TO SEND ''END OF INTERRUPT'' COMMAND TO
;82 59A GOES HERE

;RETURN TO INTERRUPTED CALCULATION
IRET

SAVE_ENVIRONMENT ENDP

Figure S-29. Reduced Latency Exception Handler

S-87
Mnemonics © Intel 1978, 1980

8087 NUMERIC DATA PROCESSOR

LOCAL CONTROL DW 7 ;ASSUME INITIALIZED

REENTRANT PROC

SAVE CPU REGISTERS, ALLOCATE STACK SPACE FOR
8087 STATE IMAGE

;SAVE STATE, LOAD NEW CONTROL WORD, WAIT
;FOR COMPLETION, ENABLE CPU INTERRUPTS

FNSAVE CBP-94]
FLDCW LOCAL_CONTROL
FWAIT
STI

;CODE TO SEND ''END OF INTERRUPT'' COMMAND TO
;8259A GOES HERE

APPLICATION EXCEPTION HANDLING CODE GOES HERE.
AN UNMASKED EXCEPTION GENERATED HERE WILL
CAUSE THE EXCEPTION HANDLER TO BE REENTERED.
IF LOCAL STORAGE IS NEEDED, IT MUST BE
ALLOCATED ON THE CPU STACK.

jCLEAR EXCEPTION FLAGS IN STATUS WORD
;RESTORE MODIFIED STATE IMAGE

MOV BYTE PTR [BP-92], OH
FRSTOR [BP-94]

;WAIT FOR RESTORE TO FINISH BEFORE RELEASING MEMORY
FWAIT

;DE-ALLOCATE STACK SPACE, RESTORE CPU REGISTERS
MOV SP,BP

POP BP
;RETURN TO POINT OF INTERRUPTION

PUSH BP

MOV
SUB

BP , SP
SP,94

IRET
REENTRANT ENDP

Figure S-30. Reentrant Exception Handler

Mnemonics © Intel 1978, 1980
S-88

Appendix A
Machine Instruction

Encoding and Decoding

APPENDIX A
MACHINE INSTRUCTION ENCODING

AND DECODING

8087 machine instructions assume one of five

different forms as shown in table A-1. In all

cases, the instructions are at least two bytes long

and begin with the bit pattern 1101 IB, which

identifies the escape class of instructions. Instruc-

tions which reference memory operands are

encoded much like similar CPU instructions,

since the CPU must calculate the operands effec-

tive address from the information contained in

the instruction. Section 4.2 discusses this

encoding scheme in more detail, and in particular,

shows how each memory addressing mode is

encoded.

Note that all instructions (except those coded with

a "no-wait" mnemonic) are preceded by an
assembler-generated CPU WAIT instruction

(encoding: 1001 101 IB). Segment override

prefixes may also precede 8087 instructions in the

instruction stream.

Table A-1. Instruction Encoding

Lower-addressed Byte

0 1 OP-A

Higher-addressed Byte

MOD 1 OP-B

S ^

0, 1, or 2 bytes

R/M DISPLACEMENT
S S

FORMAT OP-A MOD

R OP-A 1

OP-B

OP-B

R/M

REG

OP

OP

DISPLACEMENT
S <i

*^*Memory transfers, including applicable processor control instructions; 0, 1, or 2 displacement bytes may
follow.

'^'Memory arithmetic and comparison instructions; 0, 1 , or 2 displacement bytes may follow.

<^*Stack arithmetic and comparison instructions.

('''Constant, transcendental, some arithmetic instructions.

'^'Processor control instructions that do not reference memory.

OP, OP-A, OP-B: Instruction opcode, possibly split into two fields.

MOD: Same as CPU mode field; see table 4-8.

R/M: Sames as CPU register/memory field; see table 4-10.

A-1

MACHINE INSTRUCTION ENCODING AND DECODING

Table A-1 . Instruction Encoding (Cont'd.)

FORMAT: Defines memory operand

00 = short real

01 = short integer

10 = long real

11 = word integer

R: 0 = return result to stack top

1 = return result to other register

P: 0 = do not pop stack

1 = pop stack after operation

REG: register stack element

000 = stack top

001 = nekton stack

010 = third stack element, etc.

Table A-2 lists all 8087 machine instructions in

binary sequence. This table may be used to

"disassemble" instructions in unformatted
memory dumps or instructions monitored from

the data bus. Users writing exception handlers

may also find this information useful to identify

the offending instruction.

Table A-2. Machine Instruction Decoding Guide

1st Byte
2nd Byte Bytes 3, 4

ASM-86 Instruction

FormatHex Binary

D8 1101 1000 MODOO OR/M (disp-lo),(disp- hi) FADD short-real

D8 1101 1000 MODOO 1R/M (disp-lo),(disp- hi) FMUL short-real

D8 1101 1000 MOD01 OR/M (disp-lo),(disp- hi) FCOM short-real

D8 1101 1000 MOD01 1R/M (disp-lo),(disp- hi) FCOMP short-real

D8 1101 1000 MOD10 OR/M (disp-lo),(disp-•hi) FSUB short-real

D8 1101 1000 MOD10 1R/M (disp-lo),(disp- hi) FSUBR short-real

D8 1101 1000 M0D11 OR/M {disp-lo),(disp-•hi) FDIV short-real

D8 1101 1000 M0D11 1R/M (disp-lo),(disp-•hi) FDIVR short-real

D8 1101 1000 1100 OREG FADD ST,ST(i)

D8 1101 1000 1100 1REG FMUL ST,ST(i)

D8 1101 1000 1101 OREG FCOM ST(i)

D8 1101 1000 1101 1REG FCOMP ST(i)

D8 1101 1000 1110 OREG FSUB ST,ST{i)

D8 1101 1000 1110 1REG FSUBR ST,ST{i)

D8 1101 1000 1111 OREG FDIV ST,ST(i)

D8 1101 1000 1111 1REG FDIVR ST,ST{i)

D9 1101 1001 MODOO OR/M (disp-lo),(disp--hi) FLD short-real

D9 1101 1001 MODOO 1R/M reserved

D9 1101 1001 MOD01 OR/M (disp-lo),(disp-hi) FST short-real

Mnemonics © Intel 1980 A-2

MACHINE INSTRUCTION ENCODING AND DECODING

Table A-2. Machine Instruction Decoding Guide (Cont'd.)

1st Byte
2nd Byte Bytes 3,4

ASM-86 Instruction

FormatHex Binary

09 1101 1001 MOD01 1R/M (disp-lo),{disp-hi) FSTP short-real

D9 1101 1001 MOD10 OR/M (disp-lo),(disp-hi) FLDENV 14-bytes

D9 1101 1001 MOD10 1R/M (disp-lo),(disp-hi) FLDCW 2-bytes

D9 1101 1001 M0D11 OR/M (disp-!o),(disp-hi) FSTENV 14-bytes

D9 1101 1001 M0D11 1R/M (disp-lo),(disp-hi) FSTCW 2-bytes

D9 1101 1001 1100 OREG FLD ST(i)

D9 1101 1001 1100 1REG FXCH ST(i)

D9 1101 1001 1101 0000 FNOP
D9 1101 1001 1101 0001 reserved

D9 1101 1001 1101 001- reserved

D9 1101 1001 1101 01— reserved

D9 1101 1001 1101 1REG *(1)

D9 1101 1001 1110 0000 FCHS
D9 1101 1001 1110 0001 FABS
D9 1101 1001 1110 001- reserved

D9 1101 1001 1110 0100 FTST

D9 1101 1001 1110 0101 FXAM
D9 1101 1001 1110 011- reserved

D9 1101 1001 1110 1000 FLD1

D9 1101 1001 1110 1001 FLDL2T
D9 1101 1001 1110 1010 FLDL2E

D9 1101 1001 1110 1011 FLDPI

D9 1101 1001 1110 1100 FLDLG2
D9 1101 1001 1110 1101 FLDLN2
D9 1101 1001 1110 1110 FLDZ
D9 1101 1001 1110 1111 reserved

D9 1101 1001 1111 0000 F2XM1
D9 1101 1001 1111 0001 FYL2X

D9 1101 1001 1111 0010 FPTAN
D9 1101 1001 1111 0011 FPATAN
D9 1101 1001 1111 0100 FXTRACT
D9 1101 1001 1111 0101 reserved

D9 1101 1001 1111 0110 FDECSTP
D9 1101 1001 1111 0111 FINCSTP

D9 1101 1001 1111 1000 FPREM
D9 1101 1001 1111 1001 FYL2XP1

D9 1101 1001 1111 1010 FSQRT
D9 1101 1001 1111 1011 reserved

D9 1101 1001 1111 1100 FRNDINT
D9 1101 1001 1111 1101 FSCALE
D9 1101 1001 1111 111- reserved

DA 1101 1010 MODOO OR/M (disp-lo),(disp-hi) FIADD short-integer

DA 1101 1010 MODOO 1R/M (disp-lo),(disp-hi) FIMUL short-integer

DA 1101 1010 MOD01 OR/M (disp-lo),(disp-hi) FIGOM short-integer

DA 1101 1010 MOD01 1R/M (disp-lo),(disp-hi) FICOMP short-integer

DA 1101 1010 MOD10 OR/M (disp-lo),{disp-hi) FISUB short-integer

DA 1101 1010 MOD10 1R/M (disp-lo),(disp-hi) FISUBR short-integer

A-3
Mnemonics © Intel 1980

MACHINE INSTRUCTION ENCODING AND DECODING

Table A-2. Machine Instruction Decoding Guide (Cont'd.)

1st Byte
2nd Byte Bytes 3,4

ASM-86 Instruction

FormatHex Binary

DA 1101 1010 M0D11 OR/M (disp-lo),(disp-hi) FIDIV short-integer

DA 1101 1010 M0D11 1R/M (disp-lo),(disp-hi) FIDIVR short-integer

DA 1101 1010 11— reserved

DB 1101 1011 MODOO OR/M (disp-lo),(disp-hi) FILD short-integer

DB 1101 1011 MODOO 1R/M (disp-lo),(disp-hi) reserved

DB 1101 1011 MOD01 OR/M (disp-lo),(disp-hi) FIST short-integer

DB 1101 1011 MOD01 1R/M {disp-lo),(disp-hi) FISTP short-integer

DB 1101 1011 MOD10 OR/M (disp-lo),(disp-hi) reserved

DB 1101 1011 MOD10 1R/M (disp-lo),{disp-hi) FLD temp-real

DB 1101 1011 M0D11 OR/M (disp-lo),(disp-hi) reserved

• DB 1101 1011 M0D11 1R/M (disp-lo),(disp-hi) FSTP tennp-real

DB 1101 1011 110- reserved

DB 1101 1011 1110 0000 FENI

DB 1101 1011 1110 0001 FDISI

DB 1101 1011 1110 0010 FCLEX
DB 1101 1011 1110 0011 FINIT

DB 1101 1011 1110 01— reserved

DB 1101 1011 1110 1

—

reserved

DB 1101 1011 1111 reserved

DC 1101 1100 MODOO OR/M (disp-lo),(disp-hi) FADD long-real

DC 1101 1100 MODOO 1R/M (disp-lo),(disp-hi) FMUL long-real

DC 1101 1100 MOD01 OR/M (disp-lo),(disp-hi) FCOM long-real

DC 1101 1100 MOD01 1R/M (disp-lo),(disp-hi) FCOMP long-real

DC 1101 1100 MOD10 OR/M (disp-lo),(disp-hi) FSUB long-real

DC 1101 1100 MOD10 1R/M (disp-lo),(disp-hi) FSUBR long-real

DC 1101 1100 M0D11 OR/M (disp-lo),(disp-hi) FDIV long-real

DC 1101 1100 M0D11 1R/M {disp-lo),(disp-hi) FDIVR long-real

DC 1101 1100 1100 OREG FADD ST(i),ST

DC 1101 1100 1100 1REG FMUL ST(i),ST

DC 1101 1100 1101 OREG *(2)

DC 1101 1100 1101 1REG *(3)

DC 1101 1100 1110 OREG FSUB ST(i),ST

DC 1101 1100 1110 1REG FSUBR ST(i),ST

DC 1101 1100 1111 OREG FDIV ST(i),ST

DC 1101 1100 1111 1REG FDIVR ST{i),ST

DD 1101 1101 MODOO OR/M (disp-lo),(disp-hi) FLD long-real

DD 1101 1101 MODOO 1R/M reserved

DD 1101 1101 MOD01 OR/M (disp-lo),(disp-hi)
COT long-real

DD 1101 1101 MOD01 1R/M (disp-lo),(disp-hi) FSTP long-real

DD 1101 1101 MOD10 OR/M (disp-lo),(disp-hi) FRSTOR 94-bytes

DD 1101 1101 MOD10 1R/M (disp-lo),(disp-hi) reserved

DD 1101 1101 M0D11 OR/M (disp-lo),(disp-hi) FSAVE 94-bytes

DD 1101 1101 M0D11 1R/M (disp-lo),(disp-hi) FSTSW 2-bytes

DD 1101 1101 1100 OREG FFREE ST(i)

DD 1101 1101 1100 1REG *(4)

DD 1101 1101 1101 OREG FST ST(i)

DD 1101 1101 1101 1REG FSTP ST(i)

Mnemonics © Intel 1980
A-4

MACHINE INSTRUCTION ENCODING AND DECODING

Table A-2. Machine Instruction Decoding Guide (Cont'd.)

1st Byte
2nd Byte Bytes 3,4

ASM-86 Instruction

FormatHex Binary

DD 11 01 1 101
-4-1-1111- reserved

DE 1101 1110 MULJOO AD / KAOH/ M (disp- o),{disp-hi) rIADD word-integer

DE 1101 1110 MUUOO i D 1 KA
1 H/ M (disp- 0),(dlSp-nl) CI K Jl 1 IIrlMUL word-integer

DE -1 -i n-i1101 1110 MUU01 r\D 1 KAOn/ M (disp- o),(disp-ni) rlUUM word-integer

DE 1101 1110 MUUOl 4 O / ft J
1 n/ M (disp- o),(disp-ni) rICUMP word-integer

DE 1101 1110 MUU10 AD 1 KAOn/ M (disp- o),(disp-hi) CIO 1 ID word-integer

DE 1101 1110 MUU10 1 D / K Jl

1 n/ M (disp- o),(disp-hi) CIO 1 1 D DrlbUtJR word-integer

DE 1 1 01 1110 MUUl 1
AD /On / M (disp- o),{disp-hi) rlUIV word-integer

DE 1 1 01 1110 MUUl 1
1 D / KX
1 n/ M (disp- o),(disp-hi) CI ni V/DrlUIVn word-integer

DE nui niu 11 UU Unho rAUUr ox/:\ OT

DE nui 1 1 1

U

1 1 UU 1 D Cr*
1 nbla CKyi 1 1 1 DrMULr 0"r/;\ ox

DE 1 1 ni
1 1 Ul 1 1 1 n

1n u 1 1 U 1

A
U (a)

DE 1 1 fM
1 1 Ul 1n u n u 1

1 nr>A
1 UUU reserveu

DE M Ul 1 M u n Ul 1 nni
1 UU1 C^r>K/l DDrUUM rr

DE n Ul 1 1 1

U

1 1 Ul 1M
1 Ul - reserveu

DE 1 1 Ul M 1 U n u 1 11— reserved

DE 1 1 Ul 11 1

U

m u Unto CO 1 1 D DroU Dr CT/i\ CTb 1 (l),b 1

DE 1 1 Ul i 1 1 nm u niu 1 nto CCI 1 DODroU tSnr b 1 (l),b 1

DE nui 1 1 -1 nlllU 1111n 11 Unbo rUI Vr CT/i\ CTb 1 (l),b 1

DE -1 -1 nl1101 1110 11111111 ^ DCO
1 nbo cm\ /D orUIVnr OT/:\ OTST(l),ST

DF -1 1 A11101
'1 H H -4

1111 MULJOO AD / K 4On/M (disp-lo),(disp-ni) CI 1 n word-integer

DF 1101
•1 -4 H '4

1111 MUUOO 1 n/ M (disp-l0),(disp-ni) reserved

DF 1101 H -1 -1 -Inil MUUOl OR/ M (disp- lo),(disp-ni) CIOTFIST word-integer

DF 1101 1111 MOD01 1R/M (disp-lo),{disp-hi) FISTP word-integer

DF 1101 1111 MOD10 OR/M (disp-lo),(disp-hi) FBLD packed-decinnal

DF 1101 1111 MOD10 1R/M (disp-lo),(disp-hi) FILD long-integer

DF 1101 1111 M0D11 OR/M (disp-lo),(disp-hi) FBSTP packed-decinnal

DF 1101 1111 M0D11 1R/M (disp-lo),(disp-hi) FISTP long-integer

DF 1101 1111 1100 OREG *(6)

DF 1101 1111 1100 1REG *(7)

DF 1101 1111 1101 OREG *(8)

DF 1101 1111 1101 1REG *(9)

DF 1101 1111 111- reserved

* The marked encodings are not generated by the language translators. If, however, the 8087

encounters one one these encodings in the instruction streann, it will execute it as follows:

(1) FSTP ST(i)

(2) FCOM ST(i)

(3) FCOMP ST(i)

(4) FXCH ST(i)

(5) FCOMP ST{i)

(6) FFREE ST(i) and pop stack

(7) FXCH ST(i)

(8) FSTP ST{i)

(9) FSTP ST(i)

A-5
Mnemonics © Intel 1980

Appendix B
Device Specification

,,j259A PORT^
3259A IlllrUS
3EGMEN .DDRE^ o

;S£T TP OATA iEG^
;SE"^ UP 'TA tC SEC

IN'

intel

8087
80-BIT HMOS

NUMERIC DATA PROCESSOR

Full Internal 80-Bit Architecture for

High Performance

All iAPX 86/10, 88/10 Addressing

Modes Available

Implements Proposed IEEE Floating

Point Standard

Total Numeric Support for iAPX 86/20,

88/20 Systems

Directly Extends IAPX 86/10, 88/10

Instruction Set to Trigonometric,

Logarithmic, Exponential and

Arithmetic Instructions for All

Datatypes

Expands IAPX 86/10 Datatypes to

Include 32-, 64-Bit Integers, 32-, 64-,

80-Bit Floating Point, and 18-Digit BCD
Operands

8 X 80-Bit, Individually Addressable,

Numeric Register Stack

Built-in Exception Handling Functions

The Intel® 8087 Is a high performance coprocessor that extends the IAPX 86/10, 88/10 architecture by providing all the

required numerics support for iAPX 86/20, 88/20 systems. The 8087 is implemented in N-channel, depletion load,

silicon gate technology (HMOS) and packaged in a 40-pin ceramic package. The IAPX 86/20 and 88/20 fully conform to

the proposed IEEE Floating Point Standard. Using its coprocessor architecture, the 8087 adds over fifty opcodes
directly into the iAPX 86/10 instruction set, making the IAPX 86/20, 88/20 a complete solution to high performance
numeric processing.

STATUS

ADDRESS

CONTfiOL UNIT

CONTROL WORD

STATUSWORD

DATA
BUFFER

EXCEPTION
POINTERS

NUMERIC EXECUTION UNIT

EXPONENT
BUS

EXPONENT
MODULE

NEU INSTRUCTION

ADDRESSING t
BUS TRACKING

MICROCODE
CONTROL

UNIT

OPERANDS
QUEUE

L

FRACTION
BUS

INTERFACE

-7^

/ PROGRAMMABLE /
/ SHIFTER /

- REGISTER STACK -

ARITHMETIC
MODULE

TEMPORARY
REGISTERS

J

GND Q 1 40 m vcc

A014 [2 2 39 ^ AlS/015

AD13 [2 3 38]^ A16/S3

A012 Q 4 37 ~] A17/S4

AD" Q S 36 3 AH/S5

AO10 6 3S ^ A19/S6

AOS Q 7 34 n BHE/S7

AD» e 33 ^ B0/GT1

AD7 [2 9 32 ^ INT

AOS 10 8087 31 ^h6/gto

AOS ^ 1

1

NOP 30 nc

AD4 [2 12 n NC

ADS Q 13 28 S2

AD2 Q M 27 S.

A01 ^ 15 26 so

ADO Q 16 25 oso

Nc n 17 24 osi

18 23 BUST

CLK Q 19 22 READ*

GND 1^ 20 21 RESET

NC = NO CONNECT

Figure 1. 8087 Block Diagram Figure 2. 8087 Pin Diagram

B-1 AFN 01S25A

intel 8087 [p[^i[LO[)^OK]^[^V

FUNCTIONAL DESCRIPTION

The 8087 Numeric Data Processor (NDP) is a processor

extension that provides arithmetic and logical instruc-

tion support for a variety of numeric data types in

iAPX 86/20, 88/20 systems. It also executes numerous
built-in transcendental functions (e.g., tangent and log

functions). The 8087 executes instructions as a co-

processor to a maximum mode 8086 or 8088. It effec-

tively extends the register and instruction set of an
IAPX 86/10 or 88/10 system for existing iAPX 86, 88
types and adds several new data types as well. Figure 3

presents this view of the iAPX 86/20 graphically. Essen-

tially, the 8087 can be treated as an additional resource

and an extension to the iAPX 86/10 or 88/10, providing

register, datatype, control, and instruction capabilities

at the hardware level that can be used as a single unified

system, the iAPX 86/20, 88/20, at the programming level.

iAPX 86/20, 88/20

16

iAPX 86/10, 88/10

FILE:

NDP

STACK:

AX

BX

CX

DX

SI

Dl

BP

SP

R1

R2

R3

R4

R5

Re

R7

R8

EXPONENT SIGNIFICAND

I

FLAGS

NDP STATUS

cs
DS

ES

SS

Figure 3. iAPX 86/20 Architecture

8259A

I I

I J

8284
CLOCK

GENERATOR

CLK

CLK 8086/8088
CPU

RQ/GT1
QSO 081 TEST

TT-T
QSO QS1 BUSY

RQ/GTO

CLK
8087
NDP

RQ/GT1

8086
FAMILY
BUS

INTERFACE
COMPONENTS

MULTIMASTER
SYSTEM
BUS

RO/GT

<
o
o

<

M CLK 8089
iOP

Figure 4. 8087 System Configuration

B-2 AFN 01525A

irttel 8087

System Configuration

As a coprocessor to an 8086 or 8088, the 8087 is wired in

parallel with_the CPU as shown in Figure 4. The CPU's
status (S0-S2) and queue status lines (QS0-QS1)
enable the NDP to monitor and decode instructions in

synchronization with the CPU and without any CPU
overhead. Once started the 8087 can process in parallel

with and independent of the host CPU. For resynchroni-

zation, the NDP's BUSY signal informs the CPU that the

NDP is executing an instruction and the CPU WAIT
instruction tests this signal to insure that the NDP is

ready to execute subsequent instructions. The NDP can
interrupt the CPU when It detects an error or exception.

The NDP's interrupt request line is typically routed to

the CPU through an 8259A Programmable Interrupt

Controller. (See Figure 2 for 8087 pinout information.)

The NDP uses one of the request/grant l ines of the

iAPX86, 88 architecture (typically RQ/GT1) to obtain

control of the local bus for data transfers. The other

request/grant line is available for general system use

(for instance by an I/O processor in LOCAL mode). A bus

master can also be connected to the 8087's RQ/GT1
line. In this configuration the 8087 will pass the request/

grant handshake signals between the CPU and the

attached master when the 8087 is not in control of the

bus and will relinquish the bus to the master directly

when the 8087 is in control. In this way two additional

masters can be configured in an 8086/8087 system; one
will share the 8086 bus with the 8087 on a first come
first served basis, and the second will be guaranteed to

be higher in priority than the 8087.

As Figure 4 shows, all processors utilize the same clock

generator and system bus interface components (bus

controller, latches, transceivers and bus arbiter).

Bus Operation

The 8087 bus structure, operation and timing are iden-

tical to all other processors in the iAPX86, 88 series

(maximum mode configuration). The address is time

multiplexed with the data on the first 16/8 lines of the

address/data bus. A16 through A19 are time multiplexed

Table 1. 8087 Datatypes

Data

Formats
Range Precision

Most Significant Byte

0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7 0 7

Word Integer

Short Integer

Long Integer

Packed BCD

Short Real

Long Real

10"

10"*

10
19

10
18

10
±38

10±308

Temporary Real 10
±4932

16 Bits

32 Bits

64 Bits

IBDIgits

24 Bits

53 Bits

64 Bits

'15

'31

'63

E7 Eo

^10 ^0

Ei4 h

Two's Complement

Two's Complement

Two's
Complement

s

23

52

Fq Implicit

Implicit

63

Integer: I

Packed BCD: (-1)®(D,^...D(j)

Real: (-1)^^2^-^'*=)(Fq.F,...)

Bias= 127 for Short Real

1023 for Long Real

16383 for Temp Real

B-3 AFN 01525A

intel

with four status lines S3-S6. S3, S4 and S6 are always

one (high) for 8087 driven bus cycles while S5 Is always

zero (low). When the 8087 is monitoring CPU bus cycles

(passive mode) S6 is also monitored by the 8087 to dif-

ferentiate 8086/8088 activity from that of a local I/O proc-

essor or any other local bus master. (The 8086/8088

must be the only processor on the local bus to drive S6
low.) S7 is multiplexed with and has the same value as

BHE for all 8087 bus cycles.

The first three status lines, S0-S2, are used with an

8288 bus controller to determine the type of bus cycle

being run:

S2 S1 so

0 X X Unused

1 0 0 Unused

1 0 1 Memory Data Read

1 1 0 Memory Data Write

1 1 1 Passive (no bus cycle)

Programming Interface

Table 1 lists the seven data types the 8087 supports and

presents the format for each type. Internally, the 8087

holds all numbers in the temporary real format. Load

and store instructions automatically convert operands

represented in memory as 16-, 32-, or 64-bit integers, 32-

or 64-bit floating point numbers or 18-diglt packed BCD
numbers into temporary real format and vice versa.

Computations in the 8087 use the processor's register

stack. These eight 80-bit registers provide the equiva-

lent capacity of 40 16-bit registers. The 8087 register set

can be accessed as a stack, with instructions operating

on the top one or two stack elements, or as a fixed

register set, with instructions operating on explicitly

designated registers.

Table 5 lists the 8087's instructions by class. Assembly
language programs are written in ASM-86, the iAPX 86,

88 assembly language. Table 2 gives the execution

times of some typical numeric instructions and their

equivalent time on a 5 MHz 8086.

Table 2. Execution Time for Selected 8087 Actual

and Emulated Instructions

Floating Point Instruction

Approximate Execution
Time (>iS)

8087
(5 MHz Clock)

8086
Emulation

Add/Subtract Magnitude 14/18 1,600

Multiply (single precision) 19 1,600

Multiply (extended precision) 27 2,100

Divide 39 3,200

Compare 9 1,300

Load (double precision) 10 1,700

Store (double precision) 21 1,200

Square Root 36 19,600

Tangent 90 13,000

Exponentiation 100 17,100

PROCESSOR ARCHITECTURE

As shown in Figure 1, the NDP is internally divided into

two processing elements, the control unit (CU) and the

numeric execution unit (NEU). The NEU executes all

numeric instructions, while the CU receives and

decodes instructions, reads and writes memory oper-

ands and executes processor control instructions. The
two elements are able to operate independently of one

another, allowing the CU to maintain synchronization

with the CPU while the NEU Is busy processing a

numeric instruction.

Control Unit

The CU keeps the 8087 operating in synchronization

with its host CPU. 8087 instructions are intermixed with

CPU instructions in a single instruction stream. The
CPU fetches all instructions from memory; by monitor-

ing the status signals (S?T-S2, 86) emitted by the CPU,

the NDP control unit determines when an 8086 instruc-

tion is being fetched. The CU taps the bus in parallel

with the CPU and obtains that portion of the data

stream.

The CU maintains an instruction queue that is Identical

to the queue in the host CPU. The CU automatically

determines if the CPU is an 8086 o r an 8088 immediately

after reset (by monitoring the BHE/S7 line) and matches
its queue length accordingly. By monitoring the CPU's

queue status lines (QSO, QS1), the CU obtains and

decodes instructions from the queue In synchronization

with the CPU.

After decoding the instruction, the 8086 executes all

opcodes but ESCAPE (ESC), while the 8087 executes

only the ESCAPE class instructions. (The first five bits

of all ESCAPE instructions are identical.) The CPU does

provide addressing for ESC instructions, however.

The CPU distinguishes between ESC instructions that

reference memory and those that do not. If the instruc-

tion refers to a memory operand, the CPU calculates the

operand's address using any one of its available addres-

sing modes, and then performs a "dummy read" of the

word at that location. (Any location within the 1M byte

address space Is allowed.) This is a normal read cycle

except that the CPU ignores the data it receives. If the

ESC instruction does not contain a memory reference

(e.g., an 8087 stack operation), the CPU simply proceeds

to the next instruction.

An 8087 Instruction either will not reference memory,

will require loading one or more operands from memory
into the 8087, or will require storing one or more

operands from the 8087 into memory. In the first case a

non-memory reference escape is used to start 8087

operation. In the last two cases, the CU makes use of

the "dummy read" cycle initiated by the CPU. The CU
captures and saves the address which the CPU places

on the bus. If the instruction is a load, the CU addition-

ally captures the data word when it becomes available

on the local data bus. If data required is longer than one

word, the CU immediately obtains the bus from the CPU
using the request/grant protocol and reads the rest of

B-4 AFN 01525A

intel 8087

the information in consecutive bus cycles. In a store

operation, the CU captures and saves the store address

as in a load, and ignores the data w/ord that follows in

the "dummy read" cycle. When the 8087 Is ready to

perform the store, the CU obtains the bus from the CPU
and writes the operand starting at the specified address.

Numeric Execution Unit

The NEU executes all instructions that involve the

register stack; these include arithmetic, logical, trans-

cendental, constant and data transfer instructions. The
data path in the NEU is 84 bits wide (68 fraction bits, 15

exponent bits and a sign bit) which allows internal

operand transfers to be performed at very high speeds.

When the NEU begins executing an instruction, it

activates the 8087 BUSY signal. This signal can be used
in conjunction with the CPU WAIT instruction to resyn-

chronize both processors when the NEU has completed
its current instruction.

Register Set

The 8087 register set is shown in Figure 5. Each of the

eight data registers in the 8087's register stack is 80 bits

wide and is divided into "fields" corresponding to the

NDP's temporary real data type.

At a given point in time the TOP field in the control word
identifies the current top-of-stack register. A "push"
operation decrements TOP by 1 and loads a value into

the new top register. A "pop" operation stores the value

from the current top register and then increments TOP
by 1. Like 8086/8088 stacks in memory, the 8087 register

stack grows "down" toward- lower-addressed registers.

79

DATA FIELD
64 63

SIGN EXPONENT SIGNIFICAND

TAG FIELD

1 0

15

CONTROL REGISTER

STATUS REGISTER

- INSTRUCTION POINTER -

DATA POINTER

Figure 5. 8087 Register Set

Instructions may address the data registers either

implicitly or explicitly, f^^any instructions operate on the

register at the top of the stack. These instructions

implicitly address the register pointed to by the TOP.

Other instructions allow the programmer to explicitly

specify the register which is to be used. Explicit register

addressing is "top-relative."

Status Word

The status word shown in Figure 6 reflects the overall

state of the 8087; it may be stored in memory and then

inspected by CPU code. The status word is a 16-bit

register divided into fields as shown in Figure 6. The
busy bit (bit 15) indicates whether the NEU is executing

an instruction (B=1) or is idle (8 = 0). Several instruc-

15

B c. TOP c, Co IR X PE UE OE ZE DE IE

"'IR IS set if any unmasked exception bit is set. cleared otherwise.

"See Table 3 for condition code interpretation.

"Top Values

000 = Register 0 is Top of Stack

001 = Register 1 is Top of Stack

111 = Register 7 is Top of Stack

EXCEPTION FLAGS (1 = EXCEPTION HAS OCCURRED)

INVALID OPERATION

DENORMALIZED OPERAND

ZERO DIVIDE

OVERFLOV/

UNDERFLOW

PRECISION

(RESERVED)

INTERRUPT REQUEST''!

CONDITION CODE"'

TOP OF STACK POINTER'"

NEU BUSY

Figure 6. 8087 Status Word

B-5 AFN 01525A

intol 8087 [p[^lLQ[jJ5]DK]/^W

tions which store and manipulate the status word are

executed exclusively by the CU, and these do not set the

busy bit themselves.

The four numeric condition code bits (C0-C3) are similar

to the flags in a CPU: various instructions update these

bits to reflect the outcome of NOP operations. The
effect of these Instructions on the condition code bits is

summarized In Table 3.

Bits 14-12 of the status word point to the 8087 register

that Is the current top-of-stack (TOP) as described

above.

Bit 7 is the interrupt request bit. This bit is set if any

unmasked exception bit is set and cleared otherwise.

Bits 5-0 are set to Indicate that the NEU has detected

an exception while executing an Instruction.

Tag Word

The tag word marks the content of each register as

shown In Figure 7. The principal function of the tag word
is to optimize the NDP's performance. The tag word can

be used, however, to interpret the contents of 8087

registers.

Table 3. Condition Code Interpretation

Instruction C3 C2 Ci Co Interpretation

Compare, Test 0 X X 0 A > B
0 X X 1 A < B
1 X X 0 A = B
1 X X 1 A ? B (not comparable)

Remainder u 0 u u Complete reduction

u 1 u u Incomplete reduction

Examine 0 0 0 0 Valid, positive, unnormalized
0 0 0 1 Invalid, positive, exponent 0

0 0 1 0 Valid, negative, unnormalized
0 0 1 1 Invalid, negative, exponent 0

0 1 0 0 Valid, positive, normalized

0 1 0 1 Infinity, positive

0 1 1 0 Valid, negative, normalized

0 1 1 1 Infinity, negative

0 0 0 Zero, positive

0 0 1 Empty
0 1 0 Zero, negative

0 1 1 Empty
1 0 0 Invalid, positive, exponent = 0

1 0 1 Empty
1 1 0 Invalid, negative, exponent = 0

1 1 1 Empty

X = value is not affected by instruction

U = value Is undefined following instruction

15 0

TAG (7) TAG (S) TAG (5)

1

TAG (4)

1

TAG (3) TAG (2)

1

TAG (1)

1

TAG (0)

1

TAG VALUES:
00 = VALID
01 = ZERO
10 = SPECIAL
11 = EMPTY

Figure 7. 8087 Tag Word

Instruction and Data Pointers

The instruction and data pointers (see Figure 8) are

provided for user-written error handlers. Whenever the

8087 executes an NEU instruction, the CU saves the

Instruction address, the operand address (if present)

and the instruction opcode. 8087 instructions can store

this data into memory.

15 0

INSTRUCTION POINTER (15-0)

INSTRUCTION POINTER
(19-16)

0 INSTRUCTION OPCODE (10-0)

DATA POINTER (15-0)

DATA POINTER (19-16) 0

Figure 8. 8087 Instruction and Data Pointers

B-6
AFN 01525A

inteT t

Control Word

The NDP provides several processing options which are

selected by loading a word from memory into the

control word. Figure 9 shows the format and encoding
of the fields in the control word.

The low order byte of this control word configures 8087

interrupts and exception masking. Bits 5-0 of the

control word contain individual masks for each of the

six exceptions that the 8087 recognizes and bit 7

contains a general mask bit for all 8087 interrupts. The
high order byte of the control word configures the 8087

operating mode including precision, rounding, and
Infinity control. The precision control bits (bits 9-8) can

be used to set the 8087 internal operating precision at

less than the default of temporary real precision. This

can be useful in providing compatibility with earlier

generation arithmetic processors of smaller precision

than the 8087. The rounding control bits (bits 11-10)

provide for directed rounding and true chop as well as

the unbiased round to nearest mode specified in the

proposed IEEE standard. Control over closure of the

number space at infinity is also provided (either affine

closure, ± <», or projective closure, °°, is treated as

unsigned, may be specified).

Exception Handling

The 8087 detects six different exception conditions that

can occur during instruction execution. Any or all

exceptions will cause an interrupt if unmasked and
interrupts are enabled.

If interrupts are disabled the 8087 will simply suspend
execution until the host clears the exception. If a

specific exception class is masked and that exception

occurs, however, the 8087 will post the exception in the

status register and perform an on-chip default exception

handling procedure, thereby allowing processing to

continue. The exceptions that the 8087 detects are the

following:

1. INVALID OPERATION: Stack overflow, stack under-

flow, indeterminate form (0/0, oo_ oo^ etc.) or the use
of a Non-Number (NAN) as an operand. An exponent
value is reserved and any bit pattern with this value in

the exponent field is termed a Non-Number and
causes this exception. If this exception is masked,
the 8087's default response is to generate a specific

NAN called INDEFINITE, or to propagate already

existing NANs as the calculation result.

2. OVERFLOW: The result is too large in magnitude to

fit the specified format. The 8087 will generate an
encoding for infinity if this exception is masked.

3. ZERO DIVISOR: The divisor is zero while the dividend

is a non-infinite, non-zero number. Again, the 8087
will generate an encoding for infinity if this exception

is masked.

4. UNDERFLOW: The result is non-zero but too small in

magnitude to fit in the specified format. If this excep-

tion is masked the 8087 will denormalize (shift right)

the fraction until the exponent is in range. This

process is called gradual underflow.

5. DENORMALIZED OPERAND: At least one of the

operands or the result is denormalized; it has the

smallest exponent but a non-zero significand. Normal
processing continues if this exception is masked off.

6. INEXACT RESULT: If the true result is not exactly

representable in the specified format, the result is

rounded according to the rounding mode, and this

flag is set. If this exception is masked, processing

will simply continue.

15 0

XXX 1 c R C P C
1

M X PM UM OM ZM DM IM

EXCEPTION MASKS (1 = EXCEPTION IS MASKED)

I INVALID OPERATION

I DENORMALIZED OPERAND

I ZERO DIVIDE

' OVERFLOW
' UNDERFLOW

I PRECISION

I (RESERVED)

' — INTERRUPT MASK (1 = INTERRUPTS ARE MASKED)

l—' PRECISION CONTROL'"

I—' ROUNDING CONTROL"'

I INFINITY CONTROL (0 -- PROJECTIVE, 1 = AFFINE)

—I—I (RESERVED)

"Precision Control ' Rounding Control

(X3 = 24 bits 00 = Round to Nearest or Even

01 = Reserved 01 = Round Down (toward - ")

10 = 53 bits 10 = Round Up (toward «)

1 1 = 64 bits 1 1 = Chop (truncate toward zero)

Figure 9. 8087 Control Word

B-7 AFN 01525A

intel 8087 [p[^l(LD[i!^lQ[f!il/^^V

Table 4. Pin Description

Pin(s)

AD15-AD0

A19/S6,
A18/S5,
A17/.S4,

A16/S3

BHE/S7

S2, SI, SO

I/O

I/O

I/O

I/O

I/O

Function

These lines constitute the time multi-

plexed memory address (Ti) and data (T2,

T3, Tv7, T4) bus. AO is analogous to BHE
for the lower byte of the data bus, pins

D7-D0. It is LOW during Ti when a byte is

to be transferred on the lower portion of

the bus in memory operations. Eight-bit

oriented devices tied to the lower half of

the bus would normally use AO to con-

dition chip select functions. These lines

are active HIGH. They are input/output

lines for 8087 driven bus cycles and are

inputs which the 8087 monitors when the

8086/8088 is in control of the bus.

During T, these are the four most signifi-

cant address lines for memory opera-

tions. During memory operations, status

information is available on these lines

during Tj, T3, T^,;. and T4. For 8087 con-

trolled bus cycles, S6. S4, and S3 are

reserved and currently one (HIGH), while

S5 is always LOW. These lines are inputs

which the 8087 monitors when the 8086/

8088 is in control of the bus.

Durin g T-i the bus high enable signal

(BHE) should be used to enable data onto
the most significant half of the data bus,

pins D15-D8. Eight-bit oriented devices

tied to the u pper half of the bus would
normally use BH E to condition chip select

functions. BHE is LOW during Ti for read

and write cycles when a byte is to be
transferred on the high portion of the bus.

The S7 status information is available

during T2, T3, T^j, and T4. The signal is

active LOW. S7 is an input which the 8087
monitors during 8086/8088 controlled bus
cycles.

For 8087 driven bus cycles, these status

lines are encoded as follows:

S2 SI so

0 (LOW) X X Unused
1 (HIGH) 0 0 Unused

1 0 1 Read Memory
1 1 0 Write Memory
1 1 1 Passive

Status is driven active during T4, remains
valid during Ti and T2, and is returned to

the passive state (1, 1, 1) during T3 or

during T^ when READY is HIGH. This

status is used by the 8288 Bus Controller

to generate all memory access_ contr^
signals. Any change in S2, SI, or SO
during T4 is used to indicate the begin-

ning of a bus cycle, and the return to the

passive state in T3 or Ty^ is used to

indicate the end of a bus cycle. These sig-

nals are monitored by the 8087 when the

8086/8088 is in control of the bus.

Pin(s)

RQ/GTO

RQ/GT1

I/O

I/O

I/O

Function

This request/grant pin is used by the NDP
to gain control of the local bus from the

CPU for operand transfers or on behalf of

another bus master. It must be connected
to one of the two processor request/grant

pins. The request grant sequence on this

pin is as follows:

1. A pulse one clock wide is passed to

the CPU to indicate a local bus request

by either the 8087 or the master con-

nected to the 8087 RQ/GT1 pin.

2. The NDP waits for the grant pulse and
when it is received will either initiate

bus transfer activity in the clock cycle

following the g rant or pass the grant

out on the RQ/GT1 pin in this clock if

the initial request was for another bus
master.

3. The 8087 will generate a release pulse

to the CPU one clock cycle after the

completion of the last NDP bus cycle

or on receipt of the release pulse from
the bus master on RQ/GT1.

This request/grant pin is used by another
local bus master to force the NDP to

release the local bus at the end of the

processor's current bus cycle. If the NDP
is not in control of the bus when the re-

quest is made the request/grant se-

quence is passed through the NDP on the

RQ/GTO pin one cycle later. Subsequent
grant and release pulses are also passed
through the NDP with a two and one
clock delay, respec tively, for resyn-

chronization. RQ/GT1 has an internal pull-

up resistor, and so may be left uncon-

nected. If the NDP has control of the bus
the request/grant sequence is as follows:

1. A pulse 1 CLK wide from another local

bus master indicates a local bus re-

quest to the 8087 (pulse 1).

2. During the NDP's next T4 or T| a pulse 1

CLK wide from the 8087 to the request-

ing master (pulse 2) indicates that the

8087 has allowed the local bus to float

and that it will enter the "RQ/GT ac-

knowledge" state at the next CLK. The
NDP's control unit is disconnected
logically from the local bus during

"RQ/GT acknowledge."

3. A pulse 1 CLK wide from the request-

ing master indicates to the 8087 (pulse

3) that the "RQ/GT" request is about to

end and that the 8087 can reclaim the

local bus at the next CLK.

Each master-master exchange of the local

bus is a sequence of 3 pulses. There must
be one dead CLK cycle after each bus
exchange. Pulses are active LOW.

B-8 AFN 01525A

Intel 8087 [p[^lLD[)i^]QK]^W

Table 4. Pin Description (cont.)

Pin(s) I/O Function

QS1, QSO 1 QS1 and QSO provide the 8087 with status

to allow tracking of the CPU instruction

queue.

QS1 QSO
0 (LOW) 0 No Operation

0 1 First Byte of Op Code from
Queue

1 (HIGH) 0 Empty the Queue
1 1 Subsequent Byte from Queue

INT 0 This line is used to indicate that an

unmasked exception has occurred during

numeric instruction execution when 8087
interrupts are enabled (or deadlock has
Kppn Hptprtpd^ Thi^ ^innAl i^ tvniraliv

routed to an 8259A. INT is active HIGH.

BUSY 0 This signal indicates that the 8087 NEU is

executing a numeric instruction. It is

connected to the CPU's TEST pin to

provide CPU-NDP synchronization. In the

case of an unmasked exception BUSY
remains active until the exception is

cleared. BUSY is active HIGH.

Pin(s) I/O Function

Ready 1 READY is the acknowledgement from the
addressed memory device that it will

complete the data transfer. The RDY
signal from memory is synchronized by
the 8284A Clock Generator to form
READY. This signal is active HIGH.

Reset 1 RESET causes the processor to

immediately terminate its present
activity. The signal must be active HIGH
for at least four clock cycles. RESET is

lluciiialiy by DC ii lUri l^cU

.

CLK 1 The clock provides the basic timing for

the processor and bus controller. It is

asymmetric with a 33% duty cycle to

provide optimized internal timing.

Vcc Vcc is the +5V power supply pin.

GND GND are the ground pins.

B-9 AFN 01525A

intel 8087

ABSOLUTE MAXIMUM RATINGS*

Ambient Temperature Under Bias ... 0°Cto70°C
Storage Temperature -65°C to + 150°C
Voltage on Any Pin with

Respect to Ground -1.0to+7V
Power Dissipation 3.0 Watt

'Notice: Stresses above those listed under Absolute Maximum
Ratings may cause permanent damage to the device. This is a

stress rating only and functional operation of the device at these

or any other conditions above those indicated in the operational

sections of this specification is not implied. Exposure toabsolute

maximum rating conditions for extended periods may affect

device reliability.

D.C. CHARACTERISTICS Ta = 0°C to 70° C, Vcc = 5V ± 10%

Symbol Parameter Min. Max. Units Test Conditions

ViL Input Low Voltage -0.5 +0.8 V

VlH Input High Voltage 2.0 Vcc + 0.5 V

Vol Output Low Voltage 0.45 V lOL = 2.0 mA

. VOH Output High Voltage 2.4 V lOH = -400 fiA

Ice Power Supply Current 475 nnA Ta = 25°

C

ILI Input Leakage Current ±10 mA OV < ViN < Vcc

ILO Output Leakage Current ±10 mA 0.45V < VouT < Vcc

VCL Clock Input Low Voltage -0.5 +0.6 V

VCH Clock Input High Voltage 3.9 Vcc + 1.0 V

CiN Capacitance of Input & Output Buffers

(all except I/O Buffer and CLK)
10 PF fc = 1 MHz

ClO Capacitance of I/O Buffer

(ApO-15, A16-A19, SHE, S2-S0,

RC/ST) and CLK
15 pF fc = 1MHz

A.C. CHARACTERISTICS

Timing Requirements

Ta = 0°C to 70° C, Vcc = 5V ± 10%

Symbol Parameter Min. Max. Units Test Conditions

TCLCL CLK Cycle Period 200 500 ns

TCLCH CLK Low Time (2/3TCLCL) - 15 ns

TCHCL CLK High Time (1/3 TCLCL) + 2 ns

TCH1CH2 CLK Rise Time 10 ns From 1.0V to 3.5V

TCL2CL1 CLK Fall Time 10 ns From 3.5V to 1.0V

TDVCL Data In Setup Time 30 ns

TCLDX Data in Hold Time 10 ns

TRYHCH READY Setup Time (2/3TCLCL) - 15 ns

TCHRYX READY Hold Time 30 ns

TRYLCL READY Inactive to CLK (See Note 3) -8 ns

TGVCH RQ/GT Setup Time 30 ns

TCHGX RQ/GT Hold Time 40 ns

TQVCL QSO-1 Set up Time 30 ns

TCLQX QSO-1 Hold Time 10 ns

TSACH Status Active Set up Time 30 ns

TSNCL Status Inactive Set up Time 30 ns

B-10 AFN 01525A

8087 [p[^i[LD()^DM/?\[^V

Timing Responses

Symbol Parameter Min. Max. Units Test Conditions

TCLML Command Active Delay (See Note 1) 10 35 ns

TCLMH Command Inactive Delay (See Note 1) 10 35 ns

TRYHSH Ready Active to Status Passive (See Note 2) 110 ns

TCHSV Status Active Delay 10 110 ns

TCLSH Status Inactive Delay 10 130 ns

TCLAV Address Valid Delay 10 110 ns

TCLAX Address Hold Time 10 ns

TCLAZ Address Float Delay TCLAX 80 ns

TSVLH Status Valid to ALE High (See Note 1) 15 ns

TCLLH CLK Low to ALE Valid (See Note 1) 15 ns

TCHLL ALE Inactive Delay (See Note 1) 15 ns CL = 20-100 pF for all

TCLDV Data Valid Delay 10 110 ns 8087 Outputs (in addition

TCHDX Data Hold Time 10 ns to 8087 self-load)

TCVNV Control Active Delay (See Note 1) 5 45 ns

TCVNX Control Inactive Delay (See Note 1) 10 45 ns

TCHBV BUSY and INT Valid Delay 10 150 ns

TCHDTL Direction Control Active Delay (See Note 1) 50 ns

TCHDTH Direction Control Inactive Delay (See Note 1) 30 ns

TCLGL RQ/GT Active Delay 0 85 ns

TCLGH RQ/GT Inactive Delay 0 85 ns

Notes:

1. Signal at 8284A or 8288 shown for reference only.

2. Applies only to T3 and wait states.

3. Applies only to T2 state (8 ns into T3).

WAVEFORMS

CLK

OS„QS„

s,.s,.s„

BHE/S,,AVS.-A„/S3

AD,s-AD„

TOVCL

X
TSACH

1

TCLQX

X
TOVCL TCLDX

^ BHE, A, -A,.)

tdvcl

|^

TOVCL

X
TSNCL

-

TCLDX
7

TCLDX TOVCL

FLOAT
DATA IN

1 TCLDX

FLOAT

Figure 10. 8087 Bus Timing — Passive Mode

B-11 AFN 01525A

intel 8087

s,.s,.s.

BHE/S„A„/S.-A„/S3

ALE (8288 OUTPUT)
(SEE NOTES 4. 7)

READY (8087 INPUT)
(SEE NOTES 2. 6)

READ CYCLE
AD„-AD<,

DT/R

TCH1CH2
TCLCL— -TCL2CL1

8288 OUTPUTS ^
(SEE NOTES 7, 8)

MRDC

WRITE CYCLE

AD„-AD,

8288 OUTPUTS .

(SEE NOTES 7,
8)'' AMWTC

MWTC

NOTES:

1 ALL SIGNALS SWITCH BETWEEN V^^ AND V^^ UNLESS OTHERWISE SPECIFIED
2 RDYISSAMPLEDNEARTHEENDOFT, Tj AND TO DETERMINE IF T^^,

MACHINE STATES ARE TO BE INSERTED
3 THE LOCAL BUS FLOATS ONLY IF THE 8087 IS RETURNING CONTROL TO THE

8086/8088

4 ALE RISES AT LATER OF (TSVLH, TCLLH)
5 STATUS INACTIVE IN STATE JUST PRIOR TO T,

6 READY SHOULD REMAIN ACTIVE UNTIL S„_, BECOME INACTIVE

7 SIGNALS AT 8284A OR 8288 ARE SHOWN FOR REFERENCE ONLY
8 THE ISSUANCE OF 8286 COMMAND AND CONTROL SIGNALS MRDC, MWTC.
AMWC AND DEN) LAGS THE ACTIVE HIGH 8288 CEN

9 ALL TIMING MEASUREMENTS ARE MADE AT 1 5V UNLESS OTHERWISE NOTED,

Figure 10. 8087 Bus Timings — Master Mode (cont.)

B-12 AFN 01525A

intgl 8087 [p[^[l[LO[)^OK]/?\W

vcc

CLK

RESET

1^ >50 mSCC ^

f

\
TCLDX—»-

TDVCL-H }•*—

JT' \

=20 CLK CYCLES—
=8 CLK CYCLES

\

>4 CLK CYCLES
8087 TRACKS
CPU ACTIVITY

8087 READY TO
EXECUTE INSTRUCTIONS

Figure 11. Reset Timing

CLK

BQ/GTO

AD„-AD„

A,>^S,-A„/S,

S^,.S„
BHE/S7

TCLGL
TCLGH

8087

RO

> 0 CLK ^1 ANY CLK
"CYCLE"*""* CYCLE"

TGVCH

CPU

Figure 12. Request/Granto Timing

CLK

RQ/GT1

A„^S.-A„/S,

BHEyST

TCLGL̂

^^^ ^
TCLGH

>1 CLK
"CYCLE"

\ / ^ \ B087 GT
'

TCLAZ

TGVCH-^
TCHGX

XT ALTERNATE MASTER

(SEE NOTE)

NOTE: ALTERNATE MASTER MAY NOT DRIVE THE BUSES OUTSIDE OF THE REGION
SHOWN WITHOUT RISKING BUS CONTENTION

)—(fE:

Figure 13. Request/Grant^ Timing

CLK

TCHBV I

Figure 14. Busy and Interrupt Timing

B-13 AFN 01525A

intel 8087

Table 5. 8087 Extensions to the 8086/8088 Instruction Set

Data Transfer

FLO = LOAD

Integer/Real Memory to ST(0)

Long Integer Memory to ST{0)

Temporary Real Memory to STfO)

BCD Memory to ST(0)

ST(i) to STIO)

FST = STORE

ST(0) to Integer/Real Memory

ST(0) to ST(i|

FSTP ^ STORE AND POP

ST(0) 'to Integer/Real Memory

ST(0) to Long Integer Memory

ST(0) to Temporary Real Memory

ST(0) to BCD Memory

ST(0) to ST(i)

Comparison

FCOM = Compare

Integer/Real Memory to ST(0}

ST(i) to ST(0)

FCOMP = Compare and Pop

Integer/Real Memory to ST(0)

ST(0 to ST(0)

FCOMPP ^ Compare ST(1) to STIO)
and Pop Twice

FTST = Test ST(0)

FXAM = Examine ST(0)

76543210765432107654321076543210

ESCAPE MF 1
I

MOD OOP R/M
I"

(DISP-LO) (DISP-HI)

ESCAPE MOD 1 R/M (DISP-LO) (DISP-HI)

ESCAPE MOD 1 1 R/M (DISP-LO) (DISP-HI)

ESCAPE 1
I

MOD 1 0
0~ R/M (DISP-LO) (DISP-HI)

ESCAPE 0 0 1
I

1 1 0 0 0 ST(i)

ESCAPE MF MOD 0 1 R/M (DISP-LO) (DISP-HI)

ESCAPE 1 0 ST(i)

1
ESCAPE MF 1

1
MOD 0 1 1 R/M

1

(DISP-LO) (DISP-HI)

1
ESCAPE 1 1 1

1
MOD 1 1 1 R/M

1

(DISP-LO) (DISP-HI)

ESCAPE 0 1 1 MOD R/M (DISP-LO) (DISP-HI)

ESCAPE 1 1
I

MOD 1 R/M (DISP-LO) (DISP-HI)

1
ESCAPE 1 0 1

1

110 11 ST(i)
1

1
ESCAPE 0 0 1

1

110 0 1 ST(i)
1

ESCAPE MOD 0 R/M (DISP-LO) (DISP-HI)

ESCAPE 0 0 0 1 0 STd;

ESCAPE MF MOD 0 1 1 R/M (DISP-LO) (DISP-HI)

ESCAPE 10 11 ST(i)

ESCAPE 1 0 0 1~|

ESCAPE 0 0 1 0 0 10 0

ESCAPE 0 0 1

Mnemonics © Intel 1980

B-14 AFN 01525A

8087 [p[^i[LO[i^O[?^^[^Y

Table 5. 8087 Extensions to the 8086/8088 Instruction Set (cont.)

Arithmetic 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7654321076543210
FADD = Addition

InteQsr^Resi M©niory with ST(0) MF Q MOD 0 0 0 R M (DISP-LO)
1

(DISP-HI)
1

ST(i) and ST(0) ESCAPE d p 0 0 0 0 ST(,)

FSUB = Subtraction

Integer/Real Memory with ST{0) ESCAPE MF 0 MOD 1 0 R R/M (DISP-LO)
1

(DISP-HI)
1

ST(0 and ST(0) ESCAPE d p 0 1 0 R R/M

FMUL - Multiplication

Integcr/Rcsl Memory with ST(0) MF Q MOD Q 0 I R M (DISP-LO)
1

(DISP-HI)
1

ST(i) and ST(0) ESCAPE d p 0 0 0 1 R M

FDIV = Division

Integer^Reai Memory with ST(0) ESCAPE MF 0 MOD 1 1 R R M (DISP-LO)
1

(DISP-HI)
1

ST(i) and ST(0| ESCAPE d p 0 1 1 1 1 R R M

FSORT = Square Root ol ST(0| ESCAPE 0 0 1 1 1 1 1 0 1 0
1

FSCALE = Scale ST(0) by ST(1) ESCAPE 0 0 1 1 1 1 0 1
j

FPREM = Partial Remainder ol

ST(0) - ST(1) ESCAPE 0 0 1 1 1 1 1 0 0 0
1

FRNDINT = Round ST(0)

to Integer ESCAPE 0 0 1 1 1 1 1 1 0 0
1

FXTHACT - Extract Components —
0(ST(0) ESCAPE 0 0 1 1 1 1 0 1 0 0

1

FABS ~ Absolute Value o' STfO) ESCAPE 0 0 1 1 0 0 c 0 1
1

FCHS = Change Sign ol ST(0) ESCAPE 0 0 1 1 0 0 0 0 0
1

Transcendental

FPTAN = Partial Tangent ol ST(0)
|

ESCAPE 0 0 0 0 1 0
1

FPATAN = Partial Arctangent ol .

ST(0(^ ST(1)
1

tOUMKC 0 0 u 0 1 1
1

F2XM1 = 2 ST(0)_i
1

ESCAPE 0 0 0 0 0 0
1

FYL2X = ST(1) Logj |ST(0)1
|

ESCAPE 0 0 —— 0 0 0 1
1

FVLJXPI = STdl Log2 (ST(0) '111 ESCAPE 0 0 — 1 0 0 1

Constants

FLDZ = LOAD • 0 0 into ST(0) ESCAPE 0 0 1 1 0 1 1 1 0

FLD1 = LOAD • 1 0 into ST(0) ESCAPE 0 0 1 0 1 0 0 0
1

FLDPI = LOAD >r into ST(0) ESCAPE 0 0 1 0 1 0 1 1
1

FLDL2T = LOAD logj 10 into ST(0) ESCAPE 0 0 1 0 1 0 0 1
1

FL0L2E = LOAD logj e into ST(0) ESCAPE 0 0 1 0 1 0 1 0 1

FLDLG2 = LOAD log,;, 2 into ST(01 ESCAPE 0 0 1 0 1 1 0 0
1

FL0LN2 = LOAD l«ge 2 mto ST(0) ESCAPE 0 0 1 0 1 1 0 1
1

B-15

Mnemonics I Intel 1980

AFN 01S2SA

iny 8087

Table 5. 8087 Extensions to the 8086/8088 Instruction Set (cont.)

7 6 5 4 3 2 1 0 5 4 3 2 1 0 7 5432107 6543210
Processor Control

FINIT : Initialize NOP

FENI = Enable Interrupts

FDISI - Disable Interrupts

FLDCW = Load Control Word

FSTCW = Store Control Word

FSTSW = Store Status Word

FCLEX - Clear Exceptions

FSTENV = Store Environment

FLDENV = Load Environment

FSAVE = Save Slate

FRSTOR = Restore State

FINCSTP = Increment Stack Pointer

FDECSTP = Decrement Stack Pointer

FFREE = Free ST(i)

FNOP - No Operation

FWAIT = CPU Wait lor NOP

ESCAPE

ESCAPE

ESCAPE

ESCAPE

ESCAPE

ESCAPE

ESCAPE

ESCAPE

ESCAPE

ESCAPE

ESCAPE

ESCAPE

ESCAPE

ESCAPE

ESCAPE

0 1 1

0 0 1

0 0 1

1 0 1

0 0 1

0 0 1

0 0 1

0 0 1

MOD

MOD

MOD

MOD

MOD

MOD

MOD

0 0 0 1 1

0 0 0 0 0

0 1 R M

R M

0 0 10
R M

0 0 R M

1 0 R M

0 0

0 0 0 ST(i)

1 0 0 0 0

(DISP-LO)

(DISP-LO)

(DISP-LO)

(DISP-LO)

(DISP-LO)

(DISP-LOl

(DISP-LO)

'DISP-HI

iDISP-HI)

(DISP-HI)

I DlSP-HI

(DISP-HI)

iDISP-Hli

(DISP-HI

FOOTNOTES:

if mod = 00 then DISP = 0*, disp-low and disp-high are absent

if mod = 01 then DISP= disp-low sign-extended to 16-bits,

disp-high is absent

if mod= 10 then DISP= disp-high; disp-low

if mod =11 then r/m is treated as an ST(i) field

if r/m = 000 then EA = (BX) MSI) ^ DISP

if r/m = 001 then EA = (BX) MDI) * DISP

if r/m = 010 then EA = (BP) ^(Sl) + DISP

If r/m = 011 then EA = (BP) + (DI) + DISP

If r/m = 100 then EA = (SI) + DISP
if r/m = 101 then EA = (Dl) * DISP
if r/m = 110 then EA = (BP) + DISP*

if r/m = 111 then EA = (BX) * DISP

'except if mod = 000 and r/m = 1 10 then EA = disp-high: disp-low.

MF= Memory Format

00 — 32-bit Real

01 — 32-bit Integer

10 — 64-bit Real

11 — 16-bit Integer

ST(0) = Current stack top

ST(i) = I"' register below stack top

d= Destination

0 — Destination is ST(0)

1 — Destination is ST(i)

P= Pop

0 — No pop
1 — Pop ST(0)

R = Reverse

0 — Destination (op) Source

1 — Source (op) Destination

For FSQRT:
For FSCALE:
For F2XM1:
For FYL2X:

For FYL2XP1:

For FPTAN:
For FPATAN:

-0 < ST(0) < +«
-2'* < ST(1) < -^2'5 and ST(1) integer

0 < ST{D) < 2-'

0 < ST(0) < «
-« < ST(1) < + «

0 < IST(0)| < (2 - v^)/2
-«= < ST(1) < oo

0 ST(0) < n/4

0 < ST(0) < ST(1) < +00

Mnemonics Intel 1980

B-16
AFN 01525A

intel
3065 Bowers Avenue

Santa Clara. California 95051

Tel: (408)987-8080

TWX: 910-338-0026

TELEX; 34-6372

ALABAMA

Intel Corp
303 Will.ams Avenue. S W.
Suite 1422

Hunlsville 35801
Tel (205) 533-9353

Pen-Teen Associates. Inc.

Holiday Otiice Center

3322 Memonal Pkwy . S W.
Huntsville 35801
Tel 1205)881-9298

ARIZONA

Intel Corp
10210 N 25tn Avenue, Suite 11

Pnoeni« 85021
Tel (G02I 997 9695

BFA
4426 Nonn SaOdle Bag Trail

Scottsdale 85251
Tel (6021994-5400

CALIFORNIA

Intel Corp
7670 Opportunily Rd-

Suite 135

San Diego 92111
Tel (714) 268-3563

Intel Corp •

2000 East 4tn street

Suite 100

Santa Ana 92705
Tel 1714)835-9642
TWX 910-595-1114

Intel Corp
15335 Morrison

Suite 345
Sherman Oaks 91403

Tel (213)986-9510

TWX 91^495 2045

Intel Corp *

3375 Scott Blvd

Santa Clara 95051
Tel (408) 987-8086

TWX 910-339 9279
910-33&O255

Eane Associates. Inc

4617 Ruftner Street

Suite 202
San Diego 92111

Tel (714)278-5441

Mac I

2576 Snattuck Ave
Suite 4B
Berkeley 94704
Tel (415)843-7625

MacI
PC Boi 1420

Cupertino 95014

Tel (408) 257 9880

Mac I

558 valley Way
Calaveras Business Park

Milpitas 95035
Tel 1408)946-8885

Mac I

P O Bo» 6763
Fountain Valley 92708
Tel 1714)839-3341

Mac-

1

1321 Centineia Avenue
Suite 1

Santa Monica 90404

Tel (213)829-4797

Mac-I

20121 Ventura Blvd Suite 240e
Woodland Hills 91364

Tel 1213)347 5900

COLORADO

Intel Corp •

650 S Cnerry Street

Suite 720

Denver 80222
Tel (3031321-8066

TWX 910-931 2289

Westek Data Products, inc

25921 Fern Guicn
PO Bo« 1355

Evergreen 80439
Tel (3031 674 5255

Westek Data Products, inc

1322 Arapanoe
Boulder 80302
Tel 1303) 449 2620

Westek Data Products. Inc

1228 w Hinsdale Or

Littleton 80120
Tel 1303) 797^)482

U.S. AND CANADIAN SALES OFFICES

May 1980

CONNECTICUT

Intel Corp
Peacock Alley

1 PaOanaram Road. Suite 146

Danbury 06810
Tel 1203) 792-8366

TWX 710-456-1199

FLORIDA

Intel Corp
1001 N w e2nd Street. Suite 406
Ft Lauderdale 33309
Tel (305) 771-0600

TWX 510-956-9407

Intel Corp
5151 Adanson Street. Suite 203
Orlando 32804
Tel (3051628-2393

TWX 81^853-9219

Pen-Tech Associates Inc

201 S E 15lh Terrace. Suite K
Deertield Beach 33441
Tel 1305) 421 4969

Pen-Tech Associates. Inc

111 So Maiiiand Ave.. Suite 202
PC Bo« 1475

Mailland 32751

Tel (305)645-3444

GEORGIA

Pen Tech Associates, inc.

Cherokee Center, Suite 21

627 Cherokee Street

Marietta 3O06O
Tel (404) 424-1931

ILLINOIS

Intel Corp '

2550 Goll Road Suite 815
Rolling Meadows 60008
Tel (312)961 7200

TWX 910^51 5881

Technical Representatives

1502 North Lee Street

Bloomington 61701
Tel (309) 829-8080

INDIANA

Intel Corp
9101 Wesieyar. Road
Suite 204

Indianapolis 46268

Tel (317)299-0623

IOWA

Technical Representatives. Inc,

St Andrews Building

1930 St Andrews Drive N E,

Cedar Rapids 52405
Tel (3191 393-5510

KANSAS

Intel Corp
9393 W llOtn St , Ste 265
Overland Park 66210
Tel (913)642-8080

Technical Representatives, tnc

8245 Nieman Road Suite 100

Lenexa 66214

Tel (913)888-0212, 3. S 4

TWX 910-749-6412

Technica(Representatives, inc

360 N Rock Road
Suite 4

Wichita 67206
Tel (316)681-0242

MARYLAND

lnte(Corp •

7257 Paniway Drive

Hanover 21076

Tel (301) 796-7500

TWX 710^2 1944

Mesa Inc

11900 Parklawn Drive

Rockville 20852
Tel Washington (301) 681^30

Baltimore (301) 792O021

MASSACHUSETTS

Intel Corp •

27 Industrial Ave
Chelmsford 01824
Tel (617)667 8126
TWX 710-343-6333

EMC Corp
381 Elliot Street

Newton 02164
Tel (617)244-4740

TWX 922531

MICHIGAN

Intel Corp *

26500 Nonhwestern Hwy.
Suite 401

Southlield 48075
Tel (313) 353^)920
TWX 810-244-4915

Lowry & Associates. Inc

135 w Norih Street

Suite 4

Brighton 481 16

Tel 1313)227 7067

Lowry & Associates. Inc.

3902 Costa NE
Grand Rapids 49505
Tel (616) 363-9839

MINNESOTA

Intel Corp.

7401 Metro Blvd.

Suite 355
Edina 55435
Tel (612)835*722
TWX 910-576-2e67

MISSOURI

Intel Corp

502 Earth City Plaza

Suite 121

Earth City 63045
Tel (314)291 1990

Technical Representatives, Inc

320 Brookes Drive, Suite 104

Hazeiwood 63042
Te) (314) 731-5200

TWX 910-762-0618

NEW JERSEY

Intel Corp
Raritan Plaza

2nd Floor

Raritan Center
Edison 08817
Tel (201) 2253000
TWX 710-480-6238

NEW MEXICO

BFA Corporation

PO Box 1237

Las Cruces 88O01
Tel 1505) 523-0601

TWX 910-983-0543

BFA Corporation

3705 Westerlield. N E
AIDuguergue 87111
Tel (506)292 1212

TWX 910-989-1157

NEW YORK

Intel Corp '

350 Vanderbilt Motor Pkwy
Suite 402

Hauppauge 11767

Tel (516)231 3300
TWX 510-227-6236

Intel Corp

80 Washington St

Poughkeepsie i260i

Tei (914) 473-2303

TWX 510-2480060

Intel Corp •

2255 Lyell Avenue
Lower Floor East Suite

Rochester 14606

Tel (716)254-6120

TWX 510-253-7391

Measurement Technology, Inc

159 Northern Boulevard
Great Neck 1 1021

Tel (516)482 3500

T Squared
4054 Newcourt Avenue
Syracuse 13206

Tel (315)463-8592

TWX 710-541-0554

T-Squared

2 E Mam
Victor 14564

Tel (716)924 9101

TWX 51»254«542

NORTH CAROLINA

Intel Corp
154 Huflman Mill Rd
Burlington 27215

Tel (9191584 3631

Pen-Tech Associates, inc

1202 Eastchester Dr

Highpoint 27260
Tel (9191883-9125

OHIO

Intel Corp •

6500 Poe Avenue
Dayton 45415
Tel (5131890-5350

TWX 810-450-2528

Intel Corp "

Chagrin-Brainard Bidg . No 210

28001 Chagrin Blvd

Cleveland 44122

Tel (216)464-2736

TWX 810-4279298

OREQON

Intel Corp
10700 SW Seavenon
Hillsdale Highway
Suite 324

Beavenon 97005
Tel (503)641-8086

TWX 910467^741

PENNSYLVANIA

Intel Corp •

275 Commerce Or

200 Office Center

Suite 300

Fon Washington 19034

Tel (2151542-9444

TWX 51&<61 2077

Q E D Electronics

300 N York Road
Haieoro 19040
Tel (215)674-9600

TEXAS

Intel Corp "

2925 L B J Freeway
Suite 175

Dallas 75234
Tel (214)241-9521

TWX 910-860-5617

Intel Corp '

6420 Richmond Ave
Suite 280
Houston 77057

Tel (7131 784-3400

TWX 910-881-2490

Industrial Digital Systems Corp

5925 Sovereign

Suite 101

Houston 77036

Tel (713)988-9421

Intel Corp
313 E Anderson Lane
Suite 314

Austin 78752
Tel 15121 454-3628

WASHINGTON

Intel Corp
Suite 114. Bidg, 3

1603 116th Ave N E,

Beiievue 98005
Tel (206) 453-8066

TWX 910-443-3002

WISCONSIN

Intel Corp
150 S Sunnyslope Rd.

Brooklield 53005
Tel (414) 784 9060

CANADA

Intel Semiconductor Corp *

Suite 233. Bell Mews
39 Highway 7, Bells Corners

Ottawa. Ontario K2H 8R2
Tel (613)829-9714

TELEX 053-4115

Intel Semiconductor Corp

50 Galaxy Blvd

Unit 12

Reidate, Ontario

M9W 4Y5
Tel (4161675-2105

TELEX 06983574

Multiiek, Inc
*

15 Grenteii Crescent

Ottawa, Ontano K2G 0G3
Tel (613)226-2365

TELEX 053-4585

Multiiek, Inc

Toronto
Tel (416) 245-4622

Multiiek, Inc

Montreal
Tel (514)481 1350

'Field Application Location

inteT INTERNATIONAL SALES AND MARKETING OFFICES
3065 Bowers Avenue
Santa Clara. Calilorma 95051
Tel (408)987-8080

TWX 910-338 0026
TELEX 34-6372

INTERNATIONAL DISTRIBUTORS/REPRESENTATIVES May 1980

ARGENTINA

Micro Sistemas S.A

9 De Julio 561

Cordoba
Tel: 54-51-32-880

TELEX: 51837 BICCO

AUSTRALIA

A.J.F Systerris & Components Pty Ltd

310 Queen Street

Melbourne
Victoria 3000
Tel:

TELEX

Warburton Franki

Corporate Headquarters

372 Eastern Valley Way
Chatswood, New South Wales 2067
Tel: 407-3261

TELEX AA 21299

AUSTRIA

Bactier Elektronische Geraete GmbH
Rolenmulgasse 26

A 1120 Vienna

Tel: (0222) 83 63 96
TELEX: (01) 1532

Rekirsch Elektronik Geraete GmbH
Lichtensteinstrasse 97

A1000 Vienna
Tel: (222) 347646
TELEX 74759

BELGIUM

Ineico Belgium S A
Ave des Croix de Guerre 94

B1120 Brussels

Tel: (02) 216 01 60

TELEX 25441

BRAZIL

Icotron S.A,

0511'Av Mutinga 3650
6 Andar
Pirituba-Sao Paulo

Tel: 261-0211

TELEX: (Oil) 222 ICO BR

CHILE

DIN
Av Vic Mc kenna 204

Casilla 6055
Santiago

Tel: 227 564

TELEX 3520003

CHINA

C M Technologies

525 University Avenue
Suite A 40

Palo Alto. CA 94301

COLOMBIA

International Computer Machines
Adpo Aereo 19403

Bogota 1

Tel: 232-6635

TELEX 43439

CYPRUS

Cyprus Eltrom Electronics

P C Box 6393
Nicosia

Tel: 21-27982

DENMARK

STL-Lyngso Komponenl A/S

Ostmarken 4

DK-2860 Soborg
Tel: (01) 67 00 77

TELEX 22990

Scandinavian Semiconductor
Supply A/S

Nannasgade 18

DK-2200 Copenhagen
Tel: (01) 83 50 90
TELEX 19037

FINLAND

Oy Fintronic AB
Meikonkatu 24 A
SF-00210
Helsinki 21

Tel 0-692 6022
TELEX 124 224 Ftron SF

FRANCE

Celdis S A •

53, Rue Charles Frerot

F-94250 Gentilly

Tel: (1) 581 00 20
TELEX: 200 485

Feutrier

Rue des Trois Glorieuses

F-42270 St Priest-en-Jarez

Tel: (77) 74 67 33

TELEX: 300 0 21

Metrologie'

La Tour d'Asnieres

4, Avenue Laurent Cely

92606Asnieres
Tel 791 44 44

TELEX, 611 448

Tekelec Airtronic*

Cite des Bruyeres

Rue Carle Vernet

F-92310 Sevres

Tel, (1) 534 75 36
TELEX 20^552

GERMANY

Electronic 2000 Vertrielis GmbH
Neumarkter Strasse 75

D-8000 Munich 80

Tel (089) 434061

TELEX 522561

Jermyn GmbH
Postlach 1180

D-6077 Camberg
Tel: (06434) 231

TELEX 484426

Kontron Elektronik GmbH
Breslauerstrasse 2

8057 Eching B

D-8000 Munich
Tel, (89)319,011

TELEX 522122

Neye Enatechnik GmbH
Schillerstrasse 14

D-2085 Quickborn-Hamburg
Tel: (04106) 6121

TELEX 02-13590

GREECE

American Technical Enterprises

PO Box 156

Athens
Tel:' 30-1-8811271

30-1-8219470

HONG KONG

Schmidt & Co,

28/F Wing on Center

Connaught Road
Hong Kong
Tel: 5-455-644

TELEX: 74766 Schmc Hx

INDIA

Micronic Devices

104/109C, Nirmal Industrial Estate

Sion (E)

Bombay 400022, India

Tel 486-170

TELEX 011-5947 MDEV IN

ISRAEL

Eastronics Ltd
'

1 1 Rozanis Street

P O Box 39300
Tel Aviv 61390
Tel: 475151

TELEX 33638

ITALY

Eledra 3S S P A
Viale Elvezia, 18

I 20154 Milan

Tel: (02)34 93 041-31 85,441

TELEX: 332332

JAPAN

Asahi Electronics Co Ltd,

KMM BIdg Room 407
2-14-1 Asano, Kokura
Kita-Ku. Kitokyushu City 802
Tel: (093)511-6471

TELEX: AECKY 7126-16

Hamilton-Avnet Electronics Japan Ltd

YU and YOU BIdg 1-4 Horidome-Cho
Nihonbashi
Tel: (03) 662-9911

TELEX: 2523774

Nippon Micro Computer Co Ltd,

Mutsumi BIdg 4-5-21 Kojimachi

Chlyoda-ku. Tokyo 102

Tel: (03) 230-0041

Ryoyo Electric Corp
Konwa BIdg

1-12-22. Tsukiji. 1-Chome
Chuo-Ku. Tokyo 104

Tel: (03) 543-7711

Tokyo Electron Ltd

No 1 Higashikata-Machi

Midori-Ku. Yokohama 226

Tel (045)471-8811

TELEX, 781-4473

KOREA

Koram Digital

Room 411 Ahil BIdg
49-4 2-GA Hoehyun-Dong
Chung-Ku Seoul

Tel: 23-8123

TELEX K23542 HANSINT

Leewood International, Inc

C P O Box 4046

1 12-25, Sokong-Dong
Chung-Ku, Seoul 100

Tel 285927
CABLE LEEWOOD" Seoul

NETHERLANDS

Ineico Nether Comp Sys BV
Turtslekerslraat 63
Aalsmeer 1431 D
Tel (2977)28855
TELEX 14693

Koning & Hartman
Koperwerl 30

2544 EN Den Haag
Tel (70) 210 101

TELEX: 31528

NEW ZEALAND

W K McLean Ltd

PO Box 18-065

Glenn Innes, Auckland, 6

Tel 587-037

TELEX NZ2763 KOSFY

NORWAY

Nordisk Elektronik (Norge) A/S

Postotdce Box 122

Smedsvingen 4

1364 Hvaislad

Tel 02 78 62 10

TELEX 17546

PORTUGAL

Ditram

Componentes E Electronica LDA
Av Miguel Bombarda, 133

Lisboa 1

Tel (19) 545313
TELEX 14347 GESPIC

SINGAPORE

General Engineers Associates

BIk 3, 1003-1008, 10th Floor

PSA Multistorey Complex
Telok Blangah/Pasir Panjang

Singapore 5

Tel: 271-3163

TELEX RS23987 GENERCO

SOUTH AFRICA

Electronic Building Elements
Pine Square
18th Street

Hazelwood, Pretoria 0001

Tel 789 221

TELEX 30181SA

SPAIN

Interlace

Av Generalisimo 51 9"

E-Madrid 16

Tel: 456 3151

ITT SESA
Miguel Angel 16

Madrid 10

Tel: (1) 4190957

TELEX: 27707/27461

SWEDEN

AB Gosta Backstrom
Box 12009

10221 Stockholm
Tel (08) 541 080
TELEX 10135

Nordisk Electronik AB
Box 27301

S-10254 Stockholm
Tel (08) 635040
TELEX: 10547

SWITZERLAND

Industrade AG
Gemsenstrasse 2

Postcheck 80 21190
CH-8021 Zurich

Tel: (01)60 22 30

TELEX 56788

TAIWAN

Taiwan Automation Co '

3d Floor »75, Section 4

Nanking East Road
Taipei

Tel: 771-0940

TELEX 11942 TAIAUTO

TURKEY

Turkeiek Electronics

Apapurk Boulevard 169

Ankara
Tel: 189483

UNITED KINGDOM

Comway Microsystems Ltd,

Market Street

68-Bracknell, Berkshire

Tel (344) 51654
TELEX 847201

G E C Semiconductors Ltd

East Lane
North Wembley
Middlesex HA9 7PP
Tel (01)904-9303(908-4111

TELEX 28817

Jermyn Industries

Vestry Estate

Sevenoaks, Kent
Tel: (0732) 501 44

TELEX 95142

Rapid Recall, Ltd

6 Soho Mills Ind Park

Wooburn Green
Bucks, England

Tel (6285) 24961

TELEX 849439

Sintrom Electronics Ltd
*

Arkwrighl Road 2

Reading, Berkshire RG2 OLS
Tel (0734) 85464

TELEX, 847395

VENEZUELA

Componentes y Circuitos

Electronicos TTLCA C A

Apartado 3223
Caracas 101

Tel 718-100

TELEX: 21795 TELETIPOS

'Field Application Location

INTEL CORPORATION, 3065 Bowers Avenue. Santa Clara, California .95051 (408) 987-8080

Printed in U.S.A./T-1002.1 /07/80/40K-Tech Pub

