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(57) ABSTRACT 
The data processing capacity of a practical semiconduc 
tor computer system, having both local and system 
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buses, can be expanded both in degree of complexity 
and magnitude by providing a method and means for 
cooperatively and concurrently coprocessing digital 
information among a plurality of processors sharing the 
same local bus and collectively accessing the system bus 
as a system unit. In other words, a central processor has 
primary control and access to a local bus and may have 
access to a system or common bus shared among many 
other processors. Also sharing the local bus with the 
central processor is a plurality of specialized or dedi 
cated processors which are continuously apprised of or 
actively monitor the internal operational status and 
operation then being performed by the central proces 
sor. The active monitoring of the activity of the other 
processors sharing the local bus distinguishes these ded 
icated processors from conventional direct memory 
accessing processors. Certain ones of the instructions 
fetched simultaneously by the central processor and the 
specialized processor from the system memory are re 
served for execution in one of the dedicated processors 
which then shares the local bus with the central proces 
sor by means of communicating through a plurality of 
signals with respect to the status, mode, arbitration, and 
control of the local bus. 

21 Claims, 11 Drawing Figures 
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APPARATUS AND METHOD FOR COOPERATIVE 
AND CONCURRENT COPROCESSING OF 

DIGITAL INFORMATION 

BACKGROUND OF THE INVENTION 
l. Field of the Invention 
The present invention relates to the field of system 

organization of data processors and in particular relates 
to the field wherein a plurality of processors share a 
local bus to access and control a system bus and/or a 
private bus and wherein this plurality of processors 
share resources for controlling the private and system 
buses. In configurations displaying both private and 
common buses, the plurality of processors on the local 
bus uses resources located on the private bus when it is 
not using resources located on the common bus. Tradi 
tionally, private bus resources have included instruction 
memory, non-intelligent peripherals such as latches and 
intelligent peripherals such as direct memory access 
devices, serial interface devices and peripheral control 
ler processors. 

2. Description of the Prior Art 
As the cost of integrated circuit, semiconductor mi 

croprocessors continues to decrease and as their accep 
tance continues to increase, an accelerating number of 
applications are found wherein such microprocessors 
can be organized to intelligently perform a plurality of 
complex computing operations which cannot be per 
formed by a single integrated circuit made by presently 
known technology. Thus, microprocessors which may 
have been previously dedicated to rather simple opera 
tions requiring a high number of simple repetitive steps 
are increasingly required to be adapted to applications 
wherein the complexity and intelligence required to 
perform the operations is much greater than can be 
accomplished by previously known methods and cir 
cuits. 

Prior art and state of the art microprocessors are 
limited by process and packaging restrictions due to a 
limited manufacturable size of the semiconductor chip 
and package. The demand for increased computing 
capacity to perform complex operations has exceeded 
the present ability to provide sufficient circuitry within 
the size limitations of manufacturably practical and cost 
competitive microprocessors. 

Therefore, various organizations wherein a plurality 
of microprocessors have been organized to share either 
a private bus or a system or common bus have been 
devised to distribute computing capacity among a plu 
rality of modules. Common bus is taken to mean a bus 
which is shared by a plurality of processors which ei 
ther execute unrelated tasks using shared resources 
(peripherals) or which execute a single task by partition 
ing the execution among the plurality of processors. 
Generally, in such prior art systems a single micro 
processor, or direct memory access unit under control 
of the microprocessor, performs all the required opera 
tions with respect to a local bus and shares a system bus 
with other processors. In this manner, peripheral cir 
cuitry, which are shared resources which perform vari 
ous ancillary functions, can be serviced over a single 
system bus with the required intelligence or computing 
capacity distributed among a plurality of single proces 
sor controlled local buses. Nevertheless, the demand for 
complex computing operations has continued to the 
point where prior art microprocessors which execute a 
single instruction stream cannot perform the needed 
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2 
local bus operations without having extended comput 
ing capacity. 
What is described herein is an apparatus and method 

ology for cooperative and concurrent coprocessing 
which overcomes each of the shortcomings of the prior 
art. 

BRIEF SUMMARY OF THE INVENTION 
The present invention is a method for processing 

digital information in a plurality of processors which 
share a local bus and which have selective access to, 
and control of, a system bus. Each processor of the 
plurality of processors has a means for queuing and 
decoding an instruction stream comprised of instruc 
tions which are freely interleaved among the plurality 
of processors with the instructions being jointly, inde 
pendently and distributively executed by the several 
processors. Joint execution is performed when two or 
more processors perform a single instruction, wherein 
one processor performs the input phase and a second 
processor performs the output phase. Independent exe 
cution is performed when one of the processors per 
forms an instruction in a dedicated manner without the 
assistance of another processor other than possible per 
formance of a fetch. Distributive execution is per 
formed when a dedicated or special processor gains 
control of the local bus and passes an operand address to 
central or primitive processor for a fetch. The method 
comprises the steps of generating a plurality of queue 
status signals and processor status signals in the first 
processor. The queue status signals are indicative of the 
status of the means for queuing and decoding instruc 
tions in a first processor. The processor status signals 
are indicative of the operation then being performed by 
the first processor. The queue and processor status sig 
nals are transmitted as part of the signals on the local 
bus. Access to the local bus is selectively controlled 
among the plurality of processors by the first processor 
in response to requests received by the first processor 
from one of the other processors in the plurality of 
processors. 
The step of selectively controlling access to the local 

bus includes the steps of receiving the queue and pro 
cessor status signals from the local bus wherein these 
signals are received by a second processor. The opera 
tion of the first processor is then tracked, and the means 
for queuing and decoding instructions is replicated in 
the second processor. The second processor detects at 
least one of the instructions as being designated for 
execution by the second processor. The second proces 
sor then requests the first processor to temporarily re 
linquish access and control over the local bus and to 
temporarily give the second processor access and con 
trol thereover, while still permitting the first processor 
to continue execution of instructions residing in its 
queue in a nonaccessing mode with respect to the bus. 
While the dedicated processor is executing its instruc 
tion, it returns control of the local bus to the central 
processor which continues with the instruction stream. 
To prevent the central processor from using an operand 
which has not been updated by the special processor, a 
means is provided by which the central processor auto 
matically checks the completion of the prior instruc 
tion. 

In another embodiment of the present invention in 
further combination with a means for arbitrating access 
and control over the system bus, the method further 
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comprises that the steps of selectively generating a lock 
signal and transmitting the lock signal to the means for 
arbitrating access and control over the system or com 
mon bus. The lock signal is indicative of an instruction 
executed by the first processor to cause the plurality of 
processors to unconditionally retain access and control 
over the system or common bus through the means for 
arbitrating access and control for the collective benefit 
of the plurality of processors. 
The present invention also includes a circuit in a first 

processor having a means for storing and queuing a 
plurality of instructions wherein the first processor has 
selective access and control to a local bus shared by the 
first processor and at least a second processor. The 
circuit is comprised of a first means for generating a 
plurality of bus control and queue status signals indica 
tive of the status of the means for storing, queuing and 
decoding instructions. A second means generates a plu 
rality of processor status signals indicative of the opera 
tion then being performed by the first processor. A 
third means selectively controls access to the shared 
local bus. By this combination the status and mode of 
operation, present and future, of the first processor is 
transmitted to the shared local bus and the first proces 
sor is permitted to arbitrate control and access over the 
shared local bus as determined by requests received by 
the first processor from the plurality of processors in 
response to the queue and processor status signals gen 
erated by the plurality of processors. 

In one embodiment a circuit is included within the 
second processor and further comprises a fourth means 
which receives the queue and processor status signals, 
tracks the operation then being performed by the first 
processor and replicates in the second processor the 
means for storing, queuing and decoding the instruc 
tions which is in the first processor. A fifth means is 
provided for detecting at least one predetermined one 
of the plurality of instructions for distributed execution 
between both processors or dedicated execution within 
the second processor and for communicating with the 
third means to selectively cause the first processor to 
temporarily relinquish access and control over the local 
bus and to temporarily give the second processor access 
and control thereover. A sixth means for monitoring the 
activity of the second processor to determine if the 
second processor can accept the next instruction or has 
completed execution of an instruction whose result is 
needed prior to execution of an instruction by one of the 
plurality of processors. This synchronization permits 
the plurality of processors to execute instructions from 
a common instruction stream. By this combination of 
circuitry the plurality of the instructions is coopera 
tively and concurrently coprocessed by the first and 
second processors with the result that the digital pro 
cessing capacity is extended and increased. 

In yet another embodiment in further combination 
with the system bus and a means for arbitrating access 
and control over the system bus, the circuit of the pres 
ent invention further comprises a seventh means for 
selectively generating a lock signal and for transmitting 
the lock signal to the means for arbitrating access and 
control over the system bus. The lock signal is indica 
tive of an instruction executed by the first processor to 
unconditionally retain access and control over the sys 
ten bus for the collective benefit of at least the first and 
second processors. 
These and other embodiments of the present inven 

tion may be better understood by reviewing the De 
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4. 
tailed Description of the Preferred Embodiments in 
light of the following Figures. 
BRIEF DESCRIPTION OF THE DRAWINGS 
FIG. 1 is a block diagram showing a central proces 

sor and a floating point processor coupled to a local and 
system bus according to the present invention; 

FIG. 2 is a simplified block diagram of a portion of 
the central processor illustrated in FIG. 1; 

FIG. 3 is a timing diagram of some of the signals 
generated and received by the central processor of FIG. 
1; 
FIG. 4 is a simplified schematic illustrating a plurality 

of output buffers in combination with a portion of a 
timing and logic circuit of the central processor; 
FIG. 5 is a simplified schematic illustrating the queue 

status circuitry within the central processor; 
FIG. 6 is a simplified schematic diagram showing one 

embodiment of the request/grant circuitry in the central 
processor; 

FIG. 7 is a timing diagram showing the request/grant 
timing of the illustrated circuitry; 
FIG. 8 is a simplified block diagram of a portion of 

the circuitry of a processor handling dedicated comput 
ing operations which concurrently coprocesses infor 
mation with the central processor of FIG. 2; 
FIG. 9 is a schematic of part of the queue control 

circuitry of FIG. 8; 
FIG. 10 is a schematic of another portion of the queue 

control circuitry of FIG. 8; and 
FIG. 11 is a simplified schematic of the grant/request 

logic circuitry of FIG. 8. 
DETAILED DESCRIPTION OF THE 

PREFERRED EMBODIMENT 

General Description 
The present invention is an apparatus and methodol 

ogy for expanding the computing capacity and ability of 
practical, economical semiconductor integrated circuit 
processors. A central processor, such as the type de 
scribed in the copending applications entitled "Ex 
tended Address, Single and Multiple Bit Microproces 
sor,' Ser. No. 873,777 filed Jan. 31, 1978, and "System 
Bus Arbitration, Circuitry and Methodology,' Ser. No. 
921,083 filed June 3, 1978, each assigned to the same 
assignee of the present invention, may be used as de 
scribed in connection with the present invention. How 
ever, it must be understood that many other processors 
other than that described in the above copending appli 
cations may employ the apparatus and method of the 
present invention for increasing computing capacity, 
For example, in some embodiments of the present in 
vention it is not necessary that the central (primitive) 
processor have an internal instruction queue. 
The processor handling the more primitive or funda 

mental operations is associated with one or more pro 
cessors having a specialized or dedicated computing 
capability, such as a floating point processor dedicated 
to the execution of specialized floating point arithmetic 
operations. Both the primitive processor and each of the 
corresponding specialized or dedicated processors 
share the same local bus and collectively have access to 
resources on a private bus as well as having access to 
the system or common bus subject to a partitioning of 
the decision making circuitry among the several proces 
sors, together with such ancillary or supportive cir 
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cuitry as may be required to effect system access or 
control. 

According to the present invention, the primitive 
processor and the various associated operationally dedi 
cated processors simultaneously receive the instructions 
on the local bus and cooperatively process the instruc 
tions. For example, one or more dedicated microproces 
sors track the operation of the stand alone primitive 
processor. One subset of the instruction set is designated 
for execution by each of the dedicated processors. The 
primitive processor (hereinafter referred to for conve 
nience as the "central processor" or "CPU") fetches 
each of the instructions and in the process of fetching 
the instruction makes the instruction available on the 
local bus. Upon decoding this instruction simulta 
neously with the CPU, for those instructions which 
require data access the CPU calculates the effective 
address for the dedicated processor and makes it avail 
able on the local bus by initiating the data transfer, the 
dedicated processor requests control of the local bus 
from the central processor, which at the appropriate 
time grants access and control to the local bus, having 
previously fetched the specialized instruction. The ded 
icated processor then executes the instruction with an 
appropriate access to the private or common or system 
bus as required by the instruction. However, not all 
instructions executed by the dedicated processor will 
necessarily require access to a bus. Meanwhile, the 
central processor may continue to execute instructions 
stored within a queue or other internal storage in the 
central processor as long as these instructions do not 
require access to the local bus. Upon completion of any 
bus access required for the execution of the instruction 
by the dedicated processor, the central processor may 
accept control and access of the local bus upon authori 
zation by the dedicated processor according to the 
present invention. The dedicated processor may con 
tinue to execute its instruction even after control of the 
local bus has been returned to the CPU. The dedicated 
processor notifies the CPU that the result of its opera 
tion is completed so that the CPU does not try to use a 
result computed by the dedicated processor before it is 
in fact computed. The CPU may continue operation as 
long as it does not require the results of the dedicated 
processor's computation, and the dedicated processor 
may reacquire access and control over the local bus to 
effect any data transfers to a private or common bus 
which it may require. Thus, the CPU and dedicated 
processor concurrently execute instructions in real time 
and cooperatively process a stream of instructions. 
Therefore, it can be readily appreciated that a program 
stream of instructions is simultaneously tracked by both 
the central processor and each of the dedicated proces 
sors and that the instruction steam is collectively exe 
cuted in a coopertive manner among the processors in a 
concurrent manner. Thus, the processors concurrently 
and cooperatively coprocess the digital information. 
The present invention and its various embodiments 

may be best understood by viewing FIG. 1. FIG. 1 
illustrates a simplified block diagram of the central pro 
cessor 10 and a dedicated processor 12, a floating point 
processor, sharing a local bus 14. The processors 10 and 
12 collectively have selective access and control of both 
a private bus 15 and a common or system bus 16. In the 
illustrated embodiment processors 10 and 12 access 
system bus 16 by means of a plurality of supportive or 
ancillary circuits which include a bus arbiter 18, a bus 
controller 20, an address latch 22 and a data latch 24. 
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6 
Private bus 15 does not require use of an arbiter. The 
operation of one embodiment of bus arbiter 18 and bus 
controller 20 is set forth in detail in the copending appli 
cation entitled "System Bus Arbitration Circuitry and 
Methodology' referenced above. However, many arbi 
tration schemes and means for coupling processors 10 
and 12 to a system bus 16 may be employed other than 
that referenced without departing from the scope and 
spirit of the present invention. In addition, a private bus 
15 is accessed by processors 10 and 12 in a nonarbitrated 
mode through bus controller 21, address latch 23 and 
data transceiver 25. 

System Clock 
CPU 10 and FPU 12 each derive their timing from an 

external clock circuit 26. Clock circuit 26 is a conven 
tional crystal controlled clock which, among other 
system signals, provides a CLK signal generated by a 
conventional high current driver. The advantage of 
driving a plurality of separate processors with a single 
external clock is that it avoids problems of timing skews 
and synchronization which might otherwise result if 
each processor ran from a clock driver dedicated to 
itself, i.e., generated by a common chip clock with an 
output for each processor, had its own separate internal 
clock or was in some way synchronized to logic control 
signals which were derived in part from a single clock, 
such as the master clock within the central processor. 
Performance is increased because circuitry can easily be 
designed to eliminate skew problems. For example, one 
processor can be changing information on the same 
clock edge as another is trapping information. By using 
a single clock driver as shown in FIG. 1, no synchroni 
zation or skew problems occur between the clock de 
rived data and control signals of processor 10 or 12. 
This type of clocking vastly simplifies the implementa 
tion and increases the performance of the cooperative 
and concurrent coprocessing which characterizes the 
combination of processors 10 and 12. Although only 
two processors are illustrated in FIG. 1, it is within the 
intent of the present invention that a substantially 
greater number of processors could be employed associ 
ated with the provision of a single external high current 
drive clock 26 thus easily allowing for the addition of a 
substantially greater number of processing units. 

Central and Operationally Dedicated Processor 
Protocol 

Communication between central processor 10 and 
dedicated processor 12, in the illustrated embodiment, is 
achieved principally by three categories of signals: 
queue status and instruction decode signals; processor 
status signals; and request/grant control signals. The 
processor status signals S0, S1, and S2, comprise a three 
bit field which encodes the type of operation then being 
executed. For example, as set forth below in TABLE 1 
is a summary of one encoding which may be used for 
the processor status signals. 

TABLE 
S. S. So 
0 0 0 literrupt/Acknowledge 

I/O 0 0 | Read IO port AO 
0 1 0 Write IO port 
O Halt Hall 

O O Code access (datum into queue) 
Mem | 0 | Read Memory Mem 

() Write Memory 
Ny 
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TABLE I-continued 

Passive Operation 

Similarly, the queue status signals, QSO and QS1 pro 
vide an encoded two bit field pertaining to the status of 
the instruction queue and instruction decode within 
processor 10. It should be noted that S2-S0 are also 
used as queue status signals to identify when the queue 
is being loaded, i.e. code access. Summarized below in 
TABLE 2 is one encoding which may be used for the 
queue status signals. Again, in embodiments where an 
instruction queue is not included within the processor 
10, such status signals would be omitted. However, to 
omit such queue status signals a substantial part of the 
CPU would have to be replicated to provide duplicate 
information. 

TABLE 2 

QS1 QSO 
O O No operation 
0 1 First byte of opcode from queue 

O Empty queue 
l 1 Subsequent byte from queue 

The queue status signals allow the dedicated processor 
to decode or find its instruction. The request/grant 
control signals may be taken to include the signals 
RQ/GTO, RQ/GT1. The RQ/GT signals are bidirec 
tional signals with respect to processors 10 and 12 
which are used to communicate or arbitrate control 
over the local bus between the processors. Two re 
quest/grant pins or terminals are illustrated in FIG. 1 in 
processor 10 and have an ordered priority. Clearly, 
many additional request/grant terminals could be in 
cluded in the manner described herein as shown in FIG. 
6. 
The request/grant sequence generally involves the 

exchange of three clock pulses as shown in FIG. 7. A 
first pulse, one clock wide, is received by processor 10 
from processor 12 to indicate a request for control of 
the local bus to processor 10. A second pulse one clock 
wide from processor 10 to the processor which re 
quested the local bus, which in the illustrated embodi 
ment is processor 12, indicates that processor 10 has 
placed or is about to place its output drivers which are 
coupled to local bus 14 in a high impedance state and 
that processor 10 will execute instructions in its queue 
as long as the local bus is not required or if the local bus 
is required enter an idle state or nonoperational mode to 
wait for the local bus to become available. A third 
pulse, one clock wide, generated by processor 12 
through the request/grant pin to processor 10, indicates 
to processor 10 that it has completed or is about to 
complete one or more transfers over the local bus and 
that processor 10 may reclaim local bus 14 at the end of 
the next clock. Each master-master exchange of local 
bus 14 is a sequence of three pulses, each of which in the 
illustrated embodiment is active low. After each local 
bus exchange, one dead clock cycle is observed, but in 
the general case, is not required. 
The TEST pin is an input to processor 10 and is 

examined by a software prefix instruction by means of a 
conventional microcode circuit, which instruction may 
be referred to as a "wait for test' instruction. If the 
TEST pin is active, execution of the instruction stream 
continues, otherwise processor 10 waits in an idle state. 
A BUSY signal is generated by processor 12 as a result 
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of the decoding of one of its instructions from the in 
struction stream to indicate that it is then executing an 
instruction whose result must be achieved before cer 
tain other instructions in the stream can be processed by 
itself or one or more other processors. In many in 
stances processor 12 may return control of local bus 14 
to processor 10 while still being internally engaged in 
the execution of one or more instructions. One or more 
dedicated processor instructions which do not require 
the result of prior, as yet unexecuted, dedicated proces 
sor instructions are inserted into a second queue of 
processor 12. In such instances, processor 10 will be 
granted control of bus 14 so that it can continue execu 
tion of the instruction stream. However, processor 12 
may make a local bus request at any time since it may 
need control of the local bus. For example, processor 12 
may require bus 14 to write the result of an operation 
into memory or to read an operand from memory, to 
dump its status into memory in response to a dump 
instruction or to acquire other dedicated instructions 
from the queues of other like dedicated processors. In 
order to avoid the premature execution of the instruc 
tion which needs the results of the instruction currently 
being executed by processor 12, or which needs proces 
sor 12 on line for joint processing or the initial joint 
processing of the next instruction, TEST will first be 
examined by processor 10 to determine if processor 12 is 
busy and if so wait in an idle state until processor 12 
responds by driving TEST inactive. TEST is generated 
by conventional means in processor 12, such as by a 
status decoder coupled to a flip-flop and buffer to gen 
erate a TEST signal whenever processor 12 is busy as 
set forth above. When the TEST signal goes inactive, 
processor 10, which may have entered an idle state, is 
permitted to continue with the execution of the instruc 
tion stream. 
Many other input and output signals are also illus 

trated in FIG. 1 with respect to processors 10 and 12. 
These signals include such conventional signals as 
READY which is an input signal which is indicative of 
acknowledgement from the addressed memory device 
that it has completed the data transfer. Generation of 
RESET causes the processor to immediately terminate 
its activity and enter its dormant state. Execution is 
restarted when the RESET signal goes inactive. Byte 
high enable, BHE, is an output signal which is used to 
enable data onto the most significant half of a two byte 
data bus, as described in greater detail in the copending 
application entitled "Apparatus and Method for Provid 
ing Byte and Word Compatible Information Transfers," 
filed on May 30, 1978, Ser. No. 910,103 and assigned to 
the same assignee of the present invention. As described 
therein the first bit of the multiplexed address/data bus 
line, AD0, functions as a byte low enable signal to anal 
ogously enable data on to the least significant half of the 
two byte data bus. 

Organization of the Central Processor 
FIG. 2 illustrates in simplified block form a portion of 

the architecture of processor 10 according to the illus 
trated embodiment as described in greater detail with 
respect to the above referenced copending application 
entitled, "Extended Address, Single and Multiple Bit 
Microprocessor." In particular, FIG. 2 illustrates the 
upper control portion of processor 10, 

Processor 10 is characterized in part by an instruction 
queue 28 which is diagrammatically illustrated as in 
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cluding six paired registers of byte length, Q0 through 
Q5. Each of the consecutive pairs can be coupled to 
form a word length register. Instructions are fetched 
from an external memory which holds the instruction 
stream common to all coprocessors and placed within 
queue 28. A plurality of registers 30 is provided for 
addressing functions and operational requirements as 
discussed in the above referenced copending applica 
tion. Similarly, a dedicated adder 32 and associated 
temporary registers and buses are combined with the 
upper file registers, including queue 28 and registers 30, 
to complete the addressing functions of processor 10 as 
coupled to the twenty address pins A0-A19 as illus 
trated in FG, 2. 

Instruction bytes stored within queue 28 are trans 
ferred along an internal queue bus 34 according to the 
control of queue control logic circuitry 36, which is 
comprised of random logic circuitry of conventional 
design to conditionally generate a plurality of internal 
discrete command signals. Queue control circuit 36 
provides the housekeeping functions which would nor 
mally be expected with the filling, emptying and organi 
zation of a multiple byte queue of registers. A plurality 
of internal discrete control signals are provided from 
queue circuit 36 to cycle type decision circuit 38, also 
comprised of similar conventional random logic cir 
cuitry and which also receives a similar plurality of 
discrete control signals from the lower execution unit. 
The T state timing generator 40 generates the "T" 

and "100" clock signals. For example, the T state gen 
erator generates the discrete clock signals T1, T2, T3, 
and T4. Addresses are normally generated in processor 
10 during T1 and data transfer occurs on local bus 14 
during stages T2 through T4. In the event that a re 
source (i.e. memory, peripheral, etc.) located on the 
common, private or local bus is not ready to receive 
information, a plurality of "T" wait states, TW, may be 
inserted between T3 and T4. Each "T" wait state has 
the same duration as one of the T1 through T4 clock 
cycles. In addition, a plurality of idle states may be 
inserted between bus cycles, to wit after T4 and before 
the following T1. The relationship of the "T" cycles to 
processor status signals, S0-S2, to the queue status sig 
nals, QSO and QS1, and to BHE is best shown in the 
timing diagram of FIG. 3. It should be further noted 
that each "T" cycle is comprised of two asymmetric 
clock pulses denoted as d1 and dz, d1 and d2 are 
strictly repetitive and are unaffected by instructions. 
"T" state generator 40 is of conventional design well 
known to the art. For example, "T" state generator 40 
can be fabricated from a plurality of flip-flops to define 
the current "T" state, and supported by plurality of 
ancillary flip-flops ultimately coupled to the lower exe 
cution unit of processor 10 by means of a corresponding 
plurality of discrete control signals in order to intelli 
gently track or respond to the instruction flow. The "T" 
states are appropriately generated according to the 
instruction in execution. The "T" and d timing signals 
are then combined in timing and logic circuitry 42 with 
a plurality of discrete internal control signals derived 
from cycle type decision circuit 38. 
The discrete internal control signals may then be 

logically combined and timed for transmission to corre 
sponding plurality of conventional or three state output 
buffers 44. A "tristate' circuit is generally understood 
to denote a three state circuit which is able to assume 
both binary logic levels as well as a high impedance 
state. The output of buffers 44 include the processor 
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10 
status signals S0-S2, BHE, and the queue status signals, 
QS0 and QS1 the last two of which need not be tri 
stated. In addition, timing and logic circuitry 42 gener 
ates the bidirectional request and grant signals 
RG/GTO and RG/GT1 as well as the discrete control 
signal, LOCK. 

Status Signal Circuitry 
FIG. 4 illustrates the relevant portion of circuits 42 

and 44 for the generation of the processor status signals 
S0-S2. Consider for example the processor status signal 
S0. Internal discrete control signals, "do write cycle 
next," DWCN; "interrupt acknowledge cycle," IACK; 
and "T4 do instruction fetch next," T4DIFN, are pro 
vided as inputs to a conventional OR gate 46. The out 
put of the gate 46 is high if any one of these inputs is 
true. Reference to TABLE I will show that SO assumes 
a logical zero in each of these instances. The output of 
gate 46 is synchronized by AND gate 48 whose inputs 
are T4 of the last instruction and the internal control 
signal, FIRST, to time the setting of flip-flop 50. 
FIRST is derived by conventional means from circuit 

38 and signifies that the first transfer of a single or multi 
ple bus transfer is to be run. Processor 10 is capable of 
accessing instructions and data either on even or odd 
address boundaries. In the case of a word having a first 
byte beginning on an odd address, a two step fetch or 
two bus transfers are required. Internal discrete control 
signal, FIRST, is used in part to implement the ability of 
processor 10 to make both even and odd address fet 
ches. 
The output of gate 46 is enabled to the D input of 

flip-flop 50 by means of gate 52. Flip-flop 50 is loaded in 
response to the output of AND gate 48 being true, 
Inverter 54 prevents the D flip-flop from refreshing 
itself with its previous state while it is being loaded. 
Flip-flop 50 is a conventional dynamic MOS D-type 
load flip-flop or memory cell having two coupled in 
verters each having inputs synchronized by d1 and d2 
respectively and a feedback loop gated by L. Each of 
the flip-flops described herein are of the same general 
design and operation. The output of flip-flop 50 is then 
coupled to input 58 of NAND gate 56. The other input 
60 is coupled to the output of RS NOR gate latch of 
flip-flop 62. The reset input to latch 62 is provided by 
AND gate 64 while the set input is provided by AND 
gate 66. Inputs to gate 66 are T4, b2 and KILT4 which 
is an internal discrete control signal which when active 
low prevents bus cycle status from being communicated 
to the external world whenever the internal operation 
of processor 10 dictates that a bus cycle is not to be run. 
Thus S0 is driven active low, since if one of the internal 
control conditions for So has been decoded, input 58 of 
gate 56 will also be high. A low output is then coupled 
to a conventional noninverting tristate output buffer 44a 
to signify, active low, S0. The inputs to gate 64 are T3, 
d1 and RDY which is an internal control signal gener 
ally signifying that the addressed peripheral has ac 
knowledged that it is ready to accept the transfer of 
digital information. In the event that RDY has not been 
driven high by an acknowledgment, a plurality of TW 
states may be inserted between T3 and T4. When RDY 
is high input 60 of gate 56 goes low on T3 db1 and a high 
output is then coupled to a conventional noninverting 
tristate output buffer 44a to signify inactive high S0. 

Similarly, as shown in FIG. 4 processor status signal, 
S2, is derived from OR gate 68 whose inputs include 
IACK, interrupt/acknowledge cycle, and I/O, input 



4,270,167 
11 

woutput cycle, which are internal control signals de 
rived from the lower execution unit of the processor 10 
signifying that the processor 10 is entering an interrupt 
and acknowledge or input/output instruction cycle. If 
either one of the inputs to decoder 68 are high, the 
output is high and is coupled to AND gate 70. The 
other input to AND gate 70 is T4DIFN, wherein 
T4DIFN signifies that a "T4 of last instruction-do in 
struction fetch next cycle" condition exists. If an in 
struction fetch is not indicated and the output of de 
coder 68 is high, the output of AND gate 70 is true, and 
is enabled through gate 72, controlled by AND gate 48, 
to the D input of flip-flop 74, which is internally config 
ured in the same manner as flip-flop 50. The output of 
flip-flop 74 is coupled to input 76 of logic gate 78. Thus, 
if inputs 76 and 80 are each high, the output of gate 78 
will be low signifying S2, active low in conformity with 
the coding of TABLE I. Input 80 of gate 78 is coupled 
to the Q output of latch 62. Thus, when the external 
peripheral has indicated that it is ready, input 80 of gate 
78 goes low on T3 db1 and a high output is then coupled 
to a conventional noninverting tristate output buffer to 
signify inactive high, S2. 

Alternatively, the output of logic gate 78 is driven 
low if input 82 goes high. Input 82 is coupled to NAND 
gate 84 whose input in turn is coupled to NAND gate 
86. The output of NAND gate 86 is indicative of the 
HALT state. Gate 86 in turn has as three inputs, the 
internal discrete control signals: DHCYC, which is 
derived from an internal flip-flop indicating that a 
HALT cycle is to be performed next; the signal HOLD, 
which is an internal control signal instructing internal 
circuits to halt and hold their status; and the timing 
signal T1. The output of NAND gate 86 is synchro 
nized through transfer gate 88 by clock b2, coupled 
directly to gate 84, and held within a transitory memory 
comprised of inverters 90 synchronized by clock b1 
through gate 92. - 

Processor status signal S1 is similarly derived from 
OR gate 94 whose inputs are DRCN, do read cycle next 
and T4DIFN. If either of these signals are high, the 
output of the OR gate 94 is similarly high. The output of 
gate 94 is enabled through gate 96 by the output of gate 
48 and coupled to the D input of flip-flop 98. Flip-flop 
98 is identical to and is controlled in the same fashion as 
flip-flops 50 and 74. The output of flip-flop 98 is then 
coupled to one input of NAND gate 100, the other 
input being coupled to the Q output of latch 62. The 
output of gate 100 is then coupled to tristate output 
buffer 44c to generate S1 active low, indicative of the 
memory and input/output read and instruction fetch 
cycles as indicated in TABLE 1. Each of the tristate 
output buffers 44a, 44b and 44c are tristated by the 
internal discrete control signal, control tristate, 
CTLTRI. This signal tristates S2-S0 when an alternate 
dedicated processor is to take control of the local bus. 

FIG. 5 illustrates that portion of timing and logic 
circuitry 42 and output buffers 44 which generates the 
queue status signals QSO and QS1. For example, con 
sider the queue status signal QSO. Internal discrete con 
trol signal read queue, RDQUE, is synchronized by b1, 
inverted and coupled to NAND gate 102. The other 
input of NAND gate 102 is coupled to OR gate 104 
whose inputs are the timing clocks d2 and T12. The 
signal, T12, is a specialized timing signal generated by 
timing generator 40 which is low during the coinci 
dence of the T1 and d2 clocks. The output of NAND 
gate 102 is coupled to a conventional noninverting out 
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12 
put buffer 106 whose output in turn is coupled to the 
QS0 pin. RDOUE is a logically decoded signal conven 
tionally generated from a plurality of other internal 
discrete command signals and is indicative of a byte 
having been taken out of queue 28. Thus, in conformity 
with TABLE 2 above, QSO is true whenever a first or 
subsequent byte is taken from the queue and is zero 
whenever the queue is empty or no operation is being 
performed. 
RDQUE is also coupled to AND gate 108 whose 

other input is the internal discrete control signal from 
the lower execution unit of the processor, first clock, 
FC synchronized by d1. The internal control signal, 
FC, is described in greater detail in connection with the 
above referenced copending application, "Extended 
Address Single and Multiple Bit Micro-processor.” The 
signal, FC, is a one clock pulse wide signal signifying 
that the first step of a load cycle in the lower execution 
portion of processor 10 is being undertaken. The output 
of AND gate 108 is coupled to NOR gate 110 whose 
other input is the internal discrete control signal, 
FLUSH, synchronized by clock d1. FLUSH is de 
coded from the lower execution portion of the proces 
sor and instructs the upper portion of the processor to 
disregard the contents of the queue. Typically, this 
internal discrete control signal is generated when a 
branch in the program is taken and the bytes within the 
queue are, momentarily, no longer sequentially decoded 
and executed. The output of NOR gate 110 is inverted 
and coupled to a conventional noninverting output 
buffer 114. The output of buffer 114 is coupled to the 
QS1 terminal. Thus, whenever the processor is in the 
first clock mode, or a byte has not been taken out of the 
queue and the contents of the queue are not to be disre 
garded, QS1 will be false indicating that the first byte of 
code has been taken from the queue or that no operation 
is being executed as verified by the encoding of 
TABLE 2. 
As part of FIG. 5 but not shown therein the signal 

LCK, is an internal discrete control signal which is 
specifically decoded from a software instruction from 
the lower execution portion of the processor. LCK is 
coupled to a conventional noninverting tristate output 
buffer whose output in turn is coupled to the LOCK 
terminal thus, LCK is equivalent to Lock except for the 
tri-state buffering of LOCK. Although the presently 
illustrated embodiment had been shown in simplified 
diagrammatic form in FIGS. 4 and 5, it must be under 
stood that many other modifications and alterations 
may be made without departing from the spirit of the 
scope of the present invention. For example, it is possi 
ble to provide a minimum/maximum signal to selec 
tively configure the processor to present one of a plural 
ity of operational modes to the outside world. For ex 
ample, to operate as a concurrent processor as disclosed 
herein, or as a unitary processor not associated with 
another processor in a cooperative role. 
The request/grant portion of timing logic circuitry 42 

of FIG. 2 is best illustrated in FIG. 6. The request/grant 
terminals are each bidirectional terminals which are 
used in the three-pulse hand shake between processor 
10 and processor 12 in regard to arbitration of local bus 
14. Consider, for example, request/grant signal, REQ0. 
A request generated by processor 12, is received on 
REQ0 and coupled to the Linput of D-type load flip 
flop. 118. As described below, the REQ0 terminal is 
coupled to a pull-up device 160, pull-down device 154 
and a trickle device 161 which is designed to be of such 
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size that the voltage at REQ0 can be sufficiently 
changed by typical external signals on the local bus. 
Devices 154 and 160 selectively pull the voltage on 
REQ0 up or down in response to the request/grant 
protocol as described below. 
The output of gate 124 is coupled to one input of OR 

gate 150 and to driver 152 synchronized by clock d1. 
The output of driver 152 has its output coupled to pull 
down device 154 which is coupled between the 
terminal and ground. The output of OR gate 150 is 
coupled to one input of NAND gate 156. The other 
input of NAND gate 156 is coupled to RESET which is 
normally true. The output of gate 156 in turn is coupled 
to driver 158 synchronized by clock d1. The output of 
driver 158 in turn is coupled to a pull-up device 160 
coupled between the power supply and REQ0. 
REQ0 is also inverted and coupled to gate 120 which 

gates a new input signal to the D input terminal of flip 
flop 118 only when goes active low, The D input 
is derived from OR gate 122 whose inputs include the 
inverted Q output of flip-flop 118 and the output of 
NOR gate 124. Assume that the circuit has been initial 
ized and that all flip-flops have been reset or set as 
required, and in particular that flip-flop 118 has been 
initially reset. As will be seen, NOR gate 124 will then 
have a low output. Thus, when REQ0 goes low, flip 
flop 118 will load in the value at the D terminal, a one, 
since its Q output was initially zero and consequently 
the output of OR gate 122 true. A full T clock is re 
quired to load flip-flop 118 since it has two coupled 
inverter stages, the first synchronized by d1 and the 
second by d2. Accordingly, a zero cannot be loaded 
into flip-flop 118 through OR gate 122 until the next 
load cycle. 
The output of flip-flop 118 is designated as a request/. 

grant signal RGA. RGA is coupled to one input of 
NAND gate 123. Assume for the purposes of illustra 
tion that REQ1 is inactive so that the Q output of flip 
flop 126, the request/grant signal, RGE, remains in the 
initialized set condition. Therefore, RGE coupled to 
gate 123 is also true. The other input to gate 123 is 
derived from NAND gate 128, NAND gate 128 in turn 
has as one input internal discrete control signal, LCK, 
described above synchronized by b1. Again, for the 
purpose of illustration, assume that the LCK signal is 
inactive. The other input to NAND gate 128 is coupled 
to the Q output of flip-flop 130 which is designated as 
the request/grant signal, RGB. Initially, RGB is set, 
therefore the output of gate 128 is also true. Since each 
of the inputs to NAND gate 123 are thus true, the out 
put is zero which is synchronized by gate 132 and cou 
pled to the D input of flip-flop. 130. The driving signal 
for gate 132 will be described in detail below, but for the 
present purposes may be taken to be equivalent to the 
timing signal T2. A zero will then be loaded into flip 
flop 130 in response to a local bus request generated by 
processor 12 and received on REQ0. 
RGB is then coupled to NAND gate 134 whose other 

input is coupled to RGE. Again, RGE is assumed to be 
true since REQ1, in the example, is inactive. The output 
of NAND gate 134 is true and coupled to driver 136. 
Thus, internal control signal, HOLD, goes true indicat 
ing to the internal circuitry of processor 10 that an 
external master is requesting control of the local bus. 
The output of driver 136 is also coupled through an 

inverter to one input of AND gate 138. The other input 
of AND gate 138 is the internal discrete control signal, 
local bus request, LREQ, wich signifies that processor 
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10 desires to have control of the local bus, Thus, once 
HOLD has gone true, gate 138 is disabled. In such a 
case, the zero output of gate 138 is coupled to OR gate 
140 whose other input is the internal timing signal, T1. 
The output of OR gate 140 is in turn coupled to NAND 
gate 142 which drives synchronization gate 132. Nor 
mally processor 10 will not be in an idle state and there 
fore the output of OR gate 140 will be true thereby 
allowing gate 142 to drive synchronization gate 132 on 
clock T2 unless the internal discrete control signal, 
FIRST, goes active on one input of OR gate 144. If the 
first byte of a multiple byte instruction is being fetched, 
gate 142 will then be disabled and a request for the local 
bus from processor 12 will be ignored. In summary, all 
external requests will be ignored unless the processor 10 
is in an idle state and is either not requesting the local 
bus or has brought HOLD true or alternatively is not 
fetching the first byte of a multiple byte instruction. 
REQ0 has now been driven low by an external re 

quest generated by processor 12 indicated by the falling 
edge of pulse 162 in FIG. 7 and HOLD has been acti. 
vated. Flip-flop. 130 has an advanced Q output, QA 
which is coupled through an inverter to one input of 
NOR gate 124. As will be described below, when the 
output of NOR gate 124 goes high, the circuit of FIG. 
6 will pull REQ0 low and visa versa. Assuming that 
processor 10 is not entering an idle state and thereby TI 
is low, gate 148 will isolate flip-flop 146 from flip-flop 
130. QA, which will then be a logical zero, will be 
coupled to one input of NOR gate 124 while TI is true. 
Flip-flop 146 will have remained set in the initialized 
condition and its QA output will be false. Therefore, the 
output of NOR gate 124 will be low. REQ0 is pulled 
high as indicated by the rising edge of pulse 162 in FIG. 
7 by a means described below. 
RGB from flip-flop. 130 also coupled to the D input of 

load type flip-flop 146 through gate 148. Gate 148 is 
driven the timing signal T IDLE, TI. Thus, when pro 
cessor 10 reaches the end of a bus cycle the internal 
timing signal TI will be generated and if a HOLD has 
been previously generated, a zero it will be coupled to 
the D input of flip-flop. 146. However, it will require 
one clock period for the zero to propagate through 
flip-flop. 146. In the meantime the inputs to NOR gate 
124 will cause gate 124 to go high since TI has gone 
active low, since flip-flop 130 is reset indicating a 
HOLD, and since flip-flop 146 has not yet been reset. 
Consequently, REQ0 will be driven low as illustrated 
by the falling edge of pulse 164 in FIG. 7. When the 
zero propagates through flip-flop 146, gate 124 will go 
low. The QA output of flip-flop 146 is then coupled to 
NOR gate 124. 
When processor 12 has finished its bus cycle and is 

prepared to return control of local bus 14 to processor 
10 it will pull REQ0 low again as illustrated by the 
falling edge of pulse 166. Flip-flop 118 will then be 
loaded. However, at this point the output of NOR gate 
124, having a logical one as an input from flip-flop 146, 
is generating a false output. The false output signal is 
coupled through OR gate 122 to the D input of flip-flop 
118 and transmitted on the output thereof as RGA. A 
one is generated by gate 123 and appropriately loaded 
into flip-flop. 130. HOLD then goes inactive, the output 
of gate 124 goes low and REQ0 is pulled high. TI will 
then go high. 
Both REQ0, after inversion, and the output of NOR 

gate 124 are coupled to the inputs of an exclusive OR 
gate 168. Exclusive OR gate 168 is part of circuitry 



4,270,167 
15 

which prevents the circuitry of FIG. 6 from pulling 
REQ0 high immediately after request pulse 162 has 
been generated by processor 12, and also generates the 
rising edges of pulses 162, 164 and 166 in FIG. 7. The 
output of gate 168 is coupled to a pull-up device 172 5 
which is clocked on b2 through a transmission gate 174 
to inverter 170 whose output in turn is coupled to OR 
gate 150. The output of gate 168 is also inverted and 
coupled to a transmission gate 176, the output of which 
is coupled to the input of transmission gate 174. Gate 
176 selectively couples gate 174 to REQ0. Whenever 
processor 12 pulls REQ0 low and no grant is being 
generated by processor 10, REQ0 will be pulled high 
after one clock cycle. One clock cycle after R goes 
low it will be pulled high for one clock cycle by pull-up 
device 160 and maintained in the high state by a self 
biased trickle device 161. For example, when REQ0 
goes low it is inverted and propagated along line 163. If 
grant line 165 is inactive, that is false, a one will be 
generated by gate 168. Device 172 will place a one on 20 
node 167. A zero will be generated by gate 150 and 
REQ0 ultimately pulled high after one clock. When 
REQ0 goes true, a zero will then be propagated on line 
163 and provided as an input to gate 168. The output of 
gate 168 will then be zero, thereby enabling gate 17625 
and pulling node 167 to zero. After one clock period the 
output of gate 150 will go true thereby disenabling 
pull-up device 160. However, since REQ0 was high, 
trickle device 161 will maintain REQ0 in the high state 
until once again pulled low by an external bus signal. 
Gate 168 provides for the exceptional condition that 

when grant line 165 is active high, and REQ0 is low, 
node 167 will not be pulled high by gate 172 as would 
typical be the case. Rather, if a grant pulse is generated 
by processor 10 during this first clock, i.e. when the 
output of gate 24 goes high, a one is synchronously 
coupled to exclusive OR gate 168 during clock ol. 
REQ0 is coupled through transmission gate 176 and the 
circuitry is prevented from driving pull-up driver 158. 
REQ0 will therefore remain active low without a high 
spike during the request/grant cycle. 
The circuitry for REQ1 is identical to that described 

with respect to REQ0 and is illustrated in FIG. 6, with 
the exception that REQ0 has priority over that of 
REQ1. For example, OR gate 178 couples the signals 45 
RGA and LCK into one input terminal of NAND gate 
180 which serves an analogous role to that of gate 128 
of the REQ0 circuitry. Thus, if RGA is active, flip-flop 
126 will be fixed in the set state and a hold will not be 
generated. However, as discussed above, the output of 50 
flip-flop. 126, RGE, is coupled to NAND gate 123 such 
that, if flip-flop. 126 should be active, indicating that a 
hold request has been accepted on REQ1, flip-flop. 130 
will similarly be fixed in a set state and will refuse to 
generate a hold state in response to any request received 
on REQ0. 
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In the illustrated embodiment, which is used only for 
the purposes of example, processor 10 cooperates with 
a floating point unit, processor 12, a portion of the ar 
chitecture of which is illustrated diagrammatically in 
FIG, 8. It may be appreciated by comparing FIG. 8 
with FIG. 2 that many of the upper control elements of 
processor 10 and 12 are duplicated. This allows proces- 65 
sors 10 and 12 to provide simultaneous coprocessing of 
digital information. For example, processor 12 includes 
address data buffers 182 and an adder 184 analogous to 

16 
the address data buffers xx and adder 32 of FIG. 2 for 
processor 10. Similarly, processor 12 includes a register 
file which simulates portions of the operative register 
file 30 of processor 10 in that an operand address regis 
ter 186, and instruction address register 188 and a tem 
porary instruction address register 200 are provided. By 
monitoring the activity on local bus 14, processor 12 
uses its intelligence to keep its registers updated. These 
registers similarly communicate by a bus 202 to an in 
struction queue 204 which is a replication of the instruc 
tion queue 28 of processor 10. A queue bus 206 is pro 
vided as an output bus from queue 204 in a substantially 
similar manner as is provided for processor 10 to com 
municate with lower execution circuitry of processor 12 
which will decode and perform the instructions which 
have been earmarked for performance or execution 
within processor 12. A timing generator 208 is substan 
tially similar to timing generator 40 of processor 10 and 
is alterable by the READY signal to provide the inter 
nal T timing and such other specialized timing as is 
required throughout processor 12. A queue control 
circuit 210 is provided as a logic circuit for decoding 
the queue status signals QSO and QS1, and the processor 
status signals, S0-S2. Address calculations as may be 
required by processor 12 and its upper portion may be 
controlled by appropriate control circuitry such as a 
conventional microcode circuit 212 or an equivalent 
PLA control circuit. Address/data buffer 182 is cou 
pled to local bus 14 and, pursuant to queue control 
circuit 210, queue 204 is loaded in response to decoding 
performed by queue control circuit 210 of the processor 
status signals, S0-S2, in a conventional means analogous 
to that used in processor 10. Therefore, as each byte is 
fetched by processor 10 it is similarly taken from local 
bus 14 and circulated through queue 204. 
The status of the queue is decoded from QSO and QS1 

according to conventions summarized in TABLE 2 
above to indicate what operation is to be executed with 
respect to bytes stored within queue 204. A byte is 
coupled through queue bus 206 to a conventional de 
coder 214 which then determines whether or not the 
byte fetched is indicative of an instruction which is to be 
specifically executed by processor 12. In the illustrated 
embodiment of floating point instruction is comprised 
of two bytes, the first byte of which is a float prefix 
described in greater detail with respect to the above 
referenced copending application entitled "Extended 
Address, Single and Multiple Byte Microprocessor." 
The second byte and portions of the first byte of the 
instruction then identifies which of the floating point 
instructions have in fact been encountered. Upon detec 
tion of the float prefix, conventional decoder logic 216 
will generate a triggering signal coupled to grant/re 
quest logic circuitry 218. Circuit 218 cooperates with 
the circuit previously described in connection with 
FIG. 6 to request and obtain control of local bus 14 to 
permit processor 12 to have selective access and control 
to a local, private or system bus if required by a floating 
point instruction. Thus, a floating point instruction can 
reference an internal floating point stack and general 
register file as well as any location in memory. When a 
floating point instruction has been fetched from queue 
204, processor 12 will execute that instruction in paral 
lel with processor 10 while processor 10 continues its 
instruction sequence. 

Processor 10 decodes instructions from the queue and 
addresses and fetches data according to the instruction 
sequence, and in particular fetches the floating point 
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operands. When the floating point instruction is de 
coded from the queue, processor 10 recognizes it as 
such, calculates an effective address and performs on 
read. These instructions can use any of the CPU's oper 
and addressing modes to reference any location in mem 
ory without maintaining a copy of the CPU's addressing 
registers internally, and without having to perform the 
CPU's effective address calculations. Processor 10, 
after relinquishing local bus 14 to processor 12, will 
continue with the instruction stream until it requires the 
result of the past instruction whereupon it checks the 
status of the TEST pin. If the TEST pin indicates that 
processor 12 is still executing the instruction, processor 
10 will wait until processor 12 changes the logic level of 
the TEST pin to indicate completion of its execution. 

After decoding the float instruction, processor 10 
forms an effective address which may require a fetch of 
the next byte or word from the queue which will be 
used in the calculation of the operand address. Proces 
sor 10 performs a read. Processor 12 then loads the 
address used during the read into its operand address 
register 186 and stores the corresponding fetched por 
tion of the operand in a temporary register, INA 188. 
Processor 12, through request/grant circuitry 218, ob 
tains control of local bus 14 to fetch the remainder of 
the operand. While processor 12 proceeds to execute 
the floating point instruction and processor 10 continues 
to run through the programmed sequence, processor 12 
also simultaneously tracks and monitors the status and 
contents of queue 28 of processor 10 by replicating 
queue 28 in queue 204. 

Portions of queue control circuit 210 are illustrated in 
FEG. 9 wherein the internal control signals, read queue 
RDQUE is generated from QSO and synchronized by 
clocks, d1 and d2. The internal control signals, first 
cycle, FC; additional cycle, AC; and FLUSH are gener 
ated from QSO and QS1 applied as inputs to conven 
tional NOR gate decoders. The coding of TABLE 2 
can be easily verified against the circuitry of FIG. 9 
wherein the first cycle, FC, refers to the first byte of a 
NOP code from the queue, the additional cycle, AC, 
refers to the subsequent byte from the queue, FLUSH 
refers to the operation of emptying the queue and 
RDQUE refers generally to the reading of a first or 
subsequent byte from the queue. 

FIG. 10 shows similar conventional decoding for 
processor status signals S0-S2. The output of NAND 
gate 220, FETCH, referring to a code access, will only 
be true if S2, S1 and S0 assume the status (100) respec 
tively. The internal control signal, read/memory, 
RDM, is generated by NOR gate 222 only if the proces 
sor status signals, S2-SO assume the state (101). Simi 
larly, the output of NOR gate 224 is only true when 
S2-SO assume the state (001), indicating the input/out 
put read operation. RSNOR gate flip-flop. 226 has its Q 
output coupled to one input of NOR gate 222 and has its 
set input coupled to AND gate 228. The inputs to AND 
gate 228 are the timing signal T3 and RDM. Thus, on 
the first T3 cycle after which a read/memory operation 
is indicated, latch 226 will be set thereby disabling NOR 
gate 222. The internal control signal, flush memory, 
FLMEM, is used as the rest input to latch 226. 
Read/memory, RDM, is inverted and coupled to 

NOR gate 230 whose other inputs are d2 and the timing 
signal T22 which is indicative of the T2 and d2 timing 
coincidence. The output of NOR gate 230 is the internal 
control signal load operand address, LOPA, which 
causes register 186 to be loaded with proper timing on 
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18 
a memory/read. When an instruction is being fetched, 
the signal, FETCH, is inverted and coupled to one 
input of NOR gate 232, whose other inputs are T22, b2 
and the output of NOR gate latch 234. The output of 
gate 232 is the internal command signal load instruction 
address, LINA, which causes register 188 to be loaded 
with the address of an instruction byte. Latch 234 is 
reset by AND gate 236 whose inputs are RESET "logi 
cal OR" FLUSH and q2. Latch 234 in turn is set by the 
output of AND gate 238 whose inputs are d2 and the 
output of NOR gate 240. NOR gate 240 in turn has the 
inputs FETCH, T2 and RESET--FLUSH. Thus, if 
RESET "OR" FLUSH goes true, latch 234 is reset and 
gate 232 enabled. However, when each of the inputs to 
gate 240 are zero, which includes RESET “OR” 
FLUSH, latch 234 will be reset and gate 232 will be 
disabled until RESET "OR" FLUSH once again goes 
true. 
While a third instruction address register tracks the 

address of the instruction which processor 10 is fetch 
ing, if a second floating point instruction is decoded 
while processor 12 is executing a first for which it must 
actively access the local bus later on such as during a 
memory write, queue control circuit 212 will insert the 
second instruction address into register 200, the tempo 
rary instruction address register TINA. After the first 
floating point instruction has been fully executed, queue 
control circuit 210 will insert the contents of TINA 
register 200 into INA register 188 and execute the sec 
ond floating point instruction in the same manner. The 
same is true for the temporary data address register. 

FIG. 11 illustrates circuitry which may be employed 
as the request/grant logic circuitry 218 of processor 12. 
Request/grant pin 250 is coupled to a pull-down device 
252 which in turn is driven through an inverter 254 and 
transmission gate 256 clocked by d1. The input to trans 
mission gate 256 is derived from the output of NOR 
gate 258. When the output of NOR gate 258 goes low it 
will synchronously be coupled to inverter 254 which in 
turn will activate device 252 thereby pulling down 
request grant pin 250. 

Inverter 260 is coupled to the internal command sig 
nal circuit idle, CTIDLE. CTIDLE signifies the state 
wherein processor 12 has no need for access to the local 
bus. Conversely, CTIDLE indicates active state in 
which processor 12 will generate a bus request such as 
illustrated as pulse 162 of FIG. 7. When access is re 
quired, CTIDLE goes low and a one will be syncho 
nously coupled through transmission gate 262 on clock 
d2 to an input of NAND gate 264. When each of the 
other two inputs to NAND gate 264 are true the output 
will be active false which is coupled to an input of NOR 
gate 266. The output of NOR gate 266 is a signal, Re 
quest Set, REQSET. When each of the inputs to NOR 
gate 266 are false the REQSET will be true and coupled 
to one input of NOR gate 258. When either input to 
NOR gate 258 is true, its output is active false and re 
quest/grant pin 250 is pulled active low. 

Initially D-type lode flip-flop. 268 will be reset by the 
hardware reset signal, HARDRST. The Q output of 
flip-flop. 268 is then coupled as one of the inputs to gate 
264. D type load flip-flop. 272 is initially reset indicative 
that processor 12 does not have the bus. The Q output 
of flip-flop. 272 is coupled through inverter 274 to gate 
264 providing a zero output. The Q output of flip-flop 
272, Have Bus, HVBUS, is also coupled to device 276 
and one input of NOR gate 278. The other input of 
NOR gate 278 being coupled to REQSET. The output 
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of NOR gate 278 is coupled to the Linput of flip-flop 
268. Since terminal 250 is initially allowed to float high, 
the output of inverter 254, must be false. Inverter 254 is 
synchronously coupled through gate 280 by clock d2, 
inverter 282, gate 284 by clock d1 and inverter 286. The 
output of gate 280 is directly coupled to one input of 
NOR gate 266. Thus, each of the inputs to NOR gate 
266, except the output of gate 264, are initially false. 
Therefore, in the initialized condition, REQSET will go 
true when the output of NAND gate 264 goes false in 
response to CTIDLE going false. It should be noted 
when pin 250 goes low, RGD which goes high is ulti 
mately coupled to the input of gate 266 one T clock 
later, REQSET then goes low and pull-down device 
252 is disabled. As described above, this allows the 
pull-up circuitry of FIG. 6 to pull the REQ0 pin high, 
which pin is coupled to pin 250. 

Request/grant pin 250 is coupled through two invert 
ers 288 to an input of NOR gate 290. The other input of 
NOR gate 290 is RGD. The output of gate 290 is cou 
pled to the input of NAND gate 292 whose other input 
is a clock d1. The output of gate 292 is coupled to one 
input of NOR gate 294 whose other input is HVBUS. 
The output of gate 294 in turn is coupled to one input of 
NOR gate 296 whose output is coupled to the L input of 
flip-flop. 272. The other input of gate 296 is RGD. The 
output of gate 294 is similarly coupled to a pull-up de 
vice 298 which in turn is coupled to the D input of 
flip-flop. 272, RGD is coupled to pull-down device 300 
which is similarly coupled to the D input of flip-flop 
272. Thus, in an initial condition, when output pin 250 is 
true, a one is coupled to one input gate of 290 which 
then has a zero output. A constant one is generated by 
gate 292 and coupled to the input of gate 294 which will 
then have a zero output. Since RGD is initially zero, 
flip-flop. 272 will not be loaded and will remain in the 
reset condition. 
However, when processor 10 requests the bus and 

pulls pin 250 low, RGD will go true. The output of gate 
290 remains false. However, flip-flop. 272 is now in a 
load state and pull-down device 300 activated. Thus, a 
zero is loaded into flip-flop. 272. When processor 10 
generates a CPU grant, as illustrated by pluse 164 FIG. 
7, CTIDLE will be inactive and pin 250 pulled low. 
RGD will thus be false and the output of gate 290 true. 
d1 will be coupled by gate 292 to the input of gate 294. 
During clock (b1, gate 294 will generate a true output 
which will again set flip-flop. 272 into the load state. 
Pull-up device 298 will be activated and a one will be 
loaded in flip-flop. 272 bringing HVBUS active true. 
HVBUS then indicates to the external local bus that 
processor 12 has requested and obtained a grant to the 
local bus. 
Meanwhile, when processor 12 first requested the bus 

but did not yet have it, the output of NOR gate 278 
went false setting flip-flop. 268 into the load state. At 
such time HVBUS was false and REQSET true such 
that pull-up device 270 was enabled. A one was there 
fore loaded into internal request bus flip-flop. 268. A 
zero was fed back to gate 264 from the Q output of 
flip-flop. 268 to disable gate 264 and fix REQSET to 
zero. When processor 12 acquired the bus and set 
HVBUS high, flip-flop. 268 was again set into the load 
state, but pull-down device 276 enabled while pull-up 
device 270 was disabled thereby loading a zero into 
flip-flop. 268 to permit the acceptance of a subsequent 
local bus request from processor 12. 
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However, when HVBUS went active high, gate 264 

was disabled by the output of inverter 274. When CT 
DLE again goes high indicating that processor 12 is 
done with a bus, a zero will be coupled to one input of 
NOR gate 302 through inverters 260 and 261. The out 
put of gate 302 is synchronously coupled through trans 
mission gate 304 by clock b2 to inverter 306. The other 
inputs of NOR gate 302 are coupled to HVBUS and the 
signal LCK which was described above. Thus, when 
processor 12 does not have the bus, gate 302 will be 
disabled. However, when processor 12 does have the 
bus, HVBUS1 goes false. Assuming that LCK is false, 
as is typically the case, a one, generated by gate 302, is 
coupled to inverter 306 whose output in turn is coupled 
to NOR gate 308. The output of NOR gate 308 is cou 
pled to one of the inputs of NOR gate 258. When each 
of the inputs to NOR gate 308 are false, the output is 
true thereby enabling gate 258 and pulling pin 250 ac 
tive low thereby generating a bus release pulse 166 as 
illustrated in FIG. 7. The other inputs to NOR gate 308 
are T4 synchronously coupled through gate 310 by 
clock d2 from inverter 312 and the internal control 
signal advanced ready, ADRRDY synchronously cou 
pled through gate 314 by clock d2. ADRRDY is inter 
nal control signal indicative of the condition where the 
control section is about to start a bus cycle on the next 
clock. 
Thus is can be appreciated that when ADRRDY is 

active, gate 308 is disabled thereby preventing proces 
sor 12 from generating or grant to give up the bus. 
Moreover, the bus can be surrendered through NOR 
gate 308 only during the last T cycle of a bus transfer, 
namely T4. In the case where LCK is active, processor 
12 is instructed not to surrender the local bus under any 
conditions. In this case a one is coupled to the input of 
NOR gate 302 thereby fixing the output at zero. This in 
turn disables gate 308. 
When gate 308 indicates a surrender is to be made by 

going active, RGD will again be false and b1 will be 
coupled to gate 294. A zero will be reloaded into flip 
flop. 272 and the circuitry of FIG. 11 restored to its 
initialized condition. 

It must be understood that many modifications and 
alterations may be made without departing from the 
spirit and scope of the present invention as set forth in 
the claims below. The present invention has been de 
scribed in terms of a particular embodiment only for the 
purposes of illustration and does not limit the scope of 
the invention. For example, the request/grant circuitry 
illustrated in FIG. 11 may have many other organiza 
tions other than that described and depicted while still 
exhibiting the protocol exchanged between processors 
10 and 12 as illustrated in FIG. 7. Similarly, the internal 
organization referenced with respect to processors 10 
and 12 as shown in FIGS. 2 and 8 respectively need not 
be incorporated in order for two processors to process 
digital information according to the present invention. 
We claim: 
1. A circuit for providing arbitration of a bus between 

a first and second processor mutually coupled to a bus, 
each processor being arranged and configured to exe 
cute at least one predetermined type of instruction not 
entirely executable by the other processor, wherein said 
first processor fetches all instructions and wherein said 
second processor detects at least one predetermined 
type of instruction executable therein, said circuit com 
prising: 
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first bidirectional means in said first processor for 
receiving a bus request signal indicative of a re 
quest from said second processor to said first pro 
cessor for access and control of said bus, for selec 
tively generating a bus grant signal indicative of 
release by said first processor of access and control 
of said bus, and for receiving a bus release signal 
indicative of a release by said second processor to 
said first processor of access and control of said 
bus; 

second bidirectional means in said second processor 
for selectively generating said bus request signal in 
response to said second processor having detected 
said one predetermined type of instruction execut 
able in said second processor, for receiving said bus 
grant signal, and for selectively generating said bus 
release signal; 

wherein said first processor includes a means for 
transmitting a plurality of status signals indicative 
of the type of transfer cycle being performed by 
said first processor; and 

whereby a plurality of instructions may be coopera 
tively processed in a concurrent manner in said first 
and second processors. 

2. The circuit of claim 1 wherein said first processor 
includes means for generation of a LOCK signal in 
response to a predetermined instruction and transmits 
said LOCK signal to said second bidirectional means of 
said second processor, said second processor retaining 
access and control of said bus through said second bidi 
rectional means when access and control has previously 
been granted to said second processor. 

3. A circuit to selectively provide access and control 
of a bus between at least a first and second processor, 
said first and second processors each being arranged 
and configured to execute at least in part at least one 
predetermined type of instruction nonexecutable in 
total by said other processor, comprising: 

first means in said first processor for generating a 
plurality of status signals indicative of the opera 
tional status of said first processor and for transmit 
ting said plurality of status signals to said bus; 

second means in said second processor for receiving 
said plurality of status signals from said bus and for 
decoding said plurality of status signals to track 
said operational status of said first processor; 

third means in said second processor for selectively 
requesting access and control over said bus in re 
sponse to detection by said second processor of 
said at least one predetermined type of instruction; 
and 

fourth means in said first processor for selectively 
granting access and control over said bus to said 
second processor in response to a request there 
from; 

whereby the execution of instructions may be cooper 
atively distributed between said first and second 
processor for concurrent instruction stream execu 
to. 

4. The circuit of claim 3 wherein said third means also 
Selectively relinguishes access and control over said bus 
to said first processor. 

5. The circuit of claim 3 wherein said plurality of 
status signals include a first plurality of signals indica 
tive of the operational type of the bus transfer cycle 
being run by said first processor, said transfer cycle to 
be executed next. 
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6. The circuit of claim 3 or 5 wherein said plurality of 

status signals include a second plurality of signals indic 
ative of the operational status of an instruction storage 
queue within said first processor. 

7. The circuit of claim 3 wherein said first and second 
processor are coupled to a common clock circuit and 
are each synchronized therewith. 

8. The circuit of claim 3 wherein said third and fourth 
means generates a bidirectional request/grant signal 
characterized by having at least three states, a request 
state wherein said second processor selectively seeks 
access and control of said bus from said first processor 
through said third and fourth means, a grant state 
wherein said first processor selectively grants access 
and control of said bus to said second processor through 
said fourth and third means, and a release state wherein 
said second processor selectively releases access and 
control of said bus to said first processor through said 
third and fourth means, said selective seeking of access 
and control of said bus by said second processor being 
in response to detection by said second processor of at 
least one of said type of instructions executable by said 
second processor. 

9. The circuit of claim 6 wherein said first processor 
includes means for continuing to execute instructions 
from said storage queue when said second processor has 
access and control of said bus and wherein said first 
processor includes means for selectively delaying reac 
quisition of access and control of said bus while using 
said bus and at least one other common and private bus 
to transfer digital information as required by instruc 
tions within said second processor. 

10. The circuit of claim 6 wherein said first processor 
includes means for continuing execution of instructions 
from an instruction stream while said second processor 
is executing an instruction and wherein said first proces 
sor includes means for selectively delaying execution of 
a subsequent instruction within said first processor in 
response to a TEST signal from TEST means for gener 
ating said TEST signal when execution within said 
second processor is incomplete, said means for delaying 
being activated when said first processor requires com 
pleted results of said execution within said second pro 
CSSO 

11. In combination with a first processor having a 
means for storing and queuing a plurality of instruc 
tions, said first processor having selective access and 
control to a local bus shared by said first processor and 
at least a second processor, a circuit comprising: 

first means in said first processor for generating a 
plurality of queue status signals indicative of the 
status of said means for storing and queuing in 
structions said queue status signals transmitted to 
said local bus; 

second means in said first processor for generating a 
plurality of processor status signals indicative of 
the operation then being performed by said first 
processor, said processor status signals transmitted 
to said local bus; and 

third means in said first and second processor for 
selectively controlling access of said second pro 
cessor to said shared local bus, 

whereby the operational status of said first processor is 
transmitted to said shared local bus and whereby said 
first processor may control access over said shared local 
bus as determined by requests received from said sec 
ond processor by said first processor in response to said 
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queue, processor status signals, and instruction decod 
ing within said first processor. 

12. The circuit of claim 11 wherein said circuit is 
included in part within said second processor and fur 
ther comprises: 

fourth means for receiving said queue and processor 
status signals, for tracking said operation then 
being performed by said first processor; and 

for replicating in said second processor said means for 
storing and queuing instructions in said first proces 
sor; and 

fifth means for detecting at least one predetermined 
one of said plurality of instructions for execution 
within said second processor, and for communicat 
ing with said third means to selectively cause said 
first processor to temporarily relinquish access and 
control over said local bus and to temporarily give 
said second processor access and control over said 
local bus; 

sixth means for monitoring said second processor to 
determine whether said second processor has con 
cluded execution and is available for further execu 
tion; 

whereby said plurality of instructions are coopera 
tively and concurrently coprocessed by said first 
and second processors whereby digital processing 
capacity is extended and increased. 

13. The circuit of claim 11 in further combination 
with a common bus and means for arbitrating access 
and control over said common bus, said circuit further 
comprising: 

seventh means in said first processor for selectively 
generating a LOCK signal and for transmitting said 
LOCK signal to said means for arbitrating access 
and control over said common bus and to said 
second processor, said LOCK signal being indica 
tive of an instruction executed in said first proces 
sor to unconditionally retain access and control 
over said common bus for at least said first and 
second processors for at least a first bus transfer 
cycle. 

14. The circuit of claim 13 further comprising: 
eighth means in said second processor for selectively 

generating said LOCK signal and for transmitting 
said LOCK signal to said means for arbitrating 
access and control over said common bus to uncon 
ditionally retain access and control over said com 
mon bus on a bus transfer cycle subsequent to said 
first bus transfer cycle. 

15. A method for processing digital information in at 
least a first and second processor, each having selective 
access and control to a bus, comprising the steps of: 

selectively generating a bus request signal in a second 
bidirectional means in said second processor in 
response to detection of an instruction executable 
in said second processor, said instruction fetched 
by said first processor; 

transmitting said bus request signal to said bus; 
receiving said bus request signal in a first bidirectional 
means in said first processor; 

selectively generating a bus grant signal in said first 
bidirectional means when said first processor no 
longer requires access and control of said bus and 
releasing access and control to said bus; 

transmitting said bus grant signal to said second bidi 
rectional means; 

acquiring access and control to said bus by said sec 
ond processor in response to the receiving of said 
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bus grant signal, selectively releasing access and 
control of said bus by said second processor; 

acquiring access and control of said bus by said first 
processor; 

5 whereby instructions fetched onto said bus may be co 
operatively and concurrently processed in said first and 
second processors. 

16. The method of claim 15 further comprising the 
step of selectively inhibiting release of said bus by said 
second processor by generation of a LOCK signal by 
said first and second processors in response to a prede 
termined instruction, transmitting said LOCK signal to 
the means for arbitrating access and control of a com 
mon bus and inhibiting bus release in response thereto. 

17. A method for processing digital information in a 
plurality of processors sharing a local bus and having 
selective access and control to at least one of a common 
bus and private bus, at least a first processor of said 
plurality of processors having means for storing and 
queuing instructions said method comprising the steps 
of: 

generating a plurality of queue status signals and 
processor status signals in said first processor, said 
queue status signals indicative of the status of said 
means for storing and queuing instructions, said 
processor status signals indicative of the operation 
then being performed by said first processor; 

transmitting said queue and processor status signals to 
said local bus; and 

selectively controlling access to said local bus in 
response to requests received by said first proces 
sor from a second processor of said plurality of 
processors, 

whereby operation of said first processor may be 
tracked by said second processor, said first and 
second processors cooperatively and concurrently 
coprocessing said instructions on said local bus. 

18. The method of claim 17 wherein the step of selec 
40 tively controlling access to said local bus includes the 

steps of: 
receiving said queue and processor status signals from 

said local bus by said second processor; 
tracking and replicating the operation and means for 

storing and queuing instructions of said first pro 
cessor in said second processor; 

detecting at least one of said instructions as being 
designated for execution by said second processor; 
and 

requesting said first processor to temporarily relin 
quish access and control over said local bus and to 
temporarily give said second processor access and 
control over said local bus while permitting said 
first processor to continue to operate in a nonac 
cessing mode. 

19. The method of claim 17 in further combination 
with means for arbitrating access and control over said 
common bus further comprising the steps of: 

selectively generating a LOCK signal; and 
transmitting said LOCK signal to said means for arbi 

trating access and control over said common bus, 
said LOCK signal being indicative of an instruction 
in said first processor to unconditionally retain 
access and control over said system bus for said 
plurality of processors. 

20. The method of claim 19 wherein said LOCK 
signal is generated in at least one of said first and second 
processors. 

O 

15 

25 

30 

35 

45 

50 

55 

60 



4,270,167 
25 26 

21. The method of claim 17 wherein the step of selec- cessor is required by said first processor and unavailable 
tively controlling access to said local bus is further in from said second processor, 
response to a TEST signal generated by said second whereby an instruction stream is concurrently pro 
processor, said first processor being inhibited from ac- cessed by said first and second processors in a co 
cessing said local bus in response to said TEST signal 5 operative manner. 
when an operand result computed by said second pro- sk 
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