
United States Patent (19)
Koehler et al.

54) APPARATUS AND METHOD FOR
COOPERATIVE AND CONCURRENT
COPROCESSING OF DGTAL
INFORMATION

75) Inventors: Robert J. Koehler, Cupertino, Calif.;
John A. Bayliss, Portland, Oreg.

(73) Assignee:
21 Appl. No.: 921,082

Intel Corporation, Santa Clara, Calif.

22 Filed: Jun. 30, 1978
Sll Int. Cl. .. G06F 15/16
52 U.S. C. .. 364/200
58) Field of Search 364/200 MS File, 741;

235/307; 340/146.1 BE, 146.1 C
(56) References Cited

U.S. PATENT DOCUMENTS

3,815,095 6/1974 Wester 364/200
4,000,485 12/1976 Barlow et al. 364/200

Primary Examiner-Raulfe B. Zache
Attorney, Agent, or Firn-Blakely, Sokoloff, Taylor &
Zafiman

(57) ABSTRACT
The data processing capacity of a practical semiconduc
tor computer system, having both local and system

cy
wu

i. s
*
-

(11) 4,270,167
(45) May 26, 1981

buses, can be expanded both in degree of complexity
and magnitude by providing a method and means for
cooperatively and concurrently coprocessing digital
information among a plurality of processors sharing the
same local bus and collectively accessing the system bus
as a system unit. In other words, a central processor has
primary control and access to a local bus and may have
access to a system or common bus shared among many
other processors. Also sharing the local bus with the
central processor is a plurality of specialized or dedi
cated processors which are continuously apprised of or
actively monitor the internal operational status and
operation then being performed by the central proces
sor. The active monitoring of the activity of the other
processors sharing the local bus distinguishes these ded
icated processors from conventional direct memory
accessing processors. Certain ones of the instructions
fetched simultaneously by the central processor and the
specialized processor from the system memory are re
served for execution in one of the dedicated processors
which then shares the local bus with the central proces
sor by means of communicating through a plurality of
signals with respect to the status, mode, arbitration, and
control of the local bus.

21 Claims, 11 Drawing Figures

Calata as
A68/784avow Sas?as

2d

Catavaas
catalads

s
ontroller

22 S.

Aess

24

onsceiver

4,270,167 Sheet 1 of 8 U.S. Patent May 26, 1981

S/
S/27 MYOA1/Avoo

93

ueaye3sudu

earmad
eIO definity

S Og 3. Add S

4,270,167 Sheet 2 of 8 U.S. Patent May 26, 1981

U.S. Patent May 26, 1981 Sheet 3 of 8 4,270,167

a/67 /
/63 (7%zs) /62

167 4,270, Sheet 5 of 8 U.S. Patent May 26, 1981

Sheet 6 of 8 4,270,167 May 26, 1981 U.S. Patent

67724/
W

ASX2/

?i î?i

— Ly_XX

U.S. Patent May 26, 1981 Sheet 7 of 8 4,270,167

Caak^ -- 84

A2AAy

S2. Q-Zal a -4.2/S

Sheet 8 of 8 4,270,167 May 26, 1981 U.S. Patent

A, Z

377,7/zJ)

4,270,167

APPARATUS AND METHOD FOR COOPERATIVE
AND CONCURRENT COPROCESSING OF

DIGITAL INFORMATION

BACKGROUND OF THE INVENTION
l. Field of the Invention
The present invention relates to the field of system

organization of data processors and in particular relates
to the field wherein a plurality of processors share a
local bus to access and control a system bus and/or a
private bus and wherein this plurality of processors
share resources for controlling the private and system
buses. In configurations displaying both private and
common buses, the plurality of processors on the local
bus uses resources located on the private bus when it is
not using resources located on the common bus. Tradi
tionally, private bus resources have included instruction
memory, non-intelligent peripherals such as latches and
intelligent peripherals such as direct memory access
devices, serial interface devices and peripheral control
ler processors.

2. Description of the Prior Art
As the cost of integrated circuit, semiconductor mi

croprocessors continues to decrease and as their accep
tance continues to increase, an accelerating number of
applications are found wherein such microprocessors
can be organized to intelligently perform a plurality of
complex computing operations which cannot be per
formed by a single integrated circuit made by presently
known technology. Thus, microprocessors which may
have been previously dedicated to rather simple opera
tions requiring a high number of simple repetitive steps
are increasingly required to be adapted to applications
wherein the complexity and intelligence required to
perform the operations is much greater than can be
accomplished by previously known methods and cir
cuits.

Prior art and state of the art microprocessors are
limited by process and packaging restrictions due to a
limited manufacturable size of the semiconductor chip
and package. The demand for increased computing
capacity to perform complex operations has exceeded
the present ability to provide sufficient circuitry within
the size limitations of manufacturably practical and cost
competitive microprocessors.

Therefore, various organizations wherein a plurality
of microprocessors have been organized to share either
a private bus or a system or common bus have been
devised to distribute computing capacity among a plu
rality of modules. Common bus is taken to mean a bus
which is shared by a plurality of processors which ei
ther execute unrelated tasks using shared resources
(peripherals) or which execute a single task by partition
ing the execution among the plurality of processors.
Generally, in such prior art systems a single micro
processor, or direct memory access unit under control
of the microprocessor, performs all the required opera
tions with respect to a local bus and shares a system bus
with other processors. In this manner, peripheral cir
cuitry, which are shared resources which perform vari
ous ancillary functions, can be serviced over a single
system bus with the required intelligence or computing
capacity distributed among a plurality of single proces
sor controlled local buses. Nevertheless, the demand for
complex computing operations has continued to the
point where prior art microprocessors which execute a
single instruction stream cannot perform the needed

O

5

20

25

30

35

45

SO

55

65

2
local bus operations without having extended comput
ing capacity.
What is described herein is an apparatus and method

ology for cooperative and concurrent coprocessing
which overcomes each of the shortcomings of the prior
art.

BRIEF SUMMARY OF THE INVENTION
The present invention is a method for processing

digital information in a plurality of processors which
share a local bus and which have selective access to,
and control of, a system bus. Each processor of the
plurality of processors has a means for queuing and
decoding an instruction stream comprised of instruc
tions which are freely interleaved among the plurality
of processors with the instructions being jointly, inde
pendently and distributively executed by the several
processors. Joint execution is performed when two or
more processors perform a single instruction, wherein
one processor performs the input phase and a second
processor performs the output phase. Independent exe
cution is performed when one of the processors per
forms an instruction in a dedicated manner without the
assistance of another processor other than possible per
formance of a fetch. Distributive execution is per
formed when a dedicated or special processor gains
control of the local bus and passes an operand address to
central or primitive processor for a fetch. The method
comprises the steps of generating a plurality of queue
status signals and processor status signals in the first
processor. The queue status signals are indicative of the
status of the means for queuing and decoding instruc
tions in a first processor. The processor status signals
are indicative of the operation then being performed by
the first processor. The queue and processor status sig
nals are transmitted as part of the signals on the local
bus. Access to the local bus is selectively controlled
among the plurality of processors by the first processor
in response to requests received by the first processor
from one of the other processors in the plurality of
processors.
The step of selectively controlling access to the local

bus includes the steps of receiving the queue and pro
cessor status signals from the local bus wherein these
signals are received by a second processor. The opera
tion of the first processor is then tracked, and the means
for queuing and decoding instructions is replicated in
the second processor. The second processor detects at
least one of the instructions as being designated for
execution by the second processor. The second proces
sor then requests the first processor to temporarily re
linquish access and control over the local bus and to
temporarily give the second processor access and con
trol thereover, while still permitting the first processor
to continue execution of instructions residing in its
queue in a nonaccessing mode with respect to the bus.
While the dedicated processor is executing its instruc
tion, it returns control of the local bus to the central
processor which continues with the instruction stream.
To prevent the central processor from using an operand
which has not been updated by the special processor, a
means is provided by which the central processor auto
matically checks the completion of the prior instruc
tion.

In another embodiment of the present invention in
further combination with a means for arbitrating access
and control over the system bus, the method further

4,270,167
3

comprises that the steps of selectively generating a lock
signal and transmitting the lock signal to the means for
arbitrating access and control over the system or com
mon bus. The lock signal is indicative of an instruction
executed by the first processor to cause the plurality of
processors to unconditionally retain access and control
over the system or common bus through the means for
arbitrating access and control for the collective benefit
of the plurality of processors.
The present invention also includes a circuit in a first

processor having a means for storing and queuing a
plurality of instructions wherein the first processor has
selective access and control to a local bus shared by the
first processor and at least a second processor. The
circuit is comprised of a first means for generating a
plurality of bus control and queue status signals indica
tive of the status of the means for storing, queuing and
decoding instructions. A second means generates a plu
rality of processor status signals indicative of the opera
tion then being performed by the first processor. A
third means selectively controls access to the shared
local bus. By this combination the status and mode of
operation, present and future, of the first processor is
transmitted to the shared local bus and the first proces
sor is permitted to arbitrate control and access over the
shared local bus as determined by requests received by
the first processor from the plurality of processors in
response to the queue and processor status signals gen
erated by the plurality of processors.

In one embodiment a circuit is included within the
second processor and further comprises a fourth means
which receives the queue and processor status signals,
tracks the operation then being performed by the first
processor and replicates in the second processor the
means for storing, queuing and decoding the instruc
tions which is in the first processor. A fifth means is
provided for detecting at least one predetermined one
of the plurality of instructions for distributed execution
between both processors or dedicated execution within
the second processor and for communicating with the
third means to selectively cause the first processor to
temporarily relinquish access and control over the local
bus and to temporarily give the second processor access
and control thereover. A sixth means for monitoring the
activity of the second processor to determine if the
second processor can accept the next instruction or has
completed execution of an instruction whose result is
needed prior to execution of an instruction by one of the
plurality of processors. This synchronization permits
the plurality of processors to execute instructions from
a common instruction stream. By this combination of
circuitry the plurality of the instructions is coopera
tively and concurrently coprocessed by the first and
second processors with the result that the digital pro
cessing capacity is extended and increased.

In yet another embodiment in further combination
with the system bus and a means for arbitrating access
and control over the system bus, the circuit of the pres
ent invention further comprises a seventh means for
selectively generating a lock signal and for transmitting
the lock signal to the means for arbitrating access and
control over the system bus. The lock signal is indica
tive of an instruction executed by the first processor to
unconditionally retain access and control over the sys
ten bus for the collective benefit of at least the first and
second processors.
These and other embodiments of the present inven

tion may be better understood by reviewing the De

10

5

20

25

30

35

45

50

55

65

4.
tailed Description of the Preferred Embodiments in
light of the following Figures.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a block diagram showing a central proces

sor and a floating point processor coupled to a local and
system bus according to the present invention;

FIG. 2 is a simplified block diagram of a portion of
the central processor illustrated in FIG. 1;

FIG. 3 is a timing diagram of some of the signals
generated and received by the central processor of FIG.
1;
FIG. 4 is a simplified schematic illustrating a plurality

of output buffers in combination with a portion of a
timing and logic circuit of the central processor;
FIG. 5 is a simplified schematic illustrating the queue

status circuitry within the central processor;
FIG. 6 is a simplified schematic diagram showing one

embodiment of the request/grant circuitry in the central
processor;

FIG. 7 is a timing diagram showing the request/grant
timing of the illustrated circuitry;
FIG. 8 is a simplified block diagram of a portion of

the circuitry of a processor handling dedicated comput
ing operations which concurrently coprocesses infor
mation with the central processor of FIG. 2;
FIG. 9 is a schematic of part of the queue control

circuitry of FIG. 8;
FIG. 10 is a schematic of another portion of the queue

control circuitry of FIG. 8; and
FIG. 11 is a simplified schematic of the grant/request

logic circuitry of FIG. 8.
DETAILED DESCRIPTION OF THE

PREFERRED EMBODIMENT

General Description
The present invention is an apparatus and methodol

ogy for expanding the computing capacity and ability of
practical, economical semiconductor integrated circuit
processors. A central processor, such as the type de
scribed in the copending applications entitled "Ex
tended Address, Single and Multiple Bit Microproces
sor,' Ser. No. 873,777 filed Jan. 31, 1978, and "System
Bus Arbitration, Circuitry and Methodology,' Ser. No.
921,083 filed June 3, 1978, each assigned to the same
assignee of the present invention, may be used as de
scribed in connection with the present invention. How
ever, it must be understood that many other processors
other than that described in the above copending appli
cations may employ the apparatus and method of the
present invention for increasing computing capacity,
For example, in some embodiments of the present in
vention it is not necessary that the central (primitive)
processor have an internal instruction queue.
The processor handling the more primitive or funda

mental operations is associated with one or more pro
cessors having a specialized or dedicated computing
capability, such as a floating point processor dedicated
to the execution of specialized floating point arithmetic
operations. Both the primitive processor and each of the
corresponding specialized or dedicated processors
share the same local bus and collectively have access to
resources on a private bus as well as having access to
the system or common bus subject to a partitioning of
the decision making circuitry among the several proces
sors, together with such ancillary or supportive cir

4,270,167
5

cuitry as may be required to effect system access or
control.

According to the present invention, the primitive
processor and the various associated operationally dedi
cated processors simultaneously receive the instructions
on the local bus and cooperatively process the instruc
tions. For example, one or more dedicated microproces
sors track the operation of the stand alone primitive
processor. One subset of the instruction set is designated
for execution by each of the dedicated processors. The
primitive processor (hereinafter referred to for conve
nience as the "central processor" or "CPU") fetches
each of the instructions and in the process of fetching
the instruction makes the instruction available on the
local bus. Upon decoding this instruction simulta
neously with the CPU, for those instructions which
require data access the CPU calculates the effective
address for the dedicated processor and makes it avail
able on the local bus by initiating the data transfer, the
dedicated processor requests control of the local bus
from the central processor, which at the appropriate
time grants access and control to the local bus, having
previously fetched the specialized instruction. The ded
icated processor then executes the instruction with an
appropriate access to the private or common or system
bus as required by the instruction. However, not all
instructions executed by the dedicated processor will
necessarily require access to a bus. Meanwhile, the
central processor may continue to execute instructions
stored within a queue or other internal storage in the
central processor as long as these instructions do not
require access to the local bus. Upon completion of any
bus access required for the execution of the instruction
by the dedicated processor, the central processor may
accept control and access of the local bus upon authori
zation by the dedicated processor according to the
present invention. The dedicated processor may con
tinue to execute its instruction even after control of the
local bus has been returned to the CPU. The dedicated
processor notifies the CPU that the result of its opera
tion is completed so that the CPU does not try to use a
result computed by the dedicated processor before it is
in fact computed. The CPU may continue operation as
long as it does not require the results of the dedicated
processor's computation, and the dedicated processor
may reacquire access and control over the local bus to
effect any data transfers to a private or common bus
which it may require. Thus, the CPU and dedicated
processor concurrently execute instructions in real time
and cooperatively process a stream of instructions.
Therefore, it can be readily appreciated that a program
stream of instructions is simultaneously tracked by both
the central processor and each of the dedicated proces
sors and that the instruction steam is collectively exe
cuted in a coopertive manner among the processors in a
concurrent manner. Thus, the processors concurrently
and cooperatively coprocess the digital information.
The present invention and its various embodiments

may be best understood by viewing FIG. 1. FIG. 1
illustrates a simplified block diagram of the central pro
cessor 10 and a dedicated processor 12, a floating point
processor, sharing a local bus 14. The processors 10 and
12 collectively have selective access and control of both
a private bus 15 and a common or system bus 16. In the
illustrated embodiment processors 10 and 12 access
system bus 16 by means of a plurality of supportive or
ancillary circuits which include a bus arbiter 18, a bus
controller 20, an address latch 22 and a data latch 24.

O

5

20

25

35

45

50

55

65

6
Private bus 15 does not require use of an arbiter. The
operation of one embodiment of bus arbiter 18 and bus
controller 20 is set forth in detail in the copending appli
cation entitled "System Bus Arbitration Circuitry and
Methodology' referenced above. However, many arbi
tration schemes and means for coupling processors 10
and 12 to a system bus 16 may be employed other than
that referenced without departing from the scope and
spirit of the present invention. In addition, a private bus
15 is accessed by processors 10 and 12 in a nonarbitrated
mode through bus controller 21, address latch 23 and
data transceiver 25.

System Clock
CPU 10 and FPU 12 each derive their timing from an

external clock circuit 26. Clock circuit 26 is a conven
tional crystal controlled clock which, among other
system signals, provides a CLK signal generated by a
conventional high current driver. The advantage of
driving a plurality of separate processors with a single
external clock is that it avoids problems of timing skews
and synchronization which might otherwise result if
each processor ran from a clock driver dedicated to
itself, i.e., generated by a common chip clock with an
output for each processor, had its own separate internal
clock or was in some way synchronized to logic control
signals which were derived in part from a single clock,
such as the master clock within the central processor.
Performance is increased because circuitry can easily be
designed to eliminate skew problems. For example, one
processor can be changing information on the same
clock edge as another is trapping information. By using
a single clock driver as shown in FIG. 1, no synchroni
zation or skew problems occur between the clock de
rived data and control signals of processor 10 or 12.
This type of clocking vastly simplifies the implementa
tion and increases the performance of the cooperative
and concurrent coprocessing which characterizes the
combination of processors 10 and 12. Although only
two processors are illustrated in FIG. 1, it is within the
intent of the present invention that a substantially
greater number of processors could be employed associ
ated with the provision of a single external high current
drive clock 26 thus easily allowing for the addition of a
substantially greater number of processing units.

Central and Operationally Dedicated Processor
Protocol

Communication between central processor 10 and
dedicated processor 12, in the illustrated embodiment, is
achieved principally by three categories of signals:
queue status and instruction decode signals; processor
status signals; and request/grant control signals. The
processor status signals S0, S1, and S2, comprise a three
bit field which encodes the type of operation then being
executed. For example, as set forth below in TABLE 1
is a summary of one encoding which may be used for
the processor status signals.

TABLE
S. S. So
0 0 0 literrupt/Acknowledge

I/O 0 0 | Read IO port AO
0 1 0 Write IO port
O Halt Hall

O O Code access (datum into queue)
Mem | 0 | Read Memory Mem

() Write Memory
Ny

4,270,167
7

TABLE I-continued

Passive Operation

Similarly, the queue status signals, QSO and QS1 pro
vide an encoded two bit field pertaining to the status of
the instruction queue and instruction decode within
processor 10. It should be noted that S2-S0 are also
used as queue status signals to identify when the queue
is being loaded, i.e. code access. Summarized below in
TABLE 2 is one encoding which may be used for the
queue status signals. Again, in embodiments where an
instruction queue is not included within the processor
10, such status signals would be omitted. However, to
omit such queue status signals a substantial part of the
CPU would have to be replicated to provide duplicate
information.

TABLE 2

QS1 QSO
O O No operation
0 1 First byte of opcode from queue

O Empty queue
l 1 Subsequent byte from queue

The queue status signals allow the dedicated processor
to decode or find its instruction. The request/grant
control signals may be taken to include the signals
RQ/GTO, RQ/GT1. The RQ/GT signals are bidirec
tional signals with respect to processors 10 and 12
which are used to communicate or arbitrate control
over the local bus between the processors. Two re
quest/grant pins or terminals are illustrated in FIG. 1 in
processor 10 and have an ordered priority. Clearly,
many additional request/grant terminals could be in
cluded in the manner described herein as shown in FIG.
6.
The request/grant sequence generally involves the

exchange of three clock pulses as shown in FIG. 7. A
first pulse, one clock wide, is received by processor 10
from processor 12 to indicate a request for control of
the local bus to processor 10. A second pulse one clock
wide from processor 10 to the processor which re
quested the local bus, which in the illustrated embodi
ment is processor 12, indicates that processor 10 has
placed or is about to place its output drivers which are
coupled to local bus 14 in a high impedance state and
that processor 10 will execute instructions in its queue
as long as the local bus is not required or if the local bus
is required enter an idle state or nonoperational mode to
wait for the local bus to become available. A third
pulse, one clock wide, generated by processor 12
through the request/grant pin to processor 10, indicates
to processor 10 that it has completed or is about to
complete one or more transfers over the local bus and
that processor 10 may reclaim local bus 14 at the end of
the next clock. Each master-master exchange of local
bus 14 is a sequence of three pulses, each of which in the
illustrated embodiment is active low. After each local
bus exchange, one dead clock cycle is observed, but in
the general case, is not required.
The TEST pin is an input to processor 10 and is

examined by a software prefix instruction by means of a
conventional microcode circuit, which instruction may
be referred to as a "wait for test' instruction. If the
TEST pin is active, execution of the instruction stream
continues, otherwise processor 10 waits in an idle state.
A BUSY signal is generated by processor 12 as a result

O

15

20

25

30

35

40

45

50

55

65

of the decoding of one of its instructions from the in
struction stream to indicate that it is then executing an
instruction whose result must be achieved before cer
tain other instructions in the stream can be processed by
itself or one or more other processors. In many in
stances processor 12 may return control of local bus 14
to processor 10 while still being internally engaged in
the execution of one or more instructions. One or more
dedicated processor instructions which do not require
the result of prior, as yet unexecuted, dedicated proces
sor instructions are inserted into a second queue of
processor 12. In such instances, processor 10 will be
granted control of bus 14 so that it can continue execu
tion of the instruction stream. However, processor 12
may make a local bus request at any time since it may
need control of the local bus. For example, processor 12
may require bus 14 to write the result of an operation
into memory or to read an operand from memory, to
dump its status into memory in response to a dump
instruction or to acquire other dedicated instructions
from the queues of other like dedicated processors. In
order to avoid the premature execution of the instruc
tion which needs the results of the instruction currently
being executed by processor 12, or which needs proces
sor 12 on line for joint processing or the initial joint
processing of the next instruction, TEST will first be
examined by processor 10 to determine if processor 12 is
busy and if so wait in an idle state until processor 12
responds by driving TEST inactive. TEST is generated
by conventional means in processor 12, such as by a
status decoder coupled to a flip-flop and buffer to gen
erate a TEST signal whenever processor 12 is busy as
set forth above. When the TEST signal goes inactive,
processor 10, which may have entered an idle state, is
permitted to continue with the execution of the instruc
tion stream.
Many other input and output signals are also illus

trated in FIG. 1 with respect to processors 10 and 12.
These signals include such conventional signals as
READY which is an input signal which is indicative of
acknowledgement from the addressed memory device
that it has completed the data transfer. Generation of
RESET causes the processor to immediately terminate
its activity and enter its dormant state. Execution is
restarted when the RESET signal goes inactive. Byte
high enable, BHE, is an output signal which is used to
enable data onto the most significant half of a two byte
data bus, as described in greater detail in the copending
application entitled "Apparatus and Method for Provid
ing Byte and Word Compatible Information Transfers,"
filed on May 30, 1978, Ser. No. 910,103 and assigned to
the same assignee of the present invention. As described
therein the first bit of the multiplexed address/data bus
line, AD0, functions as a byte low enable signal to anal
ogously enable data on to the least significant half of the
two byte data bus.

Organization of the Central Processor
FIG. 2 illustrates in simplified block form a portion of

the architecture of processor 10 according to the illus
trated embodiment as described in greater detail with
respect to the above referenced copending application
entitled, "Extended Address, Single and Multiple Bit
Microprocessor." In particular, FIG. 2 illustrates the
upper control portion of processor 10,

Processor 10 is characterized in part by an instruction
queue 28 which is diagrammatically illustrated as in

4,270,167
9

cluding six paired registers of byte length, Q0 through
Q5. Each of the consecutive pairs can be coupled to
form a word length register. Instructions are fetched
from an external memory which holds the instruction
stream common to all coprocessors and placed within
queue 28. A plurality of registers 30 is provided for
addressing functions and operational requirements as
discussed in the above referenced copending applica
tion. Similarly, a dedicated adder 32 and associated
temporary registers and buses are combined with the
upper file registers, including queue 28 and registers 30,
to complete the addressing functions of processor 10 as
coupled to the twenty address pins A0-A19 as illus
trated in FG, 2.

Instruction bytes stored within queue 28 are trans
ferred along an internal queue bus 34 according to the
control of queue control logic circuitry 36, which is
comprised of random logic circuitry of conventional
design to conditionally generate a plurality of internal
discrete command signals. Queue control circuit 36
provides the housekeeping functions which would nor
mally be expected with the filling, emptying and organi
zation of a multiple byte queue of registers. A plurality
of internal discrete control signals are provided from
queue circuit 36 to cycle type decision circuit 38, also
comprised of similar conventional random logic cir
cuitry and which also receives a similar plurality of
discrete control signals from the lower execution unit.
The T state timing generator 40 generates the "T"

and "100" clock signals. For example, the T state gen
erator generates the discrete clock signals T1, T2, T3,
and T4. Addresses are normally generated in processor
10 during T1 and data transfer occurs on local bus 14
during stages T2 through T4. In the event that a re
source (i.e. memory, peripheral, etc.) located on the
common, private or local bus is not ready to receive
information, a plurality of "T" wait states, TW, may be
inserted between T3 and T4. Each "T" wait state has
the same duration as one of the T1 through T4 clock
cycles. In addition, a plurality of idle states may be
inserted between bus cycles, to wit after T4 and before
the following T1. The relationship of the "T" cycles to
processor status signals, S0-S2, to the queue status sig
nals, QSO and QS1, and to BHE is best shown in the
timing diagram of FIG. 3. It should be further noted
that each "T" cycle is comprised of two asymmetric
clock pulses denoted as d1 and dz, d1 and d2 are
strictly repetitive and are unaffected by instructions.
"T" state generator 40 is of conventional design well
known to the art. For example, "T" state generator 40
can be fabricated from a plurality of flip-flops to define
the current "T" state, and supported by plurality of
ancillary flip-flops ultimately coupled to the lower exe
cution unit of processor 10 by means of a corresponding
plurality of discrete control signals in order to intelli
gently track or respond to the instruction flow. The "T"
states are appropriately generated according to the
instruction in execution. The "T" and d timing signals
are then combined in timing and logic circuitry 42 with
a plurality of discrete internal control signals derived
from cycle type decision circuit 38.
The discrete internal control signals may then be

logically combined and timed for transmission to corre
sponding plurality of conventional or three state output
buffers 44. A "tristate' circuit is generally understood
to denote a three state circuit which is able to assume
both binary logic levels as well as a high impedance
state. The output of buffers 44 include the processor

O

15

20

25

30

35

45

SO

55

10
status signals S0-S2, BHE, and the queue status signals,
QS0 and QS1 the last two of which need not be tri
stated. In addition, timing and logic circuitry 42 gener
ates the bidirectional request and grant signals
RG/GTO and RG/GT1 as well as the discrete control
signal, LOCK.

Status Signal Circuitry
FIG. 4 illustrates the relevant portion of circuits 42

and 44 for the generation of the processor status signals
S0-S2. Consider for example the processor status signal
S0. Internal discrete control signals, "do write cycle
next," DWCN; "interrupt acknowledge cycle," IACK;
and "T4 do instruction fetch next," T4DIFN, are pro
vided as inputs to a conventional OR gate 46. The out
put of the gate 46 is high if any one of these inputs is
true. Reference to TABLE I will show that SO assumes
a logical zero in each of these instances. The output of
gate 46 is synchronized by AND gate 48 whose inputs
are T4 of the last instruction and the internal control
signal, FIRST, to time the setting of flip-flop 50.
FIRST is derived by conventional means from circuit

38 and signifies that the first transfer of a single or multi
ple bus transfer is to be run. Processor 10 is capable of
accessing instructions and data either on even or odd
address boundaries. In the case of a word having a first
byte beginning on an odd address, a two step fetch or
two bus transfers are required. Internal discrete control
signal, FIRST, is used in part to implement the ability of
processor 10 to make both even and odd address fet
ches.
The output of gate 46 is enabled to the D input of

flip-flop 50 by means of gate 52. Flip-flop 50 is loaded in
response to the output of AND gate 48 being true,
Inverter 54 prevents the D flip-flop from refreshing
itself with its previous state while it is being loaded.
Flip-flop 50 is a conventional dynamic MOS D-type
load flip-flop or memory cell having two coupled in
verters each having inputs synchronized by d1 and d2
respectively and a feedback loop gated by L. Each of
the flip-flops described herein are of the same general
design and operation. The output of flip-flop 50 is then
coupled to input 58 of NAND gate 56. The other input
60 is coupled to the output of RS NOR gate latch of
flip-flop 62. The reset input to latch 62 is provided by
AND gate 64 while the set input is provided by AND
gate 66. Inputs to gate 66 are T4, b2 and KILT4 which
is an internal discrete control signal which when active
low prevents bus cycle status from being communicated
to the external world whenever the internal operation
of processor 10 dictates that a bus cycle is not to be run.
Thus S0 is driven active low, since if one of the internal
control conditions for So has been decoded, input 58 of
gate 56 will also be high. A low output is then coupled
to a conventional noninverting tristate output buffer 44a
to signify, active low, S0. The inputs to gate 64 are T3,
d1 and RDY which is an internal control signal gener
ally signifying that the addressed peripheral has ac
knowledged that it is ready to accept the transfer of
digital information. In the event that RDY has not been
driven high by an acknowledgment, a plurality of TW
states may be inserted between T3 and T4. When RDY
is high input 60 of gate 56 goes low on T3 db1 and a high
output is then coupled to a conventional noninverting
tristate output buffer 44a to signify inactive high S0.

Similarly, as shown in FIG. 4 processor status signal,
S2, is derived from OR gate 68 whose inputs include
IACK, interrupt/acknowledge cycle, and I/O, input

4,270,167
11

woutput cycle, which are internal control signals de
rived from the lower execution unit of the processor 10
signifying that the processor 10 is entering an interrupt
and acknowledge or input/output instruction cycle. If
either one of the inputs to decoder 68 are high, the
output is high and is coupled to AND gate 70. The
other input to AND gate 70 is T4DIFN, wherein
T4DIFN signifies that a "T4 of last instruction-do in
struction fetch next cycle" condition exists. If an in
struction fetch is not indicated and the output of de
coder 68 is high, the output of AND gate 70 is true, and
is enabled through gate 72, controlled by AND gate 48,
to the D input of flip-flop 74, which is internally config
ured in the same manner as flip-flop 50. The output of
flip-flop 74 is coupled to input 76 of logic gate 78. Thus,
if inputs 76 and 80 are each high, the output of gate 78
will be low signifying S2, active low in conformity with
the coding of TABLE I. Input 80 of gate 78 is coupled
to the Q output of latch 62. Thus, when the external
peripheral has indicated that it is ready, input 80 of gate
78 goes low on T3 db1 and a high output is then coupled
to a conventional noninverting tristate output buffer to
signify inactive high, S2.

Alternatively, the output of logic gate 78 is driven
low if input 82 goes high. Input 82 is coupled to NAND
gate 84 whose input in turn is coupled to NAND gate
86. The output of NAND gate 86 is indicative of the
HALT state. Gate 86 in turn has as three inputs, the
internal discrete control signals: DHCYC, which is
derived from an internal flip-flop indicating that a
HALT cycle is to be performed next; the signal HOLD,
which is an internal control signal instructing internal
circuits to halt and hold their status; and the timing
signal T1. The output of NAND gate 86 is synchro
nized through transfer gate 88 by clock b2, coupled
directly to gate 84, and held within a transitory memory
comprised of inverters 90 synchronized by clock b1
through gate 92. -

Processor status signal S1 is similarly derived from
OR gate 94 whose inputs are DRCN, do read cycle next
and T4DIFN. If either of these signals are high, the
output of the OR gate 94 is similarly high. The output of
gate 94 is enabled through gate 96 by the output of gate
48 and coupled to the D input of flip-flop 98. Flip-flop
98 is identical to and is controlled in the same fashion as
flip-flops 50 and 74. The output of flip-flop 98 is then
coupled to one input of NAND gate 100, the other
input being coupled to the Q output of latch 62. The
output of gate 100 is then coupled to tristate output
buffer 44c to generate S1 active low, indicative of the
memory and input/output read and instruction fetch
cycles as indicated in TABLE 1. Each of the tristate
output buffers 44a, 44b and 44c are tristated by the
internal discrete control signal, control tristate,
CTLTRI. This signal tristates S2-S0 when an alternate
dedicated processor is to take control of the local bus.

FIG. 5 illustrates that portion of timing and logic
circuitry 42 and output buffers 44 which generates the
queue status signals QSO and QS1. For example, con
sider the queue status signal QSO. Internal discrete con
trol signal read queue, RDQUE, is synchronized by b1,
inverted and coupled to NAND gate 102. The other
input of NAND gate 102 is coupled to OR gate 104
whose inputs are the timing clocks d2 and T12. The
signal, T12, is a specialized timing signal generated by
timing generator 40 which is low during the coinci
dence of the T1 and d2 clocks. The output of NAND
gate 102 is coupled to a conventional noninverting out

O

5

25

30

35

40

45

50

55

65

12
put buffer 106 whose output in turn is coupled to the
QS0 pin. RDOUE is a logically decoded signal conven
tionally generated from a plurality of other internal
discrete command signals and is indicative of a byte
having been taken out of queue 28. Thus, in conformity
with TABLE 2 above, QSO is true whenever a first or
subsequent byte is taken from the queue and is zero
whenever the queue is empty or no operation is being
performed.
RDQUE is also coupled to AND gate 108 whose

other input is the internal discrete control signal from
the lower execution unit of the processor, first clock,
FC synchronized by d1. The internal control signal,
FC, is described in greater detail in connection with the
above referenced copending application, "Extended
Address Single and Multiple Bit Micro-processor.” The
signal, FC, is a one clock pulse wide signal signifying
that the first step of a load cycle in the lower execution
portion of processor 10 is being undertaken. The output
of AND gate 108 is coupled to NOR gate 110 whose
other input is the internal discrete control signal,
FLUSH, synchronized by clock d1. FLUSH is de
coded from the lower execution portion of the proces
sor and instructs the upper portion of the processor to
disregard the contents of the queue. Typically, this
internal discrete control signal is generated when a
branch in the program is taken and the bytes within the
queue are, momentarily, no longer sequentially decoded
and executed. The output of NOR gate 110 is inverted
and coupled to a conventional noninverting output
buffer 114. The output of buffer 114 is coupled to the
QS1 terminal. Thus, whenever the processor is in the
first clock mode, or a byte has not been taken out of the
queue and the contents of the queue are not to be disre
garded, QS1 will be false indicating that the first byte of
code has been taken from the queue or that no operation
is being executed as verified by the encoding of
TABLE 2.
As part of FIG. 5 but not shown therein the signal

LCK, is an internal discrete control signal which is
specifically decoded from a software instruction from
the lower execution portion of the processor. LCK is
coupled to a conventional noninverting tristate output
buffer whose output in turn is coupled to the LOCK
terminal thus, LCK is equivalent to Lock except for the
tri-state buffering of LOCK. Although the presently
illustrated embodiment had been shown in simplified
diagrammatic form in FIGS. 4 and 5, it must be under
stood that many other modifications and alterations
may be made without departing from the spirit of the
scope of the present invention. For example, it is possi
ble to provide a minimum/maximum signal to selec
tively configure the processor to present one of a plural
ity of operational modes to the outside world. For ex
ample, to operate as a concurrent processor as disclosed
herein, or as a unitary processor not associated with
another processor in a cooperative role.
The request/grant portion of timing logic circuitry 42

of FIG. 2 is best illustrated in FIG. 6. The request/grant
terminals are each bidirectional terminals which are
used in the three-pulse hand shake between processor
10 and processor 12 in regard to arbitration of local bus
14. Consider, for example, request/grant signal, REQ0.
A request generated by processor 12, is received on
REQ0 and coupled to the Linput of D-type load flip
flop. 118. As described below, the REQ0 terminal is
coupled to a pull-up device 160, pull-down device 154
and a trickle device 161 which is designed to be of such

4,270,167
13

size that the voltage at REQ0 can be sufficiently
changed by typical external signals on the local bus.
Devices 154 and 160 selectively pull the voltage on
REQ0 up or down in response to the request/grant
protocol as described below.
The output of gate 124 is coupled to one input of OR

gate 150 and to driver 152 synchronized by clock d1.
The output of driver 152 has its output coupled to pull
down device 154 which is coupled between the
terminal and ground. The output of OR gate 150 is
coupled to one input of NAND gate 156. The other
input of NAND gate 156 is coupled to RESET which is
normally true. The output of gate 156 in turn is coupled
to driver 158 synchronized by clock d1. The output of
driver 158 in turn is coupled to a pull-up device 160
coupled between the power supply and REQ0.
REQ0 is also inverted and coupled to gate 120 which

gates a new input signal to the D input terminal of flip
flop 118 only when goes active low, The D input
is derived from OR gate 122 whose inputs include the
inverted Q output of flip-flop 118 and the output of
NOR gate 124. Assume that the circuit has been initial
ized and that all flip-flops have been reset or set as
required, and in particular that flip-flop 118 has been
initially reset. As will be seen, NOR gate 124 will then
have a low output. Thus, when REQ0 goes low, flip
flop 118 will load in the value at the D terminal, a one,
since its Q output was initially zero and consequently
the output of OR gate 122 true. A full T clock is re
quired to load flip-flop 118 since it has two coupled
inverter stages, the first synchronized by d1 and the
second by d2. Accordingly, a zero cannot be loaded
into flip-flop 118 through OR gate 122 until the next
load cycle.
The output of flip-flop 118 is designated as a request/.

grant signal RGA. RGA is coupled to one input of
NAND gate 123. Assume for the purposes of illustra
tion that REQ1 is inactive so that the Q output of flip
flop 126, the request/grant signal, RGE, remains in the
initialized set condition. Therefore, RGE coupled to
gate 123 is also true. The other input to gate 123 is
derived from NAND gate 128, NAND gate 128 in turn
has as one input internal discrete control signal, LCK,
described above synchronized by b1. Again, for the
purpose of illustration, assume that the LCK signal is
inactive. The other input to NAND gate 128 is coupled
to the Q output of flip-flop 130 which is designated as
the request/grant signal, RGB. Initially, RGB is set,
therefore the output of gate 128 is also true. Since each
of the inputs to NAND gate 123 are thus true, the out
put is zero which is synchronized by gate 132 and cou
pled to the D input of flip-flop. 130. The driving signal
for gate 132 will be described in detail below, but for the
present purposes may be taken to be equivalent to the
timing signal T2. A zero will then be loaded into flip
flop 130 in response to a local bus request generated by
processor 12 and received on REQ0.
RGB is then coupled to NAND gate 134 whose other

input is coupled to RGE. Again, RGE is assumed to be
true since REQ1, in the example, is inactive. The output
of NAND gate 134 is true and coupled to driver 136.
Thus, internal control signal, HOLD, goes true indicat
ing to the internal circuitry of processor 10 that an
external master is requesting control of the local bus.
The output of driver 136 is also coupled through an

inverter to one input of AND gate 138. The other input
of AND gate 138 is the internal discrete control signal,
local bus request, LREQ, wich signifies that processor

O

20

25

35

45

50

55

65

14
10 desires to have control of the local bus, Thus, once
HOLD has gone true, gate 138 is disabled. In such a
case, the zero output of gate 138 is coupled to OR gate
140 whose other input is the internal timing signal, T1.
The output of OR gate 140 is in turn coupled to NAND
gate 142 which drives synchronization gate 132. Nor
mally processor 10 will not be in an idle state and there
fore the output of OR gate 140 will be true thereby
allowing gate 142 to drive synchronization gate 132 on
clock T2 unless the internal discrete control signal,
FIRST, goes active on one input of OR gate 144. If the
first byte of a multiple byte instruction is being fetched,
gate 142 will then be disabled and a request for the local
bus from processor 12 will be ignored. In summary, all
external requests will be ignored unless the processor 10
is in an idle state and is either not requesting the local
bus or has brought HOLD true or alternatively is not
fetching the first byte of a multiple byte instruction.
REQ0 has now been driven low by an external re

quest generated by processor 12 indicated by the falling
edge of pulse 162 in FIG. 7 and HOLD has been acti.
vated. Flip-flop. 130 has an advanced Q output, QA
which is coupled through an inverter to one input of
NOR gate 124. As will be described below, when the
output of NOR gate 124 goes high, the circuit of FIG.
6 will pull REQ0 low and visa versa. Assuming that
processor 10 is not entering an idle state and thereby TI
is low, gate 148 will isolate flip-flop 146 from flip-flop
130. QA, which will then be a logical zero, will be
coupled to one input of NOR gate 124 while TI is true.
Flip-flop 146 will have remained set in the initialized
condition and its QA output will be false. Therefore, the
output of NOR gate 124 will be low. REQ0 is pulled
high as indicated by the rising edge of pulse 162 in FIG.
7 by a means described below.
RGB from flip-flop. 130 also coupled to the D input of

load type flip-flop 146 through gate 148. Gate 148 is
driven the timing signal T IDLE, TI. Thus, when pro
cessor 10 reaches the end of a bus cycle the internal
timing signal TI will be generated and if a HOLD has
been previously generated, a zero it will be coupled to
the D input of flip-flop. 146. However, it will require
one clock period for the zero to propagate through
flip-flop. 146. In the meantime the inputs to NOR gate
124 will cause gate 124 to go high since TI has gone
active low, since flip-flop 130 is reset indicating a
HOLD, and since flip-flop 146 has not yet been reset.
Consequently, REQ0 will be driven low as illustrated
by the falling edge of pulse 164 in FIG. 7. When the
zero propagates through flip-flop 146, gate 124 will go
low. The QA output of flip-flop 146 is then coupled to
NOR gate 124.
When processor 12 has finished its bus cycle and is

prepared to return control of local bus 14 to processor
10 it will pull REQ0 low again as illustrated by the
falling edge of pulse 166. Flip-flop 118 will then be
loaded. However, at this point the output of NOR gate
124, having a logical one as an input from flip-flop 146,
is generating a false output. The false output signal is
coupled through OR gate 122 to the D input of flip-flop
118 and transmitted on the output thereof as RGA. A
one is generated by gate 123 and appropriately loaded
into flip-flop. 130. HOLD then goes inactive, the output
of gate 124 goes low and REQ0 is pulled high. TI will
then go high.
Both REQ0, after inversion, and the output of NOR

gate 124 are coupled to the inputs of an exclusive OR
gate 168. Exclusive OR gate 168 is part of circuitry

4,270,167
15

which prevents the circuitry of FIG. 6 from pulling
REQ0 high immediately after request pulse 162 has
been generated by processor 12, and also generates the
rising edges of pulses 162, 164 and 166 in FIG. 7. The
output of gate 168 is coupled to a pull-up device 172 5
which is clocked on b2 through a transmission gate 174
to inverter 170 whose output in turn is coupled to OR
gate 150. The output of gate 168 is also inverted and
coupled to a transmission gate 176, the output of which
is coupled to the input of transmission gate 174. Gate
176 selectively couples gate 174 to REQ0. Whenever
processor 12 pulls REQ0 low and no grant is being
generated by processor 10, REQ0 will be pulled high
after one clock cycle. One clock cycle after R goes
low it will be pulled high for one clock cycle by pull-up
device 160 and maintained in the high state by a self
biased trickle device 161. For example, when REQ0
goes low it is inverted and propagated along line 163. If
grant line 165 is inactive, that is false, a one will be
generated by gate 168. Device 172 will place a one on 20
node 167. A zero will be generated by gate 150 and
REQ0 ultimately pulled high after one clock. When
REQ0 goes true, a zero will then be propagated on line
163 and provided as an input to gate 168. The output of
gate 168 will then be zero, thereby enabling gate 17625
and pulling node 167 to zero. After one clock period the
output of gate 150 will go true thereby disenabling
pull-up device 160. However, since REQ0 was high,
trickle device 161 will maintain REQ0 in the high state
until once again pulled low by an external bus signal.
Gate 168 provides for the exceptional condition that

when grant line 165 is active high, and REQ0 is low,
node 167 will not be pulled high by gate 172 as would
typical be the case. Rather, if a grant pulse is generated
by processor 10 during this first clock, i.e. when the
output of gate 24 goes high, a one is synchronously
coupled to exclusive OR gate 168 during clock ol.
REQ0 is coupled through transmission gate 176 and the
circuitry is prevented from driving pull-up driver 158.
REQ0 will therefore remain active low without a high
spike during the request/grant cycle.
The circuitry for REQ1 is identical to that described

with respect to REQ0 and is illustrated in FIG. 6, with
the exception that REQ0 has priority over that of
REQ1. For example, OR gate 178 couples the signals 45
RGA and LCK into one input terminal of NAND gate
180 which serves an analogous role to that of gate 128
of the REQ0 circuitry. Thus, if RGA is active, flip-flop
126 will be fixed in the set state and a hold will not be
generated. However, as discussed above, the output of 50
flip-flop. 126, RGE, is coupled to NAND gate 123 such
that, if flip-flop. 126 should be active, indicating that a
hold request has been accepted on REQ1, flip-flop. 130
will similarly be fixed in a set state and will refuse to
generate a hold state in response to any request received
on REQ0.

O

5

30

35

55

The Dedicated Co-Processor

In the illustrated embodiment, which is used only for
the purposes of example, processor 10 cooperates with
a floating point unit, processor 12, a portion of the ar
chitecture of which is illustrated diagrammatically in
FIG, 8. It may be appreciated by comparing FIG. 8
with FIG. 2 that many of the upper control elements of
processor 10 and 12 are duplicated. This allows proces- 65
sors 10 and 12 to provide simultaneous coprocessing of
digital information. For example, processor 12 includes
address data buffers 182 and an adder 184 analogous to

16
the address data buffers xx and adder 32 of FIG. 2 for
processor 10. Similarly, processor 12 includes a register
file which simulates portions of the operative register
file 30 of processor 10 in that an operand address regis
ter 186, and instruction address register 188 and a tem
porary instruction address register 200 are provided. By
monitoring the activity on local bus 14, processor 12
uses its intelligence to keep its registers updated. These
registers similarly communicate by a bus 202 to an in
struction queue 204 which is a replication of the instruc
tion queue 28 of processor 10. A queue bus 206 is pro
vided as an output bus from queue 204 in a substantially
similar manner as is provided for processor 10 to com
municate with lower execution circuitry of processor 12
which will decode and perform the instructions which
have been earmarked for performance or execution
within processor 12. A timing generator 208 is substan
tially similar to timing generator 40 of processor 10 and
is alterable by the READY signal to provide the inter
nal T timing and such other specialized timing as is
required throughout processor 12. A queue control
circuit 210 is provided as a logic circuit for decoding
the queue status signals QSO and QS1, and the processor
status signals, S0-S2. Address calculations as may be
required by processor 12 and its upper portion may be
controlled by appropriate control circuitry such as a
conventional microcode circuit 212 or an equivalent
PLA control circuit. Address/data buffer 182 is cou
pled to local bus 14 and, pursuant to queue control
circuit 210, queue 204 is loaded in response to decoding
performed by queue control circuit 210 of the processor
status signals, S0-S2, in a conventional means analogous
to that used in processor 10. Therefore, as each byte is
fetched by processor 10 it is similarly taken from local
bus 14 and circulated through queue 204.
The status of the queue is decoded from QSO and QS1

according to conventions summarized in TABLE 2
above to indicate what operation is to be executed with
respect to bytes stored within queue 204. A byte is
coupled through queue bus 206 to a conventional de
coder 214 which then determines whether or not the
byte fetched is indicative of an instruction which is to be
specifically executed by processor 12. In the illustrated
embodiment of floating point instruction is comprised
of two bytes, the first byte of which is a float prefix
described in greater detail with respect to the above
referenced copending application entitled "Extended
Address, Single and Multiple Byte Microprocessor."
The second byte and portions of the first byte of the
instruction then identifies which of the floating point
instructions have in fact been encountered. Upon detec
tion of the float prefix, conventional decoder logic 216
will generate a triggering signal coupled to grant/re
quest logic circuitry 218. Circuit 218 cooperates with
the circuit previously described in connection with
FIG. 6 to request and obtain control of local bus 14 to
permit processor 12 to have selective access and control
to a local, private or system bus if required by a floating
point instruction. Thus, a floating point instruction can
reference an internal floating point stack and general
register file as well as any location in memory. When a
floating point instruction has been fetched from queue
204, processor 12 will execute that instruction in paral
lel with processor 10 while processor 10 continues its
instruction sequence.

Processor 10 decodes instructions from the queue and
addresses and fetches data according to the instruction
sequence, and in particular fetches the floating point

4,270, 167
17

operands. When the floating point instruction is de
coded from the queue, processor 10 recognizes it as
such, calculates an effective address and performs on
read. These instructions can use any of the CPU's oper
and addressing modes to reference any location in mem
ory without maintaining a copy of the CPU's addressing
registers internally, and without having to perform the
CPU's effective address calculations. Processor 10,
after relinquishing local bus 14 to processor 12, will
continue with the instruction stream until it requires the
result of the past instruction whereupon it checks the
status of the TEST pin. If the TEST pin indicates that
processor 12 is still executing the instruction, processor
10 will wait until processor 12 changes the logic level of
the TEST pin to indicate completion of its execution.

After decoding the float instruction, processor 10
forms an effective address which may require a fetch of
the next byte or word from the queue which will be
used in the calculation of the operand address. Proces
sor 10 performs a read. Processor 12 then loads the
address used during the read into its operand address
register 186 and stores the corresponding fetched por
tion of the operand in a temporary register, INA 188.
Processor 12, through request/grant circuitry 218, ob
tains control of local bus 14 to fetch the remainder of
the operand. While processor 12 proceeds to execute
the floating point instruction and processor 10 continues
to run through the programmed sequence, processor 12
also simultaneously tracks and monitors the status and
contents of queue 28 of processor 10 by replicating
queue 28 in queue 204.

Portions of queue control circuit 210 are illustrated in
FEG. 9 wherein the internal control signals, read queue
RDQUE is generated from QSO and synchronized by
clocks, d1 and d2. The internal control signals, first
cycle, FC; additional cycle, AC; and FLUSH are gener
ated from QSO and QS1 applied as inputs to conven
tional NOR gate decoders. The coding of TABLE 2
can be easily verified against the circuitry of FIG. 9
wherein the first cycle, FC, refers to the first byte of a
NOP code from the queue, the additional cycle, AC,
refers to the subsequent byte from the queue, FLUSH
refers to the operation of emptying the queue and
RDQUE refers generally to the reading of a first or
subsequent byte from the queue.

FIG. 10 shows similar conventional decoding for
processor status signals S0-S2. The output of NAND
gate 220, FETCH, referring to a code access, will only
be true if S2, S1 and S0 assume the status (100) respec
tively. The internal control signal, read/memory,
RDM, is generated by NOR gate 222 only if the proces
sor status signals, S2-SO assume the state (101). Simi
larly, the output of NOR gate 224 is only true when
S2-SO assume the state (001), indicating the input/out
put read operation. RSNOR gate flip-flop. 226 has its Q
output coupled to one input of NOR gate 222 and has its
set input coupled to AND gate 228. The inputs to AND
gate 228 are the timing signal T3 and RDM. Thus, on
the first T3 cycle after which a read/memory operation
is indicated, latch 226 will be set thereby disabling NOR
gate 222. The internal control signal, flush memory,
FLMEM, is used as the rest input to latch 226.
Read/memory, RDM, is inverted and coupled to

NOR gate 230 whose other inputs are d2 and the timing
signal T22 which is indicative of the T2 and d2 timing
coincidence. The output of NOR gate 230 is the internal
control signal load operand address, LOPA, which
causes register 186 to be loaded with proper timing on

O

5

20

25

30

35

40

45

SO

55

65

18
a memory/read. When an instruction is being fetched,
the signal, FETCH, is inverted and coupled to one
input of NOR gate 232, whose other inputs are T22, b2
and the output of NOR gate latch 234. The output of
gate 232 is the internal command signal load instruction
address, LINA, which causes register 188 to be loaded
with the address of an instruction byte. Latch 234 is
reset by AND gate 236 whose inputs are RESET "logi
cal OR" FLUSH and q2. Latch 234 in turn is set by the
output of AND gate 238 whose inputs are d2 and the
output of NOR gate 240. NOR gate 240 in turn has the
inputs FETCH, T2 and RESET--FLUSH. Thus, if
RESET "OR" FLUSH goes true, latch 234 is reset and
gate 232 enabled. However, when each of the inputs to
gate 240 are zero, which includes RESET “OR”
FLUSH, latch 234 will be reset and gate 232 will be
disabled until RESET "OR" FLUSH once again goes
true.
While a third instruction address register tracks the

address of the instruction which processor 10 is fetch
ing, if a second floating point instruction is decoded
while processor 12 is executing a first for which it must
actively access the local bus later on such as during a
memory write, queue control circuit 212 will insert the
second instruction address into register 200, the tempo
rary instruction address register TINA. After the first
floating point instruction has been fully executed, queue
control circuit 210 will insert the contents of TINA
register 200 into INA register 188 and execute the sec
ond floating point instruction in the same manner. The
same is true for the temporary data address register.

FIG. 11 illustrates circuitry which may be employed
as the request/grant logic circuitry 218 of processor 12.
Request/grant pin 250 is coupled to a pull-down device
252 which in turn is driven through an inverter 254 and
transmission gate 256 clocked by d1. The input to trans
mission gate 256 is derived from the output of NOR
gate 258. When the output of NOR gate 258 goes low it
will synchronously be coupled to inverter 254 which in
turn will activate device 252 thereby pulling down
request grant pin 250.

Inverter 260 is coupled to the internal command sig
nal circuit idle, CTIDLE. CTIDLE signifies the state
wherein processor 12 has no need for access to the local
bus. Conversely, CTIDLE indicates active state in
which processor 12 will generate a bus request such as
illustrated as pulse 162 of FIG. 7. When access is re
quired, CTIDLE goes low and a one will be syncho
nously coupled through transmission gate 262 on clock
d2 to an input of NAND gate 264. When each of the
other two inputs to NAND gate 264 are true the output
will be active false which is coupled to an input of NOR
gate 266. The output of NOR gate 266 is a signal, Re
quest Set, REQSET. When each of the inputs to NOR
gate 266 are false the REQSET will be true and coupled
to one input of NOR gate 258. When either input to
NOR gate 258 is true, its output is active false and re
quest/grant pin 250 is pulled active low.

Initially D-type lode flip-flop. 268 will be reset by the
hardware reset signal, HARDRST. The Q output of
flip-flop. 268 is then coupled as one of the inputs to gate
264. D type load flip-flop. 272 is initially reset indicative
that processor 12 does not have the bus. The Q output
of flip-flop. 272 is coupled through inverter 274 to gate
264 providing a zero output. The Q output of flip-flop
272, Have Bus, HVBUS, is also coupled to device 276
and one input of NOR gate 278. The other input of
NOR gate 278 being coupled to REQSET. The output

4,270,167
19

of NOR gate 278 is coupled to the Linput of flip-flop
268. Since terminal 250 is initially allowed to float high,
the output of inverter 254, must be false. Inverter 254 is
synchronously coupled through gate 280 by clock d2,
inverter 282, gate 284 by clock d1 and inverter 286. The
output of gate 280 is directly coupled to one input of
NOR gate 266. Thus, each of the inputs to NOR gate
266, except the output of gate 264, are initially false.
Therefore, in the initialized condition, REQSET will go
true when the output of NAND gate 264 goes false in
response to CTIDLE going false. It should be noted
when pin 250 goes low, RGD which goes high is ulti
mately coupled to the input of gate 266 one T clock
later, REQSET then goes low and pull-down device
252 is disabled. As described above, this allows the
pull-up circuitry of FIG. 6 to pull the REQ0 pin high,
which pin is coupled to pin 250.

Request/grant pin 250 is coupled through two invert
ers 288 to an input of NOR gate 290. The other input of
NOR gate 290 is RGD. The output of gate 290 is cou
pled to the input of NAND gate 292 whose other input
is a clock d1. The output of gate 292 is coupled to one
input of NOR gate 294 whose other input is HVBUS.
The output of gate 294 in turn is coupled to one input of
NOR gate 296 whose output is coupled to the L input of
flip-flop. 272. The other input of gate 296 is RGD. The
output of gate 294 is similarly coupled to a pull-up de
vice 298 which in turn is coupled to the D input of
flip-flop. 272, RGD is coupled to pull-down device 300
which is similarly coupled to the D input of flip-flop
272. Thus, in an initial condition, when output pin 250 is
true, a one is coupled to one input gate of 290 which
then has a zero output. A constant one is generated by
gate 292 and coupled to the input of gate 294 which will
then have a zero output. Since RGD is initially zero,
flip-flop. 272 will not be loaded and will remain in the
reset condition.
However, when processor 10 requests the bus and

pulls pin 250 low, RGD will go true. The output of gate
290 remains false. However, flip-flop. 272 is now in a
load state and pull-down device 300 activated. Thus, a
zero is loaded into flip-flop. 272. When processor 10
generates a CPU grant, as illustrated by pluse 164 FIG.
7, CTIDLE will be inactive and pin 250 pulled low.
RGD will thus be false and the output of gate 290 true.
d1 will be coupled by gate 292 to the input of gate 294.
During clock (b1, gate 294 will generate a true output
which will again set flip-flop. 272 into the load state.
Pull-up device 298 will be activated and a one will be
loaded in flip-flop. 272 bringing HVBUS active true.
HVBUS then indicates to the external local bus that
processor 12 has requested and obtained a grant to the
local bus.
Meanwhile, when processor 12 first requested the bus

but did not yet have it, the output of NOR gate 278
went false setting flip-flop. 268 into the load state. At
such time HVBUS was false and REQSET true such
that pull-up device 270 was enabled. A one was there
fore loaded into internal request bus flip-flop. 268. A
zero was fed back to gate 264 from the Q output of
flip-flop. 268 to disable gate 264 and fix REQSET to
zero. When processor 12 acquired the bus and set
HVBUS high, flip-flop. 268 was again set into the load
state, but pull-down device 276 enabled while pull-up
device 270 was disabled thereby loading a zero into
flip-flop. 268 to permit the acceptance of a subsequent
local bus request from processor 12.

10

15

20

25

30

35

45

50

55

60

65

20
However, when HVBUS went active high, gate 264

was disabled by the output of inverter 274. When CT
DLE again goes high indicating that processor 12 is
done with a bus, a zero will be coupled to one input of
NOR gate 302 through inverters 260 and 261. The out
put of gate 302 is synchronously coupled through trans
mission gate 304 by clock b2 to inverter 306. The other
inputs of NOR gate 302 are coupled to HVBUS and the
signal LCK which was described above. Thus, when
processor 12 does not have the bus, gate 302 will be
disabled. However, when processor 12 does have the
bus, HVBUS1 goes false. Assuming that LCK is false,
as is typically the case, a one, generated by gate 302, is
coupled to inverter 306 whose output in turn is coupled
to NOR gate 308. The output of NOR gate 308 is cou
pled to one of the inputs of NOR gate 258. When each
of the inputs to NOR gate 308 are false, the output is
true thereby enabling gate 258 and pulling pin 250 ac
tive low thereby generating a bus release pulse 166 as
illustrated in FIG. 7. The other inputs to NOR gate 308
are T4 synchronously coupled through gate 310 by
clock d2 from inverter 312 and the internal control
signal advanced ready, ADRRDY synchronously cou
pled through gate 314 by clock d2. ADRRDY is inter
nal control signal indicative of the condition where the
control section is about to start a bus cycle on the next
clock.
Thus is can be appreciated that when ADRRDY is

active, gate 308 is disabled thereby preventing proces
sor 12 from generating or grant to give up the bus.
Moreover, the bus can be surrendered through NOR
gate 308 only during the last T cycle of a bus transfer,
namely T4. In the case where LCK is active, processor
12 is instructed not to surrender the local bus under any
conditions. In this case a one is coupled to the input of
NOR gate 302 thereby fixing the output at zero. This in
turn disables gate 308.
When gate 308 indicates a surrender is to be made by

going active, RGD will again be false and b1 will be
coupled to gate 294. A zero will be reloaded into flip
flop. 272 and the circuitry of FIG. 11 restored to its
initialized condition.

It must be understood that many modifications and
alterations may be made without departing from the
spirit and scope of the present invention as set forth in
the claims below. The present invention has been de
scribed in terms of a particular embodiment only for the
purposes of illustration and does not limit the scope of
the invention. For example, the request/grant circuitry
illustrated in FIG. 11 may have many other organiza
tions other than that described and depicted while still
exhibiting the protocol exchanged between processors
10 and 12 as illustrated in FIG. 7. Similarly, the internal
organization referenced with respect to processors 10
and 12 as shown in FIGS. 2 and 8 respectively need not
be incorporated in order for two processors to process
digital information according to the present invention.
We claim:
1. A circuit for providing arbitration of a bus between

a first and second processor mutually coupled to a bus,
each processor being arranged and configured to exe
cute at least one predetermined type of instruction not
entirely executable by the other processor, wherein said
first processor fetches all instructions and wherein said
second processor detects at least one predetermined
type of instruction executable therein, said circuit com
prising:

4,270,167
21

first bidirectional means in said first processor for
receiving a bus request signal indicative of a re
quest from said second processor to said first pro
cessor for access and control of said bus, for selec
tively generating a bus grant signal indicative of
release by said first processor of access and control
of said bus, and for receiving a bus release signal
indicative of a release by said second processor to
said first processor of access and control of said
bus;

second bidirectional means in said second processor
for selectively generating said bus request signal in
response to said second processor having detected
said one predetermined type of instruction execut
able in said second processor, for receiving said bus
grant signal, and for selectively generating said bus
release signal;

wherein said first processor includes a means for
transmitting a plurality of status signals indicative
of the type of transfer cycle being performed by
said first processor; and

whereby a plurality of instructions may be coopera
tively processed in a concurrent manner in said first
and second processors.

2. The circuit of claim 1 wherein said first processor
includes means for generation of a LOCK signal in
response to a predetermined instruction and transmits
said LOCK signal to said second bidirectional means of
said second processor, said second processor retaining
access and control of said bus through said second bidi
rectional means when access and control has previously
been granted to said second processor.

3. A circuit to selectively provide access and control
of a bus between at least a first and second processor,
said first and second processors each being arranged
and configured to execute at least in part at least one
predetermined type of instruction nonexecutable in
total by said other processor, comprising:

first means in said first processor for generating a
plurality of status signals indicative of the opera
tional status of said first processor and for transmit
ting said plurality of status signals to said bus;

second means in said second processor for receiving
said plurality of status signals from said bus and for
decoding said plurality of status signals to track
said operational status of said first processor;

third means in said second processor for selectively
requesting access and control over said bus in re
sponse to detection by said second processor of
said at least one predetermined type of instruction;
and

fourth means in said first processor for selectively
granting access and control over said bus to said
second processor in response to a request there
from;

whereby the execution of instructions may be cooper
atively distributed between said first and second
processor for concurrent instruction stream execu
to.

4. The circuit of claim 3 wherein said third means also
Selectively relinguishes access and control over said bus
to said first processor.

5. The circuit of claim 3 wherein said plurality of
status signals include a first plurality of signals indica
tive of the operational type of the bus transfer cycle
being run by said first processor, said transfer cycle to
be executed next.

5

O

15

20

25

30

35

40

45

SO

55

22
6. The circuit of claim 3 or 5 wherein said plurality of

status signals include a second plurality of signals indic
ative of the operational status of an instruction storage
queue within said first processor.

7. The circuit of claim 3 wherein said first and second
processor are coupled to a common clock circuit and
are each synchronized therewith.

8. The circuit of claim 3 wherein said third and fourth
means generates a bidirectional request/grant signal
characterized by having at least three states, a request
state wherein said second processor selectively seeks
access and control of said bus from said first processor
through said third and fourth means, a grant state
wherein said first processor selectively grants access
and control of said bus to said second processor through
said fourth and third means, and a release state wherein
said second processor selectively releases access and
control of said bus to said first processor through said
third and fourth means, said selective seeking of access
and control of said bus by said second processor being
in response to detection by said second processor of at
least one of said type of instructions executable by said
second processor.

9. The circuit of claim 6 wherein said first processor
includes means for continuing to execute instructions
from said storage queue when said second processor has
access and control of said bus and wherein said first
processor includes means for selectively delaying reac
quisition of access and control of said bus while using
said bus and at least one other common and private bus
to transfer digital information as required by instruc
tions within said second processor.

10. The circuit of claim 6 wherein said first processor
includes means for continuing execution of instructions
from an instruction stream while said second processor
is executing an instruction and wherein said first proces
sor includes means for selectively delaying execution of
a subsequent instruction within said first processor in
response to a TEST signal from TEST means for gener
ating said TEST signal when execution within said
second processor is incomplete, said means for delaying
being activated when said first processor requires com
pleted results of said execution within said second pro
CSSO

11. In combination with a first processor having a
means for storing and queuing a plurality of instruc
tions, said first processor having selective access and
control to a local bus shared by said first processor and
at least a second processor, a circuit comprising:

first means in said first processor for generating a
plurality of queue status signals indicative of the
status of said means for storing and queuing in
structions said queue status signals transmitted to
said local bus;

second means in said first processor for generating a
plurality of processor status signals indicative of
the operation then being performed by said first
processor, said processor status signals transmitted
to said local bus; and

third means in said first and second processor for
selectively controlling access of said second pro
cessor to said shared local bus,

whereby the operational status of said first processor is
transmitted to said shared local bus and whereby said
first processor may control access over said shared local
bus as determined by requests received from said sec
ond processor by said first processor in response to said

4,270,167
23

queue, processor status signals, and instruction decod
ing within said first processor.

12. The circuit of claim 11 wherein said circuit is
included in part within said second processor and fur
ther comprises:

fourth means for receiving said queue and processor
status signals, for tracking said operation then
being performed by said first processor; and

for replicating in said second processor said means for
storing and queuing instructions in said first proces
sor; and

fifth means for detecting at least one predetermined
one of said plurality of instructions for execution
within said second processor, and for communicat
ing with said third means to selectively cause said
first processor to temporarily relinquish access and
control over said local bus and to temporarily give
said second processor access and control over said
local bus;

sixth means for monitoring said second processor to
determine whether said second processor has con
cluded execution and is available for further execu
tion;

whereby said plurality of instructions are coopera
tively and concurrently coprocessed by said first
and second processors whereby digital processing
capacity is extended and increased.

13. The circuit of claim 11 in further combination
with a common bus and means for arbitrating access
and control over said common bus, said circuit further
comprising:

seventh means in said first processor for selectively
generating a LOCK signal and for transmitting said
LOCK signal to said means for arbitrating access
and control over said common bus and to said
second processor, said LOCK signal being indica
tive of an instruction executed in said first proces
sor to unconditionally retain access and control
over said common bus for at least said first and
second processors for at least a first bus transfer
cycle.

14. The circuit of claim 13 further comprising:
eighth means in said second processor for selectively

generating said LOCK signal and for transmitting
said LOCK signal to said means for arbitrating
access and control over said common bus to uncon
ditionally retain access and control over said com
mon bus on a bus transfer cycle subsequent to said
first bus transfer cycle.

15. A method for processing digital information in at
least a first and second processor, each having selective
access and control to a bus, comprising the steps of:

selectively generating a bus request signal in a second
bidirectional means in said second processor in
response to detection of an instruction executable
in said second processor, said instruction fetched
by said first processor;

transmitting said bus request signal to said bus;
receiving said bus request signal in a first bidirectional
means in said first processor;

selectively generating a bus grant signal in said first
bidirectional means when said first processor no
longer requires access and control of said bus and
releasing access and control to said bus;

transmitting said bus grant signal to said second bidi
rectional means;

acquiring access and control to said bus by said sec
ond processor in response to the receiving of said

24
bus grant signal, selectively releasing access and
control of said bus by said second processor;

acquiring access and control of said bus by said first
processor;

5 whereby instructions fetched onto said bus may be co
operatively and concurrently processed in said first and
second processors.

16. The method of claim 15 further comprising the
step of selectively inhibiting release of said bus by said
second processor by generation of a LOCK signal by
said first and second processors in response to a prede
termined instruction, transmitting said LOCK signal to
the means for arbitrating access and control of a com
mon bus and inhibiting bus release in response thereto.

17. A method for processing digital information in a
plurality of processors sharing a local bus and having
selective access and control to at least one of a common
bus and private bus, at least a first processor of said
plurality of processors having means for storing and
queuing instructions said method comprising the steps
of:

generating a plurality of queue status signals and
processor status signals in said first processor, said
queue status signals indicative of the status of said
means for storing and queuing instructions, said
processor status signals indicative of the operation
then being performed by said first processor;

transmitting said queue and processor status signals to
said local bus; and

selectively controlling access to said local bus in
response to requests received by said first proces
sor from a second processor of said plurality of
processors,

whereby operation of said first processor may be
tracked by said second processor, said first and
second processors cooperatively and concurrently
coprocessing said instructions on said local bus.

18. The method of claim 17 wherein the step of selec
40 tively controlling access to said local bus includes the

steps of:
receiving said queue and processor status signals from

said local bus by said second processor;
tracking and replicating the operation and means for

storing and queuing instructions of said first pro
cessor in said second processor;

detecting at least one of said instructions as being
designated for execution by said second processor;
and

requesting said first processor to temporarily relin
quish access and control over said local bus and to
temporarily give said second processor access and
control over said local bus while permitting said
first processor to continue to operate in a nonac
cessing mode.

19. The method of claim 17 in further combination
with means for arbitrating access and control over said
common bus further comprising the steps of:

selectively generating a LOCK signal; and
transmitting said LOCK signal to said means for arbi

trating access and control over said common bus,
said LOCK signal being indicative of an instruction
in said first processor to unconditionally retain
access and control over said system bus for said
plurality of processors.

20. The method of claim 19 wherein said LOCK
signal is generated in at least one of said first and second
processors.

O

15

25

30

35

45

50

55

60

4,270,167
25 26

21. The method of claim 17 wherein the step of selec- cessor is required by said first processor and unavailable
tively controlling access to said local bus is further in from said second processor,
response to a TEST signal generated by said second whereby an instruction stream is concurrently pro
processor, said first processor being inhibited from ac- cessed by said first and second processors in a co
cessing said local bus in response to said TEST signal 5 operative manner.
when an operand result computed by said second pro- sk

O

s

20

25

30

35

40

45

50

55

60

