STA001

RF FRONT-END FOR DIGITAL RADIO

TARGET SPECIFICATION

\{ Single chip receiver for satellitedigital transmission
\{ Superheterodyne receiver with IF output
\{ High input intercept point, low mixer noise
\{ Receive RF frontend with 60dB IF gain control
\{ 15 dB RF automatic gain control
\{ Integrated RF VCO
\{ Integrated IF VCO
\{ Integrated synthesizer
\{ ${ }^{2}$ CBUS compatible programming interface
\{ Unregulated 2.7 V to 3.3 V voltage supply
\{ Low cost external components

DESCRIPTION

The STA001 is an RF IC using STMicroelectronics HSB2 High Speed Bipolar Technology for one chip solution for the Starman digital satellite radio receiver.
The STA001 is assembled in a TQFP44 package. The frontend architecture is a double conversion receiver (see block diagram) .
The chip includes all the RF functions up to low IF and manages the signals to and from the baseband.

STA001

BLOCK DIAGRAM

STA001

ABSOLUTE MAXIMUM RATINGS

Symb.	parameter	Value	units
$\mathrm{T}_{\text {oper }}$	Operating temperature	$-40,+85$	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage temperature	$-40,+125$	${ }^{\circ} \mathrm{C}$
$\mathrm{V}_{\max }$	Maximum voltage on any pin (with the exception of CE, SDA, SDL)	$\mathrm{VP}+0.3$	V
$\mathrm{~V}_{\min }$	Minimum voltage on any pin	GND-0.3	V
$\mathrm{V}_{\max }$	Maximum voltage on pins CE,SDA, SDL	$\mathrm{VP}+0.6$	V
$\mathrm{~V}_{\text {pmax }}$	Minimum/Maximum power supply between $\mathrm{VP}_{1,2,3,4}$ and $\mathrm{VN}_{1,2,3,4}$	$-0.3 / 5.5$	V
$\mathrm{~V}_{\text {esd }}$	Electrostatic Discharge Voltage(ESD)	2	KV

OPERATING CONDITIONS

Symb.	parameter	Value	units
V_{s}	Operating voltage	$2.7,3.3$	V
$\mathrm{~T}_{\mathrm{jun}}$	Operating junction temperature $\left(\mathrm{T}_{\mathrm{ex} 1}=25^{\circ}, \mathrm{V}_{\mathrm{s}}=3 \mathrm{~V}\right)$	35	${ }^{\circ} \mathrm{C}$

PINS CONNECTION

STA001

PINS FUNCTION

N.	Name	Description	Notes
1	VP1	Positive supply 1	(
2	SIP	SAW filter input connection	
3	SIN	SAW filter input connection	
4	VN1	Negative supply 1	
5	LNI	RF input	
6	NLNI	RF input	
7	VN1	Negative supply 1	
8	CAP	RF AGC loop external capacitor connection	
9	PADJ1	RF Peak level detection trimming connection 1	
10	PADJ2	RF Peak level detection trimming connection 1	
11	ENRFOSC	RF Oscillator enable	
12	VP2	Positive supply 2	
13	TK1	1st PLL tank connection 1	
14	NTK1	1st PLL tank connection 2	
15	VP2	Positive supply 2	
16	FLT1	1st PLL loop filter connection	
17	VN2	Negative supply 2	
18	XTAL1	Quartz oscillator connection 1	
19	XTAL2	Quartz oscillator connection 2	
20	REF	External optional TCXO input	
21	XOSEL	Internal/external XO selection	
22	TLCK	Lock detector output	

STA001

N.	Name	Description	Notes
23	M_CLK2	Master clock differential output 1	(
24	M_CLK1	Master clock differential output 2	
25	VN3	Negative supply 3	
26	SDA	Data serial input	
27	SCL	Clock input	
28	VP3	Positive supply 3	
29	CE	Chip Enable	
30	GADJ2	IF bandwidth filter connection 2	
31	GADJ1	IF bandwidth filter connection 1	
32	NRXI	Low IF Signal output 2	
33	RXI	Low IF Signal output 1	
34	FLT2	2nd PLL loop filter connection	
35	VP4	Positive supply 4	
36	TK2	2nd PLL tank connection	
37	NTK2	2nd PLL tank connection	
38	VP4	Positive supply 4	
39	AGC2	VGA control pin 2	
40	AGC1	VGA control pin 1	
41	VN4	Negative supply 4	
42	SON	SAW filter output connection	
43	SOP	SAW filter output connection	
44	VN4	Negative supply 4	

STA001

ELECTRICAL CHARACTERISTICS

Supplies ($\mathbf{T = 2 5} \mathbf{2 0}^{\circ}$, VP-VN =3V)

Symb.	Parameter	Test condition / notes	Min	Typ.	Max.	Units
$\mathrm{I}_{\text {CC1 }}$	Current supplied by VP1	Powered circuits: LNA, RF mixer, IF buffer		15,8	19	mA
$\mathrm{I}_{\text {CC2 }}$	Current supplied by VP2	Powered circuits: RFpll, Crystal Oscillator. ENRFOSC=high (IC RF Osc. Enabled), XOSEL=high (IC XO Enabled) ENRFOSC=low (IC RF Osc. Disabled), XOSEL=high (IC XO Enabled) ENRFOSC=high (IC RF Osc. Enabled), XOSEL=low (IC XO Disabled) ENRFOSC=low (IC RF Osc. Enabled), XOSEL=low (IC XO Disabled)		9.6 3.2 8.4 2	12 4 11 2.5	mA mA mA mA
$\mathrm{I}_{\text {CC3 }}$	Current supplied by VP3	Powered circuits: Digital cells		11,8	15	mA
$\mathrm{I}_{\text {CC4 }}$	Current supplied by VP4	Powered circuits: VGA, IF mixer, output buffer, IF pll. $\mathrm{V}(\mathrm{AGC} 1)=\mathrm{V}(\mathrm{AGC} 2)=1.2\left(\mathrm{IF}_{\text {gain }}=75 \mathrm{~dB}\right)$		10	13	mA
$\mathrm{I}_{\text {TOT }}$	$\begin{aligned} & \mathrm{I}_{\mathrm{CC} 1}+\mathrm{I}_{\mathrm{CC} 2}+\mathrm{I}_{\mathrm{CC} 3}+ \\ & \mathrm{I}_{\mathrm{CC} 4} \end{aligned}$	ENRFOSC=high (IC RF Osc. Enabled), XOSEL=high (IC XO Enabled) ENRFOSC=low (IC RF Osc. Disabled), XOSEL=high (IC XO Enabled) ENRFOSC=high (IC RF Osc. Enabled), XOSEL=low (IC XO Disabled) ENRFOSC=low (IC RF Osc. Enabled), XOSEL=low (IC XO Disabled)		$\begin{gathered} 47.2 \\ 40.8 \\ 46 \\ 39.6 \end{gathered}$	59 51 58 49.5	mA mA mA mA
$\mathrm{I}_{\text {TOTSB }}$	Standby $\mathrm{I}_{\mathrm{CC} 1}+$ $\mathrm{I}_{\mathrm{CC} 2}+\mathrm{I}_{\mathrm{CC} 3}+\mathrm{I}_{\mathrm{CC} 4}$	CE=GND			100	uA

STA001

Lna, RF mixer andIF1 BUFFER ($\mathbf{T}=\mathbf{2 5}{ }^{\circ}$, VP-VN=3V)

Symb.	Parameter	Test condition / notes	Min.	Typ.	Max.	Units	
BW_{i}	Input signal BW		1452		1492	MHz	
BW。	Output signal BW		114		116,5	MHz	
$\mathrm{G}_{\mathrm{V} \text { min }}$	Minimum Voltage Gain	$\mathrm{R}_{\mathrm{L}}=200 \Omega$	17	20	23	dB	
$\mathrm{G}_{\mathrm{V} \text { max }}$	Maximum Voltage Gain	$\mathrm{R}_{\mathrm{L}}=200 \Omega$	33	35	37	dB	
$\mathrm{Z}_{\text {i }}$	Input impedance $\mathrm{R} \\| \mathrm{C}$	Balanced, LNI, NLNI pins		$\begin{gathered} 75 \\ 0.2 \end{gathered}$		Ohm pF	
$\mathrm{Z}_{\text {o }}$	Output impedance	Balanced, SIP, SIN pins	41	50	59	Ohm	
R_{1}	Input Return Loss	Input of LNA	7	14		dB	
IIP3ol	Open RF AGC loop Input IP3	$\begin{aligned} & \text { Gain = 35dB, } \\ & \text { Input of LNA } \end{aligned}$	-26	-24		dBm	
IIP3	Input IP3	$\mathrm{R}_{\text {exx }}=5 \mathrm{~K}$ connected between PADJ1, PADJ2, Input of LNA	-20	-17		dBm	
$\begin{gathered} 1 \mathrm{~dB} \\ \text { c.p. } \end{gathered}$	Input 1 dB compression, open AGC loop	$\text { Gain }=35 \mathrm{~dB} \text {, }$ Input of LNA	-35	-33		dBm	
NF	Noise figure contribution	$\begin{aligned} & \text { Gain }=35 \mathrm{~dB}, \mathrm{R}_{\mathrm{s}}=50 \Omega, \\ & \mathrm{R}_{\mathrm{l}}=200 \Omega \end{aligned}$		5	7	dB	
IF $1_{\text {leak }}$	LO1 to IF1 leakage			-29	-25	dBm	
$\mathrm{RF}_{\text {leak }}$	LO1 to RF leakage			-49	-30	dBm	
V_{DC}	LNI, NLNI common mode DC voltage	AC coupled to the Balun	VP-1.4	VP-1.2	VP-1	V	
V_{DC}	SIP, SIN common mode DC voltage	AC coupled to the SAW filter	VP-1.3	VP-1.1	VP-0.9	V	
V_{DC}	$\begin{aligned} & \text { PADJ1 } \\ & \text { PADJ2 } \\ & \text { CAP } \end{aligned}$	$\mathrm{R}_{\text {exx }}=5 \mathrm{~K}$ connected between PADJ1, PADJ2		$\begin{array}{\|c\|} \hline \text { VP-0.7 } \\ \text { VP-0.625 } \end{array}$	$\begin{array}{\|c} \hline \text { VP-0.55 } \\ \text { VP-0.47 } \\ \text { VP } \end{array}$	V	
$\tau_{\text {AGC }}$	RF AGC loop time constant	$\mathrm{C}_{\text {ext }}=100 \mathrm{nF}$ connected on CAP	68	81	94	uS	
$\mathrm{P}_{\text {RFI }}$	RF Input power level at which RF gain starts decreasing (see next page graphs)	$\mathrm{R}_{\text {ext }}=5 \mathrm{~K}$, tolerance $= \pm 1 \%$	-46	-42	-38	dBm	
$\mathrm{P}_{\text {RF2 }}$	RF Input power level at which RF gain ends decreasing (see next page graphs)	$\mathrm{R}_{\text {ext }}=5 \mathrm{~K}$, tolerance $= \pm 1 \%$	-32	-27	-22	dBm	
$\mathrm{G}_{\text {Vrange }}$	AGC gain range	$\mathrm{R}_{\mathrm{ex}}=1 \mathrm{~K} \sim 10 \mathrm{~K}$	13	15	17	dB	

STA001

RF Intermodulation performance (Sensitivity to Rext on PADJ1, PADJ2))

TYPICAL RF GAIN/P ${ }_{\text {out }} /$ IM3 vs INPUT POWER

STA001

IF VGA amplifier, IF mixer and output buffer($\mathbf{T}=\mathbf{2 5 ^ { \circ }}, \mathbf{V P}-\mathrm{VN}=\mathbf{3 V}$)

Symb.	Parameter	Test condition / notes	Min	Typ.	Max.	Units
BW_{i}	Input signal BW		114		116,5	MHz
BW	Output signal BW		0,6		3,1	MHz
$\mathrm{G}_{\text {min }}$	Minimum gain	$\mathrm{V}\left(\mathrm{AGC}_{1,2}\right)=0 \mathrm{~V}$		32	37	dB
$\mathrm{G}_{\text {max }}$	Maximum gain	$\mathrm{V}\left(\mathrm{AGC}_{1,2}\right)=3 \mathrm{~V}$	81	86		dB
$\mathrm{I}_{\text {AGC }}$	Input current in AGC control pin				10	uA
$\mathrm{Z}_{\text {AGC }}$	AGC pin input impedance		150	600		KOhm
NF	Noise figure contribution	Gain $=75 \mathrm{~dB}, \mathrm{Rs}=200 \Omega$		7,5	10	dB
NF	Noise figure contribution	$\begin{aligned} & \text { Gain }=49 \mathrm{~dB} \\ & \mathrm{Rs}=200 \Omega \end{aligned}$		24	27	dB
1 dB c.p.	Input 1 dB compression point	Gain $=75 \mathrm{~dB}$	-68	-65		dBm
1 dB c.p.	Input 1 dB compression point	Gain $=49 \mathrm{~dB}$	-42	-39		dBm
IIP3	Input IP3	Gain $=75 \mathrm{~dB}$	-59	-56		dBm
IIP3	Input IP3	Gain $=49 \mathrm{~dB}$	-33	-30		dBm
$\mathrm{Z}_{\text {in }}$	Input impedance	Balanced, SOP, SON pins	42,5	50	57,5	Ohm
$\mathrm{Z}_{\text {out }}$	Output impedance	Balanced, RXI, NRXI pins	150	200	250	Ohm
$\mathrm{V}_{\text {out }}$	Output differential Voltage swing			1	1,5	V_{pp}
$\mathrm{V}_{\text {DC }}$	SOP, SON common mode DC voltage	AC coupled to the SAW filter	VP-1.2	VP-1	VP-0.8	V
$\mathrm{V}_{\text {DC }}$	RXI, NRXI common mode DC voltage		VP-1.6	VP-1.3	VP-1	V
$\mathrm{V}_{\text {DC }}$	GADJ1, GADJ2 common mode DC voltage		VP-0.15	VP-0.12	VP-0.09	V
$\mathrm{Z}_{\text {adj }}$	Gain adjustment pins impedance	Balanced, GADJ1, GADJ2 pins	650	800	950	Ohm
$\mathrm{BB}_{\text {leak }}$	LO2 to BB leakage	Obtained using low pass filter at the output		-45	-30	dBm
IF2 $2_{\text {leak }}$	LO2 to IF2 leakage	Obtained with SAW filter connected to IF port		-44	-30	dBm
IM3	Third order IM product	$\mathrm{V}_{\text {out }}=1 \mathrm{~V}_{\mathrm{pp}}$			-30	dBc

TYPICAL IF OVERALL GAINvs CONTROL VOLTAGE

STA001

Crystal oscillator ($\mathbf{T}=\mathbf{2 5} \mathbf{5}^{\circ}, \mathbf{V P}-\mathrm{VN}=\mathbf{3 V}$)

Symb.	Parameter	Test condition / notes	Min	Typ.	Max.	Units
$\mathrm{f}_{\text {xall }}$	Quartz frequency	- Resonance mode: series - Using a 14.72		14,72		MHz
$\mathrm{f}_{\mathrm{xta2}}$	Quartz frequency	- Resonance mode: series - using a 14.725 quartz		14,725		MHz
P_{n}	Phase noise	$\Delta \mathrm{f}=1 \mathrm{KHz}$		-120	-118	$\mathrm{dBc} / \mathrm{Hz}$
V_{DC}	XTAL1, XTAL2 common mode DC voltage	XOSEL high	VP-1.1	VP-0.9	VP-0.7	V

PLLs, Synthesizers ($\mathbf{T}^{2} \mathbf{2 5}^{\circ}$, VP-VN =3V)

Symb.	Parameter	Test condition / notes	Min	Typ.	Max.	Unit \mathbf{s}
$\mathrm{t}_{\text {s }}$	RF pll loop settling time	within 1 KHz final freq. Offset, by using the loop filter of Application board		1	10	ms
P_{n}	Total phase noise contribution	$\begin{aligned} & 100 \mathrm{~Hz}<\Delta \mathrm{f}<1.84 \mathrm{Mhz}, \\ & \mathrm{Q}_{\mathrm{rf} \text { _tank }} \geq 20, \mathrm{Q}_{\mathrm{if} \text { itank }} \geq 20 \end{aligned}$			2	$\mathrm{deg}_{\mathrm{rms}}$
$\mathrm{f}_{\text {REF1 }}$	RF pll comparation frequency			920		KHz
$\mathrm{f}_{\text {REF2 }}$	IF pll comparation frequency			113.23		KHz
$\mathrm{P}_{\text {SP }}$	Spurious power level	RF pll, $\Delta \mathrm{f}_{\mathrm{c}}=920 \mathrm{KHz}$ IF pll, $\Delta \mathrm{f}_{\mathrm{c}}=113.23 \mathrm{KHz}$			$\begin{aligned} & 50 \\ & 50 \end{aligned}$	dBc dBc
$\mathrm{N}_{\text {progl }}$	RF PLL selectable division ratios	from REF1 to LO1, range covered by a 0.5 step, using a 14.72 MHz quartz	1443 (first used 1454.5)		$\begin{gathered} 1506.5 \\ \text { (last used } \\ \text { 1495) } \end{gathered}$	
$\mathrm{N}_{\text {prog } 2}$	RF PLL selectable division ratios	from REF1 to LO1, range covered by a 0.5 step, using a 14.725 MHz quartz	$\begin{array}{\|c\|} \hline 1443 \\ \text { (first used } \\ 1454 \text {) } \end{array}$		$\begin{gathered} 1506.5 \\ \text { (last used } \\ 1494.5 \text {) } \end{gathered}$	
$\mathrm{N}_{\text {fix }}$	IF PLL fixed division ratios	from REF2 to LO2, 1 fixed +2 testing values	987	1034	1081	
$\mathrm{N}_{\text {ReF1 }}$	REF1 division ratio	from Crystal oscillator toREF1		16		
$\mathrm{N}_{\text {REF2 }}$	REF2 division ratio	from Crystal oscillator toREF2		130		

STA001

RF VCO (T=25 $\left.{ }^{\circ}, \mathrm{VP}-\mathrm{VN}=3 \mathrm{~V}\right)$

Symb.	Parameter	Test condition / notes	Min	Typ.	Max.	Units	
$\mathrm{f}_{\text {LOI_1 }}$	LO Freq. range	Using 14.72Mhz quartz	1338.14		1375.4	MHz	
$\mathrm{f}_{\text {LOI_2 }}$	LO Freq. range	Using 14.725Mhz quartz	1338.134375		1375.407031	MHz	
$\mathrm{V}_{\text {FLTI }}$	Freq. control voltage range	Pin FLT1	$\mathrm{VN}+0.2$		VP - 0.2	V	
P_{n}	Phase noise	$\begin{aligned} & @ 100 \mathrm{KHz} \text { @ (SIP, NIP } \\ & \text { pins), } \\ & \mathrm{Q}_{\mathrm{rf} _ \text {tank }} \geq 20 \end{aligned}$		-110	-108	$\mathrm{dBc} / \mathrm{Hz}$	
V_{DC}	TK1, NTK1 DC voltage	ENRFOSC high	VP-1.3	VP-1.1	VP-0.9	V	
$\mathrm{Z}_{\text {i }}$	Input impedance $\mathrm{R} \\| \mathrm{C}$	Balanced, TK1, NTK1 pins		$\begin{gathered} 300 \\ 0.2 \end{gathered}$		Ohm pF	

IF VCO (T=25 $\left.{ }^{\circ}, \mathbf{V P}-\mathrm{VN}=\mathbf{3 V}\right)$

Symb.	Parameter	Test condition / notes	Min	Typ.	Max.	Units
$\mathrm{f}_{\text {LO2_1 }}$	LO Freq.	Using a 14.72MHz quartz, Min. and Max. Values are optional fixed frequency usable for testing purposes.	111.76	117.08	122.4	MHz
$\mathrm{f}_{\text {LO2_2 }}$	LO Freq.	Using a 14.725MHz quartz, Min. and Max. Values are optional fixed frequency usable for testing purposes.	111.8	117.12	122.44	MHz
$\mathrm{V}_{\text {FLT2 }}$	Freq. control voltage range	FLT2 pin	$\mathrm{VN+0.2}$		$\mathrm{VP}-0.2$	V
P_{n}	Phase noise	@ 100KHz @ (RXI, NRXI pins), $\mathrm{Q}_{\text {if_tank } 20}$		-115	-113	$\mathrm{dBc} / \mathrm{Hz}$

STA001

Digital interface to $\mu \mathbf{P}(\mathbf{S C L}, \mathrm{SDA}, \mathrm{TLCK})$ and XOSEL interface ($\mathbf{T}=\mathbf{2 5} \mathbf{5}^{\circ}, \mathbf{V P}-\mathrm{VN}=\mathbf{3 V}$)

Symb.	Parameter	Test condition / notes	Min	Typ.	Max.	Units
$\mathrm{V}_{\text {IH }}$	digital input signals	high	VP-1		VP	V
$\mathrm{V}_{\text {IL }}$		low	VN		$\mathrm{VN}+1$	V
I_{IH}	Input current High		10			uA
$\mathrm{I}_{\text {LL }}$	Input current Low				-40	uA
Tt	Input edge transition				0.1	us/V
V_{OH}	digital output signals	high	VP-0.5		VP	V
$\mathrm{V}_{\text {OL }}$		low	VN		$\mathrm{VN}+0.5$	V
t_{r}	Rise time	$\mathrm{Cl}=5 \mathrm{pF}$		0.4	0.6	us/V
t_{f}	Fall time	$\mathrm{Cl}=5 \mathrm{pF}$		0.4	0.6	us/V
$\mathrm{R}_{\text {in }}$	Input resistance		160K	190K	220 K	Ohm
$\mathrm{I}_{\text {max }}$	Maximum input current into SCL, SDA	During transient overvoltage condition			10	mA

STA001

Differential Digital interface(M_CLK1, M_CLK2) (T=25 ${ }^{\circ}$, VP-VN = $\mathbf{3 V}$)

Symbol	Parameter	Test condition / notes	Min	Typ.	Max.	Units
V_{OH}	digital output signals, V(M_CLK1) - V(M_CLK2)	high		0.2		V
$\mathrm{V}_{\text {OL }}$		low		-0.2		V
V_{DC}	M_CLK1, M_CLK2 common mode DC voltage		VP-1.1	VP-0.9	VP-0.7	V
t_{r}	Rise time	$\mathrm{Cl}=5 \mathrm{pF}$ each pin		10	12	ns
t_{f}	Fall time	$\mathrm{Cl}=5 \mathrm{pF}$ each pin		10	12	ns
$\mathrm{Z}_{\text {out }}$	Output impedance	balanced		500	600	Ohm
$\mathrm{f}_{\mathrm{M} \text { _CLK1 }}$	M_CLK frequency	Using a 14.72 MHz quartz		14.72		MHz
$\mathrm{f}_{\mathrm{M} \text { _CLK2 }}$	M_CLK frequency	Using a 14.725 MHz quartz		14.725		MHz

Additional digital interface(CE) (T=25 $\left.{ }^{\circ}, \mathbf{V P}-\mathrm{VN}=3 \mathrm{~V}\right)$
(low=GND, high=VP)

Symb.	Parameter	Test condition / notes	Min	Typ.	Max.	Units
V_{HH}	digital input signals	high	$\mathrm{VN}+1.8$			V
$\mathrm{~V}_{\mathrm{It}}$		low			$\mathrm{VN}+1.3$	V
t_{r}	CE power up time				2	us
t_{f}	CE power down time				6	us
$\mathrm{I}_{\max }$	Maximum input current into CE	During transient overvoltage condition			10	mA

STA001

XOsel, CE, TLCK, ENRFOSC truth table
(low=GND, high=VP)

PIN	TYPE	Level	result
CE	input	high	Chip enabled
		low	Chip disabled
XOSEL	input	high	Internal Crystal oscillator selected
		low	External TCXO connected on REF selected
ENRFOSC	input	high	Internal RF oscillator selected
		low	External RF oscillator connected on TK1, NTK1 pins
	output	high	Synth. locked
		low	Synth. unlocked

Additional optional interface information (REF)

Symb.	Parameter	Test condition / notes	Min	Typ.	Max.	Units
$\mathrm{P}_{\text {REF }}$	Optional testing external reference clock connected on REF power	It must be AC coupled to REF, XOSEL low	-2	0		dBm
V_{DC}	REF DC voltage	XOSEL low	VP-1.1	VP-0.9	VP-0.7	V
$\mathrm{R}_{\text {in }}$	Input resistance	XOSEL low	60 K	70 K	80 K	Ohm

STA001

I² ${ }^{2}$ BUS INTERFACE

Data transmission from microprocessor to theSTA001 takes place through the 2 wires $^{2} \mathrm{C}$ BUS interface, consisting of the two linesSDA and SCL (pull-up resistors to positive supply voltage must be connected toSDA and SCL).

Data Validity

The data on the SDA line must be stable during the high period of the clock. The HIGH to LOW state of the data line can only change when the clock signal on thSCL line is LOW.

Start and Stop conditions

A start condition is a HIGH to LOW transition of theSDA line while SCL is HIGH. The stop condition is a LOW to HIGH transition of theSDA line while SCL is HIGH.

Byte format

Every byte transferred on theSDA line must contains bits. Each byte must be followed by an acknowledge bit. TheMSB is transferred first.

Acknowledge

The master $(\mu \mathrm{P})$ puts a resistive HIGH level on theSDA line during the acknowledge clock pulse. The peripheral(STA001) that acknowledges has to pull-down (LOW) theSDA line during the clock pulse.
The STA001 which has been addressed has to generate an acknowledge after the reception of each byte, otherwise theSDA line remains at at the HIGH level during the ninth clock pulse time. In this case the $\mu \mathrm{P}$ can generate the STOP information in order to abort the transfer.

Transmission withoutacknwoledge

Avoiding to detect the acknowlegde of the STA001, the $\mu \mathrm{P}$ can use a simpler transmission: simply it waits one clock period without checking theSTA001 acknowledging, and sends the new data.
This approach of course is less protected frommisworking.

Data Validity on the $\mathrm{I}^{\mathbf{2}} \mathrm{CBUS}$:

Timing Diagram of the ${ }^{2}{ }^{2}$ CBUS:

Acknowledge on the I^{2} CBUS:
sCL

Timing specification

Data and clock

SDA

SCL

Symbol	Parameter	Minimum time (ns)
t_{cs}	Data to clock set up time	100
t_{ch}	Data to clock hold time	50
$\mathrm{t}_{\mathrm{cwh}}$	Clock pulse width high	100
$\mathrm{t}_{\mathrm{cwl}}$	Clock pulse width low	100

Start and stop

Symbol	Parameter	Minimum time (ns)
Tstart $_{1,2}$	Clock to data start time	100
Tstop $_{1,2}$	Data to clock down stop time	100

Ack

Symbol	Parameter	Maximum time (ns)
$\mathrm{t}_{\mathrm{d} 1}$	Ack begin delay	200
$\mathrm{t}_{\mathrm{d} 2}$	Ack end delay	200

STA001

SOFTWARE SPECIFICATION

Interface protocol

The interface protocol comprises:

- A start condition (S)
- A chip address byte
- A two data bytes
- A stop condition (P)

MS				chip address			LSB		MSB			1st data byte				LSB			MSB			2nd data byte			LSB			
S	1	1	0	0	0	0	0	0	ack	1	D6	D5	D4	D3	D2	D1	D0	ack	0	D6	D5	D4	D3	D2	D1	D0	ack	P

ack $=$ Acknowledge
S = Start
$\mathrm{P}=$ Stop

"Byte by byte" option

A "byte by byte" programming mode is also possible when there is no need to use both data bytes to program the chip (for example during the setup of 2nd PLL).
To use this feature remember that first bit of both data bytes is reserved to chose the destination of the remaining 7 bits.

MS				chip address				LSB		MSB			data byte				LSB		
S	1	1	0	0	0	0	0	0	ack	K	D6	D5	D4	D3	D2	D1	D0	ack	P

ack $=$ Acknowledge
S = Start
$\mathrm{P}=$ Stop
$\mathrm{K}=$ destination of the remaining7bit:
$\mathrm{K}=1$ the data byte has the same function of the 1st data byte in the normal programming mode.
$\mathrm{K}=0$ the data byte has the same function of the 2nd data byte in the normal programming mode.

STA001

First data byte selection table (selection of synthesizer channel) using 14.72 Mhz quartz
$\left.\begin{array}{|c|c|c|c|c|c|c|c|c|l|c|}\hline \text { MSB } & & & & & & \text { LSB } & \begin{array}{c}\text { RF LO freq. } \\ \text { selected }\end{array} & \text { Units } & \begin{array}{l}\text { Division } \\ \text { ratio } \\ \text { selected on } \\ \text { synthesizer }\end{array} & \text { Notes } \\ \hline \text { D6 } & \text { D5 } & \text { D4 } & \text { D3 } & \text { D2 } & \text { D1 } & \text { D0 } & & & \begin{array}{c}\text { from REF1 } \\ \text { to LO1 }\end{array} & \\ \hline 0 & 0 & 0 & 0 & 1 & 1 & 0 & \begin{array}{c}1324.8+6^{*} 0.46 \\ (1327.56)\end{array} & \mathrm{MHz} & 1443 & \begin{array}{c}\text { Lowest } \\ \text { selectable } \\ \text { freq. }\end{array} \\ \hline 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1324.8+*^{*} 0.46 & \mathrm{MHz} & 1443.5 & \\ \hline 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1324.8+8^{*} 0.46 & \mathrm{MHz} & 1444 & \\ \hline- & - & - & - & - & - & - & & & & \\ \hline 0 & 0 & 1 & 1 & 1 & 0 & 1 & 1338.14 & \mathrm{MHz} & 1454.5 & \begin{array}{c}\text { first used } \\ \text { freq. }\end{array} \\ \hline- & - & - & - & - & - & - & \begin{array}{c}1324.8+\mathrm{N}^{*} 0.46 \\ \text { N=(D6..D0) } \\ \text { represented }\end{array} & \mathrm{MHz} & 1440+ & \begin{array}{c}\text { general } \\ \text { freq. }\end{array} \\ \hline 1 & 1 & 0 & 1 & 1 & 1 & 0 & 1375.4 & \mathrm{MHz} & 1495 & \begin{array}{c}\text { Last used } \\ \text { freq. }\end{array} \\ \hline- & - & - & - & - & - & - & & & & \\ \text { rule }\end{array}\right]$

STA001

First data byte selection table (selection of synthesizer channel) using 14.725Mhz quartz

MSB						LSB	RF LO freq. selected	Units	Division ratio selected on synthesizer	Notes D6 D5
D4	D3	D2	D1	D0			from REF1 to LO1			
0	0	0	0	1	1	0	1325.25 $+6 * 0.46015625$ (1328.010938)	MHz	1443	Lowest selectable freq.
0	0	0	0	1	1	1	1325.25 $+7 * 0.46015625$	MHz	1443.5	
0	0	0	1	0	0	0	$1325.25+$ $8 * 0.46015625$	MHz	1444	
-	-	-	-	-	-	-				
0	0	1	1	1	0	0	1338.134375	MHz	1454	first used freq.
-	-	-	-	-	-	-	$1325.25+$ $\mathrm{N}^{*} 0.46015625$ N=(D6..D0)	MHz	$1440+$	general freq.
							represented decimal number			generation rule
1	1	0	1	1	0	1	1375.407031	MHz	1494.5	Last used freq.
-	-	-	-	-	-	-				
1	1	1	1	1	1	0	1383.229688	MHz	1503	
1	1	1	1	1	1	1	1383.689844	MHz	1503.5	
-	-	-	-	-	-					
0	0	0	0	1	0	1	1325.25 $+133 * 0.46015625$ (1386.450781)	MHz	1506.5	Highest selectable freq.
1	0	0	0	1	0	1	1357.000781	MHz	1474.5	Startup presetted data

STA001

Second data byte selection table (LOCK test on bothpll, dividers test and IF pll test)

MSB						LSB	Working mode	Notes
D6	D5	D4	D3	D2	D1	D0		
0	0	0	0	0	0	0	Lock test on RF pll	lock flag to be tested: TLCK; Startup presetted data
0	0	0	0	1	0	0	Lock test on IF pll	lock flag to be tested: TLCK
0	0	0	0	0	0	1	Lock test on RF and IF pll	lock flag to be tested: TLCK
0	0	1	0	0	1	0	First pll programmable divider test	output freq. divided by 16 available on TLCK
0	0	1	1	0	1	0	First pll reference divider test	output freq. divided by 8 available on TLCK
0	0	1	0	1	1	0	Second pll fixed divider test	output freq. divided by 2 available on TLCK
0	0	1	1	1	1	0	Second pll reference divider test	output freq. available on TLCK
1	0	0	0	0	0	0	Test frequency on IF pll divider by 1034	Division ratio changed to 987
1	1	0	0	0	0	0	Test frequency on IF pll divider by 1034	Division ratio changed to 1081

STA001

FUNCTIONAL DESCRIPTION

Receiver chain

The receiver chain transforms the RF frequency signals to an IF signal at 1.84 MHz Carrier directly usable by the Channel decoder.

In front of the STA001 IC is placed an external LNA and a bandpass filter; the bandpass filter limitates the input bandwidth and guarantees a suitable rejection to the image frequency.

The input stage is a LNA working in the $1452-1492 \mathrm{MHz}$ band. A second gain stage after the LNA has a variable gain suitable for high level interfernce situations.

The interference level is measured by a power detector located into the IF1 Buffer and compared with a reference level adjustable with an external resistive trimmer connected between PADJ1, PADJ2 pins (see application circuit). An error amplifier regulates the RF gain comparing the 2 values.

The value of the resistor should be fixed depending on wantedM3 performances.
By connecting $\mathrm{R}_{\text {ext }}=10 \mathrm{~K}$, for example, an IM 3 of 25 dBc about is mantained by the receiver in condition of strong interference (see graph on page 7); an increase [decrease] of 2 dBc IM3 about is obtained for each 10% decrease [increase] of $\mathbb{R}_{\text {ext }}$.

By this approach it's possible to privilege IC noise or interference performance.
The RF signal is downconverted, using an active mixer, to a first IF of 115.244 MHz .
The first LO is tunable with a frequency step of 460 KHz .
An IF variable gain amplifier guarantees a 60 dB typical gain range.
Using pins GADJ1, GADJ2, the output RX signal level can be lowered to desired value by a resistive timmer.

Moreover, using static connection on AGC1, AGC2 pins, the IF chain can be configured to have a fixed gain by fixing statically control voltages (i.e. V(AGC1)=VCC and $\mathrm{V}(\mathrm{AGC} 2)=\mathrm{GND})$, and by trimming the gain through connecting an external resistor between GADJ1 and GADJ2. By using an 800 Ohm resistor connected between GADJ1 and GADJ2, for example, a typical 56 dBs IF static gain is obtained.

The first IF signal, having a bandwidth of 2.5 MHz , shaped by an external SAW filter, is downconverted to a second IF of 1.84 MHz .

A clock at 14.72 MHz is available at two differential pins to be used from the baseband.

Synthesizers, PLL, charge pump andVCOs

The first Voltage controlled Oscillator is controlled by an integrated PLL and it's able to cover a frequency range of 37 MHz with a step size of 46 KHz .

The second Voltage controlled oscillator produces a fixed 117.08 MHz frequency controlled by a second integrated PLL. Moreover, 2nd pll is able to select 2 other fixed frequencies, i.e. 111.76 MHz and 122.4 MHz , suitable for application test.

The other components of the first PLL synthesizer are a low frequency programmable divider and a dual modulus prescaler; a fixed dividers is instead used to synthesize the second VCO frequency. Other fixed internal dividers are used to get the comparation frequencies of both loops.

Channel selection is made through theI2CBUS interface, directly from the $\mu \mathrm{P}$.

STA001

POWER SUPPLIES

The chip operates from an unregulated power supply of 2.7 to 3.3 Volts. All interface circuits to the baseband chips are operated between these supplies unless otherwise specified.

INTERFACE SPECIFICATION

All the interface voltage levels to the micro controller are referenced to the supply voltage of the interface power supply (GND). The interface voltage levels are therefore fully compatible with base band circuits.
The digital levels are all CMOS threshold compatible with the exception of M_CLK1, M_CLK2 pins (ECL type).
For completeness all other interface signals are also included.

며닌	mm			inch		
	Hint	TrP．	HAME	M $\mathrm{HL}^{\text {d }}$	TrP．	HAPK
A			1， 0			00E
4	005		015	0，00e		000
A	1.35	1.40	1.45	0.083	0.055	00：
B	0.30	037	Q45	미를	민 4	0018
0	0109		OEO	00004		Q0，
［		$1 \supseteq 00$			口雨こ	
DI		1000			OSO＋	
［3		800			0．3 5	
E		0.80			0004	
E		1200			O．FE	
E1		1000			0394	
E．		8.00			0.35	
L	0.45	0.00	075	0016	004	0000
LI		1.00			0009	
K						

