® ABSTRACT

The first part of this paper discusses floating-point arithmetic, as performed by
computers and advanced digital calculators. It shows that different computer
arithmetics have been proposed, and that the nearest approximation to a
consensual computer arithmetic — the Institute of Electrical and Electronics
Engineers’ standard for floating-point arithmetic — had to be negotiated, rather
than deduced from existing human arithmetic.

The second part of the paper discusses mathematical proof of the correctness of
programs and hardware designs, which is increasingly being demanded for
systems crucial to safety or security. It argues that this extension of the domain of
application of mathematical proof involves the negotiation of what a proof
consists in. In 1987, this argument led the author and colleagues to predict a
legal case concerning the nature of mathematical proof. Such litigation took
place in 1991, the key point at issue is described. More general disagreement
about proof as applied to computer systems is also discussed. A further
prediction is made: that there will be litigation concerning not just what kind of
argument counts as a proof, but over the internal structure of formal proofs.

Negotiating Arithmetic, Constructing
Proof: The Sociology of Mathematics
and Information Technology

Donald MacKenzie

Since the 1960s, computer systems have been a subject of considerable
interest to social scientists. Their diffusion, their likely effects on
organizations, on employment levels and on society at large, the
evolution of the computer industry — these and other topics have
received considerable attention. Computer systems as mathematical
entities have, however, remained almost entirely the province of
technical specialists. This paper seeks to redress that balance, by
arguing that computer systems offer interesting, counter-intuitive,
case studies in the sociology of mathematics.

The paper discusses two different aspects of computer systems as
mathematical entities. First is the computer (and also the advanced

Social Studies of Science (SAGE, London, Newbury Park and New Delhi), Vol. 23
(1993), 37-65

from the SAGE Socia Science Collections. All Rights Reserved.

38 Social Studies of Science

digital calculator) as an arithmetical tool. Our intuitions might sug-
gest that arithmetic done by calculator or computer would be a
wholly unproblematic area. Arithmetic, after all, is the very paradigm
of secure, consensual knowledge, and surely the calculator or comp-
uter simply removes the tedium and error-proneness of arithmetic
performed by human beings? Not so. Not only is considerable skill,
normally taken entirely for granted, needed in order reliably to
perform arithmetic even on simple calculators, as Harry Collins has
recently discussed,' but there has also been significant dispute as to
the nature of the arithmetic to be implemented, at least when the
numbers to be worked with are not integers. Different computer
arithmetics have been proposed, and the nearest approximation to a
consensual computer arithmetic, the Institute of Electrical and Elec-
tronics Engineers’ standard for floating-point arithmetic, had to be
negotiated, rather than deduced from existing human arithmetic.

The second aspect of computer systems discussed here is mathe-
matical proof of the correctness of a program or hardware design. As
computer systems are used more and more in situations where their
failure could have disastrous consequences, there have been increas-
ing demands for such mathematical proofs in place of|, or in addition
to, empirical testing. This is of interest from the point of view of the
sociology of knowledge, because it involves a move of ‘proof” from
the world of mathematicians and logicians to that of engineers,
corporations and lawyers.

Although mathematical proof is being sought precisely because of
the certainty it is ordinarily held to grant, constructing proofs of
computer system correctness again turns out to be no simple ‘appli-
cation’ of mathematics. It involves negotiating what proof consists in.
Five years ago, colleagues and I predicted that the demand for proofs
of computer system correctness would inevitably lead to a court of
law having to rule on the nature of mathematical proof.” The paper
summarizes the controversy that led to this prediction having already
come close to confirmation, and explores more general issues of the
‘sociology of proof” in the context of computer systems.

Negotiating Arithmetic
Although past societies have used different number systems, human

arithmetic in advanced industrial societies is now consensual.
Typically, agreement can be found on the correct outcome of any

MacKenzie: Negotiating Arithmetic, Constructing Proof 39

calculation. There are, for example, to my knowledge no scientific
disputes where different sides have disagreed at the level of the
arithmetic itself. Furthermore, there are certain ‘ideal’ laws that we
agree must hold, independent of any particular calculation. For
example, we agree that the addition (+) and multiplication (%) of
real numbers should be both associative and commutative — that is to
say, that:

x+ty=y+x XXy=y XX
x+y)tz=x+(y+z) Xxy)xz=xX(yX2z

whatever the values of x, y and z.

The consensual status of arithmetic has indeed been taken as
indicating a self-evident limit on the scope of the sociology of know-
ledge.? It might seem to make implementing arithmetic on a cal-
culator or computer a straightforward business. Yet that has not been
the case.

The difficulties are most striking in the form of arithmetic used in
the kind of computations typically found in scientific work: floating-
point arithmetic. This is closely analogous to the well known ‘scien-
tific notation’ for expressing numbers. In the latter, a number is
expressed in three parts:

— a positive or negative sign

— a set of decimal digits, known as the significand or mantissa,
including a decimal point.

— a further set of digits, known as the exponent, which is a power of
ten.

Thus 1,245,000 could be expressed in ‘scientific notation’ as

+ 0.1245 times 10’
and — 0.0006734 as
— 0.6734 times 1073

The advantage of scientific notation is that allowing the decimal point
to ‘float’ in this way leads to a more economical and easily mani-
pulable format than the standard representation, where the decimal
point is ‘fixed’ in its position.

Computer floating-point arithmetic carries over this flexibility, and
is quite similar, except in the following respects:

1. Decimal (base ten) representation is now unusual, with hexa-
decimal (base sixteen) or binary (base two) more common. Since the
episode I am about to discuss concerns binary arithmetic, let us

40 Social Studies of Science

concentrate on that. All digits are one or zero: the decimal 3, for
example, is expressed as 11, the decimal 4 as 100, and so on. The
exponent is a power of two, and the equivalent of the decimal point is
known as the binary point. The sign, similarly, is expressed as a
binary digit, typically with a zero for positive numbers and a one for
negative numbers.*

2. A firm decision has to be taken as to the number of binary digits
(bits) in the significand and exponent. In the arithmetic to be dis-
cussed, for example, the basic format® has one binary digit to express
the sign, eight to express the exponent,® and twenty-three to express
the significand, adding to a total of thirty-two.

FIGURE 1
Number Representation in IEEE Floating-Point Arithmetic
| 8 23 ... widths
s e f
msb Isb msb Isb ..order

msb means most significant bit s means sign
Isb means least significant bit e means exponent
f means fraction

Source: IEEE Standard for Binary Floating-Point Arithmetic: American Nation-
al Standards Institute|/Institute of Electrical and Electronics Engineers Standard
754186 (New York: Institute of Electrical and Electronics Engineers, 12 August
1985), 9.

The total number of bits (sometimes called word-length) is of con-
siderable importance, since most modern computers seek to process
all the bits making up a number in parallel, rather than one after the
other. The more bits to be processed simultaneously, the greater the
complexity of the hardware needed.

3. Any floating-point system, unless constrained, allows multiple
representations of the same number. For example, —0.0006734
could be expressed by — 67.34 times 107>, as well as by — 6.734 times
1074, or —0.6734 times 1073. Computer floating-point systems, how-
ever, typically employ a unique ‘normal’ representation of each
non-zero number. In that representation, there is always exactly one
non-zero bit to the left of the binary point. Since that bit must be a
one, it need not be stored explicitly, and only the parts of the

MacKenzie: Negotiating Arithmetic, Constructing Proof 41

significand to the right of the binary point (known for obvious
reasons as the ‘fraction’) are explicit.

There are several decisions, then, to be taken in implementing
computer floating-point arithmetic. What base shall be used? What
word-length, size of significand and size of exponent? Shall a sign-bit
of one represent negative numbers or positive ones? How shall zero be
represented? What methods of rounding shall be used? What should
be done if the result of a calculation exceeds the largest absolute value
expressible in the chosen system (that is, if it ‘overflows’), or if it falls
below the smallest (that is, if it ‘underflows’)? What should be done if
a user attempts an arithmetically meaningless operation, such as
dividing zero by zero?

Different computer manufacturers (and then, as it became possible
to implement floating-point arithmetic on electronic calculators, different
calculator manufacturers) answered these questions differently. This
was patently a source of some practical difficulty, since it led to
problems in using a numerical program written for one computer on
another, even when standard programming languages such as
FORTRAN were used. But did it matter more profoundly than that?
Were the results of the different decisions really different arithmetics?
Or were they simply different, but essentially equivalent, ways of
implementing the one true arithmetic?

The answer to these questions depends on how one reacts to what
might be called ‘anomalous calculations’. Under some circumstances,
different machines yield substantially different results for the same
calculation. In certain cases it is possible to check machine results
against the results of human arithmetic, and in some of the cases the
machine can be judged wrong. In other cases, machine arithmetic
violates consensual laws, such as the commutative and associative
nature of multiplication. Examples are given in Figure 2.

Different reactions to ‘anomalous calculations’ can be categorized
according to the schema developed by Lakatos in his celebrated
analysis of the evolution of Euler’s theorem concerning the relation-
ship between the number of faces (F), edges (E) and vertices (V) of a
polyhedron. Lakatos showed that attempts to prove the relationship

V-E+F=2

were plagued by counter-examples — figures which could be claimed
to be tetrahedra, but which did not obey the law.”

42 Social Studies of Science

FIGURE 2

Multiplication is neither commutative nor monotonic on the TI [Texas
Instruments] 59; try en-ne. Division on the TI Business Analyst gets a different
quotient for 1/3 than for 9/27. Double precision in Basic on the IBM PC alleges
often that X/1 # X, and 1.000 . . . 0000/1.000 . .. 0001 > 1.

A bank retains a legal consultant whose thoughts are so valuable that she is
paid for them at the rate of a penny per second, day and night. Lest the sound of
pennies dropping distract her, they are deposited into her account to accrete
with interest at the rate of 10% per annum compounded every second. How
much will have accumulated after a year (365 days)?

Enter data:

n [number of periods]:= 60 x 60 x 24 x 365 = 31,536,000 sec. per year.
i[rate of interest]: = 10/n = 0.000 000 317 097 9198 % per sec.

PV [Principal Value at start] = 0

PMT [amount of periodic PayMenTs] = —0.01 = one cent per sec. to the
bank.

Pressing {FV} [Final Value] should display one year’s accretion but different
financial calculators display different amounts:

Calculators FV displayed
27,92,37,38,12 $331 667.00
BA 293 539.16
MBA 334 858.18

58, 58C, 59 331 559.38

Source: W. Kahan, ‘Mathematics written in Sand — the hp-15C, Intel 8087, etc.’,
Proceedings of the American Statistical Association, 1983 Statistical Computing Sec-
tion, 12-26, at 14 and 16.

One response to these ‘anomalous figures’ was what Lakatos calls
‘primitive exception barring’, simple indifference to their existence.
That characterizes well what seems to have been the majority re-
sponse to anomalous computer or calculator calculations. Most users
have probably been either unaware of the possibility of anomalous
calculations, or alternatively unconcerned about them, in the same
sort of sense that we continue happily to cross bridges even though we
are aware that some bridges have collapsed. For many computer
designers, too, anomalous calculations seem to have been well down
the list of matters needing attention, if they were on it at all.

MacKenzie: Negotiating Arithmetic, Constructing Proof 43

A more sophisticated ‘exception barring’ strategy was to cite the
vast bulk of calculations that were performed perfectly satisfactorily,
and to argue that anomalous calculations were instances of problems
that were not ‘well posed’. A well posed problem was one in which a
slight change of data caused only a slight change of result; the
solution employed an algorithm that was in this sense ‘numerically
stable’. The newly developed technique of ‘backward error analysis’
was used, in justification of this response, to discriminate between
well posed problems and those that were not well posed. Computers
and calculators worked reliably on well posed problems. If ‘patho-
logical’ calculations and ‘degenerate’ problems were avoided (use of
these terms might be taken as indicating that exception barring was
sliding into what Lakatos calls ‘monster barring’), no difficulties
would arise.?

A small number of computer scientists, however, positively sought
these ‘monsters’.’ Leading among them was Professor W. Kahan,
who holds a joint appointment in the Mathematics Department and
Department of Electrical Engineering and Computer Science at the
University of California, Berkeley. The examples of anomalous cal-
culations in Figure 2 are drawn from his writing. Kahan’s approach is
an example of what Lakatos calls the ‘dialectical’ strategy: ‘anomalies
and irregularities are welcomed and seen as the justification for new
approaches, new concepts and new methods’. ' Kahan has been a
reformer, not content with the current state of computer and calculator
floating-point arithmetic, and constantly seeking to devise, and build
support for, ways of improving it. He has quite deliberately sought to
discover and publicize anomalies which can be used to show that
differences between computer arithmetics are serious and consequential.

What first gave Kahan the opportunity to reform arithmetic in the
direction he desired was competition between two leading manu-
facturers of sophisticated calculators, Texas Instruments and Hewlett
Packard. The former attacked the latter’s calculators as the less
accurate, while Hewlett Packard responded by claiming that calcu-
lation on its competitor’s machines manifested more anomalies. A
Hewlett Packard executive, Dennis Harms, saw advantage in at-
tempting to strengthen Hewlett Packard’s position in this respect: he
employed Kahan as a consultant on the design of the arithmetic of the
corporation’s new generation calculators, thus enabling Kahan to get
his ideas incorporated into them."

Kahan’s next opening came around 1977, when the leading mic-
roprocessor firm Intel started to develop a silicon chip specifically to

44 Social Studies of Science

perform floating-point arithmetic. Existing microcomputers imple-
mented floating-point arithmetic in their software, rather than
hardware, while the hardware floating-point units in large computers
were multi-chip. The Intel i8087, as the chip was eventually chris-
tened, was intended as a ‘floating-point coprocessor’, working along-
side the main processing chip in a microcomputer to improve its
arithmetic performance.

John Palmer, the engineer leading the design of the 18087, had
attended lectures by Kahan as an undergraduate, and turned to him
for advice.'? Palmer rejected the idea of adopting ‘IBM arithmetic’,
despite its widespread use; Kahan believed this arithmetic to be
inferior. The arithmetic of the leading minicomputer maker, the
Digital Equipment Corporation, was also rejected. Palmer was,
however, not simply seeking ‘product differentiation’. He was
worried that if the wrong decisions were made it would be impossible
to share some programs between ‘different boxes all bearing the Intel
logo’, and he wanted to avoid for floating-point arithmetic on micro-
processors ‘the chaotic situation that now exists in the mainframe and
minicomputer environments’."”

Intel and other Silicon Valley chip manufacturers supported the
establishment of a committee to consider standards for floating-point
arithmetic. The initiative for the committee had come from an in-
dependent consultant, Dr Robert G. Stewart, who was active in the
Computer Society of the Institute of Electrical and Electronics En-
gineers (IEEE), under whose aegis the committee was established.
Stewart recruited to the committee Kahan and representatives of
Intel, other chip manufacturers, and minicomputer makers (see Table
1). Richard Delp was appointed by Stewart as the first chair of the
working group.' Intel — which was hard at work on other projects —
agreed to delay finalizing the arithmetic of the i8087 while the com-
mittee deliberated, even though Intel clearly hoped that the final
standard would be similar to what it had already developed in-
ternally.

Negotiating arithmetic proved to be a lengthy process. The com-
mittee started work in September 1977, and the IEEE Standard 754,
Binary Floating-Point Arithmetic, was adopted only in 1985." The
general nature of the vested interests involved is clear. Unless the
committee took the easy route of writing a general standard that
would ‘grandfather’ all widely used existing arithmetics (an option
that was considered but rejected), or unless it opted for an arithmetic
radically different from any in existence, whatever it decided would be

MacKenzie: Negotiating Arithmetic, Constructing Proof 45

TABLE 1
Voting Members of Floating-Point Working Group, Microprocessor Standards Com-
mittee, IEEE Computer Society, at time of adoption of Draft Standard in 1980.

Andrew Allison, Los Altos Hills,
California

William Ames, Hewlett-Packard Data
Systems

Mike Arya, Cupertino, Calif.

Janis Baron, Intel

Dileep Bhandarkar, Digital Equipment
Corporation

Joel Boney, Motorola

Jim Bunch, University of California, La
Jolla

Ed Burdick, National Semiconductor

Paul Clemente, Prime Computer

W. J. Cody, Argonne National
Laboratory

Jerome T. Coonen, University of
California, Berkeley

Jim Crapuchettes, Menlo Computer
Associates

Richard H. Delp, Four-Phase Systems

Alvin Despain, University of California,
Berkeley

Tom Eggers, Digital Equipment
Corporation

Dick Fateman, University of California,
Berkeley

Don Feinberg, Digital Equipment
Corporation

Stuart Feldman, Bell Laboratories

Eugene Fisher, Lawrence Livermore
National Laboratory

Paul F. Flanagan, Analytical Mechanics

Gordon Force, sylex

Lloyd Fosdick, University of Colorado

Robert Fraley, Hewlett-Packard
Laboratories

Howard Fullmer, Parasitic Engineering

Daniel D. Gajski, University of Illinois,
Urbana

David Gay, Massachusetts Institute of
Technology

C.W. Gear, University of Illinois,
Urbana

Martin Graham, University of
California, Berkeley

David Gustavson, Stanford Linear
Accelerator Center

Guy Haas, Datapoint

Chuck Hastings, Data General

David Hough, Apple Computer

John E. Howe, Intel

Thomas E. Hull, University of Toronto

Suren Irukulla, Prime Computer

Richard James III, Santa Clara,
California

Paul S. Jensen, Lockheed Research
Laboratory

William Kahan, University of
California, Berkeley

Howard Kaikow, Nashua, New
Hampshire

Dick Karpinski, University of
California, San Francisco

Virginia Klema, Massachusetts Institute
of Technology

Les Kohn, National Semiconductor

Dan Kuyper, Sperry Univac

M. Dundee Maples, M & E Associates

John Markiel, Westmont, New Jersey

Roy Martin, Apple Computer

Dean Miller, Motorola

Webb Miller, University of California,
Santa Barbara

John C. Nash, Vanier, Ontario, Canada

Dan O’Dowd, National Semiconductor

Cash Olsen, Signetics

John F. Palmer, Intel

Beresford Parlett, University of
California, Berkeley

Dave Patterson, University of
California, Berkeley

Mary Payne, Digital Equipment
Corporation

Tom Pittman, Itty Bitty Computers

Lewis Randall, Apple Computer

Robert Reid, Dunstable, Massachusetts

Christian Reinsch, Leibniz-Rech/Bay.
Akad. Wiss.

Roger Stafford, Beckman Instruments

cont.

46

TABLE 1—cont.

David Stevenson, Zilog

G. W. Stewart, University of Maryland

Robert G. Stewart, Stewart Research
Enterprises

Harold Stone, University of Massachusetts

William D. Strecker, Digital Equipment
Corporation

Social Studies of Science

George Taylor, University of California,
Berkeley

Dar-Sun Tsien, Intel

Greg Walker, Motorola

John Stephen Walther, Hewlett Packard
Laboratories

P.C. Waterman, Burlington,

Robert Swarz, Digital Equipment Massachusetts

Corporation

Source: ‘A Proposed Standard for Binary Floating-Point Arithmetic’, Computer
(March 1981), 51-62, at 62.

bound to advantage those companies whose existing practice was
closest to the standard, and to disadvantage those whose practice
differed widely from it. The latter would be forced into an unpleasant
choice. If they retained their existing arithmetic, their market could
diminish as a result of users preferring machines implementing the
standard. If they changed, considerable investment of time and
money would have to be written off, and there might be troublesome
incompatibilities between their new machines and their old ones.

Ultimately the choice came down to two arithmetics closely aligned
with major corporate interests. One was essentially the arithmetic
employed by the Digital Equipment Corporation (DEC), the leading
manufacturer of minicomputers. Its VAX machines were very widely
used in scientific computing, and their arithmetic was admitted even
by its critics to be ‘sound’ and ‘respectable’.'® The other was a
proposal written by Kahan, his graduate student Jerome Coonen,
and Dr Harold Stone, Manager of Advanced Architectures at IBM’s
Yorktown Heights Laboratory. Not surprisingly, given the colla-
boration between Kahan and Intel’s Palmer, that proposal was very
similar to what Intel was already well on the way to implementing."

The Kahan-Coonen-Stone scheme has several interesting features,
such as the handling of zero. In their basic format they opted for what
is called a ‘normalized zero’. Zero is expressed only by a zero signifi-
cand and zero exponent (0 times 2°). The combination of zero
significand and non-zero exponent (0 times 2', 0 times 2%, and so on) is
not permitted. But they permitted the sign bit to take both values, and
allowed its value to be meaningful. In other words, unlike consensual
human arithmetic, which contains only one zero, their arithmetic
contains both a positive and a negative zero, with, for example, the
rule that the square root of —0is —0."

MacKenzie: Negotiating Arithmetic, Constructing Proof 47

This and other features of their arithmetic were, however, rela-
tively uncontroversial. The battleground between their proposal
and the main alternative arithmetic was underflow. Unlike the arith-
metic of real numbers, where there is no number ‘next-to-zero’ and
indefinitely small numbers are possible, computer arithmetics
contain a lower bound, albeit tiny, on the size of number that can be
represented. For example, 27'%, or roughly 107%, is the smallest
number possible in normal representation in the Kahan-Coonen-
Stone scheme’s basic format. Like the majority of existing computer
arithmetics, DEC’s arithmetic simply represented all numbers as
precisely as possible until the number next to zero was reached.
Should a calculation yield a result smaller than that, very small,
number, the result was stored as zero. ‘Flush-to-zero underflow’ is
what this scheme is generally called.

Kahan and his colleagues advocated the different principle of
‘gradual underflow’."” They introduced a special set of ‘denormalized
numbers’ smaller in size than the normal-format number next-to-
zero. As noted above, in normal floating-point format the digit to the
left of the binary point is always one. In a denormalized number it is
zero. Denormalized numbers are created by right-shifting the signifi-
cand so that the exponent always remains within the expressible
range. So, in a system where the smallest normal number is 27'%,
277 could be given denormalized expression as a half (0.1 in binary)
times 27'%; 27'%® as a quarter (0.01 in binary) times 27'%; and
SO on.

Of course, this meant that accuracy would usually be lost, as one or
more significant digits would have to be discarded in right-shifting the
significand. But this, to its proponents, seemed an acceptable price to
pay for a more gradual approach to zero. Their argument against
what many took to be the ‘obvious’ DEC procedure was that, using
the latter, as one approached zero the differences between successive
numbers diminished, until one reached the number next-to-zero,
whose distance from zero would be much greater than its distance
from the next larger number. In gradual underflow the differences
between successive numbers diminished monotonically all the way
down to zero (see Figure 3).

Gradual underflow became the focus of attacks on Kahan, Coonen
and Stone’s proposed arithmetic:

The interconnectedness of the proposed standard’s basic features complicated
attempts to oppose it. Early challenges within the subcommittee were not easily

48 Social Studies of Science

focused on single aspects of the proposed number system and its encoding, since so
many of the design choices were interconnected. These challenges ultimately
addressed the proposal as a whole and, quite naturally, tended to drift to its points
of least resistance. Thus it was possible for gradual underflow — one of the system’s
less compelling features — to become its most contentious.”

There was no wholly compelling way in which one scheme could be
proved superior to the other. Proponents of the Kahan-Coonen-
Stone scheme could point to anomalous calculations caused, they
argued, by flush-to-zero underflow, anomalies that would be
corrected by gradual underflow:

Consider the simple computation

Y-X)+X
where Y — X underflows. Then gradual underflow always returns Y exactly, flush to
zero returns X We could look at this as another isolated example, but I prefer

to look at it as the preservation of the associative law of addition to within
rounding error. That is, under gradual underflow we always have

(Y-X)+X =Y+ (=X + X)

to within rounding error. This is compelling, in my opinion.”

The defenders of the more traditional DEC scheme could, however,
also point to potential problems with gradual underflow:

Multiplication of denormalized numbers by numbers greater than 1 (or division by
numbers less than 1) can generate significant inaccuracies. If such a product (or
quotient) is in the ordinary range of numbers, it cannot be represented in
denormalized form, because of the hidden bit used in KCS [Kahan-Coonen-Stone
arithmetic]. However, the denormalized operand has fewer (perhaps many fewer)
than the prescribed number of bits for its level of precision. Thus the product (or
quotient) could in the worst case contain only one valid bit. KCS specifies two
modes to deal with this problem. ‘Warning mode’ is mandatory: the invalid flag is
set, and a symbol NaN (Not a Number) is stored for the result The other
mode, ‘normalize’, is optional: if present, and selected, the possibly very inaccurate
product is stored as an ordinary number, no flag is set, and, of course, further
tracking of the effect of the original underflow is impossible.”

As of this time, an illegal operation exception is raised when a denormalized
number is multiplied by a value 2 or greater. But on closer inspection, there are
denormalized numbers which lie close to the normalized range which exhibit more
erratic behavior. The denormalized number (3/4) x 27'%, for example, will generate
an invalid operation exception when multiplied by 5, but not when multiplied by 6.
When multiplied by 8 an exception will again be generated . . . This effect is caused
because the exception for the multiplication occurs when attempting to store an
unnormalized number into a basic format. When multiplying by 8 = 1x2’, the
result is (3/4) X 27 ', which is unnormalized. But multiplication by 6 = (3/2) x 2’
gives (9/8) x 27'*, which is normalized.”

MacKenzie: Negotiating Arithmetic, Constructing Proof 49

FIGURE 3
Small Numbers in Flush to Zero and Gradual Underflow

Iemptyl||l 'l' |

0 A=2-126 2-125 2-124
Flush to Zero

Denormalized

‘ numbers | ' ‘

0 A= 2126 2-125 2-124

Gradual Underflow

Source: Based upon Jerome T. Coonen, ‘Underflow and the Denormalized Numbers’,
Computer (March 1981), 75-87, at 77.

These objections could be dismissed in their turn:

Like any new tool, it is possible to misuse this facility and to have a mal-
function....I do not believe that the facility introduces malfunctions into
processes that previously worked [with flush to zero].

The proneness of the two arithmetics to generating errors and
anomalous calculations was not the only issue to be considered.
There was, for example, little doubt that gradual underflow was more
complicated to implement than flush-to-zero underflow; it would
therefore have costs both in money and perhaps in the time taken by
arithmetic operations such as multiplication. It might make the
proposed standard harder to police, since, given its complication,
manufacturers might choose to implement it in software rather than
(demonstrably present or absent) hardware.? Finally, DEC’s scheme
simply had the enormous advantage of essentially being that already
employed in the world’s most popular scientific minicomputers.

Nothing abstract therefore guaranteed that the Kahan-Coonen-
Stone scheme would win: in Professor Kahan’s words, ‘it was not a
foregone conclusion’.? In its favour were the composition of the

50 Social Studies of Science

working group, the facts of geography, and its status as the group’s
original working document. Mary Payne, of the Massachusetts-
based DEC, commented:

The active (and voting) membership of the Working Group is largely from mini-
computer and semiconductor manufacturers, Academia, and purveyors of
portable software. There is virtually no representation from Mainframe manu-
facturers and ‘ordinary users’ — people writing their own programs for their own
(or their employers’) use. Most of the active membership is from the San Francisco
Bay area, and all but one of the meetings have been in this area.”

Kahan, on the other hand, believes that his victory is attributable
partly to mishandling by DEC’s representatives of what he concedes
to be their not unreasonable case. They issued what Kahan calls a
‘premature rebuttal’ of the arithmetic of him and his colleagues, a
rebuttal arguing that ‘it can’t be done, and if it could be done, it would
be bad for you’. Unknown to them, gradual underflow had already
been implemented on the prototype i8087. According to Kahan, the
DEC representatives retreated to the argument that, while gradual
underflow could be implemented in the microcode software of a chip
like the i8087, it was impossible to implement in the hardware of a
minicomputer like the DEC VAX. However, one of Kahan’s stu-
dents, George Taylor, designed a processor board for the VAX that
was acknowledged as successfully performing gradual underflow.
DEC then employed a well known error analyst, Professor G. W.
Stewart, III, of the University of Maryland, to investigate gradual
underflow, hoping, according to Kahan, that he would refute it.
Stewart, however, gave qualified support to gradual underflow in a
verbal report to the committee, and DEC would not release the
written form of his report.

In a spring 1980 ballot of the committee, the Kahan-Coonen-Stone
scheme received the necessary two-thirds majority support for adop-
tion. The scheme took several more years to pass through higher
committees of the Institute of Electrical and Electronics Engineers,
but it was finally approved by the IEEE Standards Board in March
1985, and by the American National Standards Institute in July 1985,
as ANSI/IEEE Standard 754.

It is not a universal standard. Most supercomputers (such as
Crays), mainframes (such as IBM machines) and minicomputers
(such as DEC VAXs) are not claimed to comply with it. However, no
competing collective standard has been agreed. So a virtuous cycle

MacKenzie: Negotiating Arithmetic, Constructing Proof 51

exists: as the IEEE 754 Standard becomes more popular, the prob-
lems involved in moving numerical programs from one machine to
another have diminished, and more and more software is thus written
with the 754 Standard in mind, so increasing its popularity. The
proponents of new technologies adopt the 754 Standard so that users
do not have to rewrite programs to move to these new technologies.”

What has happened is thus a version of a form of ‘closure’ typical
within technology. In the words of Brian Arthur:

Very often, technologies show increasing returns to adoption — the more they are
adopted the more they are improved . .. When two or more increasing-returns
technologies compete for adopters, insignificant ‘chance’ events may give one of
the technologies an initial adoption advantage. Then more experience is gained
with the technology and so it improves; it is then further adopted, and in turn it
further improves. Thus the technology that by ‘chance’ gets off to a good start may
eventually ‘corner the market’ of potential adopters, with the other technologies
gradually being shut out.”

There are those who deny that what has been institutionalized is the
best possible computer arithmetic,* and who would indeed attribute
the standard’s adoption to ‘chance events’ rather than the intrinsic
merits its proponents would claim. That dispute, however, is now in a
sense irrelevant: the very process of the institutionalization of the
standard gives it practical advantages which make it unlikely that a
competitor will be able to overturn it.

Constructing Proof

Traditionally, such confidence as we have in computer systems has
been empirically based. The design of a piece of hardware such as a
microprocessor is checked by subjecting it to a large variety of test
conditions (often in advance of physical construction, by simulating
the design on a computer). As programs are tested and used, errors
are detected and corrected, until a sufficiently large amount of error-
free running is achieved to feel confident that the program is essen-
tially correct.

It is widely argued that there are limitations to this approach.
Corrections to old errors may introduce new ones, and users of large
systems often have to accept a relatively stable rate of continuing
error. Unless it is exhaustive, testing can show the presence of ‘bugs’,
but cannot demonstrate conclusively their absence; and exhaustive
testing, for all possible combinations of inputs and internal states, is

52 Social Studies of Science

widely held to be impossible in practice for a design or program of any
complexity.

These arguments have been deployed to justify a deductive rather
than inductive approach to the correctness of designs and programs,
at least for those cases where failure would be catastrophic. In 1986,
for example, the UK Cabinet Office’s Advisory Council for Applied
Research and Development argued that the post hoc detection of
errors was not good enough in applications such as ‘industrial process
control, nuclear reactors, weapon systems, station-keeping of ships
close to oil rigs, aero engines and railway signalling’. For ‘disaster-
level’ software, where failure ‘could involve more than ten deaths’,
the Advisory Council report argued that ‘the whole of the software
must be checked by formal mathematical proof, which is itself
checked by a competent mathematician’.’'

Among the organizations most influenced by the demand for
mathematical proof of correctness has been the UK Ministry
of Defence. In April 1991, the ministry issued Interim Defence
Standard 00-55, governing ‘The Procurement of Safety Critical
Software in Defence Equipment’. This demands formal mathemat-
ical proof that the most crucial programs correctly implement their
specifications.*

The demand for proof is not limited to safety-critical aspects of
computer systems. Proof has been sought, especially in the United
States, that computer systems crucial to national security are indeed
designed in such a way as to protect the classified information they
contain. In the early 1980s, the US Department of Defense set out its
Trusted Computer System Evaluation Criteria, known from the
colour of the cover of the document containing them as the ‘Orange
Book’. The Orange Book criteria demand that in Class A1 (‘Verified
Design’) systems ‘a formal model of the security policy must be
clearly identified and documented, including a mathematical proof
that the model is consistent with its axioms and is sufficient to support
the security policy’.>

In such documents, with the exception of the most recent (Defence
Standard 00-55, discussed below), the notion of ‘proof” has typically
been used unproblematically. Five years ago, colleagues and I specu-
lated that this unproblematic usage would not survive the entry of
proof into the commercial and regulatory domains. We predicted
that it might not be long before a ‘court of law has to decide what
constitutes a mathematical proof procedure’.** Our basis for this
prediction was the considerable variation, revealed by the history of

MacKenzie: Negotiating Arithmetic, Constructing Proof 53

mathematics, in the forms of argument that are taken as constituting
proofs. Thus Judith Grabiner has shown how arguments that satisfied
eighteenth-century mathematicians were rejected as not constituting
proofs by their nineteenth-century successors, such as Cauchy.” Our
prediction rested on the assumption that attempts to prove the
correctness of computer systems would bring to light similar dis-
agreement about the nature of proof.

That has turned out to be the case. In the mid and late 1980s, a team
of researchers from the UK Ministry of Defence’s Royal Signals and
Radar Establishment developed a novel microprocessor called
VIPER - Verifiable Integrated Processor for Enhanced Reliability.
Though VIPER has several other features designed to make it safe
(such as simply stopping if it encounters an error state), what was
crucial about it was the claimed existence of a mathematical proof of
the correctness of its design. VIPER was marketed as ‘the first
commercially available microprocessor with a proven correct de-
sign’.%

The claim of proof has been controversial. There has been sharp
disagreement over whether the chain of reasoning connecting VIPER’s
design to its specification can legitimately be called a ‘proof’. In
January 1991, Charter Technologies Ltd., a small English firm which
licensed aspects of the VIPER technology from the Ministry of
Defence, began legal action against the Ministry in the High Court.”
Charter alleged, among other things, that the claim of proof was a
misrepresentation, and sought damages under the 1967 Misrepresenta-
tion Act. The Ministry vigorously contested Charter’s allegations.
Charter went into liquidation before the case could come to court, so
our prediction, as quoted above, has not come true literally. Never-
theless, the controversy surrounding VIPER, and the aborted
litigation, reveal some of the scope for dispute over proof.

The development of VIPER and the construction of its contro-
versial proof are discussed elsewhere.*® The core of the dispute over
the claim of proofis as follows. The critics of the claim of proof — who
include Cambridge University computer scientist Avra Cohn, who
worked on the proof, and Bishop Brock and Warren Hunt of the
Austin, Texas, firm commissioned by NASA to evaluate it — use a
definition of formal proof best summarized by Brock and Hunt’s
colleagues Robert Boyer and J. Strother Moore:

A formal mathematical proof is a finite sequence of formulas, each element of
which is either an axiom or the result of applying one of a fixed set of mechanical
rules to previous formulas in the sequence.®

54 Social Studies of Science

By that criterion, there was only a partial proof of the correctness of
VIPER'’s design. This was constructed by Cohn, on contract to the
Royal Signals and Radar Establishment, using HOL (Higher Order
Logic), an automated system for proof construction, developed by
her colleague Mike Gordon. Even though large — her main proof
consists of a sequence of over seven million formulae — this work did
not encompass all the steps between the top level specification of
VIPER'’s behaviour and the logic-gate level description used to con-
trol the automated equipment employed to construct the ‘masks’
needed to fabricate VIPER chips. (Although work on the VIPER
proof'is continuing, there is still - to this author’s knowledge — no full
formal proof, in the above sense, encompassing all these steps.)

Cohn therefore wrote in 1989: ‘no formal proofs of Viper (to the
author’s knowledge) have thus far been obtained at or near the gate
level’. Brock and Hunt, likewise, concluded that ‘VIPER has been
verified in the traditional hardware engineering sense, i.e. extensively
simulated and informally checked’ but not ‘formally verified”.*

One can only speculate about precisely how the claim of proof for
VIPER would have been defended, if the case had come to court. The
ministry’s defence is a confidential document. The one published
response (known to this author) by a member of the VIPER team to
criticism of the claim of proof does not attempt a rebuttal,* and, in
any case, the defendant in the law suit was the ministry rather than the
individual team members, so the line of argument adopted might,
therefore, not have been theirs. Nevertheless, it seems clear that a
defence of the claim of proof for VIPER would have had to involve
challenging the notion of proof underpinning the criticism, so that
mathematical arguments not conforming to the model summarized
by Boyer and Moore can count as proofs. That would permit gaps in
the formal proof to be ‘plugged’ by other mathematical arguments, so
that the entire chain of reasoning could still be defended as a proof.

An attack on the formal notion of proof was indeed the basis of the
defence of VIPER mounted, after the litigation halted, by Martyn
Thomas, head of the software house Praxis:

We must beware of having the term ‘proof” restricted to one, extremely formal,
approach to verification. If proof can only mean axiomatic verification with
theorem provers, most of mathematics is unproven and unprovable. The ‘social’
processes of proof are good enough for engineers in other disciplines, good enough
for mathematicians, and good enough for me If we reserve the word ‘proof”’
for the activities of the followers of Hilbert, we waste a useful word, and we are in
danger of overselling the results of their activities.”

MacKenzie: Negotiating Arithmetic, Constructing Proof 55

Thomas’s reference is, of course, to the leading formalist mathe-
matician, David Hilbert (1862-1943). Boyer and Moore’s definition
of proof is in most (though not all) respects similar to Hilbert’s.*’

These competing arguments, as they bear upon the VIPER proof,
were never tested in law, while the shadow of litigation has inhibited
open discussion of them in the scientific community. However, the
reference to Hilbert points us to a wider intellectual context of the
dispute. The formalist tradition within mathematics spearheaded by
Hilbert sought to break the connection between mathematical sym-
bols and their physical or mental referents. Symbols were marks upon
paper devoid of intrinsic meaning.* Proofs were constructed by
manipulating these symbols according to the rules of transformation
of formal logic, rules which took a precise, ‘mechanical’, form.*

However, despite formalism’s very considerable influence within
mathematics, not all mathematical proofs take this form. Even if it is
believed that all valid proofs could be translated into such sequences
of formulae, many proofs within mathematics are shorter, more
‘high-level’, more ‘informal’. Part of the reason is the sheer tedium of
producing formal proofs, and their length; this is also a large part of
the attraction of automatic or semi-automatic proof generating sys-
tems, such as HOL or the theorem prover developed by Boyer and
Moore.

The relatively informal nature of much mathematical proof was a
resource for the defence of the claim of proof for VIPER, as we have
seen in the quotation from Thomas. It was also the basis for a widely
debated general attack on formal verification of programs, a 1979
paper by Richard DeMillo of the Georgia Institute of Technology
and Richard Lipton and Alan Perlis of the Yale Department of
Computer Science. Proofs of theorems in mathematics and formal
verifications of computer programs were radically different entities,
they argued:

A proof is not a beautiful abstract object with an independent existence. No
mathematician grasps a proof, sits back, and sighs happily at the knowledge that he
can now be certain of the truth of his theorem. He runs out into the hall and looks
for someone to listen to it. He bursts into a colleague’s office and commandeers the
blackboard. He throws aside his scheduled topic and regales a seminar with his new
idea. He drags his graduate students away from their dissertations to listen. He gets
onto the phone and tells his colleagues in Texas and Toronto

After enough internalization, enough transformation, enough generalization,
enough use, and enough connection, the mathematical community eventually
decides that the central concepts in the original theorem, now perhaps greatly
changed, have an ultimate stability. If the various proofs feel right and the results

56 Social Studies of Science

are examined from enough angles, then the truth of the theorem is eventually
considered to be established. The theorem is thought to be true in the classical sense
— that is, in the sense that it could be demonstrated by formal deductive logic,
although for almost all theorems no such deduction ever took place or ever will

Mathematical proofs increase our confidence in the truth of mathematical
statements only after they have been subjected to the social mechanisms of the
mathematical community. These same mechanisms doom the so-called proofs of
software, the long formal verifications that correspond, not to the working
mathematical proof, but to the imaginary logical structure that the mathematician
conjures up to describe his feeling of belief. Verifications are not messages; a person
who ran out into the hall to communicate his latest verification would rapidly find
himself a social pariah. Verifications cannot readily be read; a reader can flay
himself through one of the shorter ones by dint of heroic effort, but that’s not
reading. Being unreadable and - literally — unspeakable, verifications cannot be
internalized, transformed, generalized, used, connected to other disciplines, and
eventually incorporated into a community consciousness. They cannot acquire
credibility gradually, as a mathematical theorem does; one either believes them
blindly, as a pure act of faith, or not at all.*

This paper by DeMillo, Lipton and Perlis provoked sharp criticism
from defenders of the evolving practice of program verification. One
wrote: ‘I am one of those “classicists” who believe that a theorem
either can or cannot be derived from a set of axioms. I don’t believe
that the correctness of a theorem is to be decided by a general
election’.’ Edsger Dijkstra, one of the leaders of the movement to
mathematicize computer science, described the paper as a ‘political
pamphlet from the middle ages’. Interestingly, though, his defence
was of short, elegant, human (rather than machine) proofs of pro-
grams. He accepted that ‘communication between mathematicians is
an essential ingredient of our mathematical culture’, and conceded
that ‘long formal proofs are unconvincing’.*® Elsewhere, Dijkstra had
written:

To the idea that proofs are so boring that we cannot rely upon them unless they are
checked mechanically I have nearly philosophical objections, for I consider
mathematical proofs as a reflection of my understanding and ‘understanding’ is
something we cannot delegate, either to another person or to a machine.”

At least three positions thus contended in the debate sparked by
DeMillo, Lipton and Perlis: the formal, mechanized verification of
programs and hardware designs; the denial that verification confers
certainty akin to that conferred by proof in mathematics; and the
advocacy of human, rather than machine, proof. No wholly definitive
closure of the debate within computer science was reached, and the

MacKenzie: Negotiating Arithmetic, Constructing Proof 57

validity of the analogy between proofs in mathematics and formal
verification of computer systems remains controversial.*

Within mathematics, too, the status of computer-supported proofs
has been the subject of controversy — controversy that crystallized
most clearly around the 1976 computer-based proof by Appel and
Haken of the four-colour conjecture. The developers of this proof
summarized at least some of the objections and their defence thus:

Most mathematicians who were educated prior to the development of fast com-
puters tend not to think of the computer as a routine tool to be used in conjunction
with other older and more theoretical tools in advancing mathematical knowledge.
Thus they intuitively feel that if an argument contains parts that are not verifiable
by hand calculation it is on rather insecure ground. There is a tendency to feel that
the verification of computer results by independent computer programs is not as
certain to be correct as independent hand checking of the proof of theorems proved
in the standard way.

This point of view is reasonable for those theorems whose proofs are of moderate
length and highly theoretical. When proofs are long and highly computational, it
may be argued that even when hand checking is possible, the probability of human
error is considerably higher than that of machine error.”

Although the general issue of the status of computer-generated
formal proofs remains a matter of dispute, there are signs that at the
level of the setting of standards for safety-critical and security-critical
computer systems the dispute is being won in practice by the pro-
ponents of formal verification. The demand for verification in the
Orange Book represented a victory for this position, albeit a con-
troversial one, since there has been criticism both of the model of
‘security’ underlying the Orange Book, and of the procedures for
certification according to Orange Book criteria.*? Nor did the Orange
Book directly address the question of the nature of proof.

Most recently, however, Defence Standard 00-55, representing
official policy of the UK Ministry of Defence, has done so, explicitly
tackling the issue of the relative status of different forms of math-
ematical argument. It differentiates between ‘Formal Proof’ and
‘Rigorous Argument’.

A Formal Proof is a strictly well-formed sequence of logical formulae such that
each one is entailed from formulae appearing earlier in the sequence or as instances
of axioms of the logical theory . . .

A Rigorous Argument is at the level of a mathematical argument in the scientific
literature that will be subjected to peer review*

58 Social Studies of Science

According to the ministry, formal proof is to be preferred to rigorous
argument:

Creation of [formal] proofs will . . . consume a considerable amount of the time of
skilled staff. The Standard therefore also envisages a lower level of design
assurance; this level is known as a Rigorous Argument. A Rigorous Argument is
not a Formal Proof and is no substitute forit*

It remains uncertain to what degree software industry practices will
be influenced by Defence Standard 00-55, and similar standards for
other sectors that may follow —a procedure for granting exceptions to
00-55’s stringent demands is embodied in the document. Formal
proofs of ‘real world’ programs or hardware designs are still relatively
rare.

If they do indeed become more common, I would predict that a
further level of dispute and litigation will emerge. This will concern,
not the overall status of computer-generated formal proofs (though
that issue will surely be returned to), but an issue that has not hitherto
sparked controversy: the internal structure of formal proofs. Even if
all are agreed that proofs should consist of the manipulation of
formulae according to ‘mechanical’ rules of logic, it does not follow
that all will agree on what these rules should be. The histories of
mathematical proof and formal logic reveal the scope for significant
disagreement.

The best-known dispute concerns the law of the excluded middle
(which asserts that either a proposition or its negation must be true).
Formalists like Hilbert did not regard proofs relying on excluded
middle as problematic; ‘constructivists’ and ‘intuitionists’, notably
L.E.J. Brouwer, refused to employ it, at least where infinite sets were
concerned.”

Other examples are the Lewis principles, named after the logician
Clarence Irving Lewis.* These are that a contradiction implies any
proposition, and that a tautology is implied by any proposition. They
follow from intuitively appealing axiomatizations of formal logic, yet
have seemed to some to be dubious. Is it sensible, for example, to
infer, as the first Lewis principle permits, that ‘the moon is made from
green cheese’ follows from ‘John is a man and John is not a man’? In
the words of one text:

Different people react in different ways to the Lewis principles. For some they are
welcome guests, whilst for others they are strange and suspect. For some, it is no
more objectionable in logic to say that a [contradiction] implies all formulae than it

MacKenzie: Negotiating Arithmetic, Constructing Proof 59

is in arithmetic to say that x° always equals 1 . . . For others, however, the Lewis
principles are quite unacceptable because the antecedent formula may have
‘nothing to do with’ the consequent formula.”

Critics have to face the problem that any logical system which gives
up the Lewis principles appears to have to give up at least one, more
basic, ‘intuitively obvious’, logical axiom.

These controversial rules of logic are to be found in systems upon
which formal proof of programs and hardware depends. The law of
the excluded middle is widely used in automated theorem proof — for
example, in the HOL system used for the VIPER formal proof. The
first Lewis principle — that a contradiction implies any proposition —
is, for example, among the basic inference rules of the influential
Vienna Development Method.*®

To date, these rules have not provoked within computer science the
kind of controversy that has surrounded them in metamathematics
and formal logic. There has been some intellectual skirmishing be-
tween the proponents of ‘classical’ theorem provers, which employ
the law of the excluded middle, and ‘constructivist’ ones, which do
not.*” That skirmishing has not, to date, taken the form of entrenched
philosophical dispute, and, to this author’s knowledge, no computer-
system proof has been objected to because of its reliance on say, the
excluded middle, or the Lewis principles. Pragmatic considerations —
getting systems to ‘work’, choosing logics appropriate to particular
contexts — have outweighed wider philosophical issues.

Can we assume, however, that a situation of pragmatism and
peaceful coexistence between different logical systems will continue?
My feeling is that we cannot — that this situation is a product of the
experimental, academic phase of the development of proof of com-
puter-system correctness. As formal proofs become of greater com-
mercial and regulatory significance, powerful interests will develop in
the defence of, or criticism of, particular proofs. Sometimes, at least,
these interests will conflict. In such a situation, the validity of rules of
formal logic will inevitably be drawn into the fray, and into the law
courts.

Conclusion

There is an important difference between the cases of computer
floating-point arithmetic and the proof of computer systems. In the

60 Social Studies of Science

former, there was a stable, consensual human arithmetic against
which computer arithmetic could often be judged. Human arithmetic
was, however, insufficient to determine the best form of computer
arithmetic. It was indeed a matter of judgement which was best, and
contested judgement at that. Human arithmetic provided a resource,
drawn on differently by different participants, rather than a set of rules
that could simply be applied in computer arithmetic. There is even
tentative evidence that social interests, notably the different interests
of the Intel and DEC corporations, influenced the judgements made.
Similarly, the outcome - ‘closure’ in favour of the Kahan-Coonen-
Stone arithmetic scheme — may have been influenced by contingent
factors such as the proximity of the meetings of the relevant com-
mittee to Silicon Valley, home to Intel and other semiconductor firms,
and to Kahan’s Berkeley base.

In the case of the proof of computer systems, pre-existing practices
of proof, within mathematics, have been less compelling. The rep-
utation of mathematics for precision and certainty has been an
important rhetorical resource for those who sought to move from an
empirical to a deductive approach to computer-system correctness.
However, critics have argued that proof of computer-system cor-
rectness and proof of a mathematical theorem are different in kind.

Already, one dispute over the mathematical proof of a computer
system has reached the stage of litigation: the controversy concerning
the VIPER microprocessor. The prediction of this paper is that the
VIPER case will not be unique. Nor will it be sufficient to reach
consensus on the general form to be taken by proofs — for example, to
demand that they take the form of finite sequences of symbol-
manipulations performed according to the transformation rules of a
logical system. For if the position adopted in this paper is correct, that
will simply drive dispute ‘downwards’ from the status of general types
of argument to the validity of particular steps in those arguments.
Specifically, dispute is to be expected over the logical systems that
underpin formal proofs.

Formal proof of computer-system correctness is, therefore, an
interesting test case for the sociology of knowledge. For this pre-
diction is contrary to our ordinary intuitions about mathematical
certainty. It concerns not informal or semiformal mathematics of the
sort that has to date provided most of the empirical material for the
sociology of mathematics, but mathematical deduction of the most
formal kind: precisely the kind of reasoning which, we might imagine,
must simply compel consent. As computer-system proof grows in

MacKenzie: Negotiating Arithmetic, Constructing Proof 61

significance and moves into the commercial and regulatory worlds,
we will have a chance to see whether our ordinary intuitions about
mathematics, or the conclusions of the sociology of mathematical
knowledge, are correct.

ONOTES

The research on floating-point arithmetic and on VIPER was supported by the UK
Economic and Social Research Council (ESRC) under the Programme on Information
and Communication Technologies, grants A35250006 and WA35250006. Current
work on the topic of the second part of the paper is being supported by a further grant
from the ESRC on ‘Studies in the Sociology of Proof’ (R000234031).

1. H.M. Collins, Artificial Experts: Social Knowledge and Intelligent Machines
(Cambridge, MA: MIT Press, 1990), Chapter 5.

2. E. Pelaez, J. Fleck and D. MacKenzie, ‘Social Research on Software’, paper
read to National Workshop of Programme in Information and Communication
Technologies (Manchester, 16-18 December 1987), 5.

3. K. Mannheim, Ideology and Utopia (London: Routledge & Kegan Paul, 1936);
see D. Bloor, ‘Wittgenstein and Mannheim on the Sociology of Mathematics’, Studies
in the History and Philosophy of Science, Vol. 4 (1973), 173-91.

4. This latter convention is known as ‘twos complement arithmetic’, since if, in this
format, ‘the sign is treated as if it were simply another digit, negative numbers are
represented by their complements with respect to 2°: Robert F. Shaw, ‘Arithmetic
Operation in a Binary Computer’, Review of Scientific Instrumentation, Vol. 21 (1950),
687-93, at 687-88. This and other important papers in the area are reprinted in Earl E.
Schwartzlander, Jr, Computer Arithmetic (Stroudsburg, PA: Dowden, Hutchinson &
Ross, 1980).

S. In common with other computer arithmetic, variants on this basic format are
permitted — for example, a 64-bit ‘double precision’ mode. For the sake of simplicity,
this issue is ignored in the text.

6. The exponent is typically stored not in its natural binary representation, which
would have to include a bit to represent its sign, but in a ‘biased’ form without a sign.

7. 1. Lakatos, Proofs and Refutations: The Logic of Mathematical Discovery
(Cambridge: Cambridge University Press, 1976). Drawing on the work of Mary
Douglas, David Bloor has suggested that different social circumstances may generate
different typical reactions to anomalies. Unfortunately, evaluating this suggestion for
the case under consideration would demand data which I do not possess. See D. Bloor,
‘Polyhedra and the Abominations of Leviticus’, British Journal for the History of
Science, Vol. 11 (1978), 245-72, and M. Douglas, Natural Symbols: Explorations in
Cosmology (London: Barrie & Rockcliff, 1970).

8. Interview with Professor William Kahan, Berkeley, CA, 19 October 1989;
Lakatos, op. cit. note 7. In ‘forward error analysis’, an upper bound is calculated for
the accumulated error at each step, and thus eventually for the error in the final result.

62 Social Studies of Science

Backward analysis, on the other hand, ‘starts with the computed solution and works
backward to reconstruct the perturbed problem of which it is an exact solution’. See
P.J.L. Wallis, Improving Floating-Point Programming (Chichester, Sussex: Wiley,
1990), 12. For some remarks on the history of error analysis, see J.H. Wilkinson,
‘Modern Error Analysis’, SIAM Review, Vol. 13 (1971), 548-68.

9. The term is used in W. Kahan, ‘Doubled-Precision IEEE Standard 754
Floating-Point Arithmetic’ (typescript, 26 February 1987), 14.

10. Lakatos, op. cit. note 7; D. Bloor, Wittgenstein: A Social Theory of Knowledge
(London: Macmillan, 1983), 141-42.

11. Kahan interview, op. cit. note 8.

12. Palmer was later to play an important role in the development of parallel
computing in the US, when he and others left Intel in 1983 to establish the firm NCube.

13. Kahan interview, op. cit. note 8; J. Palmer, ‘The Intel Standard for Floating-
Point Arithmetic’, Proceedings of IEEE COMPSAC 1977, 107-12, at 107.

14. Letter to author from Robert G. Stewart, 18 October 1990.

15. IEEE Standard for Binary Floating-Point Arithmetic: American National
Standards Institute/Institute of Electrical and Electronics Engineers Standard 754-1985
(New York: Institute of Electrical and Electronics Engineers, 12 August 1985).

16. Kahan interview, op. cit. note 8.

17. Intel released the 18087 in 1980, in anticipation of the Standard. For the i8087’s
arithmetic, see J.F. Palmer and S.P. Morse, The 8087 Primer (New York: Wiley, 1984),
7. A third seriously considered proposal was drafted by Robert Fraley and J. Stephen
Walther, but the main dispute seems to have been between the DEC and Kahan-
Coonen-Stone proposals. The three proposals are compared in W.J. Cody, ‘Analysis
of Proposals for the Floating-Point Standard’, Computer (March 1981), 63-66.

18. IEEE Standard, op. cit. note 15, 14. The argument for two zeros is that they
facilitate the removal of otherwise troublesome singularities in computations
common, for example, in the study of fluid flow. With two zeros, ‘identities are
conserved that would not otherwise be conserved’, and capabilities not present in
conventional mathematics are provided. An example from the complex numbers
concerns the square root of — 1, which conventionally can have two values, +iand —i.
Signed zeros make it possible to remove this discontinuity, with the square root of — 1
+ 0i being + i, and the square root of — 1 — 0i being —i (Kahan interview, op. cit. note 8).

19. For gradual underflow, see 1.B. Goldberg, ‘27 Bits are not enough for 8-Digit
Accuracy’, Communications of the ACM, Vol. 10 (1967), 105-08. Computer pioneer
Konrad Zuse was an early advocate, according to Cody, op. cit. note 17, 63.

20. Jerome T. Coonen, ‘Underflow and the Denormalized Numbers’, Computer
(March 1981), 75-87, at 75.

21. Cody, op. cit. note 17, 67.

22. Mary Payne and Dileep Bhandarkar, ‘VAX Floating Point: A Solid
Foundation for Numerical Computation’, Computer Architecture News, Vol. 8, No. 4
(June 1980), 22-33, at 28-29.

23. Bob Fraley and Steve Walther, ‘Proposal to Eliminate Denormalized
Numbers’, ACM Signum Newsletter (October 1979), 22-23, at 22.

24. Cody, op. cit. note 17, 67.

25. 1 am drawing these points from my interview with Kahan, op. cit. note 8.

26. Ibid.

27. Mary H. Payne, ‘Floating Point Standardization’, COMPCON Proceedings
(Fall 1979), 16669, at 169.

MacKenzie: Negotiating Arithmetic, Constructing Proof 63

28. Thus compliance with the standard is spreading into the field of dedicated
Digital Signal Processors (DSPs). One executive in the field writes: ‘Not being IEEE-
compatible turns off users who want to replace an application running on an array
processor with a board containing a 32-bit floating-point DSP chip . . . Most array
processors are IEEE-compatible’: quoted in Jonah McLeod, ‘DSP, 32-bit Floating-
Point: The Birth Pangs of a New Generation’, Electronics (April 1989), 71-74, at 73.

29. W. Brian Arthur, ‘Competing Technologies and Economic Prediction’, Options
(April 1984), 10-13, at 10.

30. Interview with Chuck Purcell, Minneapolis, 4 April 1990.

31. Cabinet Office, Advisory Council for Applied Research and Development,
Software: A Vital Key to UK Competitiveness (London: HMSO, 1986), 78, 83.

32. Ministry of Defence, Interim Defence Standard 00-55: The Procurement of
Safety Critical Software in Defence Equipment (Glasgow: Ministry of Defence
Directorate of Standardization, 5 April 1991).

33. Department of Defense, Trusted Computer System Evaluation Criteria
(Washington, DC: Department of Defense, December 1985, DOD 5200.28-STD).

34. Pelaez, Fleck & MacKenzie, op. cit. note 2, 5.

35. J.V. Grabiner, ‘Is Mathematical Truth Time-Dependent?, American Math-
ematical Monthly, Vol. 81 (1974), 354-65.

36. N.H. Hughes, foreword to Charter Technologies Ltd, VIPER Microprocessor
Development Tools (Worcester: Charter Technologies Ltd, 1987; unpaginated).
‘VIPER' is a registered trademark of the UK Ministry of Defence.

37. High Court of Justice, Queen’s Bench Division, 1991 C No. 691.

38. D. MacKenzie, ‘The Fangs of the VIPER’, Nature, Vol. 352 (8 August 1991),
467-69.

39. R.S. Boyer and J.S. Moore, ‘Proof Checking the RSA Public Key Encryp-
tion Algorithm’, American Mathematical Monthly, Vol. 91 (1984), 181-89, at
181.

40. Avra Cohn, ‘The Notion of Proof in Hardware Verification’, Journal of
Automated Reasoning, Vol. 5 (1989), 127-39, at 135; Bishop Brock and Warren A.
Hunt, Jr, Report on the Formal Specification and Partial Verification of the VIPER
Microprocessor (Austin, TX: Computational Logic, Inc., Technical Report 46, 15
January 1990), 21.

41. J. Kershaw, foreword to Brock & Hunt, ibid.

42. M. Thomas, ‘VIPER Lawsuit Withdrawn’, electronic mail communication, 5
June 1991.

43. See Hilbert’s 1927 address, ‘The Foundations of Mathematics’, in Jean van
Heijenoort, From Frege to Godel: A Source Book in Mathematical Logic, 1879-1931
(Cambridge, MA: Harvard University Press, 1967), 464-79. A potentially significant
difference, in view of the arguments by DeMillo et al. discussed below, is that for
Hilbert the array of formulae constituting a proof ‘must be given as such to our
perceptual intuition’ (ibid., 465).

44. Formalism’s most famous opponent, the intuitionist L.E.J. Brouwer, wrote:
‘The question where mathematical exactness does exist, is answered differently by the
two sides; the intuitionist says: in the human intellect, the formalist says: on paper’.
The quotation is from ‘Intuitionism and Formalism®, the English translation of
Brouwer’s 1912 Inaugural Address at the University of Amsterdam, in Brouwer,
Collected Works. Vol. 1. Philosophy and Foundations of Mathematics (Amsterdam:
North-Holland, 1975), 123-38, at 125.

64 Social Studies of Science

45. For an interesting discussion of the significance of the machine analogy in
Hilbert’s mathematical programme, see Herbert Breger, ‘Machines and Mathematical
Styles of Thought’, paper read to conference on ‘Mathematization of Techniques and
Technization of Mathematics’, Zentrum fiir interdisziplindre Forschung, Universitit
Bielefeld, 3-7 September 1991.

46. R.A. DeMillo, R.J. Lipton and A.J. Perlis, ‘Social Processes and Proofs of
Theorems and Programs’, Communications of the Association of Computing
Machinery, Vol. 22 (1979), 271-80, at 273-75. The phrase ““social” processes of proof”’
in the above quotation from Thomas is probably a reference to the argument of this
paper.

47. Leslie Lamport of verification specialists SRI International, as quoted in Stuart
S. Shapiro, Computer Software as Technology: An Examination of Technological
Development (unpublished PhD thesis, Carnegie Mellon University, Pittsburgh, PA,
1990), 132. Shapiro’s thesis contains a useful account of the 1970s debate surrounding
the paper by DeMillo, Lipton and Perlis.

48. Edsger W. Dijkstra, ‘On a Political Pamphlet from the Middle Ages’, ACM
SIGSOFT, Software Engineering Notes, Vol. 3, Part 2 (April 1978), 14-16, at 14.
Dijkstra was commenting on an earlier version of the DeMillo, Lipton and Perlis
paper, published in the Proceedings of the Fourth ACM Symposium on Principles of
Programming Languages (January 1977), 206-14.

49. Edsger W. Dijkstra, ‘Formal Techniques and Sizeable Programs’, paper
prepared for Symposium on the Mathematical Foundations of Computing Science,
Gdansk, 1976, as reprinted in Dijkstra, Selected Writings on Computing: A Personal
Perspective (New York: Springer, 1982), 205-14, at 212-13. For an interesting analysis
of Dijkstra’s overall position, see Eloina Pelaez, A Gift from Pandora’s Box: The
Software Crisis (unpublished PhD thesis, University of Edinburgh, 1988).

50. The most recent focus of controversy was another article denying, on different
grounds from those of DeMillo, Lipton and Perlis, the analogy between verification
and mathematical proofs: James H. Fetzer, ‘Program Verification: The Very Idea’,
Communications of the ACM, Vol. 31 (1988), 1048-63.

51. Kenneth Appel and Wolfgang Haken, as quoted in Philip J. Davis and Reuben
Hersh, ‘Why should I believe a Computer?’, in Davis and Hersh, The Mathematical
Experience (Brighton, Sussex: Harvester, 1981), 380-87, at 385-86.

52. National Research Council, System Security Study Committee, Computers at
Risk: Safe Computing in the Information Age (Washington, DC: National Academy
Press, 1991).

53. Ministry of Defence, op. cit. note 32, Part 2. Guidance, 28. The history of Def
Stan 00-55 is reviewed in Margaret Tierney, ‘The Evolution of Def Stan 00-55 and 00-
56: An Intensification of the *‘Formal Methods Debate” in the UK’, Edinburgh PICT
Working Paper No. 30 (Edinburgh: Programme on Information and Communication
Technologies, Research Centre for Social Sciences, University of Edinburgh, 1991).

54. Ministry of Defence, op. cit. note 32, Part 2. Guidance, 28.

55. See, for example, J. Van Heijenoort (ed.), From Frege to Gidel: A Source Book in
Mathematical Logic, 1879-1931 (Cambridge, MA: Harvard University Press, 1967).
Some of Brouwer’s reasons for doubting an apparently obvious principle can be seen
in the following quotation: ‘Now consider the principum tertii exclusi [law of excluded
middle]: It claims that every supposition is either true or false; in mathematics this
means that for every supposed imbedding of a system into another, satisfying certain
given conditions, we can either accomplish such an imbedding by a construction, or

MacKenzie: Negotiating Arithmetic, Constructing Proof 65

arrive by a construction at the arrestment of the process which would lead to the
imbedding. It follows that the question of the validity of the principum tertii exclusi is
equivalent to the question whether unsolvable mathematical problems can exist. There
is not a shred of a proof for the conviction, which has sometimes been put forward, that
there exist no unsolvable mathematical problems . . . in infinite systems the principum
tertii exclusi is as yet not reliable So long as this proposition is unproved, it must
be considered as uncertain whether problems like the following are solvable: Is there in
the decimal expansion of [] a digit which occurs more often than any other one?.. . .
And it likewise remains uncertain whether the more general mathematical problem:
Does the principum tertii exclusi hold in mathematics without exception? is
solvable In mathematics it is uncertain whether the whole logic is admissible and
it is uncertain whether the problem of its admissibility is decidable’: Brouwer, ‘The
Unreliability of the Logical Principles’, in Brouwer, op. cit. note 44, 107-11, at 109-11,
emphases deleted.

56. I am drawing here on Bloor, op. cit. note 10, 124-36.

57. D.C. Makinson, Topics in Modern Logic (London: Methuen, 1973), 27-28.

58. CIiff B. Jones, Systematic Software Development Using VDM, second edition
(Hemel Hempstead, Herts.: Prentice Hall, 1990), 24.

59. ‘Unless we have a philosophical commitment to intuitionism, maintaining
constructiveness when it is not required can only make a proof system more
cumbersome to use. We have seen that certain programs cannot be derived from their
specifications in a constructive logic, but can be derived in a classical logic upon which
minimal restrictions have been imposed...’: Zohar Manna (Computer Science
Department, Stanford University) and Richard Waldinger (Artificial Intelligence
Center, SRI International), ‘Constructive Logic Considered Obstructive’ (typescript,
nd.), 8.

Donald MacKenzie holds a personal chair in sociology at the
University of Edinburgh. He is the author of Statistics in
Britain, 1865—-1930: The Social Construction of Scientific
Knowledge (Edinburgh University Press, 1981), /nventing
Accuracy: A Historical Sociology of Nuclear Missile Guidance
(MIT Press, 1990), and co-editor of The Social Shaping of
Technology (Open University Press, 1985).

Author’s address. Department of Sociology, University of
Edinburgh, 18 Buccleuch Place, Edinburgh EH8 9LN,
Scotland, UK.

