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A New Approach to the Definition of Power 
Components in Three-phase Systems 

Under Nonsinusoidal Conditions 
Alessandro Ferrero, Member, IEEE, and Gabrio Superti-Furga, Member, IEEE 

Abstract-The problem of defining power components in 
three-phase systems under nonsinusoidal situations is dis- 
cussed. A ntW approach is proposed, which employs the de- 
scription of three-phase systems in terms of Park vectcfh. Fi- 
nally, it is shown how this method fits with other proposed 
methods that can be now regarded in terms of this more general 
theory . 

I. INTRODUCTION 
HE PROBLEM of defining nonactive powers under T nonsinusoidal conditions has been already discussed 

by several authors who defined power components both 
in the time domain (Fryze [ l ] ,  Kusters and Moore [2], 
Page [3]) and in the frequency domain (Budeanu [4], 
Shepherd and Zakikhani [5], Sharon [6], Czarnecki [7], 

The definitions proposed by these authors try to attain, 
as their final goal, the maximization of the power factor 
and largely originate from mere mathematical considera- 
tions, while only Czarnecki’s theory attempts to give 
physical meaning to its definitions. 

Furthermore, most given definitions deal with single- 
phase systems. Three-phase systems have been taken into 
consideration recently and the new proposed theories ap- 
pear to be a mere extension of the given definitions [9]- 

Although these definitions seem quite attractive, they 
are concerned with the decomposition of currents into or- 
thogonal components, rather than with power definitions. 
Nonactive powers are then defined as the product of the 
rms value of voltage by the rms value of current compo- 
nents. 

However, this procedure leads to the definition of quan- 
tities that are intrinsically apparent powers: The formal 
properties of powers in electrical systems are not satis- 
fied, since they have no sign, they cannot be algebraically 
added and they do not satisfy the conservation principle. 
Moreover, their measurement is very often difficult. 

[SI). 

[ W .  

Manuscript received June 21, 1990; revised December 17, 1990. This 
work was supported by the Italian Ministry of University and Scientific 
Research (MURST). 

A. Ferrero is with Dipartimento Elettrico, Elettronico E Sistemistico, 
University of Catania, Catania, Italy. 

G. Supert-Furga is with Dipartimento di Elettrotecnica, Istituto di Fis- 
ica, Universita della Basilicata, Potenza, Italy. 

These drawbacks can be overcome if the Park transfor- 
mation is employed in describing three-phase systems: in 
fact, this mathematical approach represents a powerful, 
synthetic, and universal way to represent the behavior of 
three-phase systems in any possible working condition 
(unsymmetrical, unbalanced, nonsinusoidal, etc.) [ 131, 

The present paper will briefly illustrate the Park theory 
and will show how this theory can be applied to describe 
three-phase systems. General validity power definitions in 
three-phase systems will be derived, proposing a more 
general approach than Akagi’s [ 151. 

Moreover, if three-wire three-phase systems are con- 
sidered, their representation in terms of Park vectors leads 
to a formalism to some extent similar to that employed to 
represent single-phase systems. It will be shown how cur- 
rents decomposition proposed by other theories can be ex- 
tended by employing the Park transformation. 

1141. 

11. PARK TRANSFORMATION 
Park transformation is widely employed to study the 

behavior of rotating electrical machines in transient con- 
ditions [16]. However, it can be considered a more gen- 
eral and powerful tool to study the behavior of three-phase 
systems. 

The Park transformation applied to the signals y,( t ) ,  
yb ( t ) ,  and y c ( t )  (voltages and currents) of a three-phase 
system leads to the Park components yd ( t ) ,  y4 ( t ) ,  and yo ( t )  
defined as - -  

where [TI is the orthogonal matrix 

In the d-q plane, it is then possible to define the Park 

(2) 

vector as the complex quantity 

Y = Y d  -k h q  
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thus changing the original quantities ya ( t ) ,  y b ( t ) ,  and y,(t) 
into the Park vector y ( t )  plus the zero-sequence compo- 
nent yo ( r ) ,  both depending on time t .  ’ 

If the complex operator 5 = eJ2’I3 is introduced, the 
Park vector can be also obtained as: 

(3) 

The inverse Park transformation comes immediately from 
(1):  [ = [TI-’ . [E] = [TI‘ * [z] (4) 

y = J2/3 (yo + 6 . Y h  + 5’ . y ~ ) .  

Y c  YO Yo 

since matrix [TI is orthogonal and so [TI-’ = [TI‘. 

111. THREE-PHASE SYSTEMS REPRESENTATION 
Starting from the above considerations, it is possible to 

represent any three-phase system in terms of the Park vec- 
tors of line voltages and currents, plus their zero-sequence 
components. 

If the zero-sequence components are not present,2 the 
three-phase system can be represented only by these two 
Park vectors in the d-q plane, with a formalism similar to 
the phasorial one employed in the representation of sin- 
gle-phase sinusoidal systems. 

Moreover, since the Park vector is invariant with re- 
spect to an additive term (that is the same for the three 
phases), it represents the ‘‘pure” three-phase component 
of the ~ y s t e m . ~  The phase angle between the voltage and 
current Park vectors depends on the load nature and on 
the arbitrary phase order assigned to the  phase^.^ 

In periodical conditions (with period T )  it is also pos- 
sible to define a three-phase rms value [14] as 

where y * ( t )  is the conjugate vector of y (t) .  

‘The proposed transformation is a particular case (sometimes referred to 
as the Clarke transformation) of a more general transformation that consid- 
ers the d-q axes rotating. Employing this general formulation is possible. 
but does not represent any advantage for the purpose of the present paper. 

’This is a very important case although it is a particular case. In fact, i t  
will be shown in  the following paragraphs that, as far as power concepts 
are involved, it is possible to neglect the zero-sequence components, pro- 
vided that at least one of them is not present: This is the typical case of 
three-wire three-phase systems. in which the zero-sequence component of 
current is nil. 

‘When three-wire three-phase systems are concerned, thih allows us to 
determine the Park vector of voltages starting from the line-to-neutral volt- 
ages referred to any arbitrary artificial neutral point. The Park vector is 
independent from the chosen neutral point. This leads to the determination 
of the Park vector of voltages starting from the line-to-line voltages as: 

‘It must be noted that, while phase shift between voltage and current 
phasors represents a time shift between sinewaves and only depends on the 
load nature, phase shift between voltage and current Park vectors repre- 
sents a spatial phase shift in the d-q plane and depends on the load nature 
and on the assigned phase order. 

If the zero-sequence component is nil, it follows [14]: 

Y = J Y ;  + Y:, + Y:. (6) 

The rms value of the Park vector is so defined to be the 
“pure” three-phase rms value. This definition can be kept 
valid even if in the presence of the zero-sequence com- 
ponent; (6 )  is no longer valid in this case. 

Some further interesting considerations, in order to per- 
ceive the wide generality of the Park representation, come 
from the study of the relationship between the Park vec- 
tors and the symmetrical components in sinusoidal con- 
ditions, and from the analysis of the Park vectors in the 
frequency domain. 

A.  Symmetrical Components 
In sinusoidal conditions the phasorial formalism can be 

employed as well as the decomposition into symmetrical 
components. 

Taking into account the matrix [SI defined as: 

r l  ~l ~ 2 i  
1 [SI = ( Y 2  ; 1 

1 1  

the phasors of the symmetrical components are obtained: 

If the Park transformation (1) is now applied, the Park 
vector is obtained [ 141: 

and the zero-sequence component: 

Equation (8) shows the relation between the Park vec- 
tor and the symmetrical components in sinusoidal condi- 
tions with angular frequency a. In particular, if the three- 
phase system is balanced and with positive phase order, 
the Park vector can be obtained from the phasor of the 
positive symmetrical component TI only. On the other 
hand, if the three-phase system is balanced, but with neg- 
ative phase order, the Park vector can be obtained from 
the conjugaF of the phasor of the negative symmetrical 
component Y2 only. 

B. Frequency-Domain Analysis 
If the three-phase system is supposed to be periodical 

with period T = 2 n / w ,  the Park components are period- 
ical too, due to the Park transformation linearity. It is then 
possible to determine their Fourier series components. 

In particular, the Park vector can be decomposed in the 
complex Fourier series [14]: 

Authorized licensed use limited to: Tokyo Institute of Technology. Downloaded on September 20,2020 at 08:19:21 UTC from IEEE Xplore.  Restrictions apply. 



570 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 40, NO. 3, JUNE 1991 

whose terms are Park vectors with constant amplitude Y k  
and with rotating speed proportional to the index k in pos- 
itive and negative direction (except the term with index k 
= 0, corresponding to the DC component). 

Each harmonic frequency nu, n a positive integer, is so 
described by two vectors (k = n,  k = -n) with different 
amplitude, and rotating at the same speed, but with op- 
posite  direction^.^ 

If (8) is reminded, for any specified harmonic n ,  the 
harmonic component of the Park vector at angular fre- 
quency kw, k = n > 0, is associated with the positive 
symmetrical component at angular frequency nu, while 
the harmonic component at angular frequency ku, k = - n 
< 0, is associated with the negative symmetrical com- 
ponent at the same angular frequency. It results: 

Y k  = ?ln, 

Y k  = r,*,, 
fork  > 0: 

fork < 0. 

The Park theory considers these pairs of terms as if they 
were different harmonic components, thus achieving a 
significant formal unity in the representation of distorted 
and nonsymmetrical systems. 

At last, the rms value of the Park vector can be obtained 
from the rms values of its harmonic components in the 
same way as for quantities in single-phase systems. Since 

Y 2 ( t )  = Y (0 Y * (0 
f m  +m 

averaging this equation over the period T, the desired rms 
value is obtained: 

I +m 

IV. POWER DEFINITIONS 

Since the Park matrix [TI is orthogonal, the instanta- 
neous power p ( t )  can be obtained starting from the orig- 
inal phase voltages and currents: 

as well as starting from the Park components: 

Introducing the Park vectors of voltages u(t)  and cur- 
rents i ( t ) ,  the Park instantaneous complex power can be 
defined as 

U,(t) = u(t)  i*( t ) .  (13) 

Expanding (1 3), the Park real power can be defined as 

P,(f) = Re [U,(f)] = U d i d  + U q i q  

qp(t) = Im [u,(t)] = uqid - udiq 

a,(Q = P,(O + &(d. 

(14) 

as well as [he Park imaginary power can be defined as [ 151 

(15) 

so that the Park complex power can be rewritten as 

(16) 

The physical meaning of the real power can be imme- 
diately understood if the zero-sequence power 

Po(0  = %io (17) 

(18) 

is introduced; from (12) and (14), it follows that 

PQ) = P p W  + P O ( 0 .  
The Park real power represents the instantaneous power 

in a three-phase system if either voltage or current zero- 
sequence component is not present. 

The Park imaginary power is a characteristic quantity 
of the three-phase systems. It does not involve instanta- 
neous three-phase power [15]; it arises when the instan- 
taneous values of the Park vectors of voltages and cur- 
rents are spatially shifted [13]. This happens when the 
ratio between the instantaneous values of the line voltages 
and the line currents are not the same for the three phases. 

The above definitions are discussed in [15] too, mainly 
to represent the behavior of static compensators. How- 
ever, the above-defined quantities represent a more pow- 
erful approach to describe three-phase systems under non- 
sinusoidal, unbalanced conditions. The average values of 
these quantities, in periodical conditions, can be usefully 
defined and related to quantities defined by other theories, 
as it will be shown later. 

The average value of (16) can be evaluated: 

where P,, is the active power if p o  (t) = 0. 
The defined quantities up (t), p p  ( t ) ,  qp (t), p o  (t), as well 

as their average values, can be actually qualified as pow- 
ers, and not apparent powers, since they satisfy the fol- 
lowing properties? 

- they are algebraic quantities, whose sign depends on 
the reference direction assumed for voltages and 
currents; 

- they satisfy the conservation principle: it can be 
proven that the algebraic sum of each of the defined 

'The terms with opposite indexes are independent since they are the terms 
of the Fourier series of the complex function y (on the contrary, in case of 
real functions they were conjugate). 

61t is worthwhile to point out that if the general form of the Park trans- 
formation is employed, the above-defined quantities are not affected by the 
position and the speed of the d-q axes [13], thus supportjng the formal 
correctness of all given definitions. 

Authorized licensed use limited to: Tokyo Institute of Technology. Downloaded on September 20,2020 at 08:19:21 UTC from IEEE Xplore.  Restrictions apply. 



57 I FERRERO AND SUPERTI-FURGA: POWER COMPONENTS IN THREE-PHASE SYSTEMS 

powers concerned with each three-phase element of 
an isolated network is null.7 

Moreover, these quantities have a further interesting 
property: They can be measured by means of simple lin- 
ear combinations (with constant coefficients) of products 
of line voltages and currents as clearly indicated by ( l ) ,  
(14), ( 1 5 ) ,  and (17). 

In sinusoidal and balanced conditions, the real and 
imaginary Park powers are directly related to the active P 
and reactive Q powers. In fact, if a three-phase balanced 
system has symmetrical positive sequence three-phase 
voltages and currents, (3) leads to the following Park vec- 
tors: 

v(t> = Jii V,  elW' 

i(t) = h Z l e l ( W r - p )  

where V, and Z, are the rms values of the line voltages and 
currents and p is the phase displacement between them. 

Applying (14) and (15), it is possible to obtain both real 
and imaginary Park powers as 

pp(r)  = 3VlZ, cos cp = Pp = P ;  

q,(t) = 3V,Z, sin p = Qp = Q (20) 

which are constant and equal to the active and reactive 
power, respectively. 

If symmetrical negative three-phase voltages and cur- 
rents are considered, the Park vectors are 

v(r)  = di V[ e -jar 

i(t) = e - j (u ' -p ) .  

The real and imaginary Park powers can now be ob- 
tained as 

p p ( t )  = 3VJ/ cos $0 = Pp = P ;  

qp(r) = -3V,Z, sin p = Q,, = -Q. (21) 

It can be noted that they are still constant, but that the 
imaginary power is now equal to the opposite of the re- 
active power: This is in agreement with (8). 

In nonsinusoidal, unbalanced periodical conditions, the 
instantaneous complex power can be obtained from the 
Fourier series components of the voltage and current Park 
vectors. Applying (10) to them yields to 

+ m  + m  

'If the line voltages of an isolated three-phase network satisfy the 
Kirchhoff voltage law phase by phase, then the Park voltage components 
will satisfy the same law too, due to the linearity of the Park transforma- 
tion. For the same reason, if the line currents of the same network sepa- 
rately satisfy the Kirchhoff current law, the Park current components will 
satisfy the same law too. The Tellegen theorem affirms that the sum of the 
products of any pairs of voltage and current components extended to all 
elements of the network is null. It follows that the sums of each defined 
power are null, since they are sums of such products. 

Averaging (22) on the period, it can be obtained: 
+ m  

A,, = Pp + jQ,, ck v, 1;. (23) 
- m  

From (23), the average value of the Park real power 
can be expressed by 

where Pk are the active powers associated with each har- 
monic component and with each symmetrical component. 

From (23), the average value of the Park imaginary 
power can be likewise expressed by 

1 + m  

Equations (20) and (21) lead to 
+ m  + m  

Qp = f ; n  Q I ~  - E n  Q2n + Qpo (24) 

having considered the symmetrical components for each 
harmonic n = 1 k 1 .  Qln is the reactive power associated 
with the positive sequence of harmonic n and Q2,  is the 
reactive power associated with the negative sequence of 
harmonic n .  

It must be noted that the average value of the Park 
imaginary power is given by the sum of the reactive pow- 
ers Q,,, while the reactive powers Q I n  are subtracted.' 

Moreover, the presence of the component with index k 
= 0 in Q, can be noted because the DC component of the 
current in the Park vectors representation can be spatially 
shifted with respect to the voltage. 

A. Apparent Power and Power Facror 
Starting from the given definitions of three-phase rms 

values of voltages and currents, the following "pure" 
three-phase apparent power can be defined: 

s =  V * Z  (25) 

that is in agreement with the definition given in [ 171. 
Unlike all other defined powers, this apparent power is 

not an algebraic quantity and does not satisfy the conser- 
vation principle. 

8Although (24) is formally similar to the Budeanu definition of the re- 
active power Q,, the two quantities are different. In fact, the Budeanu re- 
active power in a three-wire three-phase system can be written as 

m m 

QB = F,, e,,, + Ftv e,,,. 
It can be noted that the reactive powers associated with the negative se- 
quence are added, while in (24) they are subtracted. Moreover, the Park 
imaginary power has a physical meaning completely different from that of 
the Budeanu reactive power. In particular, it 1) is a characteristic quantity 
of the three-phase systems and it does not exist in single phase systems; 2) 
is not related to instantaneous power oscillations; 3) gives useful infor- 
mation on how to improve the power factor (as it will be shown in the 
following sections); 4) is defined in the time domain, while Budeanu re- 
active power is not; 5) can be easily measured, while Budeanu reactive 
power cannot. 
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The three-phase power factor can be defined as 

Taking into account the amplitude Ap of the average 
complex power Ap defined by (19): 

Ap = (27) 

D i  = S2 - A i  

S 2  = P j  + Q; + D j .  

it can be proven [14] that it is always: S 1 Ap.  
The quantity 

(28) 
can be defined' so that the apparent power can be rewrit- 
ten as 

(29) 

B. Numerical Examples 
To exemplify the proposed theory, the Park transfor- 

mation was applied to the three-phase circuit of Fig. 1 for 
sinusoidal and nonsinusoidal supply voltages and for 
symmetrical and nonsymmetrical loads. 

Fig. 2 shows the polar diagram of the voltage and cur- 
rent Park vectors for sinusoidal supply voltages (e , ( t )  = 
sin (ut); f?b(t) = sin (ut - 27r/3); e ,  = sin (wt  + 2a/3); 
u = 27rfi f = 50 Hz); and for a symmetrical load (R, = 
Rb = R, = 0.3 Q ;  L, = Lb = L, = 0.001 H); as it can be 
noted, the two diagrams are circular, since the Park vec- 
tors have constant amplitude in this case. 

Fig. 3 shows the diagrams of the real and imaginary 
Park powers, in the same ease as Fig. 2: they are constant 
and equal to the active and reactive powers, as expected. 
It results: Pp = 2.385 W, Qp = 2.497 VAr, V = 1.225 
V, I = 2.819 A, S = 3.453 VA, Ap = 3.453 VA, A = 
0.691. 

Fig. 4 shows the polar diagram of the voltage and cur- 
rent Park vectors for the same sinusoidal supply voltages 
as those of Fig. 2, but for a nonsymmetrical load (R, = 

H); as it can be noted, the diagram of the current vector 
is no longer circular, since the currents are not balanced. 

Fig. 5 shows the diagrams of the real and imaginary 
Park powers, that are not constant, in the same case as 
that of Fig. 4. It results: Pp = 1 . 6 4 1  W, Qp = 2.006 VAr, 
V = 1.225 V, I = 2.238 A; S = 2.742 V * A, Ap = 
2.592 V 

Fig. 6 shows the polar diagram of the voltage and cur- 
rent Park vectors for nonsinusoidal supply voltages (e, = 
I sin (ut) I; eb = I sin (ut - 2a/3) 1 ;  e, = 1 sin (at + 
2a/3) 1 ,  u = 27rf, f = 50 Hz) and for a symmetrical load 

Fig. 7 shows the diagrams of the real and imaginary 
Park powers, that are not constant, in the same case as 
that of Fig. 6. It results: Pp = 0.169 W, Qp = .-0.342 

R, = 0.3 a, Rb = 0.5 L, = L, = 0.001 H, Lb = 0.003 

A, X = 0.598. 

(R, = R, = R, = 0.3 Q ;  La = Lb = L, = 0.001 H). 

'Once again, .it is worth while to note that, although it is apparently 
formally identical, D, is not the Budeanu distortion power, since Q, is not 
the Budeanu reactive power. 

R a  L a  

- \I I 
Fig. 1. Three-phase circuit employed to exemplify Park theory. 

d-axis 
Fig. 2. Polar diagram of voltage (a) and current (0) Park vectors in case 

of balanced sinusoidal supply voltage and symmetrical load. 

3.00 

n 

2 
+ 2.00 

6 
v 

0.00 I Time (ms) 

Fig. 3 .  Diagram of real (a) and imaginary (0) power in the same case as 
that of Fig. 2.  

VAr, V = 0.531 V, I = 0.751 A; S = 0.399 VA, Ap = 

0.381 VA, X = 0.424. It can be noted that V 2  # V i  + 
V i  + Vf, since the zero-sequence component of the three- 
phase voltages is not null. 
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I 

573 

0.00 ii0 Time (ms) 
I ' I , , , , , !  20 

lime (ms) 

Fig. 5. Diagram of real ( a )  and imaginary (0) power in the same case as 
that of Fig. 4.  

2.00 1.00 z 2.00 1.00 z 
I-r-r-F -1.00 

-2.c9bd ' 1 '  'ii!dci 4 1 I i i L b  ' 3  ' 1 1.00 I ' 1 I I ' ' 2.00 ' ' 
d-axis 

Fig. 6 .  Polar diagram of voltage (a) and current (0) Park vectors in case 
of nonsinusoidal supply voltage and symmetrical load. 

Fig. 8 shows the polar diagram of the voltage and cur- 
rent Park vectors for the same nonsinusoidal supply volt- 
ages as those of Fig. 6, but for a nonsymmetrical load (R, 

Fig. 7. Diagram of real (a) and imaginary (0) power in the same case as 
that of Fig. 6 .  

- l . o o ~ o o  -2.Q9.00 -1.00 
d-axis 

Fig. 8. Polar diagram of voltage ( w )  and current (0) Park vectors in case 
of nonsinusoidal supply voltage and nonsymmetrical load. 

h 
L 
4 0.50 
> 
h 
L 
4 0.50 I 
> I ._ s 
& 0.00 

v 

e, 

t a 
-0.50 

h 
d a 

0.003 H). 
Fig. 9 shows the diagrams of the real and imaginary 
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Park powers in the same case as that of Fig. 8. It results: 
Pp = 0.110 W, Q, = -0.254 VAr, V = 0.531 V, I = 
0.583 A; S = 0.310 VA, A,, = 0.277 VA, X = 0.355. 

V. POWER COMPENSATION 
When assessing the validity of the definitions of powers 

in nonsinusoidal conditions, their effectiveness in allow- 
ing correct economical evaluation of energy consumption 
as well as in allowing correct compensation of nonactive 
powers must be taken into account besides their correct- 
ness from a mere formal point of view. 

It is not worthwhile, in this context, to examine eco- 
nomical problems, since they deeply involve extratech- 
nical interests. 

As far as power compensatiofi is concerned, total com- 
pensation is achieved if X = 1 is obtained. To attain this 
goal, the total compensation of the instantaneous values 
of q, (t) is necessary, although not sufficient [ 151. 

Useful indications on how to accomplish its compen- 
sation are suggested by its physical meaning. Since it does 
not involve instantaneous three-phase power, it can be 
completely compensated without employing energy stor- 
age elements" [ 151. This is a fundamental result if imag- 
inary power compensation is to be attained with static 
converters: Their need for reactive elements is only due 
to the finite commutation frequency of the switching ele- 
ments, not to system requirements. Moreover, the com- 
pensation of qp (t) leads to the maximum compensation 
without employing energy storage elements [ 151. 

However, if the optimal compensation ( A  = 1) is the 
goal, the instantaneous power p p  (t) must be considered. 
An indication on how to operate is given by the extension 
of Fryze's time-domain decomposition [ l ]  in terms of 
Park vectors. 

Moreover, the frequency -domain decomposition [7]-[9] 
gives useful indications on the source of distortion and on 
the relationship between the average values of the real and 
imaginary Park powers and the current components. In- 
dications on the effect of the compensation of the average 
value of the imaginary Park power can be obtained as 
well. 

The following sections will discuss both time-domain 
and frequency-domain decompositions in terms of the 
Park vectors. 

A. Time-Domain Decomposition 

The Park vector approach leads to a straightforward ex- 
tension of Fryze's [ 11 and Kusters and Moore's [2] theo- 
ries to the three-phase systems. The current Park vector 
of a three-phase system with null zero-sequence compo- 
nent can be decomposed into an active component (that is 
associated to the active power) and a residual one. 

"This does not exclude the possibility of employing such elements in 
imaginary power compensation, but only affirms that energy storage ele- 
ments are not necessary. This is just the contrary of what happens in re- 
active power compensation in single-phase systems. 

The active current is defined by 

(0 PP 
V 2  

i,(t) = - 

where P,, is the average value of the real power and V the 
rms value of the voltage Park vector. 

The residual current is obtained by the difference: 

i,(t) = i ( t )  - i , ( t) .  (31) 

The functions i , ( t)  and i ,(t) are orthogonal, since it re- 
sults, for their scalar product: 

lT Re [i,(t) i:(t)] dt = 0. 

This leads to the following equation for the rms values: 

I* = I: + I ;  (32) 

and consequently to 

P = 1. 1 v(t) - i,*(t) dt = VI,. 
T T  (33) 

This means that if i, is completely compensated, so that 
i = i,, then the power factor defined by (26) becomes X 
= 1 .  It follows that the current component i, in a three- 
wire three-phase system is the minimum rms value current 
that determines the active power P,, for a specified volt- 
age. 

The vectorial equations (30) and (31) are more effective 
than the separate application of the time-domain decom- 
position to the single phases, since they attain the optimal 
redistribution of the average phase powers for a specified 
total power. 

Moreover, if the following equations were written for 
each phase, in spite of (30): 

P m  
Vm 

iam = 7 v,(t), m = a ,  b, c 

U ,  being the line voltages of the single phases, it would 
be obtained that 

i,, + iab + iOc # 0 

that has no meaning in three-wire systems. To have zero 
sum currents, the following equations [9], [12], [17] 
should be written: 

that, applying the Park transformation, leads to (30). 

B. Frequency-Domain Decomposition 

The frequency-domain decomposition of the current 
Park vector leads to a generalization to nonsymmetrical 
voltage conditions of the theories introduced by Czar- 
necki in [7]-[lo]. 
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The harmonic components and Vk(”) of vectors i(t) 
and v( t )  respectively are obtained by (10). The current 
components can be divided into two groups: those with k 
E Nu and those with k E Nf, where Nu is the set of har- 
monic components of the voltage vector U ( t )  and Nf is the 
set of harmonic components of current that does not in- 
clude the harmonic components of the voltage vector U ( t ) .  
This can be also expressed by the fact that N,, n Nf = 0. 

For each term with k E N u ,  the complex ratio 

I k  
v k  
- = Gk + j B k  (34) 

can be considered. Moreover, from (23) and (34), it fol- 
lows: 

Pp = C Gk * Vz (35) 
k € N,, 

It is then possible to define an equivalent conductance 
G, so that 

The active current i, defined by (30) can be rewritten 
as: 

From (34) and (37), the following components of the 
current i ( r )  can be defined 

io,(?) = Gk vk dkwr (38) 
k€Nu 

i,(4 = iogW - i, (0 

i, (t) = j C B~ 9 vk ejkwt (40) 
k E N,, 

and, as far as the terms with k E Nfare concerned, 

if<t) = C I ,  ejkw‘. 

i = io + i, + i, + i f .  

(41) 

(42) 
In agreement with the definitions of [7], [9], the current 

i, can be called the “scattering current” and the current 
i, can be called the “reactive current.” 

The complex product between two complex functions 
of period T can be now defined as: 

k c N f  
It can then be written: 

1 
T T  

{ F ,  H }  = - . 5 F( t )  . H * ( t )  . dt = C 

C being a complex constant. If the two functions are ex- 
pressed by their harmonic components Fk and H k ,  the 

“According to the fact that (10) represents a complex Fourier series, 
index k ranges from - m to +m, as already stated. 

complex product can be obtained by 

{ F ,  H }  = ck Fk . H f .  

The above definitions, along with (35) and (36), allow 
the real and imaginary power to be written in terms of the 
defined current components: 

(43) {U, i,+} = C Gk . V ;  = Pp 
I (EN(< 

{U, is} = (Gk - G,) . V f  = P,, - P,, = 0 (44) 
k€N,, 

{U, i,} = -j  c Bk * V f  = j Q ,  (45) 
k € N n  

{U, if} = 0. (46) 

These current components are so related directly to the 
defined powers and not only to apparent powers as in [8] 
and [9]. 

Moreover, (45) gives a further physical meaning to the 
average value (24) of the imaginary Park power: If the 
load is linear, passive and time-invariant, Q,, is associated 
with the imaginary elements of (34) only. 

The orthogonality between io, is, i,, and if  components 
can be proven if the scalar product between each pair of 
them is null. 

The scalar product between two complex functions of 
period T i s  defined as: 

Re [F(t)  * H * ( t ) ]  . dz 

= Re [IF,  H } ]  = C 

C being a scalar constant. If { F ,  H }  = 0, then (F ,  H )  = 
0. 

It follows from (37) and (44): 

(i,, i,) = Ge(v, i,) = 0 

and (37) and (45): 

(ia, i,) = G,(u, i,) = 0 

and: 

(if,, i f )  = (i,, i f )  = (ir, if) = 0 

since none of the harmonic components of i, are present 
in the other currents by definition. 

Because of the orthogonality, the following equation 
can be written for the rms values: 

z2 = z: + 1; + I;! + z;. (47) 

In the particular case of symmetrical voltage (although 
nonsinusoidal) the above-defined current components i,, 
is, and i, represent the Park vectors of the currents i,, is, 
and i, defined by Czamecki [9], [lo]. 

Since the Park theory deals with positive and negative 
sequence components as if they were different harmonic 
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components, the current if represents the extension to 
three-phase systems of the current i, defined in [7]12. 

The relationship between the imaginary Park power and 
the decomposition (29) of the apparent power can be ob- 
tained again from (47) if a further decomposition of i, is 
considered. 

If the equivalent susceptance is defined: 

the current 

i,(t) = - jB,  u(t)  (48) 

can be defined, as well as the current 

i,(t) = i, ( t )  - i , ( t) .  (49) 

If the rms value 1, of i , ( t )  is considered, it follows: 

Qp = V 1,. 

It can be easily proven (in just the same way as that 
followed in the previous section for the current i,) that the 
current iq is the minimum rms value current required to 
give the average value Q, of the imaginary Park power. 
The current i, assumes then the meaning of “reactive 
scattering” current. 

Moreover, the orthogonality between i, and i,, can be 
proven. In fact it can be written, from (45) and (48): 

(51) { U ,  is> = { U ,  i,} - {u ,  i,} 
= j Q ,  - j Q p  = 0 

and, from (48) and (51): 

{i,, i,} = -jBe - { U ,  i,} = 0. 

zf = z; + z: 

(52) 

It follows that 

(53) 

and, from (47), that 

(54) 

From (33), (50) ,  and (54), the apparent power\decom- 
position (29) is obtained, where 

Di = V2Z5 + V2Zk + V2Zj. (55) 

Equation (29) gives indication on how to decrease the 
apparent power S and to increase the power factor A. In 

“It is possible to attain a further decomposition of if in order to reveal 
explicitly the effect of the circuit asymmetry on the source current (as in 
[9], [lo]). However, the decomposition introduced in [9] does not seem to 
be very useful, since it is valid only when the supply voltage is symmet- 
rical. After all, it has been proven [14] that sequence and harmonic decom- 
positions have similar formal properties so that it is quite meaningful to 
consider them together. 

fact, the average value Qp of the Park imaginary power 
can be completely compensated by means of static com- 
pensators without employing energy storage elements (as 
already stated) and without affecting the other power com- 
ponents. I 3  

The knowledge of Q, is the only requirement to achieve 
this compensation and it can be measured easily, with no 
need for the frequency-domain analysis. 

VI. CONCLUSIONS 

A new method has been proposed for the definition of 
active and nonactive power components in three-phase 
systems under nonsinusoidal conditions. 

The method proves itself more attractive than other 
proposed ones since it is not a mere extension of methods 
employed in single-phase systems, but comes from the 
application of a quite powerful and synthetic mathemati- 
cal tool specially studied for the representation of three- 
wire three-phase systems in any possible condition: the 
Park transformation and the Park vectors. 

It was proven that the application of this method leads 
to the definition of two quantities, the real and the imag- 
inary power, that are measurable in a quite simpler way 
than those proposed by other theories, that satisfy to all 
properties typical of the electrical power and that are di- 
rectly related, under sinusoidal and balanced conditions, 
to the active and reactive powers. 

The generality of this method was then proved, show- 
ing how some of the most significant theories proposed 
by other authors, based on time and frequency-domain de- 
composition of currents, can be directly extended to three- 
phase systems employing this method. 
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