
Handling Floating-Point Exceptions in Numeric
Programs

JOHN R. HAUSER
University of California, Berkeley

There are a number of schemes for handling arithmetic exceptions that can be used to improve
the speed (or alternatively the reliability) of numeric code. Overflow and underflow are the
most troublesome exceptions, and depending on the context in which the exception can occur,
they may be addressed either: (1) through a “brute force” reevaluation with extended range,
(2) by reevaluating using a technique known as scaling, (3) by substituting an infinity or zero,
or (4) in the case of underflow, with gradual underflow. In the first two of these cases, the
offending computation is simply reevaluated using a safer but slower method. The latter two cases
are cheaper, more automated schemes that ideally are built in as options within the computer
system. Other arithmetic exceptions can be handled with similar methods. These and some other
techniques are examined with an eye toward determining the support programming languages and
computer systems ought to provide for floating-point exception handling. It is argued that the
cheapest short-term solution would be to give full support to most of the required (as opposed to
recommended) special features of the IEC/IEEE Standard for Binary Floating-Point Arithmetic.
An essential part of this support would include standardized access from high-level languages to
the exception flags defined by the standard. Some possibilities outside the IEEE Standard are
also considered, and a few thoughts on possible better-structured support within programming
languages are discussed.

Categories and Subject Descriptors: D.3.0 [Programming Languages]: General—standards;
D.3.2 [Programming Languages]: Language Constructs and Features—control structures; G.1.0
[Numerical Analysis]: General—computer arithmetic; numerical algorithms

General Terms: Algorithms, Design, Languages, Performance, Standardization

Additional Key Words and Phrases: Arithmetic, exception handling, floating-point

1. INTRODUCTION

Designers and implementors of all levels of the computer hierarchy (programming
languages, systems, and hardware) are regularly asked to incorporate exception-
handling features into their products; yet many have little familiarity with how these
features might actually be used. More than all others, arithmetic exceptions seem
to be especially mysterious. People often ask whether there can be any reasonable

This work was supported in small part by the Defense Advanced Research Projects Agency (DOD)
under grant MDA972-92-J-1028 and by National Science Infrastructure grants CDA-8722788 and
CDA-9401156.
Author’s address: Computer Science Division, Soda Hall, University of California, Berkeley, CA
94720-1776.
Permission to make digital/hard copy of all or part of this material without fee is granted
provided that the copies are not made or distributed for profit or commercial advantage, the
ACM copyright/server notice, the title of the publication, and its date appear, and notice is given
that copying is by permission of the Association for Computing Machinery, Inc. (ACM). To copy
otherwise, to republish, to post on servers, or to redistribute to lists requires prior specific
permission and/or a fee.
c© 1996 ACM 0164-0925/96/0300-0139 $03.50

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 2, March 1996, Pages 139–174.



140 · John R. Hauser

response to an exception as seemingly conclusive as, say, floating-point overflow.
The truth is, though, that a number of different techniques exist for handling
arithmetic exceptions, depending on the context in which the exception occurs. In
fact, it is often both easier and cheaper to respond to an exception after-the-fact
than to prevent the exception from occurring in the first place [Demmel and Li
1994; Hull et al. 1994]. Conversely, when exception handling is not available, it is
sometimes necessary to artfully evade exceptions, resulting in programs that exhibit
no exceptional behavior but waste time doing so [Brown 1981; Parlett 1979].

In recent years, processor manufacturers have become increasingly suspicious
that arithmetic exception handling is an unneeded nicety, of little value to their
customers. Without a doubt, the main concerns of heavy users of computer arith-
metic are accuracy and speed. If a poll were taken, probably few such users would
express much interest in exception handling. The handling of arithmetic exceptions
is an issue primarily for the implementors of functions such as complex division,
or numeric libraries like LAPACK (l inear algebra package) [Anderson et al. 1995].
These routines are expected to be widely applicable and so must avoid being tripped
up by exceptions that are simply an artifact of the way the calculation is performed
[Demmel and Li 1994; Hull et al. 1994]. The authors of such routines naturally
constitute only a small minority of the people writing numeric code, but the results
of their work are incorporated into the work of many others. Programmers who
use numeric libraries today are often paying for the lack of standardized, effective
exception-handling features without even knowing it.

The IEC standard for Binary Floating-Point Arithmetic (commonly known as the
IEEE Standard, and an ANSI standard) was carefully drafted to include a number
of features for dealing with floating-point exceptions [Goldberg 1991; IEC 1989;
IEEE 1985]. (IEC is the International Electrotechnical Commission.) Computer
designs of the past decade have been nearly unanimous in adopting this standard
for their floating-point arithmetic, so a significant level of support for exception
handling exists in hardware today. And yet, there is little evidence so far that
much use has been made of many of these special features, even by the people
supposed here to have good reason to. However, this disordered state is to be
blamed mostly on the lack of standardized access to these features from high-
level languages such as Fortran or C. When high-level access is available at all,
it generally varies from one manufacturer’s machine to another. Programmers of
numeric libraries usually have an interest in having their code be portable to as
wide a range of platforms as possible, and so must avoid features that would make
their code machine specific. Today there is a danger that some of the features of
the IEEE Standard will disappear from future hardware before they ever had a
chance to be useful.

A new international standard [ISO 1994] tries to redress the situation by prescrib-
ing (among other things) minimal facilities for floating-point exception handling
within any high-level language. The ISO Language Independent Arithmetic Stan-
dard, Part 1, (LIA-1) does not assume conformance to the IEEE Standard; but
it is designed to mesh harmoniously with the older standard nonetheless. An ap-
pendix to the standard makes specific recommendations for standardizing access
to IEEE exception-handling features within Fortran, C, Ada, Common Lisp, BA-
SIC, PL/I, Pascal, and Modula-2. Although laudably conceived, the new language

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 2, March 1996.



Handling Floating-Point Exceptions · 141

standard has yet to prove its mettle in the marketplace. Unfortunately, neither
the IEEE Standard nor the LIA-1 document says much to motivate the gamut of
exception-handling features they require.

This article attempts to get at the heart of the matter by examining the ways in
which different arithmetic exceptions may be handled in numeric programs. The
emphasis will be on making numeric code run faster by eschewing convolutions
whose only purpose is to avoid exceptions. Reasoning is occasionally given for some
of the more inscrutable features of the IEEE Standard (and by extension, LIA-1),
along with ideas for improvement. Overall, the article summarizes the system
support needed for numeric exception handling. It is hoped that the information
provided here will help inspire a more concerted and possibly creative effort at
providing such support in the future.

2. FLOATING-POINT REVIEW

Before delving into the ways in which floating-point exceptions may arise, it will
be worthwhile first to review the character of floating-point arithmetic. The LIA-1
standard specifies a general floating-point model in more detail than is attempted
here. A more thorough review, also touching briefly on exception-handling issues,
is provided by Goldberg [1991].

In addition to zero, a floating-point format contains numbers of the form

±d0.d1d2d3 . . . dn−1 × be,

where b is the floating-point base (or radix); each di is a digit (0 ≤ di < b); and n
is the number of digits. A floating-point number is normalized if d0 > 0. The base
and number of digits are generally constant for a particular format, and together
these determine the precision of the format. Ordinarily, the size of the exponent e
is also limited, giving the floating-point format a finite range. The double-precision
format of the IEEE Standard, for example, has a base of 2 with 53 binary digits and
requires that numbers be normalized (usually) and that −1022 ≤ e ≤ 1023. The
range of this format covers numbers as large and small as 10±307, and the precision
is nearly 1 part in 1016.

Because of the finite precision of floating-point numbers, floating-point arith-
metic can only approximate real arithmetic. Every floating-point number is a
real number, but few real numbers have floating-point equivalents. Consequently,
floating-point operations (addition, etc.) are generally thought of as being composed
of the corresponding real operation followed by a rounding step which chooses a
floating-point number to approximate the real result. The symbols ⊕, �, ⊗, and
� are used to distinguish the basic floating-point operations from the real op-
erations +, −, ×, and ÷. The difference between the ideal real result r of an
operation and its floating-point approximation f is measured as the relative er-
ror δ = |f − r|

/

|r|. (This relative error is considered to be 0 when f = r = 0.)
Put another way, the rounded result can be said to be perturbed from the ideal
result by a factor of f/r = 1 + (f − r)/r = 1± δ, where δ is again the relative
error. For example, for a 3-digit decimal (base 10) format, if 5.166666 is the
ideal result and 5.17 the rounded result, the relative error of the rounded result
is |5.17 − 5.166666|

/

|5.166666| = 0.00064516. The returned result 5.17 is equal to
the ideal result 5.166666 times a perturbation factor of 1.00064516.

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 2, March 1996.



142 · John R. Hauser

Of course, it is possible for the real result of an operation to be so large or so small
that it falls outside the available floating-point range. This situation is known as a
range violation. When the magnitude is too large, the result is said to overflow
the available range. When it is too small, an underflow occurs.

In the absence of overflow or underflow, each operation has, as a practical matter,
a maximum relative error which bounds how bad a floating-point result can be in
relation to the ideal result for that operation. The maximum relative error is the
worst relative error the operation exhibits for any set of operands. For instance,
if the maximum relative error for the addition operation is known to be ε⊕, then
for any x and y one can guarantee that x⊕ y = (x + y)× ρ for some perturbation
factor ρ satisfying 1− ε⊕ ≤ ρ ≤ 1 + ε⊕.

These days it is common for the results of basic floating-point operations to be
rounded to nearest, which means that in the absence of a range violation the
result returned is always the floating-point number closest to the ideal real result.
Clearly, this is the best that a floating-point arithmetic could be expected to do.
With rounding to nearest, the maximum relative error is the same for all of the
basic operations, namely ε = 1/(2bn−1), where b is the base, and n is the number
of digits in the floating-point format.

In this article floating-point arithmetic will ordinarily be assumed to be normal-
ized binary (base 2) with rounding to nearest for the basic operations—the same as
required by the IEEE Standard. Given n bits of precision, the maximum relative
error ε is thus 1/2n. The conclusions that follow should apply generally to other
formats as well, but the details might differ. In addition, the maximum and mini-
mum positive floating-point numbers within range (normalized) will be written as
Ω and ω, respectively.

3. RANGE VIOLATIONS

The radius of a proton is 1.2× 10−15 m. The distance from Earth to the farthest
quasar is estimated as 1.5× 1026 m. The mass of an electron is 9.1× 10−31 kg. The
mass of the Milky Way Galaxy is 2.2× 1041 kg. The time it takes for a neutron to
pass through the nucleus of an atom is 2× 10−23 s. The age of the known universe
is hypothesized to be less than 4× 1017 s.

The ratio between the largest and the smallest of these numbers is 2.4× 1071.
Given these realities, the IEEE Standard double-precision range of 10±307 might
seem ample enough to eliminate any threat of overflow or underflow. The same
intuition, though, might also have trouble divining a use for imaginary or complex
numbers. After all, imaginary numbers have no manifestation in the material world.
No tangible quantity is measured in complex units. Yet complex numbers appear
as intermediates in many scientific and engineering computations, as a consequence
of the mathematics applied in those computations. In much the same way, numbers
of extreme size can appear as intermediates in the calculation of practical, more
terrestrial quantities.

Probably the single most common example given to demonstrate spurious range
violations is the calculation of the 2-norm of a vector. For a vector with elements
xi, 1 ≤ i ≤ N , its 2-norm (or simply “norm”) is

√

∑N
i=1 x2

i .

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 2, March 1996.



Handling Floating-Point Exceptions · 143

A straightforward coding of this expression is

sum := 0;
for i := 1 to N do

sum := sum + x[i]*x[i];
end for;
norm := sqrt(sum);

However, for many slightly large or small vectors, this code will fail due to overflow
or underflow in evaluating one or more of the x2

i or in taking their sum, even
though the norm itself would be representable as an unexceptional floating-point
number. In fact, efficiently evaluating a vector norm without danger from overflow
or underflow and with only a single pass over the vector elements has been shown
by Blue [1978] to be a nontrivial problem.

As another example, Smith et al. [1981] have addressed the problem of comput-
ing specific values of “normalized Legendre polynomials,” used in the calculation
of angular momentum in quantum mechanics and elsewhere. The details of this
problem are of little concern here, but a brief summary can be given. A particular
normalized Legendre polynomial depends on two nonnegative integer parameters µ
and ν and is written P̄µ

ν . To accurately calculate P̄µ
ν (x) given specific values of µ,

ν, and x, with µ < ν, Smith et al. advocate starting with the values

P̄ ν+1
ν (x) = 0

and

P̄ ν
ν (x) =

√

1
2

3 · 5 · · · (2ν + 1)
2 · 4 · · · (2ν)

(1− x2)ν/2

and then recursing using the formula

P̄µ−1
ν (x) =

2µx
√

(1− x2)(ν + µ)(ν − µ + 1)
P̄µ

ν (x)−

√

(ν − µ)(ν + µ + 1)
(ν + µ)(ν − µ + 1)

P̄µ+1
ν (x)

until the desired µ is reached.
According to Smith et al., this strategy works well for small ν and most x. How-

ever, if ν is more than a few decimal digits, and x is close to ±1, the technique is
hampered by the fact that the starting value P̄ ν

ν is extremely small, even though
the desired value P̄µ

ν may be well within range. For instance, P̄ 10000
10000 (−0.707) is ap-

proximately 0.5318× 10−1504, which is not representable in most double-precision
formats. For comparison, P̄ 0

10000(−0.707) ≈ 0.8766 × 10334, and the values for
0 < µ < 10000 fall between these extremes [Smith et al. 1981].

Because certain combinations of problems and computational methods give rise
to exceptionally large or small numbers, the implementors of widely used library
routines have at times invested considerable effort toward making their code re-
silient against possible overflows and underflows [Demmel and Li 1994; Hull et al.
1994]. One important library for scientific computation is LAPACK, a package
of expertly crafted subroutines for performing linear algebra operations [Ander-
son et al. 1995]. (LAPACK subsumes the older LINPACK and EISPACK libraries
[Dongarra et al. 1979; Smith et al. 1976].) The possibility of range violations in
intermediate computations has had significant impact on the coding of subroutines

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 2, March 1996.



144 · John R. Hauser

in LAPACK for finding eigenvalues of symmetric tridiagonal matrices and singular
values of bidiagonal matrices [Assadullah et al. 1992; Demmel et al. 1994]. Avoid-
ing range violations in these routines requires extra work at execution time, which
hurts the performance of these routines; yet without such precautions, disastrous
overflow and underflow would occur for many perfectly reasonable matrices.

3.1 Extended Range

The obvious remedy to possible overflow and underflow is to evaluate potentially
large or small intermediate quantities with greater range. When no format with
enough range is supported by the machine hardware, a wider range must be sim-
ulated in some way. In principle, this is not difficult: an extended-range floating-
point format can be constructed by pairing a machine integer i with an ordinary
floating-point number f and treating the pair as representing the number

f ×Bi,

where B is a predetermined constant that is a power of the floating-point base.
For instance, if f is a standard IEEE-format double-precision number, i is a 32-bit
twos-complement integer, and B = 2256 ≈ 1.1579×1077, the range of representable
numbers is greater than 10±165492990270. Subroutines like those in Figure 1 can
be used to perform the basic arithmetic operations on this wide-range format. (In
the subroutines, B is EXPBASE, for exponent base.) This is essentially the technique
employed by Smith et al. [1981] for calculating the normalized Legendre polynomials
discussed above.

The problem with software-implemented arithmetic is of course its slow speed.
Ideally, processors would provide hardware assistance for performing extended-
range operations. For instance, given a conveniently fixed EXPBASE, a proces-
sor could support the adjust function directly in one or at most two machine
instructions.1 Extended-range addition would also be aided by the ability to per-
form floating-point multiplications and divisions by 2a for integer values of a. Prob-
ably the most common calculations requiring extended range, though, are large
products—that is, calculations of the form

∏N
i=1 xi

for large N . Even if the product itself is known to be unexceptional, the likelihood
that an overflow or underflow will occur while the product is being accumulated
increases with the number of factors. Since extra range is needed only for the
running product, the overhead of extended range can be kept relatively small, as
follows:

product.exp := 0;
product.sig := 1.0;
for i := 1 to N do

product.sig := product.sig*x[i];
product := adjust(product);

end for;

1For many processors, this feature would be facilitated by keeping the exp values in floating-point
registers.

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 2, March 1996.



Handling Floating-Point Exceptions · 145

subroutine adjust(x : bigFloat) : bigFloat =
declare

z : bigFloat;
begin

z := x;
if abs(z.sig) > EXPBASE then

z.exp := z.exp + 1;
z.sig := z.sig/EXPBASE;

elseif abs(z.sig) < 1/EXPBASE then
z.exp := z.exp - 1;
z.sig := z.sig*EXPBASE;

end if;
return z;

end;

subroutine add(x,y : bigFloat) : bigFloat =
declare

sum : bigFloat;
begin
if x.exp > y.exp then

sum.exp := x.exp;
sum.sig := y.sig;
Divide sum.sig by 2x.exp−y.exp;
sum.sig := sum.sig + x.sig;

else
... (the same with x and y reversed)

end if;
return adjust(sum);

end;

subroutine mul(x,y : bigFloat) : bigFloat =
declare
product : bigFloat;

begin
product.exp := x.exp + y.exp;
product.sig := x.sig*y.sig;
return adjust(product);

end;

Fig. 1. Subroutines for addition and multiplication of a software-based extended-range format.
Here a bigFloat variable is comprised of two fields, a floating-point sig (significand) and an integer
exp (extended exponent), representing the number sig × EXPBASEexp. Subtraction and division
subroutines would be very similar to their addition and multiplication counterparts shown here.

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 2, March 1996.



146 · John R. Hauser

subroutine mul(x,y : bigFloat) : bigFloat =
declare
product : bigFloat;

begin
Attempt the following:

product.exp := x.exp + y.exp;
product.sig := x.sig*y.sig;

If overflow or underflow occurs:
product := mul(adjust(x),adjust(y)); (i.e., adjust arguments and try again)

return product;
end;

Fig. 2. The extended-range subroutine mul, rewritten using exception handling to defer calling
adjust as much as possible.

Because the loop accumulating the product is so short, it is easy to see that a
hardware implementation of adjust could have significant impact in this case.

Although hardware assistance could help speed up emulated extended range, such
assistance rarely exists today. Without support from hardware, extended range
is best avoided unless truly needed. Hence, rather than perform all calculations
in extended range from the outset, it is usually better to attempt a calculation
using the hardware-supported floating-point format first, and then to switch to the
extended-range format only in the event that the hardware format is inadequate.
Algorithmically, this optimization appears as

Attempt the following:
Perform the calculation using the hardware arithmetic;

If overflow or underflow occurs:
Perform the same calculation using emulated, extended-range arithmetic;

Typically, the hardware-supported format will suffice for most cases, and only the
unusual (but still valid) cases will require the slower execution.

A similar trick can also be used to speed up the extended-range subroutines them-
selves by postponing calls to adjust until absolutely necessary. The mul subroutine,
for example, could be rewritten as in Figure 2 to take advantage of overflow and
underflow exceptions to indicate when exponent adjustments are needed. Whether
this change results in a time savings will depend on the frequency with which ad-
justments must be made. In calculating a large product of ordinary floating-point
numbers, one can generally expect adjustments to be rare. In fact, the code shown
in Figure 3 for accumulating a large product with deferred adjustments should
ordinarily be fast enough that a separate, first execution attempt using only the
hardware format is unnecessary.

Unfortunately, these strategies of putting off work until proved necessary by a
range violation are prohibited on any system that forces termination of a program
on any overflow. In order for these schemes to work, a program must be able to
detect when range violations have occurred and be allowed to perform an alternate
computation when they have. Moreover, monitoring for the occurrence of overflow
or underflow must not slow down the primary case significantly, or any advantage
may be lost. Usually, range violations are conveniently detected by the arithmetic
hardware, but on some systems this information can be accessed only at some cost.

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 2, March 1996.



Handling Floating-Point Exceptions · 147

product.exp := 0;
product.sig := 1.0;
for i := 1 to N do

Attempt the following:
temp := product.sig*x[i];

If overflow occurs:
while abs(product.sig) > 1 do

product.exp := product.exp + 1;
product.sig := product.sig/EXPBASE;

end while;
temp := product.sig*x[i];

Else if underflow occurs:
while abs(product.sig) < 1 do

product.exp := product.exp - 1;
product.sig := product.sig*EXPBASE;

end while;
temp := product.sig*x[i];

product.sig := temp;
end for;

Fig. 3. Code to calculate
∏N

i=1 xi using a running product with extended range. Exception
handling is used to defer adjustments to product.exp as much as possible. Equivalents of the
adjust operations have been expanded inline for improved efficiency.

In principle, several programming languages provide a means for realizing these
optimizations at a high level with a “termination” style of exception handling.
Ada is the best-known such language [ANSI 1983; 1995; ISO 1995a]; its exception
mechanism is based on the construct

begin
statements

exception
when exception | ... => statements
...

end;

The first set of statements is terminated as soon as an exception occurs. This
construct neatly matches the optimizations above as follows:

begin
Perform the calculation using the hardware arithmetic;

exception
when OVERFLOW_ERROR | UNDERFLOW_ERROR =>

Perform the same calculation using emulated, extended-range arithmetic;
end;

Actually, it would be fairer to say that the construct above would neatly match
the desired optimizations, if the OVERFLOW_ERROR and UNDERFLOW_ERROR symbols
were really part of Ada. Instead of these, Ada defines a broader NUMERIC_ERROR
class of exceptions, covering overflow, division by zero, and arithmetic domain vi-
olations in general, but not including underflow [ANSI 1983]. (The new Ada 95
standard renames NUMERIC_ERROR to CONSTRAINT_ERROR [ANSI 1995; ISO 1995a].)
Underflows cannot be caught as exceptions within Ada at all. Of course, Ada is

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 2, March 1996.



148 · John R. Hauser

not alone in this regard: on practically all systems, underflows are substituted with
zero (or an IEEE Standard subnormal number) without causing any exception trap.
Although this response to underflows is often acceptable, it does not do for, say, a
large product, since the running product can underflow when the true result would
be quite reasonable or even extremely large. In order for a termination-style excep-
tion mechanism to be useful for extended-range emulation, the programmer must
be able to specify when underflows should cause a trap rather than be substituted
with zero or some other small value. Portable means for distinguishing these cases
do not exist today.

For the applications above, it is not critical that the system be able to stop
the first attempted computation very precisely when a range violation occurs. In
the extreme, the computation being attempted could well be allowed to run to
completion, if that makes sense, before the occurrence of any range violations is
even considered. (Of course, if a range violation does occur, any results calculated
in the first attempt would necessarily be suspect.) So long as care is taken to avoid
wild or deadlocked behavior, the occurrence of overflow or underflow can simply be
noted for the program to observe upon completion of the first attempt.

With this approach in mind, the IEEE Standard was defined so that, by default,
overflows and underflows do nothing more than cause a flag to be set to indicate
that the given range violation has occurred. Computation continues with a default
value prescribed by the standard. The default result for underflow is a tiny value,
often zero, that roughly approximates the desired result. The default result for
overflow is an infinity value. These default values are unimportant to the current
discussion, but they will be examined more closely in subsequent sections.

To give programs access to the exception flags, a system will typically define a
getflag subroutine that takes an indicator of which flag to access and returns that
flag’s value. For instance, getflag(EXC_OVERFLOW) might be used to obtain the
setting of the overflow exception flag. (The symbol EXC_OVERFLOW is assumed to
be a system-defined constant.) A corresponding setflag subroutine takes a flag
indicator and a new value for the specified flag. Preferably, setflag also returns the
previous flag value, making an exchange of values possible in a single operation. In
practice, getflag and setflag are often defined to act on multiple flags in parallel,
with each flag corresponding to a different bit of a machine integer. However, this
feature will not be considered here.

With IEEE Standard exception flags, the optimizations above appear as

oldOverflowFlag := setflag(EXC_OVERFLOW,FALSE);
oldUnderflowFlag := setflag(EXC_UNDERFLOW,FALSE);
Perform the calculation using the hardware arithmetic;
overflow := setflag(EXC_OVERFLOW,oldOverflowFlag);
underflow := setflag(EXC_UNDERFLOW,oldUnderflowFlag);
if ( overflow or underflow ) then

Perform the same calculation using emulated, extended-range arithmetic;
end if;

The previous settings of the flags are preserved during the first attempt at the cal-
culation so that the flags will ordinarily show what exceptions occurred that were
never specially handled by the program. The programmer is responsible for ensur-

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 2, March 1996.



Handling Floating-Point Exceptions · 149

xMax := 0;
for i := 1 to N do

if xMax < abs(x[i]) then
xMax := abs(x[i]);

end if;
end for;

sum := 0;
if xMax > LARGE then
for i := 1 to N do

xi := x[i]*SMALLSCALE;
sum := sum + xi*xi;

end for;
norm := sqrt(sum)/SMALLSCALE;

elseif xMax < SMALL then
for i := 1 to N do

xi := x[i]*LARGESCALE;
sum := sum + xi*xi;

end for;
norm := sqrt(sum)/LARGESCALE;

else
for i := 1 to N do

sum := sum + x[i]*x[i];
end for;
norm := sqrt(sum);

end if;

Fig. 4. Code to calculate the norm of a vec-
tor using scaling, and without exception han-
dling. Underflows in the accumulation of sum
are harmless assuming a small number like zero
is substituted for the underflowed value. Both
LARGE and LARGESCALE must be close to

√
Ω,

with LARGE <
√

Ω < LARGESCALE. (Recall
that Ω and ω are the largest and smallest posi-
tive numbers within range, respectively.) Simi-
larly, SMALLSCALE must be slightly smaller than√

ω, and SMALL must be slightly larger than
bn√ω, where b is the floating-point base, and
n is the number of digits. To protect accuracy,
SMALLSCALE and LARGESCALE need to be powers
of the floating-point radix b. Note that the loop
at the top to find the maximum element must
be executed every time, even when scaling is not
needed.

ing that the first attempt will eventually terminate without any damaging effects
should overflow or underflow actually occur. From a high-level perspective, manip-
ulating flags is a primitive albeit serviceable solution to the problem. Nevertheless,
programs written to use the IEEE Standard exception flags tend not to be portable
because the getflag and setflag subroutines have yet to be standardized across
different systems.

3.2 Scaling

Another technique used to get the effect of wider range is scaling. With scaling, the
input to a computation is first examined and then preadjusted so that all interme-
diate calculations will be within range. Afterward, the final result is adjusted back
so that it corresponds with the original input. Scaling can be used with problems
that are homogeneous or have a similar relationship between inputs and outputs. A
function is homogeneous if f(kx1, kx2, . . .) = kn · f(x1, x2, . . .) for some n. Another
relationship that submits to scaling is f(kx1, kx2, . . .) = f(x1, x2, . . .) + k.

The vector norm problem is homogeneous because norm(kx) = k · norm(x).
With a proper choice for k, norm(x) can be calculated as k−1norm(kx) without
danger of overflow and without underflow seriously affecting the result. Figure 4
gives code to evaluate the norm of a vector using scaling. The code first determines
what scaling is appropriate and then executes one of three loops corresponding to
three different scaling factors. (One of the scaling factors is 1, which is equivalent
to not scaling at all.) Compared with the straightforward implementation given
earlier, this code spends a significant fraction of its time computing xMax which is
rarely needed.

Scaling is the principle method by which linear algebra packages like LAPACK

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 2, March 1996.



150 · John R. Hauser

Attempt the following:
sum := 0;
for i := 1 to N do

sum := sum + x[i]*x[i];
end for;
norm := sqrt(sum);

if norm < N*SMALL then
sum := 0;
for i := 1 to N do
xi := x[i]*LARGESCALE;
sum := sum + xi*xi;

end for;
norm := sqrt(sum)/LARGESCALE;

end if;

If overflow occurs:
sum := 0;
for i := 1 to N do

xi := x[i]*SMALLSCALE;
sum := sum + xi*xi;

end for;
norm := sqrt(sum)/SMALLSCALE;

Fig. 5. Code to do the same thing as Figure 4
but starting with the straightforward calcula-
tion and then responding to any overflows that
occur. Underflows are again assumed to be sub-
stituted with some small number, possibly zero.
If the result of the first attempt is too small,
underflow might have been a problem, and the
norm is recalculated.

avoid range violations [Assadullah et al. 1992; Demmel and Li 1994; Demmel et al.
1994]. It is also used, for example, by Hull et al. [1994] to circumvent range viola-
tions in the evaluation of complex elementary functions such as complex sine and
complex square root.

In the vector norm example in Figure 4, time spent choosing an appropriate
scaling factor is usually wasted. For many of the situations involving scaling in
LAPACK—as well as in the older LINPACK and EISPACK—significant time is
wasted determining whether scaling is actually necessary [Demmel and Li 1994].
As with emulated extended range, it is often better to attempt a calculation first
without scaling and then to resort to scaling only when it is proved necessary by
overflow or underflow. Figure 5 shows how the vector norm calculation can be
rewritten to use this technique. By applying a similar optimization to an actual
LAPACK routine for solving triangular systems of equations, Demmel and Li have
obtained speedups ranging from 43% up to as much as a factor of four on real
machines.

Obviously, this trick is in essence identical to the one used with extended range
above:

Attempt the following:
Perform the calculation using the hardware arithmetic;

If overflow or underflow occurs:
Perform the same calculation with scaling;

Hence, all of the same implementation concerns discussed in the previous section
apply.

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 2, March 1996.



Handling Floating-Point Exceptions · 151

3.3 Substitution

Reevaluating with extended range or scaling is not always the cheapest solution to
range violations. If x⊕ y overflows in evaluating

3 +
1

x + y
,

then the 1/(x + y) term is plainly irrelevant; the result would round to 3 even if
evaluated with infinite range.2 In this expression, if x⊕y overflows it is sufficient to
substitute a large number for the unrepresentable result and continue. The same is
true if, say, x⊗ y overflows in evaluating arctan(xy). Extended range would simply
be wasted effort in either of these cases.

In general, consider a calculation that evaluates some expression F , where F con-
tains a subexpression G, so that F = f(G) for an appropriately defined function f .
If G evaluates to a positive number whose value cannot be represented because of
overflow, it may be possible to evaluate f(Λ) in place of f(G) for some value Λ
if f(z) ≈ f(Λ) for all z ≥ Ω. Likewise, if G is negative, it may be possible to
substitute −Λ for G if f(z) ≈ f(−Λ) for all z ≤ −Ω. For the example above, it is
easy to see that, for all z ≥ Ω,

3 +
1
z
≈ 3 +

1
Λ
≈ 3

for any sufficiently large Λ.
In making a substitution, care must be taken to ensure that any subsequent range

violations in evaluating f(Λ) (or f(−Λ)) will be properly dealt with [Sterbenz 1974].
For instance, if x⊗ x (i.e., x2) overflows in evaluating

1 +
√

9x2 + 1
1 +

√
x2 + 1

,

then, mathematically, Ω (the largest floating-point number) could be substituted,
since

1 +
√

9z + 1
1 +

√
z + 1

≈ 1 +
√

9Ω + 1
1 +

√
Ω + 1

≈ 3

for all z ≥ Ω. However, making this substitution results in 9 ⊗ Ω subsequently
overflowing again, and this time there is no value that can be substituted reliably.
Generally, there is little point in making a substitution if a subsequent part of
the calculation can also experience a range violation for which there is no reliable
substitute. If x⊗x does not overflow in the expression above, but 9⊗ (x⊗x) does,
there is no floating-point value Λ for which

1 +
√

z + 1
1 +

√
x2 + 1

≈ 1 +
√

Λ + 1
1 +

√
x2 + 1

for all x and all z ≥ Ω.
Some older architectures provide an option in which ±Ω is substituted for all

overflowed results [Sterbenz 1974]. IBM mainframes have long had an option within

2Actually, a floating-point format could be defined with so little range that this is not true. Suffice
it to say no arithmetic in common use is so crippled.

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 2, March 1996.



152 · John R. Hauser

Fortran for doing this, for instance. As a rule, if any value Λ can be successfully
substituted for G in f(G), then Ω can also be substituted, since if f(z) ≈ f(Λ)
for all z ≥ Ω as stipulated above, then it must be that f(Ω) ≈ f(Λ); and so
f(z) ≈ f(Ω) for all z ≥ Ω. Hence, if any value is a good substitute, Ω tends also
to be a good substitute. Of course, that does not mean that substituting ±Ω is
going to be successful for all overflows. Rather, one would like to be able to specify
where in a program substitution of ±Ω is acceptable so that a trap can be avoided
in just those cases.

Instead of using Ω many machines have an infinity value, ∞, which is substituted
by default on overflow [Goldberg 1991; IEC 1989; Sterbenz 1974]. Just as with Ω, if
there exists some value that is a good substitute for a particular overflowed result,
then ∞ tends also to be a good substitute. Even so, Ω and ∞ are not completely
interchangeable as substitutes for overflowed values. There are cases in which Ω
can be successfully substituted, while substituting ∞ ultimately leads to a spurious
exception such as 0×∞. And Ω is clearly superior in this respect: the relative
error of substituting ∞ is always infinite, whereas the relative error of substituting
Ω—although potentially bad—is at least finite.

Nevertheless, when substitutions are performed by default, ∞ is a slightly safer
substitute than Ω, simply because, if the substitution is not a good idea, ∞ is
less likely to disappear quietly in subsequent computation than is Ω. Additions,
subtractions, multiplications, and many other operations, when applied to infinite
operands, either give infinite results or signal an invalid operation exception (e.g.,
0×∞). Thus when substitution is misapplied, ∞ has a greater chance than Ω
of either visibly propagating through the calculation or causing an exception trap.
(The arithmetic of ∞ is discussed in greater depth in Section 4.) Note that there
is no strict guarantee that this will happen [Brown 1981; Lynch and Swartzlander
1991]. Simply, ∞ is more likely to be noticed than Ω.

The IEEE Standard requires that ±∞ be substituted on overflow, but it mitigates
the trouble this substitution may cause by raising an overflow exception flag that
can be tested by the program. If substitution of ∞ is not appropriate, the overflow
flag can be used to trigger an alternate action within the program. When ∞ is an
acceptable substitute, nothing special need be done—although, ideally, the program
would ensure that the overflow flag is not raised in this case as follows:

oldOverflowFlag := getflag(EXC_OVERFLOW);
Perform calculation in which overflows may be safely substituted with ±∞;
setflag(EXC_OVERFLOW,oldOverflowFlag);

This contrivance maintains the convention that exception flags reflect only those
exceptions raised that may not have been handled safely.

Substitution is more commonly applied to underflows than overflows, although
the situation with underflows is actually more complex. In principle, a condition
similar to the one for overflow applies: given an expression F = f(G), if G evaluates
to a positive number whose value cannot be represented because of underflow,
then λ may be substituted for G if f(z) ≈ f(λ) for all 0 < z ≤ ω. A similar
statement applies for negative underflows. For example, if x⊗y underflows (positive
or negative) in evaluating the expression

3 + xy,

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 2, March 1996.



Handling Floating-Point Exceptions · 153

then zero or some other small number can be safely substituted for the underflowed
product.

Problems arise with the more general form

u + G

for some expression G. If the evaluation of G underflows, then whether or not zero
can be substituted depends on the magnitude of u. If u is zero or is otherwise an
extremely small number, the underflowed value of G is not necessarily insignificant
to the computation. On the other hand, if u could be any floating-point number
with equal likelihood, chances are good that substituting zero is perfectly safe,
because most u’s would be large enough to overwhelm any underflowed term. Thus
arises the underflow dilemma:

If all underflows are signaled as exceptional, most such signals will be
false alarms because the underflows would have been absorbed in subse-
quent additions anyway. Yet any unsignaled underflow has the potential
to introduce devastating inaccuracies in a calculation.

Sterbenz [1974] illustrates how this dilemma can frustrate efforts to keep underflow
under control.

It has already been observed that efficient emulation of extended range can de-
pend on underflow exceptions being signaled. One would not want underflows to
be silently replaced by zeros when evaluating a large product,

∏N
i=1 xi. Conversely,

the codes in Figures 4 and 5 for evaluating the norm of a vector with scaling rely on
zero (or some other small value) being substituted on underflow. As with overflow,
the choice of a zero-substitution policy ought to be made carefully, based on the
circumstances of the calculation [Brown 1981].

Substitution is most convenient when it is supported by the underlying sys-
tem. The most likely substitutes for overflow are ±Ω and ∞; for underflow, the
corresponding candidates are zero and ±ω. Substitution of zero on underflow is
commonly considered the proper behavior; and the IEEE Standard requires that
±∞ be substituted on overflow. The other options are less prevalent. Few systems
allow a programmer to specify where in a program substitution is appropriate and
what value to substitute. The IEEE Standard has an inflexible substitution policy,
but the exception flags provide at least a primitive means of correcting unwanted
substitutions. As noted earlier, though, access to these flags has yet to be stan-
dardized across different systems, so portable programs taking advantage of this
feature cannot yet be realized.

3.4 Gradual Underflow

Rather than simply substitute zero on underflow, the IEEE Standard employs a
scheme called gradual underflow intended to increase the chances that underflow
will be innocuous if it occurs. Figures 6 and 7 illustrate the concept for binary float-
ing point [Coonen 1981]. A special unnormalized format is added to the bottom
of the floating-point range, and results that fall below the underflow threshold ω
are rounded to the closest representable number in this format. For very small
underflowed results, the closest representable number will in fact be zero, which
is just a special instance of the unnormalized format. (0.00000000× 2−126 = 0.)

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 2, March 1996.



154 · John R. Hauser

. . .
1.xxxxxxxx× 2−122

1.xxxxxxxx× 2−123

1.xxxxxxxx× 2−124

1.xxxxxxxx× 2−125

ω → 1.xxxxxxxx× 2−126

0.xxxxxxxx× 2−126

Fig. 6. Gradual underflow for a binary floating-
point format with 9 bits of precision and with
the same range as IEEE single precision. In
the figure, numbers with different exponents are
aligned according to the location of their true
binary points; an “x” represents either a “0” or
“1” bit. Ordinarily, numbers within range must
be normalized, so the leading “1” is redundant
and thus not actually stored. To support grad-
ual underflow, a special encoding allows num-
bers with the smallest exponent (−126) not to
be normalized.

. . .
1.xxxxxxxx× 2−122

1.xxxxxxxx× 2−123

1.xxxxxxxx× 2−124

1.xxxxxxxx× 2−125

ω → 1.xxxxxxxx× 2−126

1.xxxxxxx× 2−127

1.xxxxxx× 2−128

1.xxxxx× 2−129

1.xxxx× 2−130

1.xxx× 2−131

1.xx× 2−132

1.x× 2−133

2εω → 1.× 2−134

Fig. 7. Another way of looking at gradual under-
flow. For small numbers out of range, precision
tapers off until none remains. Results smaller
than 2−135 are flushed to zero.

Underflowed quantities greater than 2εω are rounded to some number of bits less
than the ordinary precision, where the number of bits is determined by the size of
the underflowed value. The smaller the value, the fewer bits of precision are avail-
able. The normalized floating-point numbers are often called normal numbers in
this scheme, to distinguish them from the denormalized or subnormal numbers
of the special unnormalized format.

The common policy of flushing all underflows to zero leads to an abrupt loss of
all precision for underflowed values. When subnormal numbers are added to the
arithmetic, loss of precision from underflow is clearly more gradual. Accuracy has
been said to “degrade smoothly” as values move from the underflow threshold ω
down to zero. Nevertheless, this in itself is a poor argument for gradual underflow,
since there is no a priori reason to believe that a largely inaccurate result is to be
preferred over a grossly inaccurate one. If anything, a truly impossible result may
be easier to recognize than one that is plausible but still incorrect.

Yet gradual underflow is not always inaccurate, as reflected in the following
theorem:

Theorem 3.4.1. If x and y are floating-point numbers, and if x⊕ y underflows
to a subnormal number, then x⊕ y = x + y exactly.

In other words, when a subnormal number is the result of an addition or subtraction,
it never requires rounding, despite the reduced precision of the subnormal format.
(For subtraction, note that x� y = x⊕ (−y).) Hence the result is not inaccurate
at all—it could not be more accurate, in fact. A proof of this theorem (and all
subsequent theorems) is given in the Appendix. As an informal argument, consider

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 2, March 1996.



Handling Floating-Point Exceptions · 155

that in order for rounding to be necessary, there must be something to round off;
that is, there must be at least one nonzero bit beyond the rounding point. Such
a bit would have to come from one of the operands; yet Figure 7 suggests that
there can be no such operand. The skeptical reader should attempt to construct a
counterexample.

By Theorem 3.4.1, underflows in additions and subtractions are entirely benign
when gradual underflow is employed. This fact allows assertions such as the follow-
ing to be made:

Theorem 3.4.2. If x and y are any floating-point numbers with 1/2 ≤ x/y ≤ 2,
then x� y = x− y exactly.

Theorem 3.4.2 states that if x and y are close enough to one another, their difference
will be computed exactly, without rounding. When underflow is not gradual, this
theorem is true only if x�y does not underflow. Laws such as Theorem 3.4.2 make
it possible for certain critical algorithms to be more compact, and hence more
efficient. A rule that must be qualified with “unless underflow occurs” is of limited
value when underflow is a real possibility. Theorem 3.4.1 guarantees that at least
a few useful identities such as this one will not be undermined by the possibility of
underflow [Coonen 1981; Demmel 1984; Kahan 1980]. Another important law that
is an immediate corollary of Theorem 3.4.1 is that x� y = 0 if and only if x = y.
This rule can obviously be violated if underflows on subtraction are flushed to zero.

Addition and subtraction are of course not the only floating-point operations, and
gradual underflow does not eliminate all problems with underflow. Although it is
not possible to make as clean a statement as Theorem 3.4.1 for other floating-point
operations, some useful facts can still be proved, such as the following:

Theorem 3.4.3. If u, x, and y are floating-point numbers, and if u is normal
(nonzero, non-subnormal) and any underflows are gradual, then

u⊕ (x⊗ y) = (u + (xy × ρ))× σ

with
1− 2ε
1− ε

≤ ρ ≤ 1
1− ε

and 1− 3
2ε < σ <

1
1− 3

2ε
.

This theorem gives bounds on the apparent error involved in evaluating the expres-
sion u + xy. The rounding of the multiplication x⊗ y introduces an error pertur-
bation factor ρ, and the rounding of the subsequent addition introduces another
perturbation factor σ. Recall that ε is the maximum relative error due to ordi-
nary rounding. The ratio (1− 2ε)/(1− ε) can be rewritten as 1− ε− ε2 − ε3 − · · ·
which is only slightly less than 1− ε; and likewise, 1/(1− ε) and 1/(1− (3/2)ε)
approach 1 + ε and 1 + (3/2)ε, respectively. If underflow could not occur for x⊗ y,
the bounds on ρ and σ could each be strengthened to a single rounding error:
1− ε ≤ ρ ≤ 1 + ε and 1− ε ≤ σ ≤ 1 + ε. Gradual underflow has the apparent
effect of weakening these bounds slightly. On the other hand, when underflows are
flushed to zero, then even without any cancellation the result can be off by as much
as a factor of 2. The worst case occurs when the following two conditions are met
simultaneously: (1) u = ω and (2) the product xy is slightly less than ω and so is
flushed to zero.

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 2, March 1996.



156 · John R. Hauser

Theorem 3.4.3 illustrates how, for certain calculations, gradual underflow has
only slightly worse impact on accuracy than ordinary rounding. For instance, using
this theorem it is easy to see that if all of the coefficients of a polynomial anxn +
an−1xn−1 + · · ·+a1x+ a0 are normal, and if the polynomial is evaluated according
to Horner’s rule,

(· · · ( (anx + an−1)x + an−2)x + · · · a1)x + a0,

then even if underflow occurs the polynomial will be evaluated almost as accu-
rately as it would with extended range (assuming overflow does not occur). In
similar fashion, gradual underflow can be shown to be no worse than rounding for
a significant class of algorithms, including ones for

—finding the zeros of a polynomial,
—performing Gaussian elimination,
—determining a Cholesky decomposition,
—iteratively refining a solution to a set of linear equations,
—computing the eigenvalues of symmetric tridiagonal matrices,
—performing numerical quadrature, and
—accelerating the convergence of a sequence.

An analysis of each of these is catalogued by Demmel [1984]. Some additional details
can be found in Demmel [1981]; other examples are given by Kahan and Palmer
[1979] and Coonen [1981]. It should be noted that many times this behavior is
dependent on a certain set of the inputs or results being normal, although typically
this condition is known to be satisfied in advance. When it is not certain to be
true, verifying the condition involves categorizing certain inputs at execution time
as either normal or subnormal.

Gradual underflow does not render underflow harmless in all situations. An
earlier draft of the IEEE Standard included a “warning” mode to provide some
security against loss of precision [Coonen 1980; 1981; Coonen et al. 1979; Feldman
1981; IEEE Task P754 1981]. However, the proposal was rather complex, and the
protection provided would have been incomplete [Fraley and Walther 1979]. Just
as with zero-substitution, the appropriateness of gradual underflow can only really
be determined within the context of the calculation.

Gradual underflow is nearly inconceivable without system support. First, an
encoding for the subnormal numbers must exist within the available floating-point
format. Then, either the arithmetic hardware must implement gradual underflow
directly, or the processor must trap on underflows and on subnormal inputs so
that arithmetic with subnormal numbers can be emulated by the system software.
Attempting to emulate gradual underflow entirely at a high level is futile, due to
the overhead involved.

Augmenting floating-point hardware to deal directly with subnormal numbers re-
quires significant circuitry and can slightly degrade the speed of operations on even
normal floating-point numbers. Consequently, trapping has been the traditional
means of supporting gradual underflow, though the time required to take the trap
quickly adds up if many subnormal numbers occur. On the other hand, as pro-
cessors become more complex—for instance, issuing multiple operations in a single

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 2, March 1996.



Handling Floating-Point Exceptions · 157

cycle and retiring operations out of order—the trapping hardware itself becomes
more costly to implement and can itself add to the time needed to perform opera-
tions on ordinary floating-point numbers [Hennessy and Patterson 1990; Hwu and
Patt 1987; Johnson 1991; Smith and Pleszkun 1985; Sohi and Vajapeyam 1987].
Hence, incorporating gradual underflow into a processor’s arithmetic involves en-
gineering tradeoffs that are becoming increasingly uncomfortable. Recently, one
manufacturer has decreed that subnormal numbers will be supported on their pro-
cessors only in a “degraded” mode in which all floating-point arithmetic is executed
with less speed [DEC 1992; Sites 1993]. In the “fast” mode, zero is substituted on
underflow, and subnormal inputs are identified with zero. The programmer can
then choose to pay for gradual underflow only when it is needed. But if the gradual
underflow mode is too slow, there may never be any advantage to using it.

Ever since its original proposal, gradual underflow has been the most contentious
feature of the IEEE Standard [Cody 1981; Coonen 1981; Fraley and Walther 1979;
Parlett 1979; Payne 1979]. Unfortunately, arguments on this subject have rarely
been based on solid information on either side. The merits of gradual underflow
ought to be weighed against the costs of implementation, but to date, a careful
analysis remains to be done. In the meantime, a de facto conclusion to the debate
may emerge if manufacturers decide to discard gradual underflow due to perceived
weakness in demand.

3.5 Alternate Number Formats

Alternatives to the usual floating-point format have been proposed that provide
so much range as to preclude any possibility of overflow or underflow. These in-
clude the symmetric level-index representation [Clenshaw and Olver 1984; 1987;
Clenshaw and Turner 1988; Olver 1987; Turner 1989; 1993] and the so-called uni-
versal representation of real numbers [Hamada 1987], along with an older proposal
by Matsui and Iri [1981]. Of course, ordinary floating point can be given arbitrary
range by increasing the size of the exponent field (recall Section 3.1); however, these
proposals purport to offer extraordinary range within the confines of a standard 32-
or 64-bit format (corresponding to IEEE Standard single and double precision, re-
spectively).

This feat is accomplished (as it only could be) by sacrificing precision for unusu-
ally large or small values. Stated in floating-point terms: as the exponent value
grows (positive or negative), the exponent field increases in size, forcing precision
to shrink. With many of these systems, in fact, all precision can ultimately be
eliminated (an implied 1 remains), so that very large or small numbers are repre-
sented solely by their exponent value. As numbers continue to grow (or shrink),
the exponent itself becomes more coarse, jumping to ever larger (or smaller) values.

While such schemes can sometimes be used effectively, for most purposes this
sliding precision makes it difficult to establish much confidence in the accuracy of
a computation [Demmel 1987]. Since these alternate formats are also no cheaper
to implement than ordinary floating point augmented with gradual underflow, they
cannot be considered a competitive solution to the problem of range violations.

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 2, March 1996.



158 · John R. Hauser

4. POLES

A real function can be said to have a pole at a particular argument u if the function’s
value becomes arbitrarily large as its argument approaches u. The functions 1/x
and log(x) both have poles at x = 0, while tan(x) has a pole at x = kπ/2 for every
odd integer k. Clearly, even with infinite range, there is no ordinary floating-
point number that could be returned as the correct value of a function at a pole.
Consequently, attempting to evaluate a function at a pole is considered an exception
distinct from overflow. The division operation provides the most familiar example
of a pole—so much so, in fact, that typically all attempts to evaluate a function at
a pole are placed under the heading of “division by zero.”

Although division by zero does not submit to extended range, substitution is
sometimes possible just as for overflow. For instance, if x is zero in

3 +
1

1 +
1
x

, (1)

then Ω can be substituted for 1�x to obtain the correct result of 3 for the expression.
Some machines have an infinity value, ∞, that can be given as the result of a

function at a pole. Adding a single infinity to the real numbers is a well-understood
mathematical extension for making poles unexceptional (known as the one-point
compactification of the reals [Folland 1984]). Arithmetic with infinity follows a
consistent set of rules: ∞± a = ∞± 0 = ∞× a = ∞×∞ = ∞/a = ∞/0 =
−∞ =

√
∞ = ∞, and a/∞ = 0/∞ = 0, where a is any finite, nonzero real number.

The operations ∞±∞, ∞× 0, and ∞/∞ are all undefined. If the arithmetic of
ordinary real numbers is called R, let R∞ stand for R extended with a single
infinity and the rules of arithmetic for infinity.

By defining arithmetic with infinity as above, the following theorem can be stated:

Theorem 4.1. If f is a function over R∞ of one or more variables, and f is
composed of the basic operations +, −, ×, ÷, and

√
(along with constants), then

lim
xi→0
all i

f
(

1
x1

, . . . ,
1
xn

)

= f(∞, . . . ,∞),

provided both sides of the equation are defined.

Theorem 4.1 asserts that for a large class of interesting functions, the result of
substituting ∞ on all division by zero exceptions (the right side of the equation)
is exactly the limit value one would want (the left side of the equation), so long
as the substitution does not lead to an undefined expression. For instance, if ∞
is substituted for 1� x in evaluating expression (1) above, the value 3 is obtained
exactly as a matter of course. Figure 8 illustrates how, in the same way, automatic
substitution of infinity obviates the need for costly checks for zero denominators in
evaluating a continued fraction approximation of a function.

Extending R to form R∞ makes division by zero no longer undefined, but in turn
introduces new undefined cases ∞±∞, ∞× 0, and ∞/∞, some of which arise in
operations like + and × that did not have any before. This is generally considered
a good trade, since the new set of undefined cases is in some sense smaller and
less troublesome. However, certain laws that are true for R are not true for R∞.

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 2, March 1996.



Handling Floating-Point Exceptions · 159

f := a[n];
i := n;
while i > 0 do
i := i - 1;
d := x + f;
if d = 0 then

i := i - 1;
if i < 0 then

Signal that the result is infinite;
else
f := a[i];

end if;
else

f := a[i] + b[i]/d;
end if;

end while;

(a)

i := n;
restart:

f := a[i];
Attempt the following:

while i > 0 do
i := i - 1;
f := a[i] + b[i]/(x + f);

end while;
If a division-by-zero exception occurs:

i := i - 1;
if i < 0 then

Signal that the result is infinite;
else

goto restart;
end if;

(b)

f := a[n];
for i := (n - 1) downto 0 do

f := a[i] + b[i]/(x + f);
end for;

(c)

Fig. 8. Methods for evaluating a continued-fraction approximation to a function without spurious
division-by-zero exceptions. Many functions f(x) can be approximated by a so-called continued-
fraction expression of the form a0 + b0/(x + a1 + b1/(x + a2 + · · · + bn−1/(x + an) · · ·)), where
all the bi are nonzero. (a) Straightforward code that checks for zero denominators. (b) Code to
handle division-by-zero exceptions after-the-fact. (c) Obvious implementation if b� 0 = ∞ when
b is nonzero.

For instance, in R, if x + a = x then a must be zero. This common-sense fact is
an application of the familiar cancelation law for addition. With R∞, however,
∞+ a = ∞ for all finite a, not just zero, so the cancelation law does not always
hold in R∞. But then again, the cancelation law does not hold for floating-point
arithmetic anyway, since x⊕ a = x whenever |x| � |a|. Luckily, the identities lost
by including infinity in the arithmetic either already do not apply to floating point
or have a suitable analog in R∞.

So far, a single unsigned infinity has been considered. With an unsigned infinity,
there can be no unequivocal answer to the question of whether, say, 10 < ∞, since
if it were granted that 10 < ∞, then 10 < ∞ = −(∞) < −10, which implies that
10 < −10. A slightly different arithmetic is obtained if R is extended, not with
a single unsigned infinity, but with two distinct signed infinities, −∞ and +∞,
with −∞ < all finite numbers < +∞ (the two-point compactification of R). Signed
infinities can be used to distinguish the limit as numbers grow large in the positive
direction from the limit as numbers grow large in the negative direction. This allows
a distinction to be made, for example, between exp(−∞) = 0 and exp(+∞) =
+∞. The basic arithmetic must also be adjusted, so that (+∞) + (+∞) = +∞,
(−∞) + (−∞) = −∞, (+∞)× (−∞) = −∞, and so on. Addition of infinities with
opposite signs remains undefined.

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 2, March 1996.



160 · John R. Hauser

Unfortunately, signed infinities introduce some new problems. To begin with,
there is no compelling argument for assigning a particular sign to 1/0, although it
does seem less perverse to choose 1/0 = +∞ rather than −∞. But if 1/0 = +∞,
then −∞ is the only x for which 1/(1/x) is nowhere close to x. The solution adopted
for the IEEE Standard is to have a sign on zero as well, so that the reciprocals of +∞
and −∞ are +0 and −0, respectively [Coonen 1981; Hough 1981]. Multiplication
and division are defined to propagate these signs consistently; so, for example,
(+0)× (−3) = −0, (−0)× (−0) = +0, and (+∞)/(−0) = −∞.

Though not as contentious as gradual underflow, the existence of separate posi-
tive and negative zeros may be the least understood feature of the IEEE Standard.
Simply stated, signed zeros were included to help deal with discontinuities around
zero that occur for many standardized functions [Kahan 1986]. For example, signed
zeros make it possible for the complex elementary functions to obey important laws
of symmetry that they otherwise could not, due to unavoidable discontinuities in
the functions’ values along the real and imaginary axes. (This topic is examined in
detail by Kahan [1986].) The reciprocal function 1/x likewise has a discontinuity
at zero when infinities are signed, and the sign on zero selects between a reciprocal
of +∞ and −∞. Related to discontinuities at zero is the fact that the signs of un-
derflowed quantities can be preserved. Signed zeros are also naturally incorporated
within the usual sign-magnitude encoding of floating point—although that in itself
was not an overriding factor in the decision to include them in the IEEE Standard.

While several problems are solved with signed zeros, a new one arises: now
a sign must be chosen for the result of x− x. For lack of a better answer, the
IEEE Standard assigns x− x = +0. But consider the function f(x) = 1/(x− a) +
1/(a− x). Algebraically, the expression defining f(x) simplifies to zero; and not
surprisingly, f(x) evaluates to zero for all x 6= a. Yet because a− a = +0, f(a)
jumps suddenly to +∞, which is not the result one might hope for. The crux
is that the continuity represented by Theorem 4.1 is not assured when zeros and
infinities are signed; the theorem is simply not valid for ±0 and ±∞. Observe
on the other hand that when zeros and infinities are unsigned, f(a) is undefined
because it involves adding ∞+∞.

Signed zeros can be as much of a nuisance in some circumstances as a convenience
in others. Consequently, if zeros and infinities have signs, it is best if there is a
way to choose at times to ignore those signs, and instead treat the values as though
they were unsigned [Coonen 1980; Kahan 1986]. At one time, a draft of the IEEE
Standard included separate affine and projective modes to allow the programmer to
select whether infinities and zeros should be treated as signed (affine) or unsigned
(projective) [Coonen 1980; Coonen et al. 1979; Feldman 1981; IEEE Task P754
1981; Kahan and Palmer 1979]. The projective mode was ultimately dropped,
however, in the interest of reducing the complexity of the final standard.3

Like gradual underflow, infinities and signed zeros obviously require support
within the system to be practical. However, unlike subnormals, relatively little
expense is entailed in extending existing arithmetic hardware to incorporate these
few special values.

3A remnant of the projective-mode proposal can be found on the Intel 8087 and 80287 floating-
point coprocessors.

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 2, March 1996.



Handling Floating-Point Exceptions · 161

5. INDETERMINATE AND UNDEFINED CASES

In addition to range violations and divisions by zero, a number of indeterminate
and undefined cases can arise, such as 0/0 or

√
x with x < 0. Such cases are closely

associated with the notion of singularities, as explained below.
The expression 0/0 is indeterminate because there is no unique quotient q

for which q × 0 = 0; this equation is solved by any finite number. 0/0 occurs, for
example, in the expression sin(x)/x when x = 0, or in

x + y
√

x2 + y2

when x = y = 0. For each of these expressions, the fact that 0/0 can arise is cause
for the existence of a singularity in the expression. An expression can be said to
contain a singularity if it cannot be evaluated or is discontinuous at some com-
bination of arguments and yet is defined and continuous for arguments arbitrarily
close to those that cause a problem. The expression sin(x)/x, for instance, is well
behaved for arbitrarily small x (both positive and negative), yet is indeterminate
for x = 0. (Actually, most mathematicians would define the concept of singularity
a bit differently. Nevertheless, the definition given here will suffice as a rough ap-
proximation. The expression sin(x)/x has a singularity at x = 0 regardless [Apostol
1974].)

The singularity at x = 0 in sin(x)/x is called removable because limx→0 sin(x)/x
is defined—it is equal to 1. Intuitively, the equation y = sin(x)/x has a smooth
curve (x, y) everywhere except at x = 0, where there is a small gap in the curve
because of the indeterminate expression 0/0. Filling in the gap with the point (0, 1)
gives a curve that is smooth everywhere—one that is exactly like the original curve,
except with the singularity (the hole) removed. The function

f(x) =
{

sin(x)/x if x 6= 0;
1 if x = 0;

is important in signal processing and is known as the sinc function. There is
no convenient expression for this function that does not also exhibit a removable
singularity.

Not all singularities are removable. The singularity in the second example above
is not removable because

lim
x→0
y→0

x + y
√

x2 + y2

is again indeterminate. (Mathematically, the value depends on the direction from
which the limit is approached.) Singularities involving only a single variable are
often removable, whereas those involving two or more variables tend not to be
removable. But counterexamples exist to both these tendencies.

Other undefined cases can arise that are not associated with indeterminate ex-
pressions but are more fundamental. Examples include the square root or logarithm
of a negative number, or the arcsine of a value with magnitude greater than 1. For
these, there is no possible correct result—such as there is no real number z for which
z2 = x or ez = x if x is negative. If ∞ is not available, 1/0 is another example of
an undefined case.

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 2, March 1996.



162 · John R. Hauser

When indeterminate or other undefined cases occur during program execution,
they ordinarily result in the signaling of an exception, either by a processor trap
or through some other means such as the IEEE Standard invalid exception flag. If
an indeterminate case represents a removable singularity, or otherwise if a correct
substitute can be determined by context, it is obviously only necessary to substitute
the proper value in order to continue. Whether these cases call for any special
exception-handling support is debatable. If an indeterminate case is anticipated,
it is usually an easy matter to test for the case in advance and thus prevent an
exception from ever occurring in the first place. For instance, the sinc function
defined above is easily coded without exception as

if x = 0 then
sinc := 1;

else
sinc := sin(x)/x;

On the other hand, the test for zero is redundant if the hardware performs the same
check. If an exception mechanism exists that allows the explicit test to be omitted,
the normal case may be sped up somewhat. (At least one scheme for achieving this
is advocated by Kahan [Goldberg 1991; Sterbenz 1974].)

Before concluding, it would be well to say a few words about the value of 00.
One common opinion holds that 00 must be indeterminate because limx,y→0 xy

can be any arbitrary value (again depending on the direction in which the limit
is approached). While this stance is not wholy unreasonable, it does have some
unfortunate consequences. For example, if 00 is undefined, then the expression
of a polynomial as

∑n
i=0 aixi is not valid for x = 0. This one special case can

be avoided only by assuming 00 = 1. Or consider the standard binomial theorem:
(x + y)n =

∑n
i=0

(n
i

)

xiyn−i. If 00 is undefined, this theorem is valid for all real
numbers x and y and all nonnegative integers n, except if one of x or y is zero, or
if n = 0 and y = −x. If 00 is accepted as 1, the binomial theorem is true for all
nonnegative integers n without exception.

Knuth argues that, if for no better reason, 00 ought to be identified with 1
simply for mathematical conciseness, so that these sorts of exceptional cases can
be avoided [Knuth 1992]. Ultimately, such an argument rests on the fundamental
definition of xn when n is an integer: given that xn is the product of n numbers all
having the value x, x0 is by definition the product of zero numbers, which ought
to be 1 regardless of x. The value of x in x0 is simply irrelevant. The fact that
limx,y→0 xy is indeterminate only proves that the xy function must be discontinuous
at x = y = 0; it does not prevent 00 from having a defined value.4 Kahan [1986]
goes further and gives practical justification for 00 = 1 with an analysis of the
circumstances in which 00 is likely to arise in a computation.

Thus, 00 is an example of an expression that is best not undefined, in order that
programs not have to check for it as a special case. Subsequent claims can also be

4A critic might note that essentially the same argument for multiplication gives 0×∞ = 0.
However, in this case the conclusion must be rejected because it leads to a contradiction:
0 = 0×∞ = (1/∞)× (1/0) = 1/(0×∞) = 1/0 = ∞. The contradiction arises only because
∞ is defined in such a way that 0×∞ is not necessarily 0. No such contradiction arises in
defining 00 = 1.

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 2, March 1996.



Handling Floating-Point Exceptions · 163

made for ∞0 = ∞
√

0 = ∞
√
∞ = 1 and log01 = log∞1 = 0.

6. SOFTWARE SUPPORT FOR FLOATING-POINT EXCEPTIONS

Like most other software, numeric programs are written in high-level languages.
Even more than most other software, libraries of advanced numeric functions are
also written in high-level languages (usually Fortran) with the intention that the
code will be immediately portable across various machines and operating systems.
Thus, in order for floating-point exception handling to be usable by numeric soft-
ware, it must be accessible from high-level languages, and preferably in a way that
is common across multiple platforms.

Based on the evidence above, the most basic programming tool needed for han-
dling floating-point exceptions is a construct of the form

Attempt the following:
Perform some calculation;

If one or more out of a specified set of exceptions occurs:
Perform an alternate calculation;

Precise termination within the first attempted calculation is not crucial. However,
imprecise termination may require more care by the programmer to ensure that the
first attempt will not do something dangerous if an exception does occur.

Since one important use for such a construct would be for optimizing scaling
and extended-range calculations, it must be possible to catch underflows as well as
overflows with the construct. On the other hand, it would hardly be an advance if
every floating-point underflow had to be handled through such a construct. Hence,
as part of or in addition to a construct such as above, there needs to be a way for the
programmer to select whether underflows will be automatically handled or whether
they should be caught and some alternate code executed [Hull 1981]. Likewise, it is
convenient to be able to choose to have overflows substituted with ±Ω, or with ∞
if it exists, and to choose to substitute ∞ on division-by-zero exceptions. If other
options such as unsigned versus signed infinities are to be supported, control over
these must be made accessible within high-level languages, too.

To summarize, numeric software needs the following:

(1) Programs need some means for first attempting one computation, and then if
an exception occurs, performing an alternate computation. The exceptions of
interest are usually overflow and underflow, but could at times be division by
zero or an invalid operation. Knowing which exception actually occurred can
save time in the alternate computation.

(2) Programs need control over whether range violations and divisions by zero
are to be handled with this attempted/alternate form or whether they should
be automatically substituted. Division by zero is best substituted with ∞,
overflow with either ∞ or ±Ω, and underflow with either 0 or a subnormal
approximation.

(3) Programs need control over any additional arithmetic modes, such as gradual
underflow versus flush-to-zero on underflow or affine (signed) versus projective
(unsigned) infinities.

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 2, March 1996.



164 · John R. Hauser

Various features have been built or proposed for exception handling over the
years, but none so far is entirely satisfactory for numeric code. A cursory look
at the most important schemes follows. A more thorough survey and critique of
language features for exception handling is provided by Hauser [1994].5

6.1 Termination Exception Mechanisms

More and more languages are being outfitted with a termination exception mecha-
nism organized around a construct such as above. Ada has already been mentioned
[ANSI 1983; 1995; ISO 1995a]; the upcoming ANSI/ISO standard for C++ is an-
other important example [Koenig and Stroustrup 1993; ISO 1995b; Stroustrup
1991]. In these languages, the attempted computation is aborted as soon as an ex-
ception is discovered. Implementations are thus naturally based around hardware
exception traps.

As noted earlier, the exception mechanism in Ada can be used to catch numeric
exceptions such as overflow and division by zero. However, all floating-point ex-
ceptions fall under one generic heading of NUMERIC_ERROR (CONSTRAINT_ERROR in
Ada 95), so it is not possible for a handler to distinguish among the different classes
of floating-point exceptions that might occur. No mechanism exists in Ada for re-
questing that overflows or divisions by zero be substituted with ∞ or Ω. At the
other extreme, underflows are never considered exceptional but are always substi-
tuted with zero. (Ada 95 sanctions gradual underflow.) Thus about half of the
techniques listed in this article cannot be coded in Ada according to the standard.

The proposed ANSI/ISO standard for C++ also includes a termination exception
mechanism. Two predeclared exception classes are defined for numeric “runtime
errors”: range_error and overflow_error. Despite defining these identifiers, the
proposed standard leaves undefined what happens when a floating-point excep-
tion such as overflow occurs. This at least leaves open the possibility that an
implementation will respond to floating-point exceptions by “throwing” one of the
built-in exceptions, which can then be caught by the language construct. At least
two compilers for Intel-80x86-based PCs claim to conform to the expected stan-
dard: Borland’s C/C++ compiler (version 4) and Microsoft’s C/C++ compiler
(version 7). Neither allows floating-point exceptions to be caught by the language
exception mechanism, although the floating-point hardware of the PC is capable of
supporting such behavior.

With the ANSI/ISO standard C library (and hence in C and C++), the signal
routine can be used to specify a subroutine to be called on a given system event [ISO
1990]. One of the defined events is an “arithmetic error,” labeled SIGFPE (f loating-
point error signal). However, according to the language standard, if SIGFPE is
signaled by an intrinsic floating-point operation like addition or multiplication,
and a handler subroutine for SIGFPE exists, then the behavior of the program is
undefined either if the handler returns or if the handler calls any library routine
other than signal (including, for instance, longjmp or exit). In other words, any
action that a SIGFPE handler takes is implementation defined. Likewise, nothing in
the standard C library or in C++ provides any control over exception substitutions,
either to request that overflows and divisions by zero be substituted or to request

5The current article corrects some known errors in that work.

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 2, March 1996.



Handling Floating-Point Exceptions · 165

that underflows be trapped.
Although most numeric software is written in Fortran, standard Fortran has no

features addressing floating-point exception handling at all.

6.2 IEEE-Style Exception Flags

Partly because of the difficulty of influencing the design of programming languages,
the treatment of exceptions in the IEEE floating-point standard is an intentional
compromise: substitutions are prescribed for all exceptions; but, at the same time,
exception flags are raised that a program can test to control selection of an alter-
nate computation. Gradual underflow is required, on the grounds that it is more
robust than simple zero-substitution. Floating-point exception handling is thus
minimally supported, so long as subroutines are available for examining and set-
ting the exception flags. In particular, the exception flag scheme obviates any need
to preselect whether floating-point exceptions should be either substituted for or
trapped. In exchange, it does demand more care from the programmer to guarantee
that program execution progresses properly in the face of exceptions.

Hardware support for the IEEE Standard has existed on a variety of platforms for
some years. Nevertheless, portable exception handling as intended by the standard
is not yet a reality, simply because there is as yet no standard library for accessing
the IEEE exception flags. Among systems that do attempt to provide access to the
flags, no two systems currently have the same interface.

For Intel-80x86-based PCs, Microsoft and Borland libraries include a few subrou-
tines for setting the control modes and checking the status of an 80x87 floating-point
coprocessor. The _status87 routine returns the current coprocessor status, which
includes the standard exception flags. The coprocessor status can be read and
cleared in one operation by _clear87, and various operating modes can be set with
_control87. No routine allows the coprocessor exception flags to be raised directly.

Apple Macintoshes support equivalents of the getflag and setflag routines
in system libraries. In high-level languages, these routines go by the names of
TestException and SetException, respectively. Additional library routines pro-
vide control over other IEEE Standard features such as directed roundings. The
Macintosh SetException routine does not return the old value of the flag, so most
flag manipulations require back-to-back calls to TestException and SetException.

Unix System V Release 4 also defines library routines that provide good control
over IEEE Standard features. Two routines, fpgetsticky and fpsetsticky, give
access to the IEEE exception flags. Unlike the Macintosh, the fpsetsticky routine
does return the previous values of the flags. Also unlike the Macintosh, unfortu-
nately, fpsetsticky sets all of the flags at once. Setting only a single flag requires
first a call to fpgetsticky, followed by one or more logical operations, followed
finally by fpsetsticky.

Sun workstations with SunOS have a single library routine called ieee_flags
for manipulating various IEEE Standard features. The parameters to ieee_flags
are all character strings, and the routine is bizarrely cumbersome. Examining the
overflow flag, for example, requires the following in C:

overflow =
(ieee_flags("get","exception","overflow",&out)>>fp_overflow) & 1;

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 2, March 1996.



166 · John R. Hauser

Setting the overflow flag back to the same value requires a different incantation:

ieee_flags(overflow ? "set" : "clear","exception","overflow",&out);

In both cases, the &out argument is superfluous.
Judging from these results, companies may be depending on the initiative of

others to generate and distribute standardized getflag and setflag routines for
various machines. However, for the outsider, getting such routines to work with
existing compilers and runtime systems is not always trivial. For example, recall
that the usual pattern for accessing the flags is

oldFlag := setflag(exception name,FALSE);
Perform some calculation;
flag := setflag(exception name,oldFlag);

Compilers that reorder (schedule) code as an optimization often have no qualms
about moving parts of the calculation out from between the subroutine calls if the
variables involved in the calculation could not possibly be visible to the setflag
subroutine. In extreme cases, the result of compiler optimization is something like

Perform some calculation;
oldFlag := setflag(exception name,FALSE);
flag := setflag(exception name,oldFlag);

Even after the programmer determines what is happening, finding a good way to
selectively disable this optimization can be maddening. For code written in C, it is
usually necessary either to declare some of the variables involved in the calculation
as “volatile” or, alternatively, to declare them as global to the entire program.
This disables the optimization, but at the expense of restricting register allocation
of variables. Such a hack is unacceptable for a commonplace library. Few if any
compilers offer an immediate solution to this problem.

The LIA-1 standard requires a language implementation to provide an exception
flag mechanism if the language does not support floating-point exception handling
in another way. At least four flags must be implemented—integer overflow, floating-
point overflow, underflow, and undefined—and equivalents to the following routines
must be made available:

clear indicators(exception set) clear all of the specified exception flags
set indicators(exception set) set all of the specified exception flags
test indicators(exception set) return true if any of the given flags is raised
current indicators() return the set of all raised exception flags

This set does not correspond exactly with the getflag/setflag pair, but it is
roughly equivalent in functionality. Which collection is better is a matter of taste.
Nevertheless, whether language implementors will eventually abide by LIA-1 re-
mains to be seen.

6.3 More Abstract Language Constructs

Termination exception mechanisms like in Ada and C++ are supposed to terminate
an unsuccessful computation as soon as possible after an exception occurs. How-
ever, none of the examples of numeric exception handling presented earlier depends

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 2, March 1996.



Handling Floating-Point Exceptions · 167

on the immediate termination of a calculation signaling an exception. The IEEE
exception flags scheme actually takes advantage of the fact that an immediate jump
is not necessary; by raising a flag, making a substitution, and continuing, the IEEE
Standard supports both an attempted/alternate form and a default substitution
with a single, simple reponse to exceptions.

A detraction of the IEEE flag solution, though, is its obvious lack of structure.
Instead of being forced to set and reset flags, one would ideally have available
a language construct that more directly reflected the attempted/alternate algo-
rithm structure. Such a construct would allow the important semantics of the
attempted/alternate form to be divorced from what are more properly considered
implementation concerns, such as whether traps or flags are used to catch excep-
tions.

As a candidate, Hull et al. [1994] propose a simple enable-handle construct:

enable
Perform some calculation;

handle
Perform an alternate calculation (if an exception occurred above);

end

The alternate code is executed if a range violation or “undefined” exception occurs
during the first attempt. Hull et al. define their construct specifically to give no
assurance at all as to how long execution of the first attempt might continue after an
exception: an exception might cause the “enable” part to be aborted immediately
with a trap, or it might raise an internal flag that is tested at completion of the
attempt (or anything conceivably in between). Hull et al. also choose not to inform
a handler which exception led to its being invoked. Rather, the alternate code must
start over again from scratch in all cases.

Hull et al.’s enable-handle construct is not a complete solution to the needs
listed earlier, but it does illustrate how some middle ground might be found be-
tween traditional well-structured termination constructs on the one hand and un-
structured IEEE-style flag manipulation on the other.

7. CONCLUSIONS

This article has presented the most common techniques for handling floating-point
exceptions in numeric code. Exception handling is not a necessary feature. In
every instance, a solution can be coded that avoids any occurence of an exception.
But standardized support for exception handling allows many numeric routines to
be better optimized. Instead of pessimistic code that evades exceptions, a faster,
optimistic style can be used in which exceptional cases are dealt with only if they
actually arise. In addition, much exception handling can be automated if options
like substitution and gradual underflow are available.

The algorithmic techniques in this article ought to be an important basis for
evaluating any support for floating-point exception handling. Currently, the best
expedient for satisfying existing needs would be for the industry to standardize and
implement correctly a few library routines for accessing the hardware floating-point
exception flags and for controlling any special operating modes such as gradual
underflow versus zero-subsitution on underflow. The LIA-1 standard is a good

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 2, March 1996.



168 · John R. Hauser

target for consensus in this regard. In the long run, better-structured support for
floating-point exception handling ought to be provided within the more general
exeption-handling mechanisms of new programming languages.

More than any of the other techniques, gradual underflow is a subject of con-
tention and will likely remain so for some time. However, gradual underflow per-
forms a greater service than is generally realized and probably deserves to be main-
tained, especially as it continues to be a required part of the IEC/IEEE floating-
point standard. Some techniques for reducing the cost of gradual underflow appear
never to have been published, so it may be that implementation difficulties have
been at least partially overstated.6 On the other hand, if a faster zero-substitution
mode can be made to coexist, there is no reason not to provide it.

It would be impossible to overstress the importance of high-level standardization
for any exception-handling support. Features implemented with a different interface
on each system are unlikely to be used, regardless of their potential for improving
numeric programs that real people care about. The watchword among implementors
of numeric libraries is nearly always portability. Only if systems pay attention to
portability for exception handling will hardware that is nearly ubiquitous today
actually begin to serve the people for whom it was intended.

APPENDIX

The theorems of the article are proved in this appendix.

Theorem 3.4.1. If x and y are floating-point numbers, and if x⊕ y underflows
to a subnormal number, then x⊕ y = x + y exactly.

Actually, a slightly stronger statement can be made:

Theorem 3.4.1a. If x and y are floating-point numbers and |x + y| < 2ω, then
x⊕ y = x + y exactly.

Proof. The smallest positive subnormal number is 2εω, and every finite floating-
point number—positive or negative, normal or subnormal—is an integer multiple
of 2εω. (Refer back to Figures 6 and 7. Most floating-point numbers are very
large multiples of this value.) Hence, x and y are each integer multiples of 2εω,
and consequently their real sum x + y is also an integer multiple of 2εω. But
since |x + y| < 2ω, x + y is representable exactly, either as a normal floating-point
number with minimum exponent, or as a subnormal number. (Refer to Figures 6
and 7 again.) Thus x⊕ y = x + y exactly.

Theorem 3.4.2. If x and y are any floating-point numbers with 1/2 ≤ x/y ≤ 2,
then x� y = x− y exactly.

Proof. Theorem 3.4.1 proves the case in which x � y underflows. Otherwise,
assume without loss of generality that x and y are both positive, and that x ≥ y.
(Clearly x and y are required to have the same sign, and the theorem is not affected
by whether that sign is positive or negative. Likewise, the theorem is symmetric
with respect to x and y, so if x < y simply swap the two.)

6Unfortunately, this topic is outside the scope of this article. The extent to which such techniques
are known commercially is difficult to gauge.

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 2, March 1996.



Handling Floating-Point Exceptions · 169

Given that y is a floating-point number of n binary digits, y can be expressed
as b · 2e for some integers b and e with 2n−1 ≤ b < 2n. Since x ≥ y, x = a · 2e for
some integer a and the same exponent e. From the theorem statement together
with the assumption that x ≥ y, we know that y ≤ x ≤ 2y, so 0 ≤ x− y ≤ y.
Substituting, it follows that 0 ≤ (a− b) · 2e ≤ b · 2e, so 0 ≤ a− b ≤ b. Since b < 2n,
we have 0 ≤ a− b < 2n. Hence, x− y = (a− b) · 2e is representable exactly as a
floating-point number, and thus x� y = x− y.

Theorem 3.4.3. If u, x, and y are floating-point numbers, and if u is normal
(nonzero, non-subnormal) and any underflows are gradual, then

u⊕ (x⊗ y) = (u + (xy × ρ))× σ

with
1− 2ε
1− ε

≤ ρ ≤ 1
1− ε

and 1− 3
2ε < σ <

1
1− 3

2ε
.

Proof. If neither the multiplication nor the addition underflows, the theorem
is trivial. If the multiplication does not underflow but the addition does, by The-
orem 3.4.1 the addition is exact, so set σ = 1; and again the theorem is trivial. It
remains to prove the theorem when x⊗ y underflows. Define the absolute error of
the multiplication α = (x⊗ y) − xy, so x⊗ y = xy + α. Since |xy| < ω, we know
|α| ≤ εω. (Observe Figures 6 and 7.) From the theorem statement, we have that
|u| ≥ ω. The remainder of the proof is divided into three cases:

Case 2ω ≤ |u + (x⊗ y)|. Define τ = (u⊕ (x⊗ y))/(u + (x⊗ y)). Since τ is the
perturbation factor of a floating-point addition that does not underflow, 1− ε ≤
τ ≤ 1 + ε. Set ρ = 1, and set

σ =
τ

1− α
u + (x⊗ y)

.

Then

(u + xyρ)σ = (u + xy)
τ

1− α
u + (x⊗ y)

= (u + xy)

u⊕ (x⊗ y)
u + (x⊗ y)

1− α
u + (x⊗ y)

= (u + xy)
u⊕ (x⊗ y)

u + (x⊗ y)− α
= (u + xy)

u⊕ (x⊗ y)
u + xy

= u⊕ (x⊗ y),

as required. Furthermore, since
∣

∣

∣

∣

α
u + (x⊗ y)

∣

∣

∣

∣

≤ εω
2ω

= 1
2ε,

it follows that (1− ε)/(1 + (1/2)ε) ≤ σ ≤ (1 + ε)/(1− (1/2)ε). It is a simple matter
to show that these bounds satisfy the necessary constraints on σ.

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 2, March 1996.



170 · John R. Hauser

Case |u + (x⊗ y)| < 2ω and (1− ε)ω ≤ |xy| < ω. Set ρ = 1 + α/xy, and set
σ = 1. Then (u + xyρ)σ = u + xy(1 + α/xy) = u + xy + α = u + (x⊗ y), which
by Theorem 3.4.1a is exactly u⊕ (x⊗ y). And since

∣

∣

∣

∣

α
xy

∣

∣

∣

∣

≤ εω
(1− ε)ω

=
ε

1− ε
,

we have that (1− 2ε)/(1− ε) ≤ ρ ≤ 1/(1− ε).

Case |u + (x⊗ y)| < 2ω and |xy| < (1− ε)ω. Define k = |xy|/(1− ε)ω, so |xy| =
k(1− ε)ω with 0 ≤ k < 1. Set ρ = 1 + kα/xy and σ = 1 + (1− k)α/(u + xy + kα).
Then

(u + xyρ)σ =
(

u + xy
(

1 +
kα
xy

))(

1 +
(1− k)α

u + xy + kα

)

= (u + xy + kα)
(

1 +
(1− k)α

u + xy + kα

)

= (u + xy + α) = u + (x⊗ y),

which again by Theorem 3.4.1a is u⊕ (x⊗ y). Moreover,
∣

∣

∣

∣

kα
xy

∣

∣

∣

∣

=
|α|

(1− ε)ω
≤ ε

1− ε
,

which once again implies (1− 2ε)/(1− ε) ≤ ρ ≤ 1/(1− ε). To check the bounds
on σ, first observe that |xy|+ |kα| ≤ k(1− ε)ω + kεω = kω < ω ≤ |u|, and so
|u + xy + kα| ≥ |u| − |xy| − |kα| ≥ ω− k(1− ε)ω− kεω = (1− k)ω. Consequently,

∣

∣

∣

∣

(1− k)α
u + xy + kα

∣

∣

∣

∣

≤ (1− k)εω
(1− k)ω

= ε,

from which it follows that 1− ε ≤ σ ≤ 1 + ε.

Theorem 4.1. If f is a function over R∞ of one or more variables, and f is
composed of the basic operations +, −, ×, ÷, and

√
(along with constants), then

lim
xi→0
all i

f
(

1
x1

, . . . ,
1
xn

)

= f(∞, . . . ,∞),

provided both sides of the equation are defined.

Although relatively intuitive, it would be well first to make precise the meaning of
limit points when ∞ is involved. If a sequence contains finitely many ∞’s (possibly
none), then if the finite elements converge to a limit, that is the limit of the whole.
If a sequence contains finitely many zeros, and if the reciprocals of the nonzero
elements converge to zero, the limit of the sequence is ∞. A sequence for which
neither of these cases applies has no limit.

For conciseness, capital letters are used in the following to denote vectors of
argument values: X = x1, . . . , xn, A = a1, . . . , an, etc. In addition, ak → b will be
written to mean that the limit of the sequence ak is b.

Theorem 4.1 is a corollary of a more general theorem:

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 2, March 1996.



Handling Floating-Point Exceptions · 171

Theorem 4.1a. If the following conditions are met:

(1) f is a function over R∞ of one or more variables,
(2) f is composed of the basic operations +, −, ×, ÷,

√
, and constants,

(3) Xk is a sequence of vectors with Xk → A,
(4) f(Xk) is defined for each k, and
(5) f(A) is defined;

then f(Xk) → f(A).

Proof. The proof presented here is by structural induction on the operations
composed to define f . The base cases are when f is defined by a single constant
or argument variable, such as f(X) = 3, or f(X) = x4. Proofs of the base cases
are simple. The inductive cases are naturally separated according to the outermost
operation composed to define f :

Case f(X) is Defined as g(X) + h(X). Given that f(A) is defined, g(A) and
h(A) must both be defined. (If g(A) or h(A) were not defined, f(A) would not
be defined.) By the same argument, g(Xk) and h(Xk) must be defined for each k.
Since g and h are each made up of fewer operations than f , the inductive hypothesis
requires that g(Xk) → g(A) and h(Xk) → h(A). If g(A) and h(A) are both finite,
it is well known that

lim
X→A

f(X) =
(

lim
X→A

g(X)
)

+
(

lim
X→A

h(X)
)

= g(A) + h(A) = f(A)

(since addition is continuous over the reals). Consequently, f(Xk) → f(A) as de-
sired.

It is not possible for both g(A) and h(A) to be ∞, as that would mean that
f(A) = ∞+∞, which is not defined. That leaves the subcase in which exactly one
of g(A) and h(A) is ∞. Assume that g(A) = ∞ and h(A) is finite, so g(Xk) →∞
and h(Xk) → h(A), with h(A) finite. A consideration of the possibilities shows that
the limit of the sequence of sums g(Xk) + h(Xk) is ∞; hence f(Xk) → ∞ = f(A)
as desired.

Case f(X) is Defined as g(X)− h(X). This is nearly identical to the case of
addition above.

Case f(X) is Defined as g(X)× h(X). The only interesting subcases are when
one or both of g(A) and h(A) are infinite. Assume g(A) = ∞. Given that f(A) is
defined, h(A) 6= 0. By the inductive hypothesis, g(Xk) →∞ and h(Xk) → h(A),
where h(A) could be finite or infinite. Under all possibilities, the sequence of
products g(Xk)× h(Xk) →∞, so f(Xk) →∞ = f(A).

Case f(X) is Defined as g(X)÷ h(X). The values g(A) and h(A) cannot both be
zero or infinity. The important subcases are when g(A) = ∞ and/or h(A) = 0, in
which case g(Xk)÷ h(Xk) →∞; or when h(A) = ∞, for which g(Xk)÷ h(Xk) → 0.
Proof proceeds as above.

Case f(X) is Defined as
√

g(X). Obviously, g(A) cannot be negative, as neither
can any of the g(Xk). g(A) is either zero, positive finite, or infinity; in each subcase,
√

g(Xk) →
√

g(A).

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 2, March 1996.



172 · John R. Hauser

ACKNOWLEDGMENTS

This article would not be the same without the hard patience and efforts of William
Kahan and Sue Graham, or without various contributions from Krste Asanović,
John Boyland, Jim Demmel, Xiaoye Li, and of course the reviewers.

REFERENCES

Anderson, E., Bai, Z., Bischof, C., Demmel, J., Dongarra, J., Du Croz, J., Greenbaum,
A., Hammarling, S., McKenney, A., Ostrouchov, S., and Sorensen, D. 1995. LAPACK
Users’ Guide, Release 2.0. SIAM, Philadelphia, Pa.

ANSI. 1983. American National Standard Reference Manual for the Ada Programming Language.
ANSI/MIL-STD 1815A-1983. American National Standards Institute, New York.

ANSI. 1995. Americal National Standard for Information Technology—Programming
Languages—Ada. ANSI/ISO/IEC 8652-1995. American National Standards Institute, New
York.

Apostol, T. M. 1974. Mathematical Analysis, 2d ed. Addison-Wesley, Reading, Mass.
Assadullah, M. M., Demmel, J., Figueroa, S., Greenbaum, A., and McKenney, A. 1992. On

finding eigenvalues and singular values by bisection. LAPACK Working Note 19.
Blue, J. L. 1978. A portable Fortran program to find the Euclidean norm of a vector. ACM

Trans. Math. Softw. 4, 1 (Mar.), 15–23.
Brown, W. S. 1981. A simple but realistic model of floating-point computation. ACM Trans.

Math. Softw. 7, 4 (Dec.), 445–480.
Clenshaw, C. W. and Olver, F. W. J. 1984. Beyond floating point. J. ACM 31, 2 (Apr.),

319–328.
Clenshaw, C. W. and Olver, F. W. J. 1987. Level-index arithmetic operations. SIAM J. Num.

Anal. 24, 2 (Apr.), 470–485.
Clenshaw, C. W. and Turner, P. R. 1988. The symmetric level-index system. IMA J. Num.

Anal. 8, 4 (Oct.), 517–526.
Cody, W. J. 1981. Analysis of proposals for the floating-point standard. Computer 14, 3 (Mar.),

63–68.
Coonen, J., Kahan, W., Palmer, J., Pittman, T., and Stevenson, D. 1979. A proposed

standard for binary floating point arithmetic. SIGNUM Newslett. 14, 4–12. Special issue.
Coonen, J. T. 1980. An implementation guide to a proposed standard for floating-point arith-

metic. Computer 13, 1 (Jan.), 68–79.
Coonen, J. T. 1981. Underflow and the denormalized numbers. Computer 14, 3 (Mar.), 75–87.
DEC. 1992. Alpha Architecture Handbook. Digital Equipment Corporation, Maynard, Mass.
Demmel, J. 1981. Effects of underflow on solving linear systems. In Proceedings of the 5th

Symposium on Computer Arithmetic. IEEE Computer Society Press, New York, 113–119.
Demmel, J. 1984. Underflow and the reliability of numerical software. SIAM J. Sci. Stat. Com-

put. 5, 4 (Dec.), 887–919.
Demmel, J., Dhillon, I., and Ren, H. 1994. On the correctness of parallel bi-

section in floating point. Tech. Rep. UCB//CSD-94-805, Computer Science Division,
Univ. of California, Berkeley, Calif. Also available as LAPACK Working Note 70,
http://www.netlib.org/lapack/lawns/lawn70.ps.

Demmel, J. W. 1987. On error analysis in arithmetic with varying relative precision. In Proceed-
ings of the 8th Symposium on Computer Arithmetic, M. J. Irwin and R. Stefanelli, Eds. IEEE
Computer Society Press, Washington, D.C., 148–152.

Demmel, J. W. and Li, X. 1994. Faster numerical algorithms via exception handling. IEEE
Trans. Comput. 43, 8 (Aug.), 983–992.

Dongarra, J., Bunch, J., Moler, C., and Stewart, G. W. 1979. LINPACK User’s Guide.
SIAM, Philadelphia, Pa.

Feldman, S. 1981. Language support for floating point. In Proceedings of the IFIP TC 2 Working
Conference on the Relationship between Numerical Computation and Programming Languages,
J. K. Reid, Ed. North-Holland, Amsterdam, 263–274.

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 2, March 1996.



Handling Floating-Point Exceptions · 173

Folland, G. B. 1984. Real Analysis: Modern Techniques and Their Applications. John Wiley
and Sons, New York.

Fraley, B. and Walther, S. 1979. Proposal to eliminate denormalized numbers. SIGNUM
Newslett. 14, 22–23. Special issue.

Goldberg, D. 1991. What every computer scientist should know about floating-point arithmetic.
ACM Comput. Surv. 23, 1 (Mar.), 5–48.

Hamada, H. 1987. A new real number representation and its operation. In Proceedings of the
8th Symposium on Computer Arithmetic, M. J. Irwin and R. Stefanelli, Eds. IEEE Computer
Society Press, Washington, D.C., 153–157.

Hauser, J. R. 1994. Programmed exception handling. M.S. thesis, Univ. of California, Berkeley,
Calif.

Hennessy, J. L. and Patterson, D. A. 1990. Computer Architecture: A Quantitative Approach.
Morgan Kaufmann, San Mateo, Calif.

Hough, D. 1981. Applications of the proposed IEEE 754 Standard for floating-point arithmetic.
Computer 14, 3 (Mar.), 70–74.

Hull, T. E. 1981. The use of controlled precision. In Proceedings of the IFIP TC 2 Working
Conference on the Relationship between Numerical Computation and Programming Languages,
J. K. Reid, Ed. North-Holland, Amsterdam, 71–84.

Hull, T. E., Fairgrieve, T. F., and Tang, P. T. P. 1994. Implementing complex elementary
functions using exception handling. ACM Trans. Math. Softw. 20, 2 (June), 215–244.

Hwu, W. W. and Patt, Y. N. 1987. Checkpoint repair for out-of-order execution machines.
In Proceedings of the 14th Annual International Symposium on Computer Architecture. IEEE
Computer Society Press, Washington, D.C., 18–26.

IEC. 1989. Binary Floating-Point Arithmetic for Microprocessor Systems. IEC 559:1989. Inter-
national Electrotechnical Commission, Geneva.

IEEE. 1985. IEEE Standard for Binary Floating-Point Arithmetic. ANSI/IEEE Std 754-1985.
Institute of Electrical and Electronics Engineers, New York.

IEEE Task P754. 1981. A proposed standard for binary floating-point arithmetic. Computer 14, 3
(Mar.), 51–62. With introductory comments by David Stevenson.

ISO. 1990. Programming Languages—C. ISO/IEC 9899:1990(E). International Standards Orga-
nization, Geneva.

ISO. 1994. Information Technology—Language Independent Arithmetic—Part 1: Integer and
Floating Point Arithmetic. ISO/IEC 10967-1:1994(E). International Standards Organization,
Geneva.

ISO. 1995a. Information Technology—Programming Language—Ada. ISO/IEC 8652:1995. Inter-
national Standards Organization, Geneva.

ISO. 1995b. Information Technology—Programming Languages, Their Environments and Sys-
tem Software Interfaces—Programming Language C++. ISO/IEC CD 14882. International
Standards Organization, Geneva.

Johnson, M. 1991. Superscalar Microprocessor Design. Prentice-Hall, Englewood Cliffs, N.J.
Kahan, W. 1986. Branch cuts for complex elementary functions; or much ado about nothing’s sign

bit. In Proceedings of the Joint IMA/SIAM Conference on the State of the Art in Numerical
Analysis. Clarendon Press, Oxford, England, 165–211.

Kahan, W. and Palmer, J. 1979. On a proposed floating-point standard. SIGNUM Newslett. 14,
13–21. Special issue.

Kahan, W. M. 1980. Interval arithmetic options in the proposed IEEE Floating Point Standard.
In Proceedings of the International Symposium on Interval Mathematics. Academic Press, New
York, 99–128.

Knuth, D. E. 1992. Two notes on notation. Am. Math. Mon. 99, 5 (May), 403–422.
Koenig, A. and Stroustrup, B. 1993. Exception handling for C++. In The Evolution of C++:

Language Design in the Marketplace of Ideas, J. Waldo, Ed. MIT Press, Cambridge, Mass.,
137–171.

Lynch, T. W. and Swartzlander, E. E. 1991. A formalization for computer arithmetic. In
Proceedings of the 3rd International IMACS-GAMM Symposium on Computer Arithmetic and

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 2, March 1996.



174 · John R. Hauser

Scientific Computing, L. Atanassova and J. Herzberger, Eds. North-Holland, Amsterdam, 137–
145.

Matsui, S. and Iri, M. 1981. An overflow/underflow-free floating-point representation of numbers.
J. Inf. Process. 4, 3, 123–133.

Olver, F. W. J. 1987. A closed computer arithmetic. In Proceedings of the 8th Symposium
on Computer Arithmetic, M. J. Irwin and R. Stefanelli, Eds. IEEE Computer Society Press,
Washington, D.C., 139–143.

Parlett, B. 1979. An open letter to the community of computer users. SIGNUM Newslett. 14,
2–3. Special issue.

Payne, M. H. 1979. Floating point standardization. In Proceedings of the 19th IEEE Computer
Society International Conference. Institute of Electrical and Electronics Engineers, New York,
166–169.

Sites, R. L. 1993. Alpha AXP architecture. Commun. ACM 36, 2 (Feb.), 33–44.
Smith, B. T., Boyle, J. M., Dongarra, J. J., Garbow, B. S., Ikebe, Y., Klema, V. C.,

and Moler, C. B. 1976. Matrix Eigensystem Routines: EISPACK Guide. Lecture Notes in
Computer Science, vol. 6. Springer-Verlag, Berlin.

Smith, J. E. and Pleszkun, A. R. 1985. Implementation of precise interrupts in pipelined proces-
sors. In Proceedings of the 12th Annual International Symposium on Computer Architecture.
IEEE Computer Society Press, Silver Springs, Md., 36–44.

Smith, J. M., Olver, F. W. J., and Lozier, D. W. 1981. Extended-range arithmetic and
normalized Legendre polynomials. ACM Trans. Math. Softw. 7, 1 (Mar.), 93–105.

Sohi, G. S. and Vajapeyam, S. 1987. Instruction issue logic for high-performance, interruptible
pipelined processors. In Proceedings of the 14th Annual International Symposium on Computer
Architecture. IEEE Computer Society Press, Washington, D.C., 27–34.

Sterbenz, P. H. 1974. Floating-point Computation. Prentice-Hall, Englewood Cliffs, N.J., 39–70.
Stroustrup, B. 1991. The C++ Programming Language, 2d ed. Addison-Wesley, Reading, Mass.
Turner, P. R. 1989. A software implementation of sli arithmetic. In Proceedings of the 9th

Symposium on Computer Arithmetic. IEEE Computer Society Press, Washington, D.C., 18–24.
Turner, P. R. 1993. Complex SLI arithmetic: Representation, algorithms and analysis. In

Proceedings of the 11th Symposium on Computer Arithmetic, E. Swartzlander Jr., M. J. Irwin,
and G. Jullian, Eds. IEEE Computer Society Press, Los Alamitos, Calif., 18–25.

Received March 1995, Revised August 1995, Accepted August 1995

ACM Transactions on Programming Languages and Systems, Vol. 18, No. 2, March 1996.


