
by E. M. Schwarz
L. Sigal
T. J. McPherson

CMOS
floating-point
unit for the
S/390 Parallel
Enterprise Server G4

The S/390@ floating-point unit (FPU) on the
fourth-generation (G4) CMOS microprocessor
chip has been implemented in a CMOS
technology with a 0.20-pm effective channel
length and has been demonstrated at more
than 400 MHz. The microprocessor chip is
17.35 by 17.30 mm in size, and one copy of the
FPU including the dataflow and control flow
but not including the FPR register file is 5.3 by
4.7 mm in size. There are two copies on the
chip for error-detection purposes only; both
copies execute the same instruction stream
and are checked against each other. The high-
performance implementation has a throughput
of one instruction per cycle and an average
latency of three execution cycles, yielding
approximately 70 MFLOPS at 300 MHz on the
Linpack benchmark. Currently, the G4 FPU
is the highest-performance S/390 CMOS
FPU with fault tolerance. It uses several
innovative and high-performance algorithms
not commonly found in S/390 FPUs or
other FPUs, such as a radix-8 Booth
multiplier, a Goldschmidt division and square-
root algorithm, techniques for updating the
exponent in parallel with normalization, and
avoidance of the remainder comparison in
quadratically converging division and square-

root algorithms. Also demonstrated is a
practical design technique for designing
control flow into the dataflow and early
floorplanning techniques.

Introduction
The IBM S/390* floating-point architecture is an extension
of the well-known System/360* architecture from the
1960s [l]. The floating-point format has a hexadecimal
exponent with a 7-bit characteristic biased by 64 and a
1-bit sign, as indicated by the following:

X = (- l) x ~ * 16(xc-64) * x,, 0.0 I Xf < 1.0,

where X , is the sign bit, X, is the characteristic, and X, is
the fraction or mantissa. Extended format was added in
the 1970s along with square-root operation, which started
out as a mathematical assist until it was recently included
in the base architecture. The short format has a fraction
of 24 bits, the long format has one of 56 bits, and the
extended format has one of 112 bits. The G4 FPU is
optimized for long format but also supports the other
formats. The short format requires use of a trivial set of
masking functions to implement on the long-format
dataflow. The extended-format data are partitioned into
two long-format numbers per operand, which requires
several passes through the FPU to execute. The extended-
format operations and high-order arithmetic operations

I

"Copyright 1997 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each

of this paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, hut no other portions,

portion of this paper must be obtained from the Editor.

0018-8646/97/$5.00 Q 1997 IBM

IBM J. RES. DEVELOP. VOL. 41 NO. 415 JULYISEPTEMBER 1997 E. M. SCHWARZ, L. SIGAL, AND T. J. McPHERSON

such as division and square root operate in a nonpipelined
mode. They require many suboperations to complete and
internally are highly pipelined but are not pipelined at the
instruction level. The most common operations such as
load, addition, and multiplication are pipelined and can
execute one every cycle. The dataflow has been optimized
for addition and multiplication of long-format operands,
and very little hardware has been added to support
nonpipelined instructions.

The G4 FPU is also responsible for performing fixed-
point multiplication and fixed-point division. The FPU has
a very fast multiplier which is capable of supporting two’s-
complement numbers for fixed-point calculations and sign-
magnitude numbers for floating-point calculations. The
fixed-point arithmetic operations are executed in a
nonpipelined mode, which simplifies the data dependency
analysis between instructions. The G4 microprocessor
issues one instruction per cycle in order and completes at
most one instruction per cycle in order. Thus, executing
fixed-point multiply in nonpipelined mode does not cause
much performance degradation, since most fixed-point
instructions require only one execution cycle, and a fixed-
point instruction stream would have to wait for the
multiply result even if pipelined. This would result in a
larger performance degradation in an out-of-order-
completion machine. Fixed-point division is also executed
in the FPU and uses an algorithm similar to floating-
point divide short. However, there is the additional
complexity in producing a remainder and conditionally
complementing the input operands and output operands.

functions normally thought to reside within the FPU. The
FXU aligns input data from memory for floating-point
instructions which are in RX format (register-and-indexed-
storage operations). Data in memory are byte-addressable,
and floating-point data can be 4 or 8 bytes, which are not
necessarily aligned to a cache-line boundary. The cache
returns the doublewords of memory containing the data
and does not separate and rotate the data for the
functional units. The operand buffers in the FXU provide
this service for both the FXU and the FPU. The FXU also
performs floating-point stores for the FPU, and that
activity can require storage alignment, data masking, and
multiple data writes that cross doubleword boundaries.
The performance penalty of the FXU performing the
floating-point stores is zero cycles for non-data-dependent
stores, but two cycles for dependent stores.

The G4 FPU executes the most common floating-point
instructions in a pipelined fashion with a throughput of
one per cycle, and the infrequent operations are executed
in a nonpipelined mode. The dataflow is described in
detail, along with the execution of each type of
instruction. In addition, the overall control flow is

Also, the fixed-point unit (FXU) performs some

476 presented, followed by circuit implementation, physical

E. M. SCHWARZ, L. SIGAL, AND T. J. McPHERSON

design, discussion of designing control flow into the
dataflow, and early floorplanning techniques.

Dataflow and execution
The fraction dataflow, shown in Figure 1, consists of a
long-format multiplication and addition dataflow with a
common 120-bit carry-propagate adder. At the top of
the figure are the buses into and out of the FPU. The
FPU-A-BUS and FPUB-BUS are 64 bits each and
bring operand 1 and operand 2 into the FPU from the
FXU. Operand 1 is from the FPRs for floating-point
computation and from the GPRs for fixed-point
computation. Operand 2 is from the FPRs, the GPRs, or
the operand buffers for memory operands. The operands
are latched into the FPU A and B registers, which have
fraction, exponent, and sign portions. Only the fraction
part of the internal dataflow is shown in the figure. The
output bus for the floating-point unit is the FPU-C-BUS,
which is 64 bits wide and is driven to the register files.
Internally there are eight additional bits of precision for
intermediate calculations in the division and square-root
routines. The FPU-C-BUS drives dependent data back
into the A and B registers and into the first cycle of
execution through the three late multiplexors. One other
bus at the top of the dataflow is the output from the
divide and square-root lookup tables. This bus is only 10
bits wide. All of these buses drive data to the A and B
registers. The reading of operands from the register files
or memory into these latches is defined to be the “EO”
cycle. This is the cycle prior to the first execution cycle.
Note that the A and B registers have multiplexors on their
input which are capable of masking data for short-format
instructions.

In the first execution cycle the A and B registers
drive data into the late multiplexors. The term “late
multiplexor” is actually a misnomer, since these
multiplexors are located early in the first execution cycle,
but can provide late-arriving interlocked data from the
FPU-CBUS. There is a late multiplexor for the multiply
A operand (MAL), the adder A operand (AAL), and the
B operand for both multiply and add (BL). The multiply
A operand can be 64 bits to support extra precision for
division and square-root intermediate calculations. The
other late multiplexors are 56 bits to support long format.

The MAL and BL multiplexors drive the multiply first
cycle, which consists of a 3X adder and Booth decode; for
addition, the AAL and BL multiplexors drive the compare
and swap and aligner and XOR logic. The MAL and BL
multiplexors also drive binary shifters which are capable of
binary-aligning data or forcing binary shifts of up to 3 bits
right or left. These shifters are used for division and
square-root operations, and their output is latched back
into the A and B registers. The output of the multiply first
cycle is latched in the 3x and X registers and the Booth

IBM J. RES. DEVELOP. VOL. 41 NO. 415 JULYISEPTEMBER 1997

IBM .I. RES. DEVELOP. VOL. 41 NO. 415 JULYiSEPTEMBER 1997 E. M. SCHWARZ, L. SIGAL, AND T. J. McPHERSON

decode registers. The output of the addition first cycle is
latched in the carry and sum registers.

Booth decode registers feeds a Booth multiplexor and a
19-to-2 counter tree resulting in two partial products.
These two partial results are 120 bits each and are latched
into the 120-bit carry and sum registers.

multiplication pass through the 120-bit adder. There
are several feedback paths shown which are used for
extended-precision operations and for division and square
root. The result of the adder can be driven to either the
FC1 register or the FC3 register (for the case of a
multiply).

The FCl register drives 117 bits to the post-normalizer
for the third addition execution cycle. The post-normalizer
determines the shift amount by performing a leading-zero
detect (LZD) of the fraction, and then the fraction is
shifted and the exponent is updated in parallel. The
normalizer output is driven to both the FC2 and FC3
registers.

The FC2 register provides an extra internal working
register for division and square root. It also drives to a
binary shifter, which is used to transform binary-aligned
intermediate results for division and square root into hex-
aligned results. The binary shifter can shift the fraction up

The output of the multiply’s 3X register, X register, and

The second cycle of an addition and third cycle of a

478 to 3 bits left or right and is controlled by an LZD of the

E. M. SCHWARZ, L. SIGAL, AND T. J . McPHERSON

most significant digit or by a forced shift amount from
controls. The binary shifter output is connected to the
FC3 register.

The FC3 register receives the result of the arithmetic
computation and drives the results to register files or back
to the FPU dataflow by way of the FPU-C-BUS. The FC3
register also has the ability to shift itself by 56 bits to the
left so that extended data can be stored in the FC3
register and written to the FPU-C-BUS with two back-to-
back write cycles without involving the other elements of
the FPU fraction dataflow.

The overall FPU fraction dataflow has five stages,
though the most common operations require only three
cycles or stages of execution. The execution of addition,
multiplication, load, division, square-root, and extended-
precision instructions is detailed in the following
subsections.

Addition
The operations subtract, add, or compare are collectively
referred to as an addition. Floating-point addition involves
aligning the fractions of the operands, conditional
complementation of the smaller operand, a two’s-
complement addition, normalization, and condition code
setting. This usually requires three cycles of execution.
The key to subtraction of sign-magnitude numbers is
identifying and complementing the smaller of the two
operands prior to the carry-propagate addition. The
resulting sum is a magnitude and does not require
conditional post-complementation. As shown in Figure 2,
the first cycle consists of comparing the A and B register
exponents to determine which operand is the smaller of
the two, and conditionally swapping the fractions so
that the smaller operand proceeds to be conditionally
complemented and aligned by the exponent difference.
One additional hex guard digit (4 bits) is maintained
during alignment, as specified by ESA/390* floating-point
architecture. Then the larger operand is placed in the sum
register and the aligned operand is placed in the carry
register. The second cycle involves a two’s-complement
addition of the fractions. The 28 fraction bits of short
operands or 60 fraction bits of long operands are easily
accommodated by the 120-bit adder. The sum is latched in
the FC1 register. The third cycle of execution involves a
post-normalization.

Post-normalization of the sum is not always necessary,
but it is rather frequent for S/390 architecture. In all
architectures there could be cancellation of the most
significant bits for an effective subtract operation which
changes the location of the most significant bit. There
could also be a carry-out for an effective addition
operation. But for S/390, there is the additional possibility
of unnormalized fractions or the case of a zero fraction
with a nonzero characteristic. Other architectures have

IBM J. RES. DEVELOP. VOL. 41 NO. 415 JULYiSEPTEMBER 1997

denormalized numbers, but the occurrence is less frequent
and their range of values is limited. So, for simplicity all
additions are routed through the post-normalizer.

In the post-normalization cycle, a leading-zero detect is
performed on the fraction to determine the shift amount.
The most significant bits of the shift amount are available
earlier than the least significant bits, and the exponent is
updated in parallel with the delayed arrival of the least
significant bits [2] . The determination of exponent
underflow and overflow is also calculated in parallel with
the fraction normalization. The resulting normalized
fraction and exponent are latched in the FC3 register
at the end of the third cycle of execution. During the
following cycle the result is written into the FPR.

Of these three execution cycles, the first addition
cycle is the most complex; Figure 2 describes the
interconnection of the dataflow,. Since this cycle is very
timing-critical, both the dataflow and the control design
were specified with custom circuits. The cycle begins with
the A and B exponent registers being driven to the
exponent compare circuit and to the exponent difference
logic. A signal called EXP4_GT, which is a compare of A
exponent greater than B for the least significant four bits
of exponent, is driven to the swapper. It actually uses five
bits of exponent for the comparison, as shown by the
following equation:

EXP4-GT = (EA,,, > EB,,Sb) @ (EA, @El?,).

If the fifth-to-least significant bits (EX,) of the two
exponents are not equal, the comparison of the least
significant four bits > EB4,s,) is inverted. Thus,
EXP4-GT is an approximation of which operand is
greater. The operand guessed to be larger is driven on the
Big bus, and the smaller operand is driven on the Small
bus. Feeding the swapper in the fraction dataflow are the
late multiplexors, which can receive data from the
FPU-C-BUS or the fraction registers. The Small bus
drives an XOR circuit which conditionally complements
the data for an effective subtract operation where the shift
amount is less than 16. The XOR output drives an aligner
which can shift right 0 to 15 digits. The shift amount is
determined by two subtractors. Both exponents A minus B
and B minusA are calculated, and then the appropriate
result is chosen once EXP4-GT is known. The output of
the aligner drives to the carry multiplexorhegister.
The Big signal is driven directly to the sum
multiplexor/register. The selection of carry and sum
multiplexors is determined by a custom control macro
called the AI magnitude control macro. It determines
whether the swap was correct and whether to force zeros
for shifts greater than the width of the fractions or to mask
the operands for short data. In addition to the fraction being
latched, the larger of the two exponents is latched into the
sum and carry exponent registers (SC EXP reg).

IBM J. RES. DEVELOP. VOL. 41 NO. 4.5 JULYISEPTEMBER 1997

This is the general procedure for most cases of addition
execution, although the procedure is actually more
complex and can be separated into five cases: effective
load, effective add, one’s-complement, two’s-complement,
and simple subtract. The details for each case are
described below.

Effective load: (SHIFT-GT15)
If there is an exponent difference greater than 15
(signaled by SHIFT-GTlS), the operation is effectively a
load. There are 14 hex digits in a long operand, and Si390
dictates that one additional guard digit be maintained, for
a total of 15 hex digits. Note that short operands were
treated the same as longs, but with additional masking
to allow only seven hex digits of precision. Since the
rounding mode of Si390 hex floating-point is truncation
with the exception of square root, the smaller operand
does not contribute to the addition if the exponent
difference is greater than 15.

The execution of this case of addition could be
accomplished in two execution cycles. However, it was
designed to be completed in three cycles to avoid creating
any critical control paths. So, for simplicity this case
consumes an adder cycle. To accomplish this, the operand
with the larger exponent and zeros are gated into the sum
and carry registers. There is a complication in doing this,
since the swapper does not use an exact exponent greater
than the compare signal but instead uses a signal based on
the least significant four bits. Thus, there is the potential
for the swap to be incorrect (i.e., the Big signal is actually
the smaller of the two operands, and Small is the bigger
operand). This must be taken into account in the A1
magnitude control macro when selecting the larger
operand and zeros to be multiplexed into the two
registers.

the operand with the greater exponent and zero is gated
into the sum and carry registers.

This case executes in three cycles, and in the first cycle,

Effective add: (SHIFT-GT15 E F F S U B)
Another simple case is an effective add operation
(signaled by EFF-SUB) which exists when the operation is
add and the operands have the same sign or the operation
is subtract or compare and the operands have different
signs. For this case, no complementation is necessary.
Since the shift amount is less than 16, the least significant
bits of the exponent are guaranteed to give the proper
shift amount, and this 4-bit exponent difference is driven
to the aligner. The aligner output and the Big bus are
driven to the carry and sum registers, respectively. This
case requires three cycles, since the normalization cycle
may be required if the operand with the larger exponent is
unnormalized.

E. M. SCHWARZ, L. SIGAL, AND T. J. McPHERSON

Conditional one’s-complement:
(SHIFT-GT15 * EFF-SUB * EXP-EQ)
The remaining cases are more difficult and involve an
effective subtraction with shift amount less than 16.
Determination of the operand to conditionally
complement and align is difficult, especially considering
that the input fractions could be unnormalized. The case
in which the exponents are equal (signaled by EXP-E&) is
called conditional one’s-complement. For timing reasons,
the fraction comparator receives the unaligned operands.
When the exponents are equal, the fraction comparison
gives a true indication of the relative magnitude of the
two operands, but it is determined too late to complement
the smaller of the two before addition. However, this is
not necessary to obtain the correct result. In [3], a method
is described of always complementing operand B and still
computing the correct result. Note, for A - B,

IRI = pi - IBI = + + 1 ulp,

where is the one’s-complement of B and ulp refers to a
unit in the last place of operand B. For B - A the
following can be derived [4]:

IRI = IBl - 1 . 1 1 = (11 + + 0 ulp).

Thus, B can always be complemented, if for B < A the
carry-in to the adder is set (1 ulp) and the true sum is
the result, and for A < B the carry-in is zero and the
complement of the sum is the result. This causes the
critical path to be the setting of one bit, the carry-in
to the adder, rather than requiring conditionally
complementing all the fraction bits of Small and Big
and conditionally selecting them to the carry and sum
registers. The control signal for the FC1 register which
receives the adder output can be determined to be the
true or the complemented output.

Thus, this case requires three cycles of execution: the
first cycle, in which B is complemented and the carry-in to
the adder conditionally set based on the fraction greater
than signal, the second cycle of a 2-to-1 addition and
conditional selection of the true or complemented output
into the FC1 register, and the third cycle of post-
normalization.

~

Conditional two’s-complement:
(SHIFT-GT15 EFFSUB . EXP-EQ * UNNORM)
When the exponents are not equal and the data are
unnormalized (signaled by UNNORM), this is called the
conditional two’s-complement. For this case, a prior
determination of the larger operand is not possible,
so a post-adder determination is made. Four cycles of
execution are needed; two cycles use the adder. The
second cycle through the adder is used to create a two’s-

480 complement of the sum. The first time through the adder,

the carry-out can be latched along with the guessed true
sum, and in the following cycle the carry-out can be used
as a select signal either to hold the true sum if the
original guess of the greater operand is correct, or to
select the complemented sum to be gated into the FC1
register. Thus, there is a pipeline stall for this case. It was
estimated that this case occurs only about 3 percent of the
time.

Simple subtract:
(SHIFT-GT15 * E F F S U B * EXP-E& * UNNORM)
If the input operands are both normalized and the shift is
less than 16, the exponent compare of the least significant
four bits truly indicates the smaller of the two operands.
Thus, the correct operand can be identified and
complemented in the first cycle of execution. This is called
the simple subtract case, and requires only three cycles of
execution.

Thus, in summary for addition, there exists only one
rare case, conditional two’s-complement, which requires
four execution cycles; all of the other cases are completed
in three execution cycles. The adder dataflow has been
optimized to be pipelined one instruction per cycle, and
each cycle has been optimized to meet cycle time. The
most complex of these cycles is the first add cycle, which
makes many of its decisions based on only four or five bits
of the exponents. This enables a very fast cycle time, but
at the cost of complexity of design, which is evident in the
five separate cases of control signal selection. To reduce
timing, the control design was implemented in custom
circuits; it was designed into the dataflow early in the
design phase.

Multiplication
Both fixed-point and floating-point multiplication are
performed on the FPU’s multiplier. In addition, the
multiplier is used by the division and square-root routines.
These high-order routines require greater precision for
intermediate results than is supported by the long format.
Thus, additional bits of precision are necessary, but the
critical timing of long format for a 56-by-56-bit
multiplication must not be exceeded. To accomplish this,
only one operand is extended with additional bits to be 64
bits. The other operand dictates the cycle time, since it
specifies the number of partial products which determine
the number of stages in the counter tree. Other designs
[4] have increased both operands, creating a 60-by-%bit
multiplier which increases the performance of division and
square root. On the G4 microprocessor chip, though, this
type of implementation would create a longer cycle time,
affecting the performance of all instructions. Thus, a 56-
by-64-bit multiplier was implemented in the G4 FPU.

of the FPU design; it is timing-critical and it is very large,
The counter tree design in the FPU is an important part

E. M. SCHWARZ, L. SIGAL, AND T. 1. McPHERSON IBM J. RES. DEVELOP. VOL. 41 NO. 415 JULYiSEPTEMBER 1997

consuming 15 percent of the G4 FPU. Our design goal for
the multiplier was to have it pipelined every cycle and
have an approximate latency of two or three cycles. One
full cycle is required for 2-to-1 addition, so the counter
tree had to complete in one or two cycles. Radix-4 Booth
algorithms [5, 61 are interesting because of their simplicity,
but for a 56-bit operand they require a 29-to-2 partial
product array, and Booth multiplexing requires a 2-to-1
true/complement multiplexor. This counter tree requires
eight levels of 3/2 counters, which did not meet our cycle
time objective. Another option is to implement the
counter tree with latches in the middle, but this is
prohibitive to implement because of the large number of
signals that must be latched.

Two other alternatives are to create a two-cycle path
that is unlatched or to perform an iterative multiply. The
first option was rejected by our test personnel, who did
not like the large number of paths that had to be specially
tested for cycle time. This would have added a huge
amount of time to test the chip, and was determined to be
too costly. The other alternative is an iterative multiply
[7] in which half the multiplication is computed each
iteration, e.g. by using a 28-by-64-bit multiplier. This has a
very small area and very fast critical path, but it does not
have the performance benefit of being able to pipeline a
multiply every cycle.

The solution that has been implemented in the G4 chip
is a higher-radix Booth algorithm. In particular, a radix-8
Booth algorithm was used to simplify the counter tree
[8, 91. The counter tree for a radix-8 algorithm requires
only a 19-to-2 partial product reduction which has six
levels of 312 counters. The counters in 0.2-wm technology
supporting a 300-MHz clock frequency have a delay of
approximately 350 ps for the sum output and 250 ps for
the carry output, for an average delay of 300 ps. The
Booth multiplexing requires a 4-to-1 true/complement
multiplexor which has a delay of approximately 450 ps.
The delay of both the counter tree and the Booth
multiplexing meets the cycle-time objective. The main
problem with higher-radix algorithms, though, is creating
the difficult multiples of the multiplicand which are not
powers of 2 . For a radix-8 algorithm, the multiples of +4,
+3, +2, +1, 0, -1, -2, -3, and -4 of the multiplicand
are required. The only difficult multiples to form are the
?3X. In the first cycle of execution, the 3X multiple is
formed, and the Booth selects for the multiplexing are
determined. In the second cycle, the Booth multiplexing
between all of the possible multiples (+4 to -4) is
performed using 4-to-1 true/complement multiplexors;
then, 19 partial products are reduced to two in six levels
of 3/2 counters. This cycle is shown in Figure 3. In the
third cycle, the 2-to-1 addition is performed. A radix-8
Booth algorithm provides the best partitioning for our

1 Dataflow of the second multiplication cycle.

particular implementation. The detailed implementation of
the counter tree is described in [lo].

The common cases for post-normalization have been
designed into the dataflow of the third cycle of execution.
From instruction traces, it was determined that more than
90 percent of the time both operands are normalized. If
both operands are normalized, it can easily be shown
that the result could have one of two normalizations.
Multiplying the minimum normalized numbers and the
maximum normalized numbers gives the following range
of products:

(0.Ul6 * (o.1)16 = (OW16

and

(O.FFF ' ' .)16 * (0 .FFF. . .)16 < (0.FFF . . .)16.

Thus, the minimum product requires a left shift of one
hex digit (4 bits), and the maximum product has a shift of
zero, or no shift. The determination of which shift is
required is designed into the 120-bit adder to execute in
parallel with the determination of the conditional sum of
the most significant hex digit. An enable signal is sent to
this logic to allow it to drive the select signals to the FC3
register. Both possible combinations of fraction shifts are
driven to the FC3 register and are selected by this control
signal, which was designed into the dataflow in custom
circuits. Thus, the critical control paths were designed in
custom logic. Note that if the operands are unnormalized 481

JCAL, AND T. J. McPHERSON IBM J. RES. DEVELOP. 'OL. 41 NO. 415 JULYiSEPTEMBER 1997 E. M. SCHWARZ, L. S

or if the exponents are close to underflowing or The initial convergence factor is determined from a
overflowing, the multiply instruction requires four cycles lookup table, but the subsequent convergence factors
and is driven into the post-normalizer. Hence, the most are determined by two's-complementing the current
common case has a latency of three cycles with a denominator:
throughput of one instruction per cycle, but some cases
have a latency of four cycles with a throughput of one per R, -
cycle. Do

Load
Loads are executed in the floating-point pipeline to take
advantage of the fast bypassing between data-dependent
instructions. The actual execution involves two cycles. First = 1 + D,E,,;
the operand in the B register is moved directly to the FC1
register. The second cycle passes through the normalizer
with a forced shift amount (no normalization is allowed by x, = -D,E,,,
the architecture) and is latched into the FC3 register.
Thus, loads require two execution cycles.

1

Dl = D, * R,

= DO * (i + ' R O)

Let

Dl = 1 - X l ,

R l = 2 - D l = 2 - (1 - X ,) = 1 + X , ;
Division

The division implementation uses the Goldschmidt
algorithm, which has been described in many conferences
and papers [4-6, 11-16]. It is a very interesting algorithm
for high performance because of its quadratic convergence
and its ability to execute some of its multiplications in
parallel. The algorithm was first used in the IBM
System/360* Model 91 [17], but since then has not been
implemented on S/390 mainframes, except for one low-end
mainframe [4]. The main limitation of this algorithm is
that it requires nontrivial error analysis and the avoidance
of extra cycles to round the result. Other algorithms such
as nonrestoring algorithms or even the Newton-Raphson
quadratically converging algorithm are much easier to
analyze, since they are self-correcting. Analyzing the error
in one iteration and the error in the lookup table is
enough to prove these algorithms for the Nth iteration.
The Goldschmidt algorithm has error which propagates

Then,

D, = DL-l * Ri-l ,

Ni = * Ri - l ,

Ri = 2 - D,.

The error analysis was performed by 1) expanding the
equations for four iterations, where RC, is the calculated
convergence factor in the ith iteration including error
terms, DC, is the calculated divisor, NC, is the calculated
dividend, tevenl is the truncation error in the divisor
calculation, toddi is the truncation error in dividend
calculation, E,, is the error in the lookup table, and tsi is
the small error in the convergence factor truncation; and
2) performing a one's-complementation instead of a two's-
complementation:

RC, = 1/D + ERo,

each iteration, and all iterations must be analyzed. DC, = D,

(denominator) to one; then, the dividend (numerator) is NC, = N ,

equal to the quotient. Let Q equal the quotient, and the DCi = Dei-, * RCi-, - t2*i,

The algorithm is based on converging the divisor

dividend of the ith iteration is Ni , the divisor Di, and the NC, = NC,_, * R C ~ _ , - t2*i-l ,

convergence factor R,. The following can be stated:
RC, = 2 - DCi - ts,.

The analysis of the error in the final quotient, NC,,
was arduous. After substituting the values of the errors
due to truncation, it was possible to prove that the
implementation satisfied the error constraints.

The timing diagram of the iteration cycles of a
Goldschmidt division algorithm is shown in Table 1 for
long operands. Short operands require only three
iterations. In the G4 implementation there are an
additional four cycles on the front end of the diagram to
get the operands binary-normalized and in the proper

E. M. SCHWARZ, L. SIGAL, AND T. J. McPHERSON IBM .I. RES. DEVELOP. VOL. 41 NO. 415 JULYiSEPTEMBER 1997

Table 1 Timing diagram for long divide.

Cycle I 2 3 4 5 6 7 8 9 10 11 12 13 14 15

RO D l D l D l D2 D2 D2 D3 D3 D3
NO N1 N1 N1 N2 N2 N2 N3 N3 N3 PN4 PN4 PN4 N4

registers. And there are several cycles on the back end to
hex-normalize and properly round the result.

Rounding poses an additional problem for quadratically
converging algorithms, since a remainder is not
determined as an intermediate product of the iteration
step. The G4 implementation is able to eliminate the
remainder comparison step half of the time by examining
an additional bit of precision [17]. The intermediate result
is formed with one additional guard bit with an error
tolerance of less than the weight of the guard bit. For
truncation which S/390 dictates, if the guard bit is 1, the
result should be truncated. This is true since the error
tolerance guarantees that the actual quotient is less than
the next higher machine-representable number and not
equal to it. But if the guard bit is 0, a remainder
comparison is needed. If the remainder is greater than or
equal to zero, the result is the truncated intermediate
result; if the remainder is less than zero, the result is the
decremented intermediate result. This eliminates the
remainder comparison for half of the cases. If there are
additional guard bits, this algorithm can be expanded to
eliminate the remainder comparison in all but one of the
2' cases, where G is the number of guard bits.

With the startup penalty of hex-normalizing and then
binary-normalizing the operands and the ending penalty of
hex-aligning the data, the overall division requires either
18 or 24 cycles for short operands and either 22 or 28
cycles for long operands for a guard bit equal to 1 or 0,
respectively. The startup and ending penalties are very
significant and make a quadratically converging algorithm
only slightly better than a nonrestoring division algorithm.
Thus, the G4 FPU chip implements a very aggressive
division algorithm which is quadratically converging, and
eliminates the remainder comparison in half of the cases.

Square root
The square-root algorithm is also based on the
Goldschmidt algorithm [18]. The following are the

ro = l/@,

Bo = N ,

x, = N;

iterate:

SQr, = r, * r, ,
BI+, = Bi * ri ,

X,+, = X, * SQri,

r,tl = 1 + 0.5

final:

fi = BhSt.

The expression for the square root of the convergence
factor, which does not take much delay to calculate, is one
plus one half of the fractional part of X complemented. It
is formed in the binary shifters located near the A and B
fraction registers. The choice of the above formula for
the square root of the convergence factor can be best
understood by studying the convergence of Xi+, to 1.0.
Let X , be dl different from 1.0; then,

X = 1 - d l ,

r, i=: 1 + 112 * dt

~ 1 + 1 / 2 * (1 - x) = 1 + 1 / 2 * (2 - X , - 1)

= 1 + 112 * (Xi - 1) = 1 + 1/2 *x;,
SQ, = 1 + di + 114 * df - 1 + d , ,

XLtl 1 - d f .

Thus, there is quadratic convergence with this choice for
the square root of the convergence factor.

The overall delay of the implementation is 26 or
32 cycles for short operands and 35 or 42 cycles for
long operands, depending on the guard bit. This
implementation eliminates the remainder calculation
in half of the cases.

equations used, where ri is the square root of the
convergence factor in the ith iteration, SQr, is the
convergence factor, Bi is the accumulative approximation
to the root of N , and X, is an intermediate variable that
approaches 1.

Initialize: the exponents and aligning the operand with the smaller 483

Extended-precision instructions
Extended-precision instructions were also implemented in
hardware, but in nonpipelined mode. Their performance is
not critical, and thus uses simple cost-efficient algorithms.

Extended-precision addition is performed by examining

IBM J. RES. DEVELOP. VOL. 41 NO. 415 JULY/SEPTEMBER 1997 E. M. SCHWARZ, L. SIGAL, AND T. J. McPHERSON

Overall control flow.

Pipeline state diagram.

exponent in the post-normalizer. The post-normalizer is
121 bits wide and has the capability of having the shift
amount overridden by controls which then specify its own
shift amount. Once data have been aligned, they are
conditionally complemented and loaded in stages into the
carry and sum registers. Then the actual addition requires
one cycle. The result is then normalized and driven to the
FC3 register, where it is written to the FPRs with two

484 write cycles.

Extended-precision multiplication is performed by
separating the extended inputs into two long fractions
each. Four long multiplications and three additions are
performed. Note that pre-normalization may be required
if the operands are not already normalized.

restoring 1-bit algorithms. Paths have been created into
the carry and sum multiplexor/registers to support this.
The latency is very long, but the amount of hardware
invested is minimal.

Control flow
The control flow was designed with synthesized macros to
allow changes late in the design phase for problems found
in simulation. The overall control flow is shown in Figure 4.
There are two major macros in the design: the global
control macro and the nonpipelined control macro. The
global control macro handles the state information for
pipelined instructions and sequences the start of
nonpipelined instructions. It also handles all handshaking
with other units. The nonpipelined control macro handles
the select lines for all nonpipelined instructions such as
extended-precision floating-point, division, square-root,
and fixed-point instructions. These routines are similar to
horizontal millicode routines, since the macro implements
a cycle counter and instruction decode which determine
the selects to enable. The other control macros listed are
collectively referred to as the pipeline-select macros; they
determine the values on the select lines from global
pipeline state information and from information from the
nonpipelined control macro. This partitioning of controls
makes it simpler to design, since the task of maintaining
state information is separated from determining the select
line values.

Global state information for pipelined instructions is
maintained in the global control macro (see Figure 5) .
There are seven states: FSO, FS1, FS2, FS3, FS4, FS5, and
FS6. FSO corresponds to the EO cycle, FS1 corresponds
to the El cycle, FS2 corresponds to the E2 cycle of
multiplication, FS3 corresponds to the 120-bit adder cycle,
FS4 corresponds to the normalizer, FS5 is not maintained
but corresponds to the shifter between the FC2 and FC3
registers, and FS6 corresponds to the write cycle. There
are basically two methods for designing pipelines: up-front
blocking and feed-forward. Up-front blocking prevents
an instruction from entering the pipeline until it is
guaranteed not to have any dependencies or resource
conflicts. Feed-forward pushes the instruction as far into
the pipeline as possible until contentions or dependencies
make it wait. Since the G4 FPU can be considered a
peripheral unit which is not aware of the global central
processor state, it was best to implement a feed-forward
pipeline so as not to become instruction-starved or data-
starved.

Extended-precision division and square root use

E. M. SCHWARZ, L. SIGAL, AND T. J. McPHERSON IBM J. RES. DEVELOP. VOL. 41 NO. 415 JULYiSEPTEMBER 1997

In the global control macro there is a scoreboard-type
implementation of the information for each state [19].
This information includes the write address, the length of
the operands, whether the data must be normalized, the
instruction type, etc. The status of each state is also
maintained (e.g., whether the state is valid or whether it
is busy and holding for this cycle). The state information
from the global control macro is sent to pipeline-select
macros, where decisions <re made as to which selects to
each multiplexor should be invoked. For example, if the
FS3 state which corresponds to the 120-bit adder function
is busy, the sum and carry registers should be held. This is
determined by the sum and carry registers pipeline-select
macro (SCR), which drives select lines to the multiplexor.
Separating maintenance of the global state from
determining values of select lines made the controls
simpler to design.

Also, the global control macro is responsible for
resolving resource conflicts. An example is a multiply
instruction followed by an add instruction. Figure 5 shows
that the multiply requires the FS1, FS2, and FS3 states,
while the add requires the FS1, FS3, and FS4 states.
There may be a contention for the FS3 state, which is the
120-bit addition cycle. In this case the add would be
delayed, since the multiply was issued first. This conflict
can be resolved by simply giving the transition from the
FS2 to the FS3 state higher priority than the transition
from the FS1 to the FS3 state. Note that this example
shows a common resource conflict of using the adder for
both multiplication and addition. The performance benefit
of eliminating this conflict by having two adders was
determined not to be worth the area cost.

Resolving data dependencies
The most complex part of the control design is the
resolution of data dependencies between instructions.
These dependencies can be classified into four types,
depending on timing and the buses used for bypassing (or
wrapping) information: early wrap, late wrap, long-to-short
wrap, and short-to-long wrap.

Early wrap This case has the best performance; it
involves wrapping the exponents a cycle early and then
wrapping the fraction into the E l , or execute-first, cycle
as the data are being written to the register file. The
exponent dataflow does not have late multiplexors in the
E l cycle, since they are timing-critical in the add-1 cycle.
Instead, the exponent is wrapped back to the A and B
exponent registers directly from the FS3, FS4, or FS6
state. This involves wrapping two separate exponents for a
multiplication that is completing from the FS3 because of
the different normalizations that are created on the fly.
The following shows the relative timing of control signals
and dataflow signals:

END OP WR/E1
EXP WRAP Fraction to late mux

END OP represents the end of the instruction handshake
signal, EXP WRAP is the exponent wrapping, WR
indicates the write cycle, and E l the first cycle of
execution. The wrapping takes two cycles.

Late wrap If the instruction that is the target of the
bypass is not received early enough for the exponent to be
wrapped early, the wrap is known as a late wrap. This
involves wrapping the exponent and fraction during the
write cycle to the A and B fraction and exponent registers.
The following is the timing:

END OP WR El
EXP/fraction to
A and B registers

Long-to-short wrap For a long-to-short wrap, the timing
is the same as for the late wrap. A longer data type is
being written to the FPRs than has to be read from the
FPRs. The low-order data must be masked, and there is
no masking function on the late multiplexors. However,
there is masking on the input to the A and B registers.
Thus, the data must be wrapped to the input of the A and
B registers. Another case of this wrap condition is creating
a true zero (fraction, characteristic, and sign are set equal
to zero) on a significance exception (result equal to
zero). The true zeroing of the exponent for significance
exception is performed in the FC3 exponent multiplexor.
Thus, an early exponent wrap would have invalid data.
The following is the timing:

END OP WR El
EXP/Fraction to
A and B registers

Short-to-long wrap For a short-to-long wrap, the data
must be reread from the FPRs. There is no merge
capability on the input to the A and B registers or in the
late multiplexors. Thus, if data from a write must be
combined with low-order data from the register file, a
reread must take place. In addition to this case, exponent
underflow, which results in a true zero, is detected very
late and is bypassed in the same manner. The zeroing of
the result for exponent underflow actually takes place in
the C bus multiplexing of FPU-C-BUS and FXU-C-BUS
prior to the register file. Thus, bypassing this exponent
requires a reread of the register file; the timing is shown
below:

END OP WR Read El

The early wrap is the most common of the wraps; it
demonstrates an interesting design strategy. Methods of
bypassing data can be divided into four categories: 485

E. M. SCHWARZ, L. SIGAL, AND T. J. McPHERSON IBM J. RES. DEVELOP. VOL. 41 NO. 415 JULYiSEPTEMBER 1997

1 Macro layout.

1. Do not overlap the read and write cycle.
2. Overlap the read and write cycle.
3. Overlap the last execute cycle with the read cycle.
4. Overlap the write cycle with the first execute cycle.

The first two methods are low-performance and can be
used for infrequent or complex cases. The last two
methods are high-performance. However, method 4, which
has been implemented for the early wrap case, has an
interesting advantage in our implementation over method
3. The last execution stage can take place in several
different pipeline stages: FS3, FS4, or even FS6. To
implement method 3, a new bus or potentially several new

486 buses would be needed to wrap the fraction data to the

A and B registers. For method 4, only the C bus has to be
used to drive into the late multiplexors. Since the C bus is
an existing bus, no new tracks are needed for bypassing
the fraction. Implementing method 4 reduces wiring
congestion and gives good performance on data
dependencies.

Physical design
The unit floorplan is shown in Figures 6 and I. In effect,
it is optimized around the multiplier. In order to meet the
cycle time in the multiplier, we have reduced the 19
partial products generated in the fastest way possible-
with six levels of CSA. This approach is very wire-
intensive and consumes all of the wire resources on metal 1

E. M. SCHWARZ, L. SIGAL, AND T. J. McPHERSON IBM J. RES. DEVELOP. VOL. 41 NO. 415 JULYiSEPTEMBER 1991

to metal 4 in the heart of the multiply array. This fact was
recognized early in the design, and the multiplier was
placed at the very top of the unit (corner of the chip) to
eliminate any wires that would have to cross it.

The dataflow was partitioned in 126-bit fraction and 14-
bit exponent stacks. Some room on the sides of stacks was
allocated for overflow logic required by many macros. All
of the macros in the first cycle of execution are 60 bits
wide (see Figures 1 and 2), while the rest of the macros
are about 120 bits wide. To reduce unit area, we placed
several 60-bit macros side by side. This created one
horizontal wiring channel of 56 bits; however, overall we
were able to reduce stack height.

Dataflow stacks were placed and wired manually. Since
dataflow macro definitions were stable early in the design
process, this approach led to the most compact design.
Tracks were partitioned according to wire length, and
wide wires were used for long nets to minimize delays and
slews. Control macros were manually placed and wired
with a vendor tool. A program was written that located
areas for decoupling capacitor placements. The decoupling
capacitors were placed both within and outside macros for
a unit total of over 10 nF.

Circuit implementation
Most of the macros were implemented with static CMOS
circuits. Only fraction/exponent dataflow registers and
dividehquare-root lookup ROS (read only storage) are
dynamic [20]. The use of dynamic circuits was always an
option for designers if delay goals were not met. However,
through careful optimization of circuits in critical paths,
we were able to meet our cycle-time objectives with what
amounts to all static CMOS circuits.

Fraction/exponent dataflow macros were custom-
designed. Even when common cells were used among
several macros (such as register building blocks), they
were custom-wired. Custom design was required to
achieve both the cycle-time and area budgets in the
dataflow macros. Control macros, on the other hand, were
all synthesized and placed and routed with fixed-power
library books. There are approximately 320K dataflow
FETs in an area of 18.3 mm2 and 61K control FETs
in an area of 5 mm’.

The control macros were implemented using a
customized version of the IBM BooleDozer* logic
synthesis tool. In order to meet the design schedule, it was
very important to concentrate on improving our synthesis
tool rather than manually tuning the results from
synthesis. The design team restructured the VHDL to
obtain improved synthesis implementation of the logic.
This was done in parallel with focusing on improving the
standard cell library and the logic transforms used within

IBM J. RES. DEVELOP. VOL. 41 NO. 415 JULYiSEPTEMBER 1997

I Physical design.

synthesis. The result of this effort was that all of the FPU
control logic initially targeted for synthesis achieved the
cycle-time goal and area constraints.

running an FPU-level timing analysis to create timing
reports and macro-level timing assertions used for
synthesis and custom design. Unit-level timing runs were
run in parallel with full-chip timing runs to create the
necessary timing assertions. See [21] for more details on
the design methodology.

The timing reduction effort was facilitated by frequently

Summary
A CMOS 57390 floating-point unit has been described
which has been demonstrated at more than 400 MHz
[22]. The design was optimized for frequently executed
operations, and other instructions were implemented with
cost-efficient algorithms. Some uncommon and aggressive
algorithms were implemented (e g , radix-8 multiplication;
Goldschmidt division and square root); these algorithms
were coupled with remainder-avoidance algorithms and
parallel exponent calculation for normalization. Because
the design caused critical control signals to be included in
the dataflow, dataflow paths rather than control paths
determined the cycle time. This made possible a reduced
cycle time, which, coupled with a throughput of one cycle
per instruction and a latency of three cycles for the most
common additions and multiplications, resulted in a
relatively high-performance FPU.

E. M. SCHWARZ, L. SIGAL, AND T. J . McPHERSON

Acknowledgment
Design of the G4 floating-point unit would not have been
possible without the combined efforts of the entire G4
project team. We especially acknowledge the contributions
of Bob Averill, Robert Bunce, Rick Dennis, Dale
Hoffman, Mike Mullen, Greg Northrop, Dianne Wassick,
Charles Webb, Dave Webber, Barry Winter, Tom
Wohlfahrt, and Fanchieh Yee.

*Trademark or registered trademark of International Business
Machines Corporation.

References
1. Enterprise Systems Architecturei390, Fourth Edition, Order

No. SA22-7201-03, September 1996; available through
IBM branch offices.

2. E. M. Schwarz, T. McPherson, and C. Krygowski, “Carry
Select and Input Select Adder for Late Arriving Data,”
Proceedings of the 30th Asilomar Conference on Signals,
Systems, and Computers, November 1996, pp. 182-185.

3. S. Vassiliadis, D. S. Lemon, and M. Putrino, “Si370 Sign-
Magnitude Floating-point Adder,” IEEE J. Solid-state
Circuits 24, No. 4, 1062-1070 (August 1989).

Systemi390 Floating-point Processor in CMOS,” IBM J.
Res. Develop. 36, No. 4, 733-749 (July 1992).

5. S . Waser and M. J. Flynn, Introduction to Arithmetic for
Digital Systems Designers, CBS College Publishing, New
York, 1982.

6. K. Hwang, Computer Arithmetic: Principles, Architecture
and Design, John Wiley & Sons, Inc., New York, 1979.

7. R. M. Jessani and C. H. Olson, “The Floating-point Unit
of the PowerPC 603e Microprocessor,” IBM J. Res.
Develop. 40, No. 5 , 559-566 (September 1996).

8. S. Vassiliadis, E. M. Schwarz, and D. J. Hanrahan, “A
General Proof for Overlapped Multiple-Bit Scanning
Multiplications,” IEEE Trans. Comput. 38, No. 2, 172-183
(February 1989).

Wired Multipliers with Encoded Partial Products,” ZEEE
Trans. Comput. 40, No. 11, 1181-1197 (November 1991).

CMOS Si390 Multiplier,” Thirteenth Symposium on
Computer Arithmetic, Asilomar, CA, July 1997, pp. 2-9.

Convergence,” Master’s thesis, M.I.T., Cambridge, MA,
June 1964.

D. M. Powers, “The IBM Systemi360 Model 91: Floating-
Point Execution Unit,” IBM J. Res. Develop. 11, No. 1,
34-53 (January 1967).

13. M. J. Flynn, “On Division by Functional Iteration,” ZEEE
Trans. Comput. C-19, No. 8, 702-706 (August 1970).

14. A. Svoboda, “An Algorithm for Division,” Information
Processing Machines 9, 25-32 (1963); Prague,
Czechoslovakia.

15. E. V. Krishnamurthy, “On Optimal Iterative Schemes for
High-speed Division,” ZEEE Trans. Comput. C-19, No. 3,
227-231 (March 1970).

16. M. Darley, B. Kronlage, D. Bural, B. Churchill, D.
Pulling, P. Wang, R. Iwamoto, and L. Yang, “The
TMS390C602A Floating-point Coprocessor for Sparc
Systems,” IEEE Micro 10, No. 3, 36-47 (June 1990).

17. E. M. Schwarz, “Rounding for Quadratically Converging
Algorithms for Division and Square Root,” Proceedings of
the 29th Asilomar Conference on Signals, Systems, and

4. S. Dao-Trong and K. Helwig, “A Single-Chip IBM

9. S. Vassiliadis, E. M. Schwarz, and B. M. Sung, “Hard-

10. E. M. Schwarz, B. Averill, and L. Sigal, “A Radix-8

11. R. E. Goldschmidt, “Applications of Division by

12. S. F. Anderson, J. G. Earle, R. E. Goldschmidt, and

488 Computers, October 1995, pp. 600-603.

E. M. SCHWARZ, L. SIGAL, AND T. J. McPHERSON

18. C. V. Ramamoorthy, J. R. Goodman, and K. H. Kim,
“Some Properties of Iterative Square-Rooting Methods
Using High-speed Multiplication,” IEEE Trans. Comput.
C-21, NO. 8, 837-847 (August 1972).

19. S . Vassiliadis and E. M. Schwarz, “Controlling Unit for a
Pipelined Floating Point Hard-Wired Engine,” Proceedings
of the ZFIP Third International Workshop on Wafer Scale
Integration, June 1989, pp. 343-351.

P. J. Camporese, M. D. Mayo, W. V. Huott, D. R. Knebel,
C. T. Chuang, J. P. Eckhardt, and P. T. Wu, “Circuit
Design Techniques for the High-Performance CMOS IBM
Si390 Parallel Enterprise Server G4 Microprocessor,” ZBM
J. Res. Develop. 41, No. 4/5, 489-503 (1997, this issue).

21. K. L. Shepard, S . M. Carey, E. K. Cho, B. W. Curran,
R. F. Hatch, D. E. Hoffman, S. A. McCabe, G. A. Northrop,
and R. Seigler, “Design Methodology for the Si390
Parallel Enterprise Server G4 Microprocessors,” IBM J.
Res. Develop. 41, No. 415, 515-547 (1997, this issue).

22. C. Webb, C. Anderson, L. Sigal, K. Shepard, J. Liptay, J.
Warnock, B. Curran, B. Krumm, M. Mayo, P. Camporese,
E. Schwarz, M. Farrell, P. Restle, R. Averill, T. Slegel, W.
Huott, Y. Chan, B. Wile, P. Emma, D. Beece, C. Chuang,
and C. Price, “A 400 MHz Si390 Microprocessor,” ISSCC
Digest of Technical Papers, pp. 168-169 (February 1997).

20. L. Sigal, J. D. Warnock, B. W. Curran, Y. H. Chan,

April 17, 1997
Received December 5, 1996; accepted for publication

Eric M. Schwarz IBM System/390 Division, 522 South Road,
Poughkeepsie, New York 12601 (ESCHWARZ at PK705VM,
schwarz@vnet.ibm.com). Dr. Schwarz received a B.S. degree
in engineering science from The Pennsylvania State University
in 1983, an M.S. degree in electrical engineering from
Ohio University in 1984, and a Ph.D. degree in electrical
engineering from Stanford University in 1993. He joined IBM
in 1984 in Endicott, New York, and in 1993 transferred to
Poughkeepsie. Dr. Schwarz is an Advisory Engineer and was
FPU Logic Technical Leader for the S/390 Parallel Enterprise
Server G4 processor. Currently, he is Execution Unit (FPU
and FXU) Logic Technical Leader for follow-on processors.
His research interests are in computer arithmetic and
computer architecture. He is the author of seven filed patents,
ten pending patents, and several journal articles and
conference proceedings.

Leon Sigal IBM Research Division, Thomas J. Watson
Research Center, P.O. Box 218, Yorktown Heights, New York
10598 (LJS at YKWMV, ljs@vnet.ibm.com). Mr. Sigal received
a B.S. in biomedical engineering in 1985 from the University
of Iowa and an M.S. in electrical engineering in 1986 from the
University of Wisconsin at Madison. He worked at Hewlett-
Packard’s microprocessor development laboratory between
1986 and 1992. Mr. Sigal joined IBM in 1992 and has been
leading the CMOS Si390 microprocessor circuit design
interdivisional effort.

Thomas J. McPherson IBM Systerni390 Division, 522
South Road, Poughkeepsie, New York 12601 (MCPHERSO at
PK705VM4, tmcpherson@vnet.ibm.com). Mr. McPherson is a
Staff Engineer in S/390 microprocessor development. He
received a B.S. degree in electrical engineering from
Rutgers University in 1990 and an M S . degree in computer
engineering from Syracuse University in 1992. Mr. McPherson
joined IBM in 1990 and has worked on Si390 microprocessors
and CMOS ASIC designs.

IBM J. RES. DEVELOP. VOL. 41 NO. 415 JULYiSEPTEMBER 1997

