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Abstract. In this paper we present a new 96-bit block cipher called
BKSQ. The cipher can be implemented efficiently on a wide range of
processors (including smartcards) and in hardware.

1 Introduction

We present a new 96-bit block cipher called BKSQ. The cipher has been desi-
gned according to the principles of the ‘Wide trail design strategy’ [2] in order to
guarantee its resistance against linear and differential cryptanalysis. The struc-
ture of the cipher is a generalisation of the Square cipher structure [3]. It has
already been shown that Square can be implemented very efficiently on a wide
range of platforms. However its structure only allows block lengths of 8n2 bits;
e.g., n = 4 gives a block length of 128 bits. In this paper we generalize the struc-
ture of the round transformation in order to allow block lengths of 8nm bits
without sacrificing cryptographic strength or implementation efficiency. This is
accomplished by changing the linear layer in the round transformation.

BKSQ is especially suited to be implemented on a smart card. Its block
length of 96 bits allows it to be used as a (2nd) pre-image resistant one-way
function. Most available block ciphers have a block length of 64 bits, but this
block length is currently perceived as being too small for a secure one-way fun-
ction. The next option in currently available block ciphers is a block length 128
bit, but this leads to one-way functions that are significantly slower. The block
cipher BKSQ is tailored towards these applications. Still, it can also be used for
efficient MACing and encryption on a Smart Card.

The remainder of this paper is organized as follows. In Section 2 we explain
the structure of BKSQ and introduce the various components. In Section 3 we
discuss the resistance of the cipher against various cryptanalysis methods. We
conclude with a discussion of some implementation aspects in Section 4.
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2 Structure of BKSQ

BKSQ is an iterated block cipher with a block length of 96 bits and a key
length of 96, 144 or 192 bits. The round transformation of BKSQ is not a Fei-
stel network. In a typical Feistel network a part of the input bits of the round
is transposed unchanged to another position at the output. This is not the case
with BKSQ, where every bit of the input is treated in the same way. We call
this type of round transformation a uniform round transformation. On the con-
ceptual level, the round transformation is composed of four uniform invertible
transformations. In an efficient implementation the transformations can be com-
bined in a single set of table-lookups and exor operations.

Let the input of the cipher be denoted by a string of 12 bytes: p0p1 . . . p11.
These bytes can be rearranged in a 3 × 4 array, or ‘state’ a.

a =


a0,0 a0,1 a0,2 a0,3
a1,0 a1,1 a1,2 a1,3
a2,0 a2,1 a2,2 a2,3


 =


p0 p3 p6 p9
p1 p4 p7 p10
p2 p5 p8 p11




The basic building blocks of the cipher operate on this array. Figure 1 gives a
graphical illustration of the building blocks.

2.1 The Linear Transformation θ

θ is a linear operation that operates separately on each of the four columns of a
state. We have

θ(a) =


3 2 2

2 3 2
2 2 3


 ·


a0,0 a0,1 a0,2 a0,3
a1,0 a1,1 a1,2 a1,3
a2,0 a2,1 a2,2 a2,3


 .

Both addition and multiplication are performed in the finite field GF(28). This
means that the addition operation corresponds to the bitwise exor and multipli-
cation of two bytes is defined as a modular multiplication of polynomials with
binary coefficients [10].

By defining the operations over a finite field and a careful choice of the
coefficients of θ we can guarantee a high resistance against linear and differential
cryptanalysis, following the design principles of the ‘wide trail design strategy’ [2,
13]. Furthermore, this choice for the coefficients makes it possible to implement
θ very efficiently on an 8-bit processor with limited RAM.

2.2 The Nonlinear Transformation γ

γ is a nonlinear byte substitution, identical for all bytes. We have

γ : b = γ(a) ⇔ bi,j = Sγ(ai,j),

with Sγ an invertible 8-bit substitution table or S-box. The inverse of γ consists
of the application of the inverse substitution S−1

γ to all bytes of a state.
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The design criteria for Sγ are minimal correlation between linear combinati-
ons of input bits and linear combinations of output bits, and a minimal upper
bound for the entries in the exor-table (not counting the trivial (0,0) entry). For
the construction of the S-box we started from the inverse mapping over GF(2),
as explained in [12]. This mapping has very good resistance against linear and
differential cryptanalysis. Subsequently we applied an affine transformation (over
GF(2)) to the output bits, with the property that it has a complicated descrip-
tion in GF(28) in order to thwart interpolation attacks [5]. We ensured that the
S-box has no fixed points (Sγ [x] = x) and no ‘opposite fixed points’ (Sγ [x] = x).
The input-output correlations of this S-box are upper bounded by 2−3 and the
entries of the exor-table are upper bounded by 4.

2.3 The Byte Permutation π

The effect of π is a shift of the rows of a state. Every row is shifted a different
amount. We have

π : b = π(a) ⇔ bi,j = ai,j−i.

The effect of π is that for every column of a the three elements are moved to three
different columns in π(a). Such a byte permutation is called ‘diffusion-optimal’
with respect to θ and it enhances the effect of the linear transformation θ.

2.4 Bitwise Round Key Addition σ

σ[kt] consists of the bitwise addition of a round key kt. We have

σ[kt] : b = σ[kt](a) ⇔ b = a⊕ kt.

The inverse of σ[kt] is σ[kt] itself.

2.5 The Cipher BKSQ

The building blocks are composed into the round transformation denoted by
ρ[kt]:

ρ[kt] = σ[kt] ◦ π ◦ γ ◦ θ (1)

BKSQ is defined as R times the round operation, preceded by a key addition
σ[k0] and by θ−1:

BKSQ[k] = ρ[kR] ◦ ρ[kR−1] ◦ . . . ◦ ρ[k2] ◦ ρ[k1] ◦ σ[k0] ◦ θ−1 (2)

The number of rounds depends on the key length that is used. For 96-bit keys,
there are 10 rounds; for 144-bit keys, there are 14 rounds and for 192-bit keys,
the number of rounds is 18.
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Fig. 1. Graphical illustration of the basic operations of BKSQ. θ consists of 4 parallel
linear diffusion mappings. γ consists of 12 separate substitutions. π is a shift of the
rows.

2.6 The Key Scheduling

The derivation of the round keys kt from the cipher key K depends on the length
of the cipher key. The key scheduling can be described as follows. The round keys
have always a length of 96 bits. The cipher key K has a length of 96, 144 or
192 bits. All these lengths are multiples of 24, and all keys will be considered
as an array of 24-bit columns. A round key has 4 columns, a cipher key has L
columns, where L = 4, 6 or 8. We define an array w, consisting of 4(R+1) 24-bit
columns, where R is the number of rounds in BKSQ. The array is constructed
by repeated application of an invertible nonlinear transformation ψ: the first L



240 J. Daemen and V. Rijmen

columns are the columns of K, the next L are given by ψ(K), the following
columns are given by ψ(ψ(K)), etc.

The round keys kt are extracted in a simple way from w:

kt =
[
w4t w4t+1 w4t+2 w4t+3

]
.

Note that this key scheduling can be implemented without explicit use of the
array w. If the application requires that the implementation uses a minimal
amount of RAM, it is possible to calculate the round keys during the round
operation, thereby only requiring storage of L 24-bit columns.

2.7 The Round Key Evolution ψ

The transformation ψ is defined in terms of the exor operation, a byte-rotation
rot that rotates the bytes of a column,

rot





ab
c





 =


 bc
a


 ,

and a nonlinear substitution γ′ that operates in exactly the same way as γ, but
takes as argument column vectors instead of arrays:

γ′





ab
c





 =


Sγ(a)
Sγ(b)
Sγ(c)


 .

The transformation ψ operates on blocks of L columns. For key lengths of 96 or
144 bits (L = 4 or 6), ψ is given by:

ψ([a0 . . . aL−1 ]) =
[
b0 . . . bL−1

] ⇔
{
b0 = a0 ⊕ γ′(rot(aL−1)) ⊕ Ct

bi = ai ⊕ bi−1 i = 1, 2, . . . , L− 1.

For a key length of 192 bits (L = 8), an extra nonlinearity is introduced and ψ
is given by:

ψ([a0 . . . aL−1 ]) =
[
b0 . . . bL−1

]

⇔




b0 = a0 ⊕ γ′(rot(aL−1)) ⊕ ct
bi = ai ⊕ bi−1 i = 1, 2, . . . , L/2
bL/2 = aL/2 ⊕ γ′(bL/2−1)
bi = ai ⊕ bi−1 i = L/2 + 1, . . . , L− 1.

The vectors ct have as functionality to remove the symmetry in the transforma-
tion. They are given by:

ct =


dt

0
0


 ,

where d0 = 1 and dt+1 = 2 ·dt. Multiplication is done in the Galois field (modulo
the same polynomial as for γ and θ).
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2.8 The Inverse Cipher

The structure of BKSQ lends itself to efficient implementations. For a number
of modes of operation it is important that this is also the case for the inverse
cipher. Therefore, BKSQ has been designed in such a way that the structure
of its inverse is equal to that of the cipher itself, with the exception of the
key schedule. Note that this identity in structure differs from the identity of
components and structure in IDEA [9].

By means of a mathematical derivation, very similar to the one given in [3],
it can be shown that the inverse cipher is equal to the cipher itself with γ, θ
and π replaced by γ−1, θ−1 and π−1 respectively and with different round key
values.

3 Cryptanalysis

We discuss the resistance of BKSQ against cryptanalytic attacks.

3.1 Linear and Differential Cryptanalysis

BKSQ has been designed according to the ‘wide trail design strategy,’ introduced
by J. Daemen [2]. This strategy is used to guarantee a low maximum probability
of differential trails and a low maximum correlation of linear trails.

The S-box is selected such that the maximal entry in the exor-table equals
four, and the maximal correlation equals 2−3.

The choice of the coefficients of θ gives it a branch number of four, which
means that every two-round characteristic or linear approximation has at least
four active S-boxes. The choice of π ensures that every four-round characteristic
or linear approximation has at least 16 active S-boxes.

We wrote a program to count the minimum number of active boxes in an
n-round characteristic or linear approximation, for n going up to 20. It turns out
that for n ≥ 4, there are at least 4n active S-boxes in every n-round differential
characteristic and every n-round linear approximation

3.2 Truncated Differentials

The concept of truncated differentials was first published by L.R. Knudsen [7].
The idea can be summarized by stating that we don’t look at the specific dif-
ference that the individual bytes have, but only take into account whether the
bytes in position (i, j) are equal or not. Using truncated differentials, it is possi-
ble to cryptanalyse versions of BKSQ that are reduced to seven rounds or less.
The attack is based on the fact that a (truncated) difference of the following
form: 

x 0 y 0
0 0 0 0
z 0 u 0


 ,
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at the input of a round transformation, goes with probability 2−16 to an output
difference of the same form. This one-round characteristic can be concatenated
with itself to produce a multi-round characteristic. A more detailed description
of this attack is given in Appendix A. It seems not possible to cryptanalyse more
than seven rounds with this attack.

3.3 The Square Attack

In [3] a new attack is described, that works for up to six rounds of Square.
Because of the similarity between the round transformations of BKSQ and
Square, the same attack also applies here. Instead of repeating the descrip-
tion of the attack, we list the complexities for this attack on BKSQ in Table 1.
While the requirements of the attack are smaller, it seems not possible to extend
the attack with an additional round.

Table 1. Complexity of the Square attack when applied to BKSQ.

Attack # Plaintexts Time Memory
4-round 29 29 small
5-round 211 232 small
6-round 224 256 224

3.4 Timing Attacks

A class of timing attacks is described by Kocher in [8]. The underlying principle
of the attacks is that if the execution time of an implementation depends on
secret key bits, then a cryptanalyst can deduce information about these key
bits. An implementation can be protected against timing attacks by removing
all branches that are conditional on key bits. This can easily be done for BKSQ
(cf. Section 4).

4 Implementation Aspects

The only operations required to implement BKSQ are exor, one-bit shifts and
table-lookups. Therefore the cipher can be implemented efficiently on a wide
range of processors and in hardware (no carry delays).

On 32-bit processors, the linear operations and the nonlinear substitution
can be combined into a single set of table-lookups and exor operations. The key
addition exists of a simple exor operation. This implementation requires about
1 kbyte of RAM for the tables.

On 8-bit processors, other optimisations are possible. The byte permutation
can be combined easily with the nonlinear substitution and the key addition.
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Typically RAM is scarce on 8-bit processors. In that case the additions (exors)
and multiplications of the transformation θ will be implemented explicitly. This
observation has influenced the choice for the coefficients of θ.

Multiplication with 2 can be implemented with one shift and a (conditional)
reduction (i.e., an exor). However, in order to keep the implementation resistant
against timing attacks, we implement this multiplication with a table lookup.
This requires an additional 256 bytes of ROM. Multiplication with 3 can be
implemented as a multiplication with 2 and an addition (3x = 2x⊕ x).

The design of the key scheduling facilitates ‘just-in-time’ calculation of the
round keys, a necessity when the processor has not enough RAM to store all the
round keys in advance.

A timing attack resistant implementation of BKSQ on the Motorola 68HC08
microprocessor fits easily in less than 1kbyte of ROM, requires 28 bytes of RAM
and takes less than 7000 cycles (for the 10-round version).
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A The Truncated Differential Attack

Using truncated differentials, reduced versions of BKSQ can be cryptanalysed.
Up to seven rounds can be broken using the following approach. First we explain
a one-round truncated differential, afterwards we describe how this can be used
in an attack.

A.1 A One-Round Truncated Differential

Let a and b be two states, where ai,j = bi,j for all (i, j), except for (i, j) equal
to (0, 0), (0, 2), (2, 0), or (2, 2). We say then that a ⊕ b is an α-difference. Let
c = θ(a) and d = θ(b). Since θ operates independently on every column, we have
that

ci,j = di,j i = 0, 1, 2; j = 1, 3.

Our choice for the cj coefficients ensures that in the first and the third column
(j = 0, 2) at least two of the three bytes differ between c and d. More precise,
we have for j = 0, 2:

ci,j 6= di,j i = 0, 2;

and
c1,j = d1,j ⇔ a0,j ⊕ b0,j = a2,j ⊕ b2,j . (3)

Equation (3) shows that with probability (2−8)2, an α-difference at the input of
θ will go to an α-difference at the output.

Since γ and σ[kt] operate on the independent bytes, every truncated diffe-
rence remains unchanged with probability one. Since π leaves the first row of a
state unchanged, and shifts the third row by two positions, an α-difference at
the input goes to an α-difference at the output with probability one.

We conclude that an α-difference at the input of a round transformation ρ[k]
goes to an α-difference at the output with probability 2−16.

A.2 Constructing a Multiple-Round Truncated Differential

The one-round differential from the previous section can be concatenated. It can
also be preceded and followed by a few special rounds with enhanced probability.

For the end rounds, we consider what happens when (3) is not followed: with
a probability close to 1 − 2−7, an alpha difference at the input of a round will
go to an output difference of the following form:


x1 0 x2 0

0 x3 0 x4
x5 0 x6 0


 . (4)

This difference is still highly structured: in the second an fourth column there is
only one byte different from zero. This will be visible in the output of the next
round, where the differences will show a specific relation. We conjecture that a
differential attack will be possible if (4) is used in the last but one round. In the
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first rounds we can enhance the probability of our differential by guessing some
key bits.

Summarising, we can attack seven rounds in the following way. We guess two
bytes of information about the key. If we guess right we can construct pairs with
an α-difference that pass the first two rounds of the truncated differential with
probability one. The next three rounds are passed with probability 2−16 each.
In the sixth round, we let the difference spread out (probability close to one)
and in the seventh round we detect and/or verify the remaining structure. The
probability of the characteristic is about 2−48.

Note that it is not possible to extend this characteristic by adding a fourth
(α → α)-round. The probability that a random pair will produce an α-difference
at the input of the last round is also given by 2−48 (6 bytes should be zero).
Therefore it makes no sense to consider differential characteristics that will result
in this difference with a lower probability. It might even be that the signal-to-
noise ratio of the seven-round attack is already too low.
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