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Preface

Since the discovery of graphene, its applications to electronic 
and optoelectronic devices have been intensively and thoroughly 

researched. Its extraordinary and unusual electronic and optical prop-
erties allow graphene and other two-dimensional (2D) materials to be 
promising candidates for infrared (IR) and terahertz (THz) photodetec-
tors. Until now, however, their place in the wide-infrared detector family 
has not been evaluated and this topic is generally omitted from the review 
literature.

The main goal of this book is to provide a critical view on the present 
state of 2D-material photodetector technologies and on future develop-
ments with respect to global competition with existing industrially mature 
material detector systems, such as HgCdTe, InGaAs, type-II superlattice 
III-V compounds, and microbolometers. This book also considers the 
challenges facing development of focal plane arrays for the future. Special 
attention is paid toward the main trends in development of arrays in the 
near future, such as increases in pixel count to above 108 pixels, with 
pixel size decreasing to about 5-μm, mostly for uncooled infrared arrays. 
Until now, these questions have not been considered in literature reviews 
devoted to 2D-material IR and THz detectors.

Most of the 2D layered semiconducting material photodetectors oper-
ate at the visible and near-infrared regions. However, the thrust of this 
book is mainly directed to effective IR and THz detectors, based on 2D 
materials. This book

•	 gives brief accounts of the different types of 2D materials used in the 
fabrication of IR and THz detectors,

•	 describes advantages and disadvantages of 2D materials as IR and 
THz detectors,
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•	 sets in order the performance of 2D material IR and THz detectors 
among the family of common commercially available detectors,

•	 tries to predict the future role for 2D materials in the family of 
detectors,

•	 predicts the main trends in development of arrays in the near future.

The number of published papers devoted to the use of 2D materials as 
sensors is huge. However, the authors of these papers mainly address their 
work to researchers involved in investigations of 2D materials. In this 
book, the position of 2D material detectors is considered in comparison 
with the present state of conventional infrared and terahertz detectors 
offered on the global market. In this way, the book gives an overview of the 
performance of emerging 2D material detectors, comparing them with 
traditionally and commercially available ones under different conditions, 
including high operating-temperature conditions.

This monograph is divided into eight chapters. After the introduction, 
two chapters (2 and 3) describe detector characterization and fundamen-
tals of detection mechanisms for both thermal and photon detectors, 
including detector performance limits. These initial chapters provide a 
tutorial introduction to the technical topics that are necessary for a thor-
ough understanding of the different types of detectors and systems. In 
Chapter 3, a new reference benchmark, the so-called “Rule 19”, is intro-
duced for prediction of the performance of background-limited HgCdTe 
photodiodes, operated near room temperature. This rule is subsequently 
addressed in the following chapters (6, 7, and 8) as a benchmark against 
which to compare alternative 2D material technologies.

In Chapter 4, topics are considered which are almost completely 
omitted by the scientific community researching 2D detector materials, 
including future trends in the development of focal plane arrays. Taking 
into account the early stages of development and manufacturability, such 
considerations are essential to make a realistic assessment of the prospects 
for subsequent commercialization of 2D-material photodetectors.

The next four chapters (5, 6, 7, and 8) briefly describe the fundamental 
properties of graphene-based materials and other 2D materials, and the 
performance parameters (such as responsivity, detectivity, and response 
time) of detectors fabricated with these materials, in comparisons between 
2D material-based detectors and traditional detectors on the global mar-
ket, including both experimental data and theoretical predictions. Final 
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conclusions predict the likely place of 2D material-based detectors in the 
wide-IR detector family, in the near future.

The presentation level of this book is suitable for graduate students in 
physics and engineering, who have received background training in mod-
ern solid-state physics and electronic circuits. This book would also be 
of interest to individuals working with aerospace sensors and systems, 
remote sensing, thermal imaging, military imaging, optical telecommu-
nications, infrared spectroscopy, and light detection and ranging

This book, I hope, will provide a timely and appropriate analysis of the 
latest developments in 2D- material infrared and THz detector technology 
and a basic insight into the fundamental processes important to evolving 
detection techniques. The book covers different types of detectors, includ-
ing the relevant aspects of theory, types of materials, their physical prop-
erties, and detector fabrication.

Antoni Rogalski
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1

C h a p t e r  1

Introduction

Infrared (IR) radiation itself was unknown until 220 years ago, 
when Herschel’s experiment with the thermometer was first reported. 

The first detector consisted of a liquid in a glass thermometer with a spe-
cially blackened bulb, to absorb radiation. Herschel built a crude mono-
chromator that used a thermometer as a detector, so that he could measure 
the distribution of energy in sunlight [1].

The early history of IR was reviewed about 60 years ago in two well-
known monographs [2,3]. Much historical information can be also found 
in more recently published papers [4,5]. The initial infrared detectors were 
based on the class of thermal detectors: thermometers, thermocouples, 
and bolometers [6]. In 1821, T.J. Seebeck discovered the thermoelectric 
effect, and soon afterward, in 1829, L. Nobili created the first thermocou-
ple. In 1833, M. Melloni modified the thermocouple and used bismuth and 
antimony for its design [7]. Then, in 1835, Nobili, together with Melloni, 
constructed a thermopile capable of sensing a person 10 m away. The third 
type of thermal detector, the bolometer/thermistor, was invented by S.P. 
Langley in 1878. By 1900, his bolometer was 400 times more sensitive than 
his first efforts, and his latest bolometer could detect the heat from a cow 
at a distance of ¼ mile [8].

The photoconductive effect was discovered by W. Smith in 1873, when 
he experimented with selenium as an insulator for submarine cables [9]. 
This discovery provided a fertile field of investigation for several decades, 
though most of the effort was of doubtful quality. By 1927, over 1500 arti-
cles and 100 patents had been published on photosensitive selenium [10]. 
Work on the IR photovoltaic effect in naturally occurring lead sulfide, or 
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galena, was first published by Bose in 1904 [11]; however, the IR photo-
voltaic effect was not exploited in a radiation detector for several more 
decades.

The photon detectors were developed in the twentieth century. The first 
IR photoconductor was developed by T.W. Case in 1917 [12]. He discov-
ered that a substance composed of thallium and sulfur exhibited photo-
conductivity. Later, he found that the addition of oxygen greatly enhanced 
the response [13]. However, the instability of the resistance in the presence 
of light or polarizing voltage, the loss of responsivity due to overexposure 
to light or high noise, its sluggish response, and the lack of reproducibility 
seemed to be inherent weaknesses.

Since about 1930, the development of IR technology has been domi-
nated by photon detectors. In about 1930, the appearance of the Cs-O-Ag 
phototube, with more stable characteristics, discouraged further develop-
ment of photoconductive cells to a great extent until about 1940. At that 
time, interest in improved detectors had begun [14,15]. In 1933, Kutzscher, 
at the University of Berlin, discovered that lead sulfide (from natural 
galena found in Sardinia) was photoconductive and had a response to 
about 3 μm. This work was, of course, carried out under great secrecy and 
the results were not generally known until after 1945. Lead sulfide was the 
first practical IR detector deployed in a variety of applications during the 
war. In 1941, Cashman improved the technology of thallous sulfide detec-
tors, which led to successful production [16]. After success with thallous 
sulfide detectors, Cashman concentrated his efforts on lead sulfide and, 
after World War II, found that other semiconductors of the lead salt family 
(PbSe and PbTe) showed promise as IR detectors [17]. Lead sulfide photo-
conductors were brought to the manufacturing stage of development in 
Germany in about 1943. They were first produced in the United States at 
Northwestern University, Evanston, Illinois in 1944 and, in 1945, at the 
Admiralty Research Laboratory in England [17].

Many materials have been investigated in the IR field. Observing a his-
tory of the development of the IR detector technology, a simple theorem, 
after Norton [18], can be stated: “All physical phenomena in the range of 
about 0.1–1 eV can be proposed for IR detectors.” Among these effects are: 
thermoelectric power (thermocouples), change in electrical conductivity 
(bolometers), gas expansion (the Golay cell), pyroelectricity (pyroelec-
tric detectors), photon drag, the Josephson effect (Josephson junctions, 
SQUIDs), internal emission (PtSi Schottky barriers), fundamental 
absorption (intrinsic photodetectors), impurity absorption (extrinsic 
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photodetectors), low-dimensional solids [superlattice (SL), quantum well 
(QW), and quantum dot (QD) detectors], different types of phase transi-
tions, and so on.

Figure 1.1 gives approximate dates for significant developments for the 
materials mentioned. The years during World War II saw the origins of 
modern IR detector technology, supported by the discovery of the transis-
tor in 1947 by W. Shockley, J. Bardeen, and W. Brattain [19]. Recent suc-
cess in applying IR technology to remote sensing problems has been made 
possible by the successful development of high-performance IR detectors 
over the past seven decades. Photon IR technology, combined with semi-
conductor material science, photolithography technology developed for 
integrated circuits, and the impetus of Cold War military preparedness, 
propelled extraordinary advances in IR capabilities within a short period 
of time during the past century [20].

FIGURE 1.1  The history of the development of IR detectors and systems. For 
principal military and civilian applications, four generation systems can be con-
sidered: first-generation (scanning systems), second-generation (staring systems, 
electronically scanned), third-generation (staring systems, with large number 
of pixels and two-color functionality), and fourth-generation (staring systems 
with very large number of pixels, multi-color functionality, 3D ROIC, and other 
on-chip functions) systems, offering other functions, e.g. better radiation/pixel 
coupling, avalanche multiplication in pixels, and polarization/phase sensitivity.
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1.1 � HISTORICAL ASPECTS OF MODERN 
INFRARED TECHNOLOGY

During the 1950s, IR detectors were built using single-element-cooled 
lead salt detectors, primarily for anti-air missile seekers. Usually, lead salt 
detectors were polycrystalline and were produced by vacuum evaporation 
and chemical deposition from a solution, followed by a post-growth sensi-
tization process [17]. The preparation process of lead salt photoconductive 
detectors was usually not well understood, and reproducibility could be 
achieved only after following well-tried recipes. The first extrinsic photo-
conductive detectors were reported in the early 1950s [21], after the dis-
covery of the transistor, which stimulated a considerable improvement in 
the growth and material purification techniques. Since the techniques for 
controlled introduction of impurities became available for germanium 
earlier, the first high-performance extrinsic detectors were based on ger-
manium. Extrinsic, photoconductive response from copper, zinc, and gold 
impurity levels in germanium gave rise to devices using the 8- to 14-μm 
longwave IR (LWIR) spectral window and beyond to the 14- to 30-μm 
very longwave IR (VLWIR) region. The extrinsic photoconductors were 
widely used at wavelengths beyond 10 μm, prior to the development of 
the intrinsic detectors. They must be operated at lower temperatures to 
achieve performance similar to that of intrinsic detectors, and a sacrifice 
in quantum efficiency is required to avoid thick detectors.

In 1967, the first comprehensive extrinsic Si detector-oriented paper 
was published, by Soref [22]. However, the state of the extrinsic Si was 
not changed significantly. Although Si has several advantages over Ge 
(namely, a lower dielectric constant, giving shorter dielectric relaxation 
times and lower capacitance, higher dopant solubility, a larger photoion-
ization cross section for greater quantum efficiency, and a lower refrac-
tive index for lower reflectance), these were not sufficient to warrant the 
necessary development efforts needed to bring it to the level of the by-then 
highly developed Ge detectors. After the concept lay dormant for about 10 
years, extrinsic Si was reconsidered after the invention of charge-coupled 
devices (CCDs) by Boyle and Smith [23]. In 1973, Shepherd and Yang [24] 
proposed the metal-silicide/silicon Schottky barrier detectors. For the 
first time, it became possible to have much more sophisticated readout 
schemes, so that both detection and readout could be implemented in one 
common silicon chip.

At the same time, rapid advances were being made in narrow-bandgap 
semiconductors, that would later prove useful in extending wavelength 
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capabilities and improving sensitivity. The first such material was InSb, 
a member of the newly discovered III-V compound semiconductor fam-
ily. The interest in InSb stemmed, not only from its small energy gap, but 
also from the fact that it could be prepared in single crystal form, using 
a conventional technique. The end of the 1950s and the beginning of 
the 1960s saw the introduction of narrow-gap semiconductor alloys in 
III–V (InAs1–xSbx), IV–VI (Pb1–xSnxTe), and II–VI (Hg1–xCdxTe) material 
systems. These alloys allowed the bandgap of the semiconductor, and 
hence the spectral response of the detector, to be custom tailored for 
specific applications. In 1959, research by Lawson and coworkers [25] 
triggered the development of variable-bandgap Hg1–xCdxTe (HgCdTe) 
alloys, providing an unprecedented degree of freedom in IR detector 
design. This first paper [25] reported both photoconductive and photo-
voltaic response, extending out to 12 μm in wavelength. Soon thereafter, 
working under a U.S. Air Force contract with the objective of devising 
an 8–12 μm background-limited semiconductor IR detector that would 
operate at temperatures as high as 77 K, the group, led by Kruse, at the 
Honeywell Corporate Research Center in Hopkins, MN, developed a 
modified Bridgman crystal growth technique for HgCdTe. They soon 
reported both photoconductive and photovoltaic detection in rudimen-
tary HgCdTe devices [26].

The fundamental properties of narrow-bandgap semiconductors (high 
optical absorption coefficient, high electron mobility, and low thermal gen-
eration rate), together with the capability for bandgap engineering, made 
these alloy systems almost ideal for a wide range of IR detectors. The dif-
ficulties in growing HgCdTe material, due significantly to the high vapor 
pressure of Hg, encouraged the development of alternative detector tech-
nologies over the past 40 years. One of these was PbSnTe, which was vigor-
ously pursued in parallel with HgCdTe in the late 1960s and early 1970s 
[27–29]. PbSnTe was comparatively easy to grow, and high-quality LWIR 
photodiodes were readily demonstrated. However, in the late 1970s, two 
factors led to the abandonment of PbSnTe detector work: high dielectric 
constants and large mismatch of coefficient of thermal expansion (CTE) 
with Si. Scanned IR imaging systems of the 1970s required relatively fast 
response times, to avoid smearing the scanned image in the scan direc-
tion. With the trend today toward staring arrays, this consideration might 
be less important than it was when first-generation systems were being 
designed. The second drawback, a large CTE, can lead to failure of the 
indium bonds in hybrid structures (between the silicon readout and the 
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detector array) after repeated thermal cycling, from room temperature to 
the cryogenic temperature of operation.

The material technology development was and continues to be pri-
marily for military applications. In 1956, Texas Instruments had begun 
research on IR technology, which led to the signing of several contracts for 
a linear scanner, and subsequently to the invention of the first forward-
looking infrared (FLIR) camera in 1963. As photolithography became 
available in the early 1960s, it was used to make IR detector arrays. Linear 
array technology was first applied to PbS, PbSe, and InSb detectors. The 
discovery in the early 1960s of extrinsic Hg-doped germanium [30] led to 
the first FLIR systems operating in the LWIR spectral window, using lin-
ear arrays. Because the detection mechanism was based on an extrinsic 
excitation, it required a two-stage cooler to operate at 25 K. The cooling 
requirements of intrinsic narrow- bandgap semiconductor detectors are 
much less stringent. Typically, to obtain the background-limited perfor-
mance (BLIP), detectors for the 3–5 μm spectral region are operated at 
200 K or less, while those for the 8–14 μm region are operated at the 
temperature of liquid nitrogen. In the late 1960s and early 1970s, the first-
generation linear arrays of intrinsic HgCdTe photoconductive detectors 
were developed, in which an electrical contact for each element of a mul-
tielement array is brought off the cryogenically cooled focal plane to the 
outside, where there is one electronic channel at ambient temperature for 
each detector element Fig. 1.1). In 1972, Texas Instruments invented the 
HgCdTe Common Module concept, which contributed to a significant 
cost reduction and allowed for the reuse of common components. These 
allowed LWIR FLIR systems to operate with a single-stage cryoengine, 
making the systems much more compact and lighter, and consuming sig-
nificantly less power.

Early assessment of the concept of the second-generation system 
showed that PtSi Schottky barriers, InSb, and HgCdTe photodiodes or 
high-impedance photoconductors, such as PbSe and PbS, and extrinsic 
silicon detectors were promising candidates because they had impedances 
suitable for interfacing with the field-effect transistor (FET) input of read-
out multiplexes. Photoconductive HgCdTe detectors were not suitable due 
to their low impedance and high-power dissipation on the focal plane. 
A novel British invention, the SPRITE detector [31,32], extended conven-
tional photoconductive HgCdTe detector technology by incorporating 
signal time delay and integration (TDI) within a single elongated detector 
element. Such a detector replaces a whole row of discrete elements of a 
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conventional serial-scanned detector, external associated amplifiers, and 
time-delay circuitry. Although only used in small arrays of about 10 ele-
ments, these devices have been produced in the thousands.

In the late 1970s and through the 1980s, HgCdTe technology efforts 
focused almost exclusively on photovoltaic device development, because 
of the need for low power dissipation and high impedance in large arrays 
to interface with readout input circuits. The emergence of advanced epi-
taxial techniques [molecular beam epitaxy (MBE) and metalorganic 
chemical vapor deposition (MOCVD)], combined with the photolithog-
raphy process, revolutionized the IR detector system industry, enabling 
the design and fabrication of complex focal plane arrays (FPAs). These 
efforts are finally paying off, with the birth of HgCdTe second-generation 
IR systems, that provide large two-dimensional (2D) arrays in both linear 
formats, with time delay and integration (TDI) for scanning imagers, and 
in square and rectangular formats for staring arrays. At the present stage 
of development, staring arrays have about 108 elements and are scanned 
electronically by circuits integrated with the arrays. It is predicted that 
larger focal planes will be possible, constrained by budgets rather than by 
technology [33]. These 2D arrays of photodiodes, connected with indium 
bumps to a readout integrated circuit (ROIC) chip as a hybrid structure, 
are often called a sensor chip assembly (SCA).

The first megapixel hybrid HgCdTe FPAs were fabricated in the mid-
1990s. However, present HgCdTe FPAs are limited by the yield of arrays, 
which increases their cost. In such a situation, alternative alloy systems 
for infrared detectors, such as quantum well infrared photodetectors 
(QWIPs) and type-II superlattices (T2SLs), are being evaluated.

Recently, considerable progress has been made toward III-V antimonide-
based low-dimensional solid development and device design innovations. 
Their development results from two primary motivations: the perceived 
challenges of reproducibly fabricating high-operability HgCdTe FPAs at 
reasonable cost, and theoretical predictions of lower Auger recombination 
for T2SL detectors, compared with HgCdTe. Lower Auger recombination 
translates into a fundamental advantage for T2SL over HgCdTe in terms 
of lower dark current and/or higher operating temperatures, provided 
that other parameters, such as Shockley-Read-Hall lifetimes, are equal. 
Recently, Raytheon’s III-V T2SL (type II superlattice)/nBn detectors have 
also reached a level of maturity that enabled the company to win the con-
tract for the next-generation Distributed Aperture System (DAS) for the 
F-35 Joint Strike Fighter [34].
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HgCdTe has inspired the development of the three “generations” of 
detector devices. Third-generation devices are defined here to encompass 
the more exotic device structures, embodied in two-color detectors and 
hyperspectral arrays, which are now in production programs. For example, 
Raytheon fabricates the eLRAS3 system (Long Range Scout Surveillance 
System), which provides the real-time ability to detect, recognize, identify, 
and geo-locate distant targets outside the zone of threat acquisition. This 
high-definition high-resolution FLIR (also called 3rd Gen FLIR) combines 
HgCdTe longwave and mid-wave infrared arrays.

The first three generations of imaging device systems rely primarily on 
planar FPAs. We are currently dealing with the fourth-generation star-
ing systems, in which the main features are to be high resolution (with a 
very large number of pixels, above 108), multi-color functionality, three-
dimensional readout integration circuits (3D ROIC), and other integrated 
functions, e.g., better radiation/pixel coupling, avalanche multiplication 
in pixels, and polarization/phase sensitivity. The evolution of the fourth 
generation is inspired by the most famous visual systems, which are bio-
logical eyes. A solution, based on the Petzval-matched curvature, allow-
ing the reduction of field curvature aberration, e.g. bonding the detectors 
to flexible or curved molds, has been proposed [35]. In addition, such a 
system combines such advantages as a simplified lens system, electronic 
eye systems, and wide field-of-view [36,37]. The colloidal quantum dot 
(CQD) [38] and 2D layered material photodetectors [39], fabricated on 
flexible substrates, are promising materials with which to overcome tech-
nical challenges in the development of fourth-generation IR systems. The 
unique and distinctive optoelectronic properties of graphene and related 
two-dimensional (2D) materials create a new platform for a variety of 
photonic applications, including infrared and terahertz photodetectors. In 
particular, there is growing interest in 2D materials for sensors, that have 
the potential to operate at room temperature.

As was mentioned previously, the development of IR technology has 
been dominated by photon detectors since about 1930. However, pho-
ton detectors require cryogenic cooling. This is necessary to prevent the 
heat generation by the charge carriers. The thermal transitions compete 
with the optical ones, making uncooled devices very noisy. The cooled 
thermal camera usually uses the Stirling cycle cooler, which is the most 
expensive component of the photon detector IR camera. Cooling require-
ments are the main obstacle to the widespread use of IR systems based on 
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semiconductor photon detectors, making them bulky, heavy, expensive, 
and inconvenient to use.

The use of thermal detectors for IR imaging has been the subject of 
research and development for many decades. However, in comparison 
with photon detectors, thermal detectors have been considerably less 
exploited in commercial and military systems. The reason for this dispar-
ity is that thermal detectors are popularly believed to be rather slow and 
less sensitive in comparison with photon detectors. As a result, the world-
wide effort to develop thermal detectors has been extremely small, relative 
to that of the photon detectors.

It must not be inferred from the preceding outline that work on ther-
mal detectors has not been actively pursued. Indeed, some interesting and 
important developments have taken place along this line. In 1947, for exam-
ple, Golay constructed an improved pneumatic infrared detector [40]. This 
gas thermometer has been used in spectrometers. The thermistor bolometer, 
originally developed by Bell Telephone Laboratories, has found widespread 
use in detecting radiation from low-temperature sources [41,42]. The super-
conducting effect has been used to make extremely sensitive bolometers.

Thermal detectors have also been used for infrared imaging. 
Evaporographs and absorption-edge image converters were among the 
first non-scanned IR imagers. Originally, an evaporograph was employed 
in which the radiation was focused onto a blackened membrane coated 
with a thin film of oil [43]. The differential rate of evaporation of the oil 
was proportional to the radiation intensity. The film was then illuminated 
with visible light to produce an interference pattern corresponding to 
the thermal picture. The second thermal-imaging device was the absorp-
tion-edge image converter [44]. Operation of this device was based upon 
utilizing the temperature dependence of the absorption edge of the semi-
conductor. The performance of both imaging devices was poor because 
of the very long time constraint and the poor spatial resolution. Despite 
numerous research initiatives and the attractions of ambient-temperature 
operation and low cost-potential, thermal detector technology has enjoyed 
limited success, in competition with cooled photon detectors, with respect 
to thermal imaging applications. A notable exception was the pyroelectric 
vidicon (PEV) [45], which was widely used by firefighting and emergency 
service organizations. The PEV tube can be considered analogous to the 
visible television camera tube, except that the photoconductive target is 
replaced by a pyroelectric detector and germanium faceplate. Compact, 
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rugged PEV imagers have been offered for military applications but suffer 
the disadvantage of short tube-life and fragility, particularly the reticu-
lated vidicon tubes, which are required for enhanced spatial resolution. 
The advent of the staring FPAs, however, marked the development of 
devices that would someday make uncooled systems practical for many, 
especially commercial, applications. The defining effort in this field was 
undertaken by Texas Instruments with contractual support from the 
Army Night Vision Laboratory [5]. The goal of this program was to build 
a staring FPA system based on ferroelectric detectors of barium strontium 
titanate. Throughout the 1980s and early 1990s, many other companies 
developed spatial devices based on various thermal detection principles.

The second revolution in thermal imaging began at the end of the twen-
tieth century. The development of uncooled IR arrays, capable of imaging 
scenes at room temperature, has been an outstanding technical achieve-
ment. Much of the technology was developed under classified military 
contracts in the United States, so the public release of this information in 
1992 surprised many in the worldwide IR community [46]. There has been 
an implicit assumption that only cryogenic photon detectors, operating in 
the 8–12 μm atmospheric window, had the necessary sensitivity to image 
objects at room temperature. Although thermal detectors have been little 
used in scanned imagers, because of their slow response, they are currently 
of considerable interest for 2D electronically addressed arrays, where the 
bandwidth is low and where the ability of thermal devices to integrate over 
a frame time is an advantage [47– 52]. Much recent research has focused 
on both hybrid and monolithic uncooled arrays and has yielded signifi-
cant improvements in the detectivity of both bolometric and pyroelectric 
detector arrays. Honeywell has licensed bolometer technology to several 
companies for the development and production of uncooled FPAs for com-
mercial and military systems. At present, compact megapixel microbo-
lometer cameras are produced by Raytheon, L-3 Communications, FLIR, 
and DRS in the United States. The U.S. government allows these manufac-
turers to sell their devices to foreign countries, but not to divulge manu-
facturing technologies. Later on, several countries, including the United 
Kingdom, France, Japan, Israel, Korea, and China have “picked up the 
ball”, determined to develop their own uncooled imaging systems. As a 
result, although the United States has a significant lead, some of the most 
exciting and promising developments for low-cost uncooled IR systems 
in the future may come from non-U.S. companies (e.g., microbolometer 
FPAs with series p-n junctions, developed by Mitsubishi Electric).
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