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Chapter 1IntroductionIn contemporary society the science of cryptology is continually attracting moreand more attention. Whereas in the past cryptology was an art, almost solelypracticed by diplomats and military commanders (think of the Caesar cipher),the publication of the DES [39] in 1977 has been a trigger for academics tostart public research in this �eld. Today the main activity of many companiesis selling cryptographic products and performing consultancy on data security.Cryptology is used in everyday life by banks and credit card companies.Cryptology receives a lot of attention because it deals with the protection ofinformation. Information is nowadays a valuable resource. The development offast electronic equipment for processing, transportation and storage of digitalinformation has led to a new industrial revolution. Digital technology allowspeople all over the world to communicate with each other in a reliable way andat low cost. With the ick of a few keys it is possible to consult libraries of infor-mation on topics that range from the ancient abacus to the latest developmentsin zoology. On the one hand, the rapid spread of information allows peopleto make decisions based on recent information. On the other hand, sifting theinteresting bits from the enormous amount of available, rapidly outdating, in-formation has become a Sisyphean task. Thus, while most raw information isavailable for free and does not need any protection, processed information hasgood value, becomes an item of commerce and consequently needs protection.Equally important as economically valuable information, personal communica-tion needs also protection against nosy individuals and organisations.Digital information is transported over publicly accessible channels and canbe as easily tapped as it can be processed. One of the goals of cryptology isto secure the transportation of information. This is done by encryption: theinformation is encoded by an algorithm that depends on a small piece of secretinformation, the key, in a way that makes it impossible to decode it without1



2 CHAPTER 1. INTRODUCTIONknowledge of the key. Even if the information is not transported but only storedlocally, it may be encrypted in order to prevent hackers from `stealing' (copying)the information.Nowadays cryptology no longer deals exclusively with the encryption of in-formation. New concepts like cryptographic hash functions and public key algo-rithms have led to new applications like digital signatures and electronic money.1.1 Cryptography and CryptanalysisThe security of a design can be de�ned in three di�erent ways [102]. The �rstde�nition is based on information theory: a system is called unconditionallysecure if it can not be broken, even if the adversary has unlimited computingpower. The second de�nition is based on complexity theory. The approach startsby de�ning a certain computational unit of operation. An algorithm is then`feasible' if it can be executed in a number of operations that is (asymptotically)polynomial in the size of the input. The algorithm is considered secure if it canbe proven that breaking the algorithm is an NP-complete problem. There isa con�dent and widespread belief that solving NP-complete problems requiresa number of operations that increases exponentially in terms of the size ofthe input of the cipher. The study of the possible attacks on cryptographicalgorithms is called `cryptanalysis', while `cryptography' concerns the researchof new algorithms and applications.The third approach is based on practical methods. The security of an al-gorithm is evaluated by estimating the computing power that would be neededto break it. The estimates are based on the results of known attacks and thescrutiny of experienced cryptanalysts. This last approach has the advantagethat it demands the weakest requirements from the algorithms and thus makesit the easiest approach for the production of practical algorithms that can beused in real life applications. In this approach there is a strong interaction be-tween cryptography and cryptanalysis. The validity of the security level thatis through this process assigned to an algorithm depends on the quality of thecryptanalysis that has been previously performed.1.2 This ThesisThis thesis deals with the cryptanalysis and design of an important subset ofcryptographic algorithms: block ciphers. In their simplest mode of use, blockciphers can be considered as Electronic Code Books (ECB [40]). Under thecontrol of a relatively short key (56 bits to a few hundred bits) message blocksof a �xed size are replaced by other blocks. The encryption is symmetric because



1.3. OUTLINE AND MAIN CONTRIBUTIONS 3the same key has to be used to decrypt the message.There exist more sophisticated modes of use that give better secrecy [40].Block ciphers are also often used as the compression function of hash functions[82, 103] and MAC algorithms [49]. In this thesis a construction is given thatuses block ciphers for asymmetric encryption, where the encryption key can berevealed without endangering the secrecy because the decryption key cannot beeasily recovered from it.The security model most often used in the design of block ciphers, and alsoin this thesis, is the one based on the practical approach. Much attention isgiven to the analysis of existing designs. In this way it is possible to learn fromexisting failures and successes. And of course, every design that can be brokenis one competitor less for our own designs !1.3 Outline and Main ContributionsThe �rst part of the thesis deals with the analysis of existing designs. Chapters 2and 3 introduce basic de�nitions and well-known cryptanalytic techniques. Ouroriginal work for these chapters consists of Proposition 3.2, and the analysis ofMacGu�n and a reduced version of Blow�sh. The analysis of Blow�sh is a jointwork with Bart Van Rompay and Jan Verelst. The analysis of MacGu�n is ajoint work with Bart Preneel and has been published in [110].In Chapter 4 our improvements to di�erential cryptanalysis are presented.They involve the use of Bayes' rule and maximum likelihood estimators duringthe data processing phase of a di�erential or a linear attack. Also, the cryptanal-ysis of hash functions based on block ciphers is improved. These improvementsare illustrated on the DES: used in 8-bit CFB mode and as compression functionof a hash algorithm. This is a joint work with Bart Preneel and the results havebeen published in [105, 109].In Chapter 5 we demonstrate that the average resistance against attacks ofa cipher is not a good security measure. We present attacks that exploit dif-ferential characteristics with a probability that varies signi�cantly over the keyspace. We illustrate this with two new attacks on IDEA, which were developedin cooperation with Lars R. Knudsen and Johan Borst and has been publishedin [14], and an attack on MAA, which was developed in cooperation with BartPreneel and have been published in [106].Chapter 6 introduces a new attack on block ciphers with an unbalancedround function and a small number of rounds. This attack is shown to breakseveral members of the CAST block cipher family. It was developed in cooper-ation with Bart Preneel and Erik De Win and has been published in [112, 113].The second part of the thesis deals with the design of new block ciphers.Chapter 7 elaborates on the function of the di�erent components of the round



4 CHAPTER 1. INTRODUCTIONtransformation and their construction. The emphasis lies on the construction ofmappings with good di�usion properties. By associating mappings with linearcodes we are able to give elegant constructions for optimal di�usion mappings.The chapter ends with a construction method for trapdoor ciphers, which wasdeveloped in cooperation with Bart Preneel and has been published in [114].Chapter 8 presents two new block ciphers that were designed as part ofthe research. Shark was developed in a joint e�ort with Antoon Bosselaers,Joan Daemen, Erik De Win and Bart Preneel and has been published in [111].Square was designed in cooperation with Joan Daemen and Lars R. Knudsenand has been published in [27, 28].Chapter 9 concludes and discusses some open problems.Appendix A gives a survey of existing block ciphers and known attacks.
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Chapter 2Basic ConceptsIn this chapter iterated block ciphers are de�ned. The Feistel structure and theuniform round structure are introduced and illustrated with examples. Blockciphers can be used, and will be studied, in several operation modes that areintroduced in Section 2.2. A survey of the applications of block ciphers ispresented. There then follows a discussion of the attack models that are mostcommonly used to analyse the security o�ered by a cipher.2.1 Iterated Block CiphersThe origin of iterated block ciphers appears to have been lost in time. C.E. Shan-non describes product ciphers [122], that are formed by concatenating di�erenttransformations. The �rst to use a product of identical round transformationsseems to have been H. Feistel [37].De�nition 2.1 An iterated block cipher is an algorithm that transforms aplaintext block of a �xed size l into a ciphertext block of a �xed size l0 underthe inuence of a key k, by a repeated application of an invertible transfor-mation �, called the round transformation. Denoting the plaintext with x0, theciphertext with xR and the intermediate values with xr, the encryption operationcan be written as: xr+1 = �[kr](xr) r = 0; 1; : : : ; R� 1 : (2.1)The values kr are the round keys, that are derived from k by means of a keyscheduling.Here only block ciphers that do not expand the blocks will be considered (l = l0).The round transformation � is often built from di�erent components, each with7



8 CHAPTER 2. BASIC CONCEPTSa di�erent functionality. The choice of the di�erent components is an importantpart of the design strategy and will be treated in detail in part 2. For now, thefollowing general description su�ces:key addition: The key addition inserts the unknown round key and mixes itwith the intermediate value.substitution layer: The substitution layer provides a complex nonlinear mix-ing of bits that are `close' to one another in the bitstring that is processed.Since this layer involves complex operations on a few bits at a time, it isusually implemented with table lookups in substitution boxes (or S-boxes).di�usion layer: The di�usion layer rearranges the bits such that bits that are`close' to each other in round r, are not close to each other in roundr + 1. The di�usion layer usually consists of a simple operation that canbe e�ciently implemented without table lookups.Not every block cipher follows this structure, e.g., the substitution layer some-times depends on the key.The main motivation for iterated block ciphers is the observation that arepeated application of a round transformation that is weak by itself can leadto a strong cipher [37]. It is clear that the round transformation � determinesfor a large part the resistance of the cipher to cryptanalysis. The two most usedround transformation structures are the Feistel network [37] and the UniformTransformation structure [36].2.1.1 Feistel NetworkIn a Feistel network, the intermediate value xr is split into two halves: sr andtr. The round transformation � uses a round function F , also called the F -function. The function F depends on the round key and takes one of the halvesas input. The output of F is added to the other half. Subsequently both halvesare swapped.(sr+1; tr+1) = �[kr](sr; tr), � sr+1 = trtr+1 = sr � F [kr](tr) (2.2)Here `�' stands for the bitwise exor operation, but can be replaced by any otherreversible operation. In the last round the swap of both halves is omitted. Inthis way the decryption operation is the same as the encryption operation withthe round keys used in reverse order, independent of the choice for the roundfunction F . Note that tR�1, the text input of the round function in the lastround is visible in the ciphertext.



2.1. ITERATED BLOCK CIPHERS 9The best known example of an iterated block cipher, the Data EncryptionStandard (DES) [39], is a Feistel network. The DES uses 16 rounds, two of whichare shown in Figure 2.1. The DES operates on 64-bit text blocks and uses a56-bit key. The round function starts with an expansion E, which duplicatessome of the 32 input bits to produce 48 output bits. The expanded input isthen exored with the round key kr. The result is split into eight 6-bit valuesthat are used as indices in eight di�erent lookup tables with 4-bit entries (theso-called S-boxes). The eight 4-bit entries of the tables are mixed by the bitpermutation P to produce the output of the F -function. The DES also featuresan initial permutation IP of the plaintext block and a �nal permutation IP�1.The cryptographic signi�cance of these permutations remains unclear (but seeSection 4.2.4 for some consequences that these permutations have on the securityof certain modes of use).�� ��PLAINTEXT?IP?P S Em?� � m� � �? K1``````````````````````̀                       P S Em?� � m� � �? K2?IP�1?�� ��CIPHERTEXTFigure 2.1: Two rounds of the DES, the most famous block cipher. It is a Feistelnetwork. The full DES has 16 rounds.



10 CHAPTER 2. BASIC CONCEPTSThe Feistel network can be generalized [12]: instead of splitting the interme-diate value xr into two equal halves, it is proposed that `unbalanced' divisionsbe made. MacGu�n, the �rst example of a cipher that uses this generalizedstructure, is analysed in Section 3.5. Also the structure of IDEA [69] can beseen to be a generalisation of a Feistel network, in which the output of the F -function is added to both halves of xr. A more detailed description of IDEA isprovided in Chapter 5.2.1.2 Uniform Transformation StructureThe uniform transformation structure is sometimes called `the substitution-permutation structure (SP-structure)'. The round transformations of this blockcipher structure are built by alternating nonlinear (`substitution') layers thatoperate on all the bits of the intermediate values and linear di�usion layers(`permutations'). (A `linear functions' is de�ned in De�nition 3.2.) Note thatboth the nonlinear layers and the linear layers have to be invertible, and are thuspermutations. In the context of a linear layer, the term `permutation' usuallymeans `bit permutation'. Because of this ambiguity and since the linear layer isnot restricted to bit permutations, the classi�cation `SP-structure' is somewhatmisleading. Figure 2.2 shows one round of Shark, a block cipher with theuniform transformation structure.The �rst block cipher with this round structure is an early version of Lucifer,described by Feistel in [36]. The best known example is probably SAFER [75].Other examples are Shark [111] and Square [27], described in this thesis (cf.Chapter 8), and Threeway [24].The uniform transformation structure is a very general round transforma-tion. In fact, for any Feistel Network there exists an equivalent description interms of a uniform transformation structure with a rather peculiar nonlinearlayer.2.2 Modes of Operation and ApplicationsA block cipher is a cryptographic primitive that substitutes l-bit strings underthe inuence of a key. It can be used in di�erent modes and di�erent crypto-graphic applications.Encryption ModesFour standard `encryption' modes [40, 52] have been de�ned for block ciphers.These modes can be used in a symmetric encryption scheme, but also in theconstruction of a MAC, an asymmetric encryption scheme or a digital signaturescheme.



2.2. MODES OF OPERATION AND APPLICATIONS 11PLAINTEXT�� ��?key addition? ? ? ? ? ? ? ?S S S S S S S S? ? ? ? ? ? ? ?linear di�usion layer?�� ��CIPHERTEXTFigure 2.2: One round of Shark, a block cipher with the uniform transformationstructure. The nonlinear layer is implemented with eight parallel S-boxes.The modes process a number of bits m at a time. For some modes m = l, forother m < l. If the string to be processed has a bit-length that is not a multipleof m, then it has to be padded using a padding rule. Let the text string consistof t l-bit blocks and denote one operation of the block cipher by y = E[k](x),where k is the key. The blocks of the input string are denoted pi (`plaintext'),the blocks of the output are denoted ci (`ciphertext'), 0 � i < t.The four standard `encryption' modes are the following.1. The Electronic Code Book (ECB) mode is the basic encryption mode.Every block of the plaintext is encrypted independently. The blocks ofthe ciphertext are given by ci = E[k](pi) :Since the blocks are encrypted independently, a repetition of blocks in theplaintext will lead to a repetition of blocks in the ciphertext.2. In the Cipher Block Chaining (CBC) mode every ciphertext block dependson the corresponding plaintext block and on the previous ciphertext block.



12 CHAPTER 2. BASIC CONCEPTSE- -a) The ECB mode
E?- -?ic) The OFB mode

E -6- -ib) The CBC mode
E?- -?id) The CFB modeFigure 2.3: The four standardized encryption modes of operation for blockciphers.The �rst block depends on an initial value IV that can be public or secret.c0 = E[k](p0 � IV )ci = E[k](pi � ci�1) 1 � i < tRepeated blocks in the plaintext will no longer lead to repetitions in theciphertext. By varying the initial value it is even possible to have di�erentciphertexts corresponding to the same plaintext.3. The Output Feed Back (m-bit OFB) mode uses the block cipher to emulatea stream cipher. The ciphertext is produced by exoring a pseudo-randomkey-stream to the plaintext. The key-stream is generated by repeatedencryption of the initial value. After every encryption the m leftmost bitsof the output are concatenated to the key stream (1 � m � l). Denotingby pim; cim the i-th m-bit block of plaintext and ciphertext (0 � i < tl=m),by leftm(x) the block that consists of the m leftmost bits of x and byrightm(x) the m rightmost bits, the encryption process can be described



2.2. MODES OF OPERATION AND APPLICATIONS 13as follows. x0 = IVxi = E[k](xi�1) 1 � i < tl=mcim = pim � leftm(xi) 0 � i < tl=mThe initial value has to be changed for every message in order to producea di�erent key stream. This is required to avoid a known plaintext attack.The blocks are encrypted independently, but the ciphertext blocks dependon the position of the blocks in the plaintext, so that repetitions in theplaintext will not lead to repetitions in the ciphertext.4. The second stream mode is the Ciphertext Feed Back (m-bit CFB) mode.The di�erence between the OFB mode and the CFB mode lies in theupdating of x. In the CFB mode xi depends on xi�1 and ci�1m .x0 = IVxi = rightl�m(xi�1)kci�1m 1 � i < tl=mcim = pim � leftm(E[k](xi)) 0 � i < tl=mHere `k' denotes concatenation of two bit strings. Each ciphertext blockdepends on the previous ciphertext block.A pictorial representation of the modes is given in Figure 2.3. In this thesis onlythe ECB mode of the studied block ciphers is considered, except for the DES,where the ECB mode is already studied in depth in the literature [10, 29, 77]and thus the CFB mode is analysed here.Hashing ModesBlock ciphers can also be used as the compression function of an iterated hashfunction. Iterated hash functions have a state variable h that is initialized toan initial value IV . In every iteration the round function (of the hash function)takes as input the state variable and a message block to update the value of thestate variable. The main motivation behind using block ciphers to constructhash functions is the minimisation of design and implementation e�ort. In thesimplest con�gurations the length of the hash result is equal to the block lengthl. A well-established example uses the following round function:h0 = IVhi = f(pi; hi�1) = E[hi�1](pi)� pi :This mode is illustrated in Figure 2.4.This scheme was proposed by S.M. Matyas, C.H. Meyer and J. Oseas [82],and is described in [103] together with eleven variants with an equivalent security



14 CHAPTER 2. BASIC CONCEPTS
E- ?
??�mhi
pihi�1

Figure 2.4: A hash mode for a block cipher.level. Other con�gurations like MDC-2 and MDC-4 [16] produce results with alength of 2l. B. Preneel and L.R. Knudsen give schemes with even larger lengths[63].2.3 ApplicationsBlock ciphers are used in many di�erent cryptographic publications. Two im-portant applications have already been mentioned in the previous section: sym-metric encryption schemes are built from any of the four encryption modes;hash functions are built from the hashing modes.Authentication SchemesAnother widely used scheme that uses a block cipher is the CBC-MAC [49, 51].Section 2.4 explains the functionality of a MAC. The CBC-MAC uses a blockcipher in CBC mode to process the message. The IV is initialized to zero. Thelast `ciphertext' block gives the output of the MAC algorithm.c0 = E[k](p0)ci = E[k](pi � ci�1) 1 � i < tMAC[k](p) = ct�1A digital signature is an authentication scheme that uses asymmetric en-cryption. In [86] R.C. Merkle describes a digital signature scheme that uses a



2.4. MAC ALGORITHMS 15block cipher as a cryptographic primitive. The scheme is based on the fact thatfor a secure block cipher the equationy = E[k](x)is di�cult to solve for k if x and y are given. To sign a one-bit message withthe basic signature scheme, the user selects two secret keys k0 and k1 and anarbitrary string x. The values x; y0 = E[k0](x) and y1 = E[k1](x) are placedin a public directory. If the user wants to sign a bit with value b, he revealskb. Everyone can verify that yb = E[kb](x). The values y0; y1 can be used onlyonce; therefore they are called one-time signatures. Merkle has shown a way toreduce the need for y-values.Asymmetric EncryptionBy building trapdoors into block ciphers it is possible to construct an asym-metric encryption scheme. In such a scheme the block cipher is the public key,and the trapdoor is the secret key. If Bob wants to send a message to Alice,he chooses a random key, encrypts his message with Alice's block cipher andsends it. Only Alice knows the trapdoor in her cipher and is able to recover themessage without knowing the key. A practical realisation of such a scheme isgiven in Chapter 7.Pseudo-Random Noise GenerationBlock ciphers can be used as pseudo-random noise generators. The OFB modein fact uses the block cipher to produce a pseudo-random bit sequence. Anotherpossibility is to use the block cipher in counter mode: the pseudo-random streamis built by successive encryptions of a counter's output.2.4 MAC AlgorithmsA MAC scheme is a symmetric technique that is used to provide data originauthentication and data integrity. It associates with an input p and a secretkey k a short bitstring c = MAC[k](p). The sender sends c along with p. Thereceiver, who shares the key k with the sender, will recompute the MAC on thereceived data and verify whether it matches the transmitted value.MAC schemes can be built by using block ciphers (cf. supra) or by usingalgorithms that are developed only for this purpose. In Chapter 5 an attack ispresented on MAA, a MAC algorithm that is very similar to a block cipher.



16 CHAPTER 2. BASIC CONCEPTS2.4.1 Attacks on MACsFinding an arbitrary message and a corresponding MAC value without knowl-edge of the key is called an existential forgery . If a cryptanalyst has controlover the message, this attack is called a selective forgery . A forgery is calledveri�able when an adversary knows that the MAC is correct with probabilityclose to 1. However, for some applications it might be su�cient that a MAC iscorrect with probability signi�cantly higher than 1/(the number of all possibleMAC values). A key recovery attack is more serious than a forgery attack: anadversary who can recover the key can perform arbitrary selective forgeries.2.5 Security and SecurityWhen the security of an algorithm is evaluated, di�erent approaches are possible,which may result in di�erent answers to the question: \Is this cipher secure ?"In a real-world top secret application, every detail of an algorithm is likely tobe a well-kept secret. Under these conditions a cryptanalyst faces a very toughjob in trying to recover the key or the plaintext. Nevertheless most peoplewill consider a block cipher secure only if it resists attacks under Kerckho�s'assumption. This assumption states that the enemy cryptanalyst knows all thedetails of the algorithm, except for the value of the secret key.A �rst classi�cation of attacks can be made according to the result that theattack has [59]:� A key recovery attack enables the cryptanalyst to recover the actual keythat was used.� A global deduction provides the cryptanalyst with enough informationabout the key to encrypt and decrypt messages at will, but without re-vealing the actual key that was used.� A local deduction occurs when the cryptanalyst can encrypt or decryptone message (without asking the legitimate user to do it for him).� An information deduction occurs when the cryptanalyst learns somethingabout the key, plaintexts or ciphertexts. This might be, for instance, thedistribution of the plaintext or a relation between some bits of the key.A second classi�cation can be made according to the access that is given tothe cryptanalyst. If a cryptanalyst mounts an attack using only the informationhe gets under Kerckho�s' assumption and the values of some ciphertexts, thisattack is called a ciphertext-only attack. This requires that the cryptanalystknows some general statistics about the corresponding plaintexts, e.g., that it is



2.5. SECURITY AND SECURITY 17ASCII-coded text. An attack is considered successful not only if it recovers thekey but also if it allows the plaintext to be obtained from a given ciphertext inany other way. A ciphertext-only attack is the most dangerous attack because itis arguably the most realistic. If a cipher can be broken using a ciphertext-onlyattack, then its use in practice is very limited. For most ciphers designed todaythere are no known ciphertext-only attacks. An example of a ciphertext onlyattack is the linear attack on the DES, reduced to eight rounds [77].An easier attack is a known plaintext attack. The assumption here is that thecryptanalyst has access to some ciphertexts and the corresponding plaintexts.An attack needing only a few known plaintexts might be practical if the system isused to send documents in standard format or with (partly) predictable contents,or if plaintext is later on released, before the key has been changed. Notice thatknown plaintext attacks always exhibit a certain symmetry, since they make nofunctional distinction between plaintext and ciphertext. Most linear attacks areknown plaintext attacks [77]. Another variant is the attack on CAST describedin Chapter 6, that is based on the fact that the round function of CAST is notsurjective. A known plaintext attack is successful if it recovers the key or if itallows a previously unknown plaintext to be calculated from a ciphertext.A chosen plaintext attack gives even more access and capacity to the crypt-analyst, since he is allowed to choose some plaintexts and then to get the corre-sponding ciphertexts encrypted under the unknown key. Variants of this attackare the chosen ciphertext attack and the adaptive chosen plaintext attack, wherethe cryptanalyst can choose the next plaintext after processing the ciphertextcorresponding to the previous choice. Practical situations where this attackcan be mounted are very rare indeed. Di�erential attacks are typically chosenplaintext attacks [10, 14].In a related-key attack the cryptanalyst has ciphertexts at his disposal thatare the results of encrypting a set of plaintexts under di�erent keys. Related-keyattacks are studied in [11, 58, 55].It is clear that the attacks in this list are ordered such that they become lessand less applicable in practice. Cryptographers sometimes object to the practiceof evaluating the strength of their designs against chosen plaintext related-keyattacks, since they are not very realistic. Cryptanalysts however argue that thedi�erent attacks make it possible to rank di�erent ciphers: a cipher that doesnot succumb to a related-key attack is considered to be more secure than onethat does, irrespective of the actual usage in practice. Since the security of apractical cipher can almost never be proven, considering these \impractical"attacks o�ers a kind of safety margin. Also, most chosen plaintext attacksinvolve a certain freedom in the choice of plaintexts and thus they can often beconverted into a known plaintext attack by simply collecting known plaintextsuntil some desired texts have been obtained.



18 CHAPTER 2. BASIC CONCEPTS2.6 ConclusionsThis introductory chapter presented the de�nition of an iterated block cipher.The Feistel Network and the Uniform Transformation Structure, the two mostused round transformations in an iterated block cipher were explained. Thestandard modes of operation for a block cipher were shown and a taxonomywas given for attack models used in block cipher cryptanalysis.



Chapter 3Basic Cryptanalytic ToolsIf the only tool you have is a hammer,you tend to see every problem as a nail.This chapter introduces the necessary mathematical tools for discussing lin-ear and di�erential cryptanalysis.The standard versions of the di�erential and linear attacks are explained.Also, the principles of a di�erential-linear attack and truncated di�erentials arepresented. A new characterisation of a di�erential is given. All these attacksshare a number of underlying assumptions that are made in order to simplifythe problem of estimating the performance of the attacks, or equivalently theresistance of the analysed ciphers against the attacks. Limitations of the validityof the assumptions are shown.The last sections are illustrations of the basic attacks: a linear and a dif-ferential attack on MacGu�n [12], which have been published in [110], and asecond order di�erential attack on a reduced version of Blow�sh [121]. In laterchapters ciphers will be analysed where these basic assumptions are no longervalid.3.1 Mathematical ToolsThis section introduces de�nitions for Boolean functions and substitution boxes.The link between both is made by a special Boolean function: the characteristicfunction of the substitution box. The Walsh transform allows the tables thatwill be used in di�erential and linear cryptanalysis to be e�ciently calculated.19



20 CHAPTER 3. BASIC CRYPTANALYTIC TOOLS3.1.1 Boolean FunctionsThe de�nition of a Boolean function that is used in cryptography deviates a bitfrom the formal mathematical approach as presented in [117]. In cryptographicliterature, usually only two-element Boolean algebra is used. Furthermore thezero element and the unit element of this algebra are often identi�ed with theintegers 0 and 1, so that addition and other functions over ZZ of the `Boolean'variables are well-de�ned. Let Gn denote the vector space of binary n-tuples.Elements of Gn are represented as row vectors x = (x1; x2; : : : ; xn).De�nition 3.1 A Boolean function f is de�ned as a mapping from Gn to theset f0; 1g. f : Gn ! f0; 1g : (x1; x2; : : : xn) = x 7! f(x)Addition modulo two, also known as exor, will be denoted by �. The associatedfunction f̂ of the Boolean function f , is de�ned as f̂(x) = 1� 2f(x). Becauseof the limited range of a Boolean function, this relation can also be expressedas f̂(x) = (�1)f(x). It is easy to verify that h = f � g , ĥ = f̂ � ĝ.De�nition 3.2 A Boolean function f is linear if and only if 8x; y : f(x� y) =f(x)� f(y).Denote by ei the vector with eij = 0;8j 6= i and eii = 1. Since every vector xcan be written as a linear combination of ei; i = 1; : : : n:x = nMi=1 xiei ;a linear function is completely characterized by its images of the basis fe1; : : : ; eng:f(x) = f( nMi=1 xiei) = nMi=1 xif(ei) : (3.1)Equation (3.1) implies that every linear function l! can be written asl!(x) = ! � x ;where the vector ! is de�ned as !i = f(ei) and the dot product of two vectorsis de�ned as x � y = x � yt = nMi=1 xi � yi : (3.2)



3.1. MATHEMATICAL TOOLS 21The associated function l̂! can be written asl̂!(x) = 1� 2(! � x) = (�1)!�x :The Hamming distance between two functions f; g is equal to the number offunction values in which they di�er.d(f; g) , #fx 2 Gn j f(x) 6= g(x)g (3.3)= Xx2Gn f(x)� g(x) (3.4)= 2n�1 � 12 Xx2Gn f̂(x)ĝ(x) (3.5)The Hamming weight of a function f is equal to its distance from the constantzero function f0. The Hamming weight of a vector x is equal to the number ofnon-zero components. wh(x) , #fi j xi 6= 0g (3.6)The correlation between two functions f; g is related to the probability thattheir values are equal.c(f; g) = 2�n � (#fx j f(x) = g(x)g �#fx j f(x) 6= g(x)g) (3.7)= 1� 21�n � d(f; g) (3.8)= 2�nXx f̂(x)ĝ(x) (3.9)This can be rewritten as:Pr(f(x) = g(x)) = 1 + c(f; g)2 : (3.10)Lemma 3.1 The correlation between two di�erent linear functions is zero.Proof: The correlation between two linear functions l�; l� is given by:c(l�; l�) = 2�nXx l̂� l̂�= 2�nXx (�1)��x(�1)��x= 2�nXx (�1)(���)�x :



22 CHAPTER 3. BASIC CRYPTANALYTIC TOOLSIf � 6= � the sum is zero. If � = �, the functions are equal and the correlationis one.The autocorrelation function r̂f : Gn ! ZZ of the function f̂ is de�ned as theconvolution of the function with itself.r̂f̂ (x) ,Xv f̂(v)f̂ (x� v) (3.11)The cross-correlation function ĉf̂ ;ĝ(x) of two functions f̂ and ĝ is equal tothe convolution of the functions.ĉf̂ ;ĝ(x) � (f̂ 
 ĝ)(x) =Xv f̂(v)ĝ(x� v) (3.12)The correlation between f and g can be calculated from the cross-correlationfunction: c(f; g) = 2�nĉf̂ ;ĝ(0):3.1.2 Walsh TransformThe Walsh transform can be de�ned for any real-valued function with domainGn [8].De�nition 3.3 The Walsh transform F : Gn ! R of a real-valued functionf : Gn ! R is de�ned by:F (!) ,W(f)(!) ,Xx f(x) � (�1)!�x =Xx f(x) � l̂!(x)The Walsh transform of the associated function is denoted with F̂ (!).F̂ (!) , W(f̂)(!) (3.13)= Xx f̂(x) � (�1)!�x (3.14)= Xx f̂(x) � l̂!(x) (3.15)= 2nĉ(f; l!) (3.16)The relation between F̂ (!) and F (!) is given by:F̂ (!) = 2n�(!)� 2F (!) ;



3.1. MATHEMATICAL TOOLS 23where the function �(!) equals zero, except when ! = 0, where it is one. Theevaluation of the Walsh transform of a Boolean function at a point ! gives thecorrelation of the Boolean function and the linear function l̂!.Analogous to the fast Fourier transform routines, there also exists a fastalgorithm for the Walsh transform, requiring O(n 2n) operations. Another par-allel with the Fourier transform is that the inverse Walsh transform only di�ersin a constant factor from the forward Walsh transform:f(x) =W�1(F )(x) = 2�nW(F )(x) : (3.17)Equations (3.16) and (3.17) show that like the Fourier transform, which can beseen as the decomposition of a function into sinusoidal components, the Walshtransform of a Boolean function can be seen as the decomposition of the functioninto its linear components l̂!.There is a Walsh version of Parseval's theorem:X! (F̂ (!))2 = 2nXx (f̂(x))2 : (3.18)When f is a Boolean function this becomesX! (F̂ (!))2 = 22n ;and using (3.16) this results in a bound on the correlations of an arbitraryBoolean function with all the linear functions:X! ĉ2(f̂ ; l̂!) = 1 : (3.19)It is easy to see that (3.19) implies that for any Boolean function fmax! ĉ2(f̂ ; l̂!) � 2�n :The functions that reach this lower bound, are called bent functions [116].De�nition 3.4 f is a bent function if and only if8! : jF̂ (!)j = 2n=2 :Bent functions only exist if n is even.The Walsh transform of the convolution of two functions equals the productof the Walsh transforms of the functions.W(f̂ 
 ĝ)(!) = F̂ (!) � Ĝ(!) (3.20)The Wiener-Khintchine theorem is a corollary of (3.20):R̂f̂ (!) = (F̂ (!))2 : (3.21)



24 CHAPTER 3. BASIC CRYPTANALYTIC TOOLS3.1.3 Substitution BoxesDe�nition 3.5 An n�m substitution box (S-box) is a mappings : Gn ! Gm : (x1; : : : ; xn) 7! (y1; : : : ; ym) = s((x1; : : : ; xn))S-boxes are usually studied in terms of their component functions and the linearcombinations of their component functions.si(x) = ei � s(x); i = 1; : : : ;ms(x) = mMi=1 si(x) � eiTo study the properties of the component functions, the characteristic functionof an S-box is de�ned [18].De�nition 3.6 The characteristic function �s of an S-box is the Boolean func-tion�s : Gn+m ! f0; 1g : (xky) = (x1; : : : ; xn; y1; : : : ; ym) 7! � 1 if s(x) = y0 elseThis leads to the following relation between the characteristic function andthe component functions in the Walsh domain:�s(�k�) = W(�s)(�k�)= Xx Xy �(xky) � l̂(�k�)�(xky)= Xx l̂(�k�)�(xks(x))= Xx \(� � s(x)) � l̂�(x)= W(\� � s(x))(�)The table that lists �s(�k�) for all values of �k� is called the Linear Approxi-mation Table (LAT), and is used in linear cryptanalysis. From (3.16) it followsthat the LAT entries are proportional to the correlations between linear combi-nations of the outputs of the S-box and linear functions of the input, sometimescalled input-output correlations.LATs(�k�) = 2nc(� � s(x); � � x) (3.22)



3.2. DIFFERENTIAL CRYPTANALYSIS 25The �-parameter of an S-box is de�ned as the maximal input-output correlationof the S-box. �s = max�;� 6=0 c(� � s(x); � � x) (3.23)The use of the characteristic function in di�erential cryptanalysis will bediscussed in Section 3.2.An S-box is called a linear S-box if all its component functions are linearfunctions. A linear n � m S-box can be described using an n � m Booleanmatrix. Let !ij = sj(ei), theny = s(x)m(y1; y2; : : : ; ym) = (x1; x2; : : : ; xn) � 2664 !11 !12 : : : !1m!21 !22 : : : !2m: : : : : : : : : : : :!n1 !n2 : : : !nm 3775my = x � 
 :For a linear S-box it holds that all the linear combinations of the componentfunctions of the S-box are also linear functions.8b 2 Gm; 9a 2 Gn : b � s(x) � a � x (3.24)This follows from straightforward calculation:b � s(x) = b � yt= b �
t � xt= a � xt;where a = b � 
t, or a = st(b).3.2 Di�erential CryptanalysisE. Biham and A. Shamir were the �rst to give a general description of thecryptanalytic technique that is known as di�erential cryptanalysis [10]. Similartechniques had already been used in the public world to cryptanalyse a speci�ccipher proposal on an ad-hoc basis [43, 90]. Also, the designers of the DESclaim to have known about di�erential cryptanalysis back in 1974, when theydesigned the algorithm [21].



26 CHAPTER 3. BASIC CRYPTANALYTIC TOOLS3.2.1 Di�erencesDi�erential cryptanalysis is a chosen plaintext attack. In fact only the plaintextdi�erences are chosen. Plaintext di�erences can be de�ned in several ways:every group operation �, that is well-de�ned over the set of plaintexts, has acorresponding di�erence operation �: if inv(a) denotes the inverse element of awith respect to �, then a�b = a � inv(b) : (3.25)The di�erence between two instances of the same variable is written as a0 =a�a�. The di�erence table of a mapping is a compact way to present theinformation about its di�erential properties.De�nition 3.7 Let s : V ! W be an arbitrary mapping. The di�erence tablees of s is de�ned byes((a; b)) = #fc 2 V j s(c � a)�s(c) = bgLater, es((a; b)) will be abbreviated to es(akb). The value es(0k0) is alwaysequal to the cardinality of V . If s is linear with respect to the � operation,s(c � a) = s(c) � s(a). In this case es(akb) is always zero, except if s(a) = b, inwhich case es(akb) is equal to es(0k0).The �-parameter of a mapping s is de�ned by�s = 1es(0k0) � maxa6=0;b es(akb)The product �s � es(0k0) is called the di�erential uniformity of the mapping s.Sometimes the input di�erence and the output di�erence are only partiallyspeci�ed, e.g. in the case of truncated di�erentials (cf. Section 3.2.4). In thissituation the reduced di�erence table can be used.De�nition 3.8 Let �;  be two surjective mappings, � : V ! V1 and  : W !W1, with V1 � V and W1 � W . Then the reduced di�erence table of s isde�ned as the di�erence table that merges the rows where �(a1) = �(a2) and thecolumns where  (b1) =  (b2).rs(ab) = #fc; d 2 V j �(c)��(d) = a and  (s(c))� (s(d)) = bg= X�(c)=a X (d)=b es(cd)Usually the sets V and W are identi�ed with Gn and Gm and the di�erenceused is exor. The corresponding di�erence table is called an exor-table.



3.2. DIFFERENTIAL CRYPTANALYSIS 27The exor-table of a mapping can be calculated as the convolution of thecharacteristic function with itself:(�s 
 �s)(vkw) = Xxky �(xky) � �((xky)� (vkw))= Xx �((xks(x)) � (vkw))= #fx 2 Gn j s(x� v) = s(x)� wg= es(vkw)3.2.2 Di�erential CharacteristicsA di�erential attack is based on the fact that, for an adequate choice of �, givena pair of plaintexts with a certain input di�erence x0 = x�x�, it is possible topredict the di�erences of the intermediate values in each round of the encryptionalgorithm with a certain overall probability p, even if the used key is unknown.The tuple (x00; x10; : : : xR�10) consisting of the known input di�erence of the�rst round and the predicted di�erences of the intermediate values is called adi�erential characteristic. Pairs of plaintexts that exhibit the predicted inter-mediate di�erences are called good pairs, they follow the characteristic. Theother pairs are wrong pairs. Typically � and the di�erences xr 0 are chosen tomaximize p.The cryptanalyst �nds the key in the following way. He chooses plaintextpairs with the correct di�erence and gets the corresponding ciphertext pairs. Foreach pair of ciphertexts he veri�es whether the output di�erence and the actualoutput values are compatible with the predicted di�erences xR�10. If not, heknows that this pair is a wrong pair, and he discards it, the pair is �ltered. If thepair is compatible, the cryptanalyst starts making assumptions about (a partof) the key. With the assumed value of the key the cryptanalyst can partiallycalculate some of the intermediate values of the encryption algorithm. For mostassumed values of the key, there will again arise incompatibilities between thecalculated intermediate di�erences and the intermediate di�erences predictedby the di�erential characteristic.If the cryptanalyst only calculates intermediate values of the last round, thedi�erential attack is called a 1R-attack. In an nR-attack intermediate valuesof the last n rounds are calculated. How far back a cryptanalyst can calculatedepends on the speci�c structure of the cipher.Key values that cause no incompatibilities are called suggested key values.For good pairs, the correct key value will be among the suggested key values.Wrong and good pairs will suggest wrong key values. Only if the correct keyvalue is suggested signi�cantly more often than the wrong key values will the



28 CHAPTER 3. BASIC CRYPTANALYTIC TOOLSdi�erential attack succeed. It is often assumed that the wrong suggested keyvalues are randomly distributed. The signal-to-noise ratio (S=N) of the attackis de�ned in the following way. Let f be the probability that a wrong pairsurvives the �ltering. De�ne s as the probability that a wrong key value issuggested (s equals the average number of suggested key values divided by thenumber of possible key values). ThenS=N = p=(f � s) : (3.26)The number of required pairs is proportional to p�1 if S=N is well above one.For S=N values close to one the number of required pairs increases very fast.Active and Passive ComponentsAn encryption algorithm often contains transformations that are composed ofa number of parallel mappings. For instance, the round function of the DEScontains eight parallel S-boxes. A nonzero input di�erence to the transforma-tion does not necessarily lead to a nonzero input di�erence for all the parallelcomponent mappings. If the two inputs to a mapping are equal, its outputsare also equal. Thus a zero input di�erence leads to a zero output di�erencewith probability one. A mapping with zero (predicted) input di�erence is calledpassive, an active component is one that has a nonzero input di�erence.3.2.3 Di�erentialsIn [69] X. Lai and J.L. Massey observe that in a di�erential attack often only afew of the predicted di�erences xr 0 are actually used. TheR-tuple (x00; x10; : : : xR�10)can be reduced to a tuple (x00; xr1 0; : : : ; xra�1 0) that only contains the predictedvalues that are actually used in the attack. A tuple that does not specify allof the intermediate di�erences, is called a di�erential. The probability of a dif-ferential is calculated by adding the probabilities of all the characteristics thatreduce to this di�erential. The probability of the di�erential is a more accuratemeasure for the success rate of a di�erential attack.De�ne the maximal di�erential as the tuple that speci�es only the interme-diate di�erences that are actually used in the di�erential attack. The followingproposition is a new result; it provides new insight into the relation between theS/N-ratio and the success probability of a di�erential attack.Proposition 3.2 In a di�erential attack (as described previously in Section 3.2.2)the correct key value is only suggested by a pair that follows the maximal di�er-ential of the attack.Proof: Suppose the pair survives the �ltering. This means that it exhibits ci-phertext di�erences that are compatible with the di�erential. To verify whether



3.2. DIFFERENTIAL CRYPTANALYSIS 29a particular key value k is suggested, the intermediate di�erences are calculated,using k as the key. Only if the calculated di�erences agree with the di�erencespredicted by the di�erential is the key value suggested.If k is the correct key value, the calculated di�erences are equal to the ac-tual di�erences. Therefore, if the calculated di�erences of the pair agree withthe predicted di�erences of the di�erential, the actual di�erences agree with thepredicted di�erences and the pair follows the maximal di�erential.Thus if the correct key value is suggested, this implies that the pair is a goodpair.Wrong key values are suggested both by the good and the wrong pairs. Iff � p, the number of wrong pairs that survives �ltering vastly exceeds thenumber of good pairs. In this case, the contribution of the good pairs to thenumber of suggestions for a wrong key value can be neglected.From this observation it follows that a di�erential attack can work in twodi�erent ways: if p � f � s, or S=N � 1 the correct key value can be foundby looking for the most suggested key value. This is the standard di�erentialattack. If p� f �s, or S=N � 1, the correct key value can be found by searchingfor the least suggested key value. This is because the `noise' of the wrong pairswill not be added to the counts of the correct key. In Section 5.2.4 an attackis described that uses this principle. Only if S=N � 1 does a di�erential attackbecome very di�cult. Note that it is not a trivial task to �nd an attack withS=N � 1.3.2.4 Truncated Di�erentialsThe �rst description of the concept of truncated di�erentials was given byL.R. Knudsen in [60]. The most successful attack using truncated di�erentialsis the attack on �ve rounds of SAFER [62, 75].The naming `truncated di�erential' is a bit confusing, since the concept ap-plies to di�erential characteristics as well as to di�erentials. The basic ideahowever is very simple. Recall that a di�erential characteristic predicts the dif-ference of all intermediate values in the encryption algorithm, while a di�erentialpredicts only the di�erence of a few intermediate values. The idea of a `truncatedcharacteristic' is to predict only a part of each intermediate value. For instancein the byte-oriented algorithm SAFER, a truncated characteristic typically onlypredicts which intermediate bytes are equal to zero, as opposed to a prediction ofthe individual bits in an ordinary di�erential characteristic. A truncated di�er-ential would logically be de�ned as a tuple that predicts only a few intermediatevalues, and then only partially. Since a truncated characteristic itself can beseen as a collection of ordinary characteristics, L.R. Knudsen prefers to makeno distinction between a truncated characteristic and a truncated di�erential,



30 CHAPTER 3. BASIC CRYPTANALYTIC TOOLScombining both concepts under the name `truncated di�erential'.The concept of truncated di�erentials seems particularly useful for attack-ing ciphers that do not operate on individual bits, but rather on higher levelentities, e.g. the byte-oriented SAFER and the 16-bit word oriented IDEA [69].Section 5.2.4 discusses a truncated di�erential attack on a reduced version ofIDEA.3.2.5 Higher Order Di�erentialsThe derivative of a mapping s at the point a is de�ned as [59]:�as(x) = s(x � a)�s(x) :The connection with a di�erential of an encryption algorithm is clear. The de�-nition can be extended to higher order derivatives [59]. The nth order derivativeof the mapping s at the points a1; : : : an is given by:�(n)a1;:::;ans(x) = �an(�(n�1)a1;:::;an�1s(x)) :Higher order derivatives, or di�erences, can be used in a di�erential attack inthe same way as �rst order derivatives. It seems that in practice higher orderdi�erences are most useful against ciphers with a small number of rounds [54].Section 3.6 describes a second order di�erential attack on a reduced version ofBlow�sh.3.3 Linear CryptanalysisLinear cryptanalysis was �rst described by M. Matsui in [77]. In [21] D. Cop-persmith admits that to the best of his knowledge even the design team of theDES did not know about linear cryptanalysis.Linear cryptanalysis is a known plaintext attack. Typically only a fraction ofthe bits of each plaintext have to be known. Also, if the cryptanalyst has onlystatistical information about the plaintext, he can apply a slightly modi�edversion of the linear attack (this is in fact a ciphertext-only attack). As indi�erential cryptanalysis, the cryptanalyst can freely choose which operation touse as the `linear' operation.A linear attack uses a linear relation between the inputs and outputs of theencryption algorithm that holds with a certain probability. Linear relationsfor an algorithm are constructed by summing linear relations for the di�erentcomponents of the algorithm. Below, a linear attack is described where thebitwise exor is chosen as the linear operation and where the linear expressionapproximates the �rst R � 1 rounds. In this case the linear relation contains



3.3. LINEAR CRYPTANALYSIS 31some bits of the input, some bits of the key and some bits of the input of thelast round. Let � � x0 = lMi=1 �ix0idenote the sum of plaintext bits that are selected by the l-bit vector �, andde�ne with � and � similar sums for the input of the last round xR�1 and thekey k. The linear relation(� � x0)� (� � xR�1)� (� � k) = 0 (3.27)is called e�ective when it holds with a probability P that is not equal to 0.5.The deviation d = jP � 0:5j is a measure for the e�ectiveness of the relation.Since the key is �xed, the relation(� � x0)� (� � xR�1) = 0 (3.28)will hold with probability P or 1�P , depending on the value of ��k. Therefore(3.28) will have the same deviation as (3.27).The input of the last round can be expressed as a nonlinear function ��1 ofthe output xR and the last round key kR. In general the cryptanalyst chooses� in such a way that � � xR�1 = � � ��1[kR](xR) depends only on a small partof kR. Substituting � � xR�1 in (3.28) gives(� � x0)� (� � ��1[kR](xR)) = 0 : (3.29)The attack now proceeds in the following way. For each possible value of kR,the cryptanalyst calculates the deviation of (3.29) over a large set of encryptedtexts. Because of the nonlinearity of ��1[kR](xR) the deviation of (3.29) willbe largest when the guess for kR is correct. This e�ect is called `wrong keyrandomisation' [45]. The number of required texts is proportional to d�2.Since the basic linear attack is a known-plaintext attack, there is an inherentequivalence between ciphertext and plaintext. A linear attack can be optimizedby eliminating the �rst round linear relation from Relation (3.28). In this wayonly R � 2 rounds are approximated, and parts of the subkeys of the �rst andthe last round are searched for at the same time. This optimisation becomesimpractical when too large a part of the key is involved, since a counter isrequired for every possible key value.The Linear Approximation Table of a mapping forms the linear cryptanal-ysis equivalent of the di�erence table of di�erential cryptanalysis. If the exoroperation is chosen as the linear operation, the LAT of a mapping can be cal-culated e�ciently by using the fast Walsh transform. A comparison of (3.27)



32 CHAPTER 3. BASIC CRYPTANALYTIC TOOLSwith (3.10) shows that the deviation of a linear relation for a mapping is in factequivalent to the correlation between a linear combination of the input bits anda linear combination of the output bits of the mapping, also called input-outputcorrelation.3.3.1 Di�erential-Linear CryptanalysisDi�erential-linear cryptanalysis was invented by S.K. Langford and M.E. Hell-man [70]. A di�erential-linear attack is essentially a linear attack that is opti-mized by using chosen plaintexts. The attack uses an e�ective linear relationbetween the input of the last round and an intermediate value xe, resulting ina relation similar to (3.29):(� � xe)� (� � ��1[kR](xR)) = 0 : (3.30)The intermediate value xe is determined with a certain probability by a di�er-ential characteristic.For most ciphers it is easy to �nd di�erential characteristics with a highprobability over a small number of rounds, whereas this probability decreasesrapidly for an increasing number of rounds. Typically a di�erential-linear at-tack is very e�ective for ciphers with a small number of rounds, e.g. FEAL-8succumbs to a di�erential-linear attack using as few as 12 chosen plaintexts [6](but the attack has a high workload, cf. Appendix A).3.4 Common AssumptionsIn a di�erential attack the cryptanalyst needs to estimate the probability of acharacteristic, in linear cryptanalysis an estimation for the deviation of a linearrelation is required. These are necessary in order to estimate the probability ofsuccess, but also to select the best possible characteristic or relation, i.e. theone that gives the largest expected success probability for the attack.To facilitate the estimation of the probability of a di�erential characteristicor a linear relation the following assumptions are often implicitly made.1. One characteristic dominates the probability.In Section 3.2 it was explained that the probability of a di�erential isa better measure than the probability of a characteristic. However, oftencryptanalysts assume that one characteristic has a much larger probabilitythan the other characteristics of the di�erential. The probability of thecharacteristic is taken as an estimate of the probability of the di�erential.The analogous concept in linear cryptanalysis is less known: it is the



3.4. COMMON ASSUMPTIONS 33linear hull [59, 94]. The deviation of a linear hull is also estimated by thedeviation of a linear relation.2. The rounds are independent.The cryptanalyst estimates the probability of an r-round characteristic(or linear relation) by the product of the probabilities of the r component1-round characteristics (or linear relations). This approach assumes thatthe probabilities of the di�erent rounds are independent.3. The hypothesis of stochastic equivalence [69].Since the key is unknown, the cryptanalyst often averages the probabil-ity over all keys and uses this as an estimate for the probability of thecharacteristic/relation. This is actually a �rst order approximation: thestochastic variable is estimated by its mean value.These assumptions are necessary because it is clearly infeasible to calculatethe correct probability of a di�erential or a linear relation for each possiblekey. Due to the inherent complexity of an encryption algorithm, this calcula-tion would involve encrypting all plaintexts with all keys and storing all thecorresponding ciphertexts.A clear example that shows the limitations of two of these assumptions isgiven by a double encryption scheme. Let D[k](x) denote the decryption op-eration that is the inverse of the encryption E[k](x). The speci�c choice forthe encryption algorithm is not important, provided that it exhibits no charac-teristics with probability one. A double encryption scheme can be constructedas E2[k1kk2](x) = D[k2](E[k1](x)). The probability of the di�erentials of thisscheme is clearly key dependent. If k1 equals k2, there exist di�erentials withprobability one, and linear hulls with deviation 0.5. The probability of the dif-ferentials cannot be approximated by the probability of a characteristic. Thesame applies to the linear equivalents.There are also more practical examples where the assumptions are violated.A common example is the existence of `weak keys,' where some characteristicshave higher probability than for other keys. In Chapter 5 it is shown that forcertain keys the Message Authenticator Algorithm (MAA) exhibits many morecollisions than the average case. In the same chapter it is shown that thereare many key dependent di�erentials in IDEA. Also an attack is presented thatmakes use of a set of linear relations. While the average deviation of the relationsis low, for each key there exists at least one relation with a high deviation.Nevertheless, there are situations where the assumptions hold and a basicanalysis breaks the cipher. Two examples are given in the next sections.



34 CHAPTER 3. BASIC CRYPTANALYTIC TOOLS3.5 Cryptanalysis of MacGu�nUnder the assumptions of the previous section, the problem of �nding the dif-ferential characteristic with the highest probability or the linear relation withthe highest deviation can be translated into the search for the shortest paththrough a graph. It is then possible to apply the A�-algorithm [91] to solve theproblem. In [79] M. Matsui proposes a simple implementation of this algorithm.He uses it to �nd the best di�erential characteristic and the best linear relationof the DES. Algorithm 3.1 searches for the best di�erential characteristic overn rounds, using over-estimations for the probabilities of the best characteristicsover 1, : : : , n � 1 rounds, and an under-estimation for the probability of thebest n-round characteristic. The more accurate the estimations are, the fasterthe search algorithm can prune wrong paths (corresponding to characteristicswith a low probability).It is possible to optimize the program by taking restrictions on the form ofa characteristic into account [7]. The A�-algorithm was implemented and usedto cryptanalyse the block cipher MacGu�n [12]. These results on MacGu�nhave been published in [110].3.5.1 MacGu�nB. Schneier and M. Blaze [12] introduce a new kind of round transformation: theGeneralized Unbalanced Feistel Network. Together with the general architecturethey give a complete speci�cation of an example: the cipher MacGu�n. Thebasic idea is to split the input of each round into unequal parts. In MacGu�n,the 64-bit input is split into a 48-bit input of the round function, and a 16-bitpart that is exored with the output of the round function. After four rounds all64 bits have been exored once with the output of the round function. Figure 3.1sketches four rounds of MacGu�n. The round function consists of the eightS-boxes of the DES, but the two middle output bits of each S-box are neglectedin order to obtain a 16-bit output. Since the round function only modi�es halfas many bits of the intermediate value as in the case of the DES, the designershave chosen to use twice as many rounds: 32.3.5.2 Di�erential CryptanalysisThe analysis of MacGu�n [110] was done in an `automatic' way by runningAlgorithm 3.1. Figure 3.1 shows the four-round iterative building block of thebest di�erential characteristic for MacGu�n. It has a probability of 1149 , whichshould be compared with 1234 for the best two-round iterative building block fora DES-characteristic. Table 3.1 gives the probabilities of the best di�erentialcharacteristics of MacGu�n. The di�erence values are given in hexadecimal



3.5. CRYPTANALYSIS OF MACGUFFIN 35Algorithm 3.1 A simple algorithm to search for the best di�erential charac-teristic. The values br are estimations for the probability of the best r-roundcharacteristic: b1, : : : bn�1 are over-estimations, bn is an under-estimation.xi; yi denote the input and output di�erence of the round function of roundi, Pr(xi 7! yi) denotes the transition probability.round-1()for every x1p1 = maxy1 Pr(x1 7! y1);if (p1 � bn�1 � bn) then round-2();return; /* exit program */round-2()for every x2, y2p2 = Pr(x2 7! y2);if (p1 � p2 � bn�2 � bn) then round(3);return;round(r) /* r = 3, : : : , n-1 */xr = xr�2�yr�1;for every yrpr = Pr(xr 7! yr);if (p1 � p2 � : : :� pr � bn�r � bn) thenif (r+1 < n) then round(r+1);else round-n();return;round-n()xn = xn�2�yn�1;pn = maxyn Pr(xn 7! yn);if (p1 � p2 � : : : pn � bn) then bn = p1 � p2 � : : : pn;return;notation, which is denoted by the subscript x. It turns out that the probabilityof the best 2n-round characteristic of MacGu�n is signi�cantly larger than the
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Figure 3.1: Four rounds of MacGu�n and the iterative building block of thebest di�erential characteristic.probability of the best n-round characteristic of the DES. From this viewpoint32 rounds of MacGu�n is weaker than 16 rounds of the DES.E. Biham and A. Shamir [10] used a 13-round characteristic for their attackon the full DES. The �rst round is passed with probability one by encipheringlarge structures of plaintexts. The last two rounds are treated by the 2R-attack.An attack on MacGu�n can be mounted using a 27-round characteristic fromthe second to the 28th round. Extended to the �rst round, this characteristic hasan input exor that is di�erent from zero for S-box eight only. Since each S-boxhas only two output bits, only four di�erent output exors are possible. Thereforethe �rst round is passed with probability one by enciphering structures of only



3.5. CRYPTANALYSIS OF MACGUFFIN 37MacGu�n DESn log2(p) n log2(p)8 -11.6 4 -9.612 -19.4 6 -20.016 -27.7 8 -30.520 -34.8 10 -38.424 -42.7 12 -46.226 -46.4 13 -47.227 -47.928 -49.9 14 -54.129 -51.632 -57.2 16 -62.0Table 3.1: The probabilities of the best characteristics for MacGu�n and theDES.eight plaintexts (in comparison to 8192 for the DES). Such a structure consistsof the messages x� (v; 0000x; 0000x; 0000x), x� � � (v; 0000x; 0000x; 0000x),where � = (4040x; 2000x; 0001x; 0000x) and v takes the values from the setf0000x, 0001x, 0002x, 0003xg.Because the di�usion per round of MacGu�n is weaker than that of theDES, it becomes possible to mount a 4R-attack. This attack gives the roundkey of the last round. Since the relation between master key and round keysis di�cult to invert, the attack proceeds by peeling o� the last round and byrepeating the attack on the reduced version of MacGu�n. This step does notsigni�cantly add to the complexity of the attack.Taking the DES S-boxes and reducing the output by chopping o� the middleoutput bits, is a rather arbitrary design decision. It turns out that the resistanceagainst di�erential cryptanalysis can be improved by selecting the �rst twooutput bits from the DES S-boxes and swapping them. The probability for thebest 27-round characteristic becomes 2�50:8. Better still would be to designS-boxes speci�cally for MacGu�n.3.5.3 Linear CryptanalysisA linear relation can be viewed as the tracing of bits through the di�erentrounds of the algorithm. Every `forked branch' is then a `crossroads' wherethe cryptanalyst can choose which way to follow the bits. As a consequenceof the imbalance of MacGu�n, there are 50 % more forked branches in eachround than for the DES (48 `forked' bits instead of 32). On the other hand,



38 CHAPTER 3. BASIC CRYPTANALYTIC TOOLSthe reduction of the output of the S-boxes reduces the number of possible linearrelations for each S-box by 80 % (only 3 possible output masks instead of 15).The e�ect of reducing the number of output bits on the expected value of theprobability of the best linear relation is discussed by K. Nyberg in [95].MacGu�n DESn log2(jp� 0:5j) n log2(jp� 0:5j)4 -2.0 2 -1.78 -5.0 4 -4.012 -9.7 6 -8.016 -13.7 8 -10.720 -18.4 10 -14.424 -21.9 12 -16.828 -26.6 14 -20.830 -28.6 15 -21.832 -30.1 16 -23.4Table 3.2: The probabilities of the best linear relations for MacGu�n and theDES.The probabilities of 2n-round relations for MacGu�n are lower than theprobabilities of n-round DES-relations (cf. Table 3.2). A straightforward appli-cation of the linear attack, using an approximation for 30 rounds, would require22�(28:6�20:8) � 243 = 258:6 plaintexts in order to �nd 12 bits of the round keysof the �rst and the last round. This is still faster than exhaustive key search.In order to determine the remaining part of these two round keys, other linearrelations should be used. The structure of the best 30-round linear relation isshown in Figure 3.2.structure: - - E - - - A - B C D - - - A - B C D - - - A - B C D - - -box (1-8) � � 2jp� 0:5jE 4 3x 2x 0.1250A 4 38x 1x 0.3125B 2 26x 1x 0.1875C 6 15x 1x 0.1875D 4 2Fx 1x 0.3125Figure 3.2: Structure of the optimal 30-round linear relation.In Section 3.5.2 it was shown that MacGu�n could be strengthened against



3.6. A DIFFERENTIAL ATTACK ON BLOWFISH 39di�erential cryptanalysis by selecting other output bits from the DES S-boxes.Selecting the �rst two output bits produced the cipher with the highest resis-tance to di�erential cryptanalysis. It has approximately the same resistance tolinear cryptanalysis as the original version.3.6 A Di�erential Attack on Blow�shBlow�sh is a block cipher designed by B. Schneier [121]. Vaudenay published adi�erential attack on Blow�sh [131]. The attack assumes that the key dependentS-boxes are known to the cryptanalyst. It works on eight rounds for all keysand on sixteen rounds for some weak keys (a fraction of 2�17 of the keys areweak). The di�erential attack presented here [129] works on Blow�sh reducedto four rounds, for all keys and with unknown S-boxes.3.6.1 Blow�shBlow�sh operates on 64-bit plaintexts and has a variable key size (with a max-imum of 448 key bits). It has a 16-round Feistel structure with some slightmodi�cations: the round keys are added in a di�erent place and there are twoextra round keys at the end of the algorithm. The round transformation for the�rst 15 rounds is given bytr = sr�1 � kr�1sr = tr�1 � F (tr); r = 1; 2; : : : ; 15:In the last round this becomes:s16 = s15 � k15 � k17t16 = t15 � F (s15 � k15)� k16 :The F -function uses four S-boxes with eight input bits and 32 output bits. The32-bit input of the F -function is split into four bytes ai, i = 0; 1; 2; 3.F (a0a1a2a3) = ((S0[a0] + S1[a1])� S2[a2]) + S3[a3]Here `�' stands for the exor operation and the `+' operation transforms the 32-bit values to integers and adds them modulo 232. The four S-boxes and the 18kr-values are obtained from the user key by a complex setup scheme. Figure 3.3shows four rounds of Blow�sh.
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F- - mh- h- h�k5s4 t4Figure 3.3: Four rounds of Blow�sh.Incompatible operations + and �The F -function of Blow�sh uses two di�erent operations to combine the out-puts of the S-boxes: modular addition and bitwise exor. It is hoped that theincompatibility of these operations increases the security of the cipher.However, modular addition and the exor operation are strongly related toeach other. The same holds for their associated di�erence operations: modularsubtraction and exor. Knowing x� y, one can determine x� y and x+ y witha certain probability, and vice versa. Values of x� y correspond to a small setof possible values for x � y. This is used in the attack: given the exor valuesxi � yi of a set of pairs (xi; yi) with a constant but unknown di�erence xi � yi,it is possible to determine this di�erence. Only a small number of exors is



3.6. A DIFFERENTIAL ATTACK ON BLOWFISH 41required to determine the di�erence. Note that the sign of the di�erence cannotbe determined, since exor commutes while subtraction does not.For some values of x, special relationships hold. If y 2 f0; 8000xg, x + y =x�y = x�y. For other values of x, the exor and the subtraction have identicaloutput for a large subset of the input space (e.g. x = 4000x).Key equivalence classesThe Blow�sh scheme can be simpli�ed. For every set of S-boxes and k-values it ispossible to determine an equivalent set of S-boxes and k-values, where k0 equals0, by `pushing' the exor with k0 through the algorithm. Table 3.3 shows howthe new S-boxes and k-values relate to the old ones. This simpli�cation permitsa small speed-up of implementations since one exor operation can be omitted.The presented analysis assumes that this simpli�cation has been carried out.original simpli�edk0 0k1 k1 � k0k2 k2k3 k3: : : : : :kn knkn+1 kn+1 � k0kn+2 kn+2 � k0F (x) F (x� k0)Table 3.3: Simplifying the Blow�sh scheme.There are other key equivalences: the most signi�cant bit of all entries inany two S-boxes can be ipped without changing the input-output mapping ofthe cipher. Any value can be added to all entries of S0 and subtracted from allentries of S1. Thus it is always possible to �nd an equivalent key with S0[0] = 0.These equivalences are between expanded keys. Due to the substantial ex-pansion, only a small fraction of the keys from the expanded key space corre-sponds to actual cipher keys. It is very unlikely that there also exist equivalentcipher keys.



42 CHAPTER 3. BASIC CRYPTANALYTIC TOOLS3.6.2 The AttackPart One: exors of F -valuesFrom the description of Blow�sh [121] it follows thats4 = t0 � F (s0)� k1 � F (s0 � F (s1 � F (s0)� k1)� k2)� k3 � k5 : (3.31)The attack uses a second order di�erential. It uses quartets of plaintexts, de-noted (a; b); (a; b�); (a�; b� �); (a�; b�� �). The second order di�erence of (3.31)is given bys4 � s4� � s4�� � s4��� = F (a� F (b� F (a)� k1)� k2)� F (a� F (b� � F (a)� k1)� k2)� F (a� � F (b� � � F (a�)� k1)� k2)� F (a� � F (b� � � � F (a�)� k1)� k2) :(3.32)If � = F (a)� F (a�), then (3.32) reduces tos4 � s4� � s4�� � s4��� = F (a� x)� F (a� y)� F (a� � x)� F (a� � y) ; (3.33)with x = F (b � F (a)� k1) � k2 and y = F (b� � F (a) � k1)� k2. For randomvalues of �, (3.32) will be zero with a certain probability p; (3.33) will be zerowith a larger probability because when x = y it is always zero. This observationcan be used to determine F (a)� F (a�).The attack works as follows. Firstly a set of plaintexts is encrypted with s0�xed to a. A second set is then encrypted with s0 �xed to a�. Quartets arebuilt from these sets by taking two texts from each set. A quartet is valid if thesum of the t0 values equals zero. The sum of the four s4 values then equals thesecond order di�erential of (3.31). If this is zero, it gives two candidate valuesfor F (a)�F (a�): the �rst text from the �rst set can be combined with the �rstor the second text from the second set.The candidate values are veri�ed by experimentally verifying the probabilitythat (3.32) is zero. For wrong values of F (a) � F (a�) the probability will bemuch lower. This test was implemented for a reduced version of Blow�sh, withonly 32-bit block length. For the correct value the probability was 0.14%, forwrong values it was .01%.



3.7. CONCLUSIONS 43Part Two: F -valuesThe technique of Part one allows values for the output exor of arbitrary inputvalues of the round function F to be obtained. This technique is used with twoinputs that di�er only in the input of S3 in the �rst round.a = a0a1a2a3a� = a0a1a2a�3The di�erence of the two outputs is given by:F (a)� F (a�) = S3[a3]� S3[a�3] :Because of the similarity between exor and subtraction, this di�erence can bedetermined with a certain probability. By repeating the operation with di�erentvalues for a0; a1; a2 the di�erence can be determined uniquely, except for thesign bit.In this way it is possible to collect enough information about exors anddi�erences of the F -values to determine the absolute values, except for the signbit. In the next step the absolute values of S3 are determined. SubsequentlyS2; S1 and S0 can be recovered, making use of the equivalence classes.Once the F -function is known, the kr-values can be easily recovered us-ing standard techniques. Finally the most signi�cant bits can be recovered byexhaustive search.Plaintext requirementsOn the reduced version of Blow�sh with block length 32, about 8000 chosenplaintexts are required to determine one output exor value of the round func-tion. The complete attack requires about 210 output exor values, or 221 chosenplaintexts. The number of required plaintexts for Blow�sh with block length 64can be estimated as follows. The number of plaintexts to determine an outputexor of the function will increase to approximately 225. The number of entriesin the S-boxes increases, but each individual entry becomes easier to recover.The number of required exor values increases to 213. This gives a total of 238required chosen plaintexts.3.7 ConclusionsThis chapter started with the de�nition and basic properties of Boolean func-tions, linear functions, the Walsh transform and the other mathematical tools



44 CHAPTER 3. BASIC CRYPTANALYTIC TOOLSthat will be used in the following chapters. The principles of di�erential crypt-analysis were explained, and some extensions were discussed: the use of di�er-entials instead of characteristics, truncated di�erentials and higher order di�er-entials. The new concept of maximal di�erential was de�ned and it was shownthat this allows the number of cases where a di�erential attack is applicableto be extended in a simple way. The principles of linear cryptanalysis anddi�erential-linear cryptanalysis were explained. The underlying assumptions ofboth techniques were clearly stated and their limitations were shown.Although these attacks have been known for some time, new designs havecontinued to be proposed that can be broken using these techniques. The blockcipher MacGu�n has been broken by both linear and di�erential cryptanalysis.The di�erential characteristic and the linear relation were found by a searchprogram that is guaranteed to �nd the best relations. This result has beenpublished in [110]. The second order di�erential attack was illustrated with anew analysis of Blow�sh, reduced to four rounds.



Chapter 4Improved Di�erentialCryptanalysisThe ideas of di�erential and linear cryptanalysis can be extended in variousways. Several extensions have been described in the cryptographic literature.In [45] C. Harpes discusses a binary generalisation and a group generalisationof linear cryptanalysis. In [53] T. Jakobsen presents the generalisation of linearattacks to correlation attacks and discusses the links with di�erential attacks.While these extensions or generalisations are based on sound theoretical princi-ples, few of them have been shown to improve an existing attack on any practicalblock cipher. The extensions to di�erential and linear cryptanalysis presented inthis chapter were developed with applicability in mind and result in an improvedattack on a practical block cipher (e.g., the DES).This chapter is organized as follows: in Section 4.1 concepts of probabilitycalculus are introduced into the framework of di�erential cryptanalysis. Thenew framework makes an improvement of di�erential cryptanalysis possible thatextends the attack to cases where only a limited part of the cipher's output isvisible. In Section 4.2 this extended attack is successfully applied to the DESin CFB-mode with a reduced number of rounds. The results on the DES havebeen published in [105].In Section 4.3 a second extension introduces the idea of maximum likelihood.This technique is used to increase the number of recoverable key bits in an attackon the DES in CFB mode. It is also explained how to apply this technique toimprove a linear attack.The third extension is to block ciphers used as a hash function. Hash func-tions that are based on block ciphers can be analysed using a di�erential at-tack. For these attacks a special kind of di�erential characteristic is required.45



46 CHAPTER 4. IMPROVED DIFFERENTIAL CRYPTANALYSISSection 4.4 introduces a new approach to di�erential cryptanalysis of hash func-tions. These results have been published in [109].4.1 Probability Calculusand Di�erential AnalysisThis section introduces some elements of probability calculus. It starts with thede�nition of probability space that will be used, because this de�nition deviatesfrom that which might be expected. Afterwards the operation of the standarddi�erential attack is described and the extensions are shown.4.1.1 De�nition of ProbabilityStrictly speaking, the knowledge of one or two plaintexts and their correspondingciphertexts is in most cases su�cient to determine the used encryption keyuniquely. The required number of plaintexts is known as the unicity distance[126] of the cipher. For a block cipher that operates on blocks of l bits and usesp-bit keys, on average 2p�nl keys are expected that map n given plaintexts ton given ciphertexts. For most practical ciphers p � l and the unicity distanceis approximately one.Under these conditions it seems a bit strange to talk about the probabilitydistribution of a key. Even if only a few bits of the output are visible, andl is reduced accordingly, a few known plaintexts su�ce to bring the expectednumber of possible keys down to one. However, the equations that describe thekey as a function of the known plaintext and ciphertext bits are highly nonlinearand, currently, the only known way to solve them is by exhaustive search of thekey space, resulting in a very high work factor for the cryptanalyst.In a di�erential attack, as in many other attacks, there is a trade-o� betweenwork and plaintext requirements. By using only statistical information from theplaintexts and ciphertexts, the cryptanalyst is able to reduce the work factorsigni�cantly. It is in this statistical context that the probability distribution ofthe key is de�ned.Let an experiment be de�ned as the encryption of one pair of plaintexts(p; p�) under the unknown key. The result of the experiment consists of thepartial information about the pair of plaintexts and the corresponding pair ofciphertexts that will be used in the attack. If the ciphertext is only partiallyvisible, then this is a �rst restriction on the information that is included inthe result of the experiment. Further restrictions follow from the speci�c dataprocessing stages of the attack. Let X be the key dependent function that takesas input the number of the experiment and produces as output the result ofthe experiment. x denotes a particular outcome of the experiment. If the key



PROBABILITY CALCULUS AND DIFFERENTIAL ANALYSIS 47is not known, X can be considered as a stochastic variable. Often an attackrecovers only part of the unknown key, which we denote by K. The probabilitydistribution for K conditional on the result of an experiment is de�ned as:Pr(K j X) = Pr(K;X)Pr(X) : (4.1)As explained in Section 3.2, a di�erential attack is based on a di�erentialcharacteristic. Let G(X) denote the event that the encrypted pair follows thecharacteristic: G(X) = 1 for a good pair and G(X) = 0 for a wrong pair. ByBayes' rulePr(K j X;G(X) = 1) = Pr(X j K;G(X) = 1) � Pr(K j G(X) = 1)Pr(X j G(X) = 1) (4.2)In what follows, this probabilistic model is used to explain the underlyingprinciples of a di�erential attack and to illustrate the simpli�cations that aremade in a standard di�erential attack. It is then shown how the removal ofsome of the simpli�cations leads to an improvement of the attack.4.1.2 The Basic Di�erential Attack RevisitedA di�erential attack consists of performing some experiments and deciding whichkey value is the most probable, based on the results of the performed exper-iments. Standard di�erential cryptanalysis uses the concept of suggested keyvalues. A key value is suggested if, under the assumption that the encrypted pairfollows the characteristic, the probability of the key producing the experimentalresult is non-zero.Pr(K = k j X = x;G(x) = 1) > 0, Pr(X = x j K = k;G(x) = 1) > 0The conditional probability Pr(X = x j K = k;G(x) = 1) can be calculatedfrom the extended di�erence table.De�nition 4.1 Let s be a mapping from Gn to Gm. The extended di�erencetable is then given by: ees : Gn �Gn �Gm ! G :ees(i; i�; u) = � 1 if s(i)�s(i�) = u0 else (4.3)



48 CHAPTER 4. IMPROVED DIFFERENTIAL CRYPTANALYSISThe extended di�erence table of a mapping s(�) is equivalent to the characteristicfunction of s(i)�s(i�), and can be visualised as a table that results from thesplitting up of the rows of the di�erence table:Xj2Gn ees(j; j�i; u) = es(i; u) (4.4)The set of table entries with the same value of i and i� is called a row, the setof entries with a common u-value is called a column.The relation between the extended di�erence table and the conditional prob-ability distribution of the key is now illustrated for the case of a 1R-attack ona Feistel network.
F [kR�1] ��m̀̀ `````````̀            ... ...

sR tR
sR�10 tR�10

Figure 4.1: The last round of a Feistel Network. The values sR; tR; sR�; tR�; tR�1and t(R�1)� are visible in the ciphertext; sR�10 is predicted by the characteristicof the 1R-attack.Figure 4.1 shows the situation. The used di�erential predicts the di�erenceat the input of the last round. The output di�erence of the round functionF in the last round can be calculated from the ciphertext di�erence and thepredicted input di�erence of the last round. The inputs of the round functionF of the last round are visible in the ciphertext. The input values are denotedby i and i�, the di�erence is denoted by i0 = i�i�, the output value di�erenceis u0. The key addition operation is denoted by `+'. The following then holds:Pr(x j k;G(x) = 1) � eeF (i+ k; i� + k; u0) (4.5)If eeF (i+k; i�+k; u0) > 0, then by (4.2) it follows that Pr(k j x;G(x) = 1) > 0,and the key value k is suggested. If eeF (i + k; i� + k; u0) = 0, then k is notsuggested.



PROBABILITY CALCULUS AND DIFFERENTIAL ANALYSIS 49If the pair does not suggest any keys, it is �ltered. After encrypting a certainnumber of plaintext pairs, the most suggested key is likely to be the encryptionkey actually used. Since the attack only distinguishes between suggested keyvalues and not suggested key values, it works only if not too many key values aresuggested by each experiment. For the extended di�erence table, this means thatin general the attack works if there are many zero entries. If Pr(k j x;G(x) =1) > 0, then for all values of k the experimental result x suggests all key values. Ifthis is true for all possible results, then the basic di�erential attack fails, becauseall key values will be suggested by all pairs. It follows from De�nition 4.1 and(4.5) that this situation cannot occur if the complete input value and outputdi�erence of the mapping are visible.This situation changes when only a part of the input value or the outputdi�erence is visible. Entries that di�er only in invisible parts of the input orthe output have to be joined. Thus a partly visible output results in the joiningof columns, and a partly visible input results in the joining of rows. Input oroutput values that di�er only in invisible parts will be called indistinguishablevalues. Example 4.1 illustrates that this reduction can make the basic di�er-ential attack impossible. In this case there is a de�nite advantage in using themore sophisticated attack that is presented below.Example 4.1 Consider the mapping x 7! x3 + 1 mod 4 in ZZ. Table 4.1 showsthe extended di�erence table and its reduced form.4.1.3 The Extended AttackIt is possible to get more information about the conditional probability Pr(K jX;G(X) = 1) than the simple zero versus non zero distinction that is made inbasic di�erential cryptanalysis. The extended di�erential attack does this.Assuming that the absolute values of the ciphertext output are almost uni-formly distributed, the probability distribution of the key conditional on theresult of one experiment is easily expressed as a function of the entries of theextended di�erence table:Pr(K = k j i; i�; u0; G(x) = 1)= Pr(K = k j G(x) = 1) � Pr(i; i�; u0 j K = k;G(x) = 1)Pr(i; i�; u0 j G(x) = 1) : (4.6)The factors on the right hand side can be calculated. Assuming that the char-acteristic is key independent, Pr(K = k j G(x) = 1) equals Pr(K = k). The



50 CHAPTER 4. IMPROVED DIFFERENTIAL CRYPTANALYSISinputs output di�erencei i� 00 01 10 1100 00 1 0 0 000 01 0 0 0 100 10 1 0 0 000 11 0 1 0 101 00 0 1 0 001 01 1 0 0 001 10 0 1 0 001 11 0 0 1 010 00 1 0 0 010 01 0 0 0 110 10 1 0 0 010 11 0 1 0 011 00 0 0 0 111 01 0 0 1 011 10 0 0 0 111 11 1 0 0 0
0x 1x0x 0x 3 10x 1x 3 11x 0x 1 31x 1x 3 1

Table 4.1: The extended di�erence table of the example mapping (left), and thereduced version if only the most signi�cant bit of input and output are visible(right). Variable x denotes an invisible bit. The di�erence is subtraction in ZZmodulo four.uniform distribution of the absolute values implies:Pr(i; i�; u0 j K = k;G(x) = 1)= Pr(i j K = k;G(x) = 1)Pr(i� j K = k;G(x) = 1)�Pr(u0 j i; i�;K = k;G(x) = 1)= Pr(i) Pr(i�) eeF (i+ k; i� + k; u0)Pv0 eeF (i+ k; i� + k; v0) :HerePv0 means the sum over all distinguishable output di�erences, and likewisein the following,Pl means the sum over all distinguishable input values.Pr(i; i�; u0 j G(x) = 1)= Pr(i j G(x) = 1)Pr(i� j G(x) = 1)Pr(u0 j i; i�; G(x) = 1)= Pr(i) Pr(i�) Pl eeF (i+ l; i� + l; u0)PlPv0 eeF (i+ l; i� + l; v0) : (4.7)If the di�erence operation corresponds to the key addition operation, (4.7) is



PROBABILITY CALCULUS AND DIFFERENTIAL ANALYSIS 51equivalent to:Pr(i; i�; u0; j G(x) = 1) = Pr(i) Pr(i�) eF (i�i�; u0)Pv0 eF (i�i�; v0) : (4.8)Combining (4.6) and (4.8) givesPr(K = k j i; i�; u0; G(x) = 1)= Pr(K = k)eeF (i+ k; i� + k; u0)Pv0 eF (i�i�; v0)eF (i�i�; u0)Pv0 eeF (i+ k; i� + k; v0) : (4.9)Table 4.2 illustrates this for the example mapping.inputs output di�erencei i� 0x 1x0x 0x 1/2 1/20x 1x 3/4 1/41x 0x 1/4 3/41x 1x 1/2 1/2Table 4.2: Pr(K = 0 j i; i�; u0; G(x) = 1) calculated for the example mapping,assuming that Pr(K = 0) before the experiment equals 1/2.Equation (4.9) gives the conditional probability distribution after one goodpair. Denoting the probability of the characteristic with p, the probabilitydistribution after one pair becomes:Pr(K j X) = Pr(K) Pr(X j K)Pr(X)= Pr(K)Pr(X j K;G(X) = 1)p+Pr(X j K;G(X) = 0)(1� p)Pr(X j G(X) = 1)p+Pr(X j G(X) = 0)(1� p) :(4.10)In an extended di�erential attack, the probability distributions resultingfrom the separate experiments are combined. If su�ciently many experimentsare combined then it is possible to determine the correct value of the key withhigh probability. The following propositions show how the results of di�erentexperiments are to be combined.Proposition 4.1 Let q1(K) and q2(K) denote the key probability distributionsresulting from two experiments x1, x2. Let the a priori probability distribution



52 CHAPTER 4. IMPROVED DIFFERENTIAL CRYPTANALYSISof the key be uniform. The combined probability distribution Q(K) is then givenby: Q(k) = q1(k) � q2(k);where the operation `�' is de�ned byq1(k) � q2(k) � q1(k)q2(k)Pl q1(l)q2(l) :To prove this proposition the following lemma is used several times.Lemma 4.2 The conditional distribution of the results of an experiment, con-ditional on the key, does not depend on the results of other experiments.Pr(xi j xj ;K) = Pr(xi j K) (4.11)No formal proof is given for the lemma because it is intuitively clear: if the key isknown, then the results of the experiments are determined. Now Proposition 4.1can be proven.Proof: By de�nition, Q(k) = Pr(K = k j x1; x2) :With Bayes' rule this becomesQ(k) = Pr(K = k) � Pr(x1; x2 j K = k)Pr(x1; x2)= Pr(K = k) � Pr(x1 j K = k) � Pr(x2 j x1;K = k)Pr(x1) � Pr(x2 j x1) :Using (4.11) and the de�nition of q1 this becomesQ(k) = q1(k)Pr(x2 j K = k)Pr(x2 j x1)= q1(k) � Pr(x2 j K = k)Pl Pr(x2 j x1;K = l) � Pr(K = l j x1)= q1(k) � Pr(x2 j K = k)Pl Pr(x2 j K = l) � q1(l) :In these equations Pl means the sum over all possible key values. Since the apriori probability distribution of the key is uniform,Pr(K = k) = Pr(K = l);8l:



4.2. CRYPTANALYSIS OF THE DES IN THE CFB MODE 53The combined probability distribution can now be expressed as:Q(k) = q1(k) � Pr(x2 j K = k) Pr(K = k)=Pr(x2)Pl q1(l) Pr(x2 j K = l) Pr(K = l)=Pr(x2)= q1(k) � q2(k)Pl q1(l) � q2(l) :Let �(k) denote the Kronecker delta function: �(0) = 1 and �(k) = 0;8k 6= 0.Let the uniform distribution be denoted by �(k). A straightforward calculationshows that for any distributions q; r; s:q(k) � �(k) = q(k) (4.12)�(k�k0) � q(k) = �(k�k0) (4.13)(q(k) � r(k)) � s(k)) = a(k) � (r(k) � s(k)) = q(k)r(k)s(k)Pl q(l)r(l)s(l) (4.14)The �rst equation reveals that if an experiment gives no information about thekey, then the conditional probability distribution remains unchanged. If theprobability distribution equals �(k�k0), then the correct key value is known tobe k0. The second equation states that the results of any additional experimentwill not change this. The third equation is the associativity law.These properties can be used to prove the following proposition:Proposition 4.3 The combined outcome from pairs 1; 2; : : : ; j can be calculatedfrom q1(k); q2(k); : : : qj(k) in the following recursive way:Qj(k) = qj(k) �Qj�1(k)Pl qj(l) �Qj�1(l) for j = 1; 2; : : : ;Mand Q0(k) = �(k).In an extended di�erential attack, pairs will be encrypted and the resultswill be processed with Formulae (4.9) and (4.3) until QM (k) allows the valueof k to be predicted with high probability. An estimate of the value of M thatmakes QM (k) close to �(k�k0) will be developed in the next section.4.2 Cryptanalysis of the DES in the CFB modeThe extended di�erential attack can be applied to the DES in the CFB mode[105]. As the key addition in the DES is an exor, it is natural to use exor asthe di�erence operation �. In the m-bit CFB mode, only m bits of the 64-bit



54 CHAPTER 4. IMPROVED DIFFERENTIAL CRYPTANALYSISoutput of the DES are visible. As a consequence, only partial information aboutthe input and the output of the last round is available, as indicated in Table 4.3.It is clear that a di�erential attack requires that information on both input andoutput bits of a single S-box is available. This means that in 1-bit CFB thisapproach is restricted to the trivial case of two rounds. If three rounds or moreare used, then it follows from Table 4.3 that m has to be at least three. Inthe following, the di�erential attack will be described for 8-bit CFB. In thiscase most information is available on S-box three, namely one input bit and twooutput bits. S-box known inputs accessible outputs1 a = 72 e = 13 a = 1 � = 4, � = 64 e = 35 a = 3 � = 26 e = 57 a = 5 � = 88 e = 7Table 4.3: Input bits of S-boxes that are known and output bits that are ac-cessible in the case of m-bit CFB (m � 8); the six inputs bits of an S-box aredenoted by a to f , the four outputs are denoted by � to �, and the CFB bitsare denoted by the digits 1 to 8.4.2.1 Mode Speci�c ProblemsBecause only a limited subset of the input bits and output bits of the last roundis visible, the exor-table has to be reduced. However, for the 8-bit CFB modeall values in the reduced exor-table are equal. Furthermore, when X and Kare restricted to the visible bits and the key bits that are added with visibleinput bits, Pr(K j X) becomes uniform for all values of X , meaning that noinformation about the key can be extracted.Part of the problem can be solved by using the di�erential characteristic topredict the input exor of the last round. This technique avoids the collapsing ofrows in the exor-table. The characteristic predicts only di�erences, not absolutevalues. Since the key addition is linear, the input di�erence of the S-boxes iscompletely determined by the input di�erence of the round; it is independentof the value of the key bits that are added in the last round. Therefore it isonly possible to recover key bits that are added to bits that are visible in the



4.2. CRYPTANALYSIS OF THE DES IN THE CFB MODE 55output. Only for these bits can the absolute value of the corresponding bits atthe input of the S-boxes be expressed as a function of the unknown key bits andthe known output bits. For the case of the DES in 8-bit CFB, this means thatonly three key bits can be recovered: one that enters S3 in the last round, onethat enters S5 and one that enters S7.Input exor prediction makes a di�erential attack possible, because now forsome values of X not all values of K are possible. This e�ect is visible inthe reduced form of the extended exor-table: some zero entries appear (cf.Table 4.4). However, for the most probable experimental results x, the entriesare non zero for all key values k (because only one input bit is visible, thereare only two k-values). This means that using the conventional approach, mostpairs that pass �ltering will suggest both key values, resulting in a dramaticincrease in the chosen plaintext requirements.Note that Proposition 3.2 does not apply here. Only a part of the output ofthe cipher is visible, and a part of the invisible output is predicted and actuallyused to extract information about the key. Therefore, there will be pairs thatdo not have the predicted di�erences (`wrong pairs') but that do suggest thecorrect value for the key.Table 4.4 gives a part of the reduced form of the extended exor-table of S3.We denote by i and i�, the bits that enter S3 in the last round in position a. Bit7 of the visible output equals i� k, resp. i� � k. Only one input bit is visible,but the rest of the input di�erence can be predicted by the characteristic. Whenbit a of the input exor is zero, the two rows of the extended exor-table havedi�erent entries, only in this case, the conditional probability distribution isnon-uniform. The fact that the two rows of the extended exor-table are equalwhen bit a = 1 can be easily understood. For every input pair (p; p�) with(i; i�) = (0; 1), there is a corresponding pair (p�; p) with (i�; i) = (1; 0). Sincethe exor operation commutes, the output exors of both pairs are the same. Inthe remaining analysis only input exors with the bit a equal to zero will beconsidered.Table 4.4 contains all the information needed to calculate Pr(K j X;G(X) =1) using (4.9). Before (4.10) can be used to calculate Pr(K j X), a remarkshould be made about the characteristic's probability. Both the input exor andthe output exor are only known with a certain probability. These probabilitiesare close to one another, but are generally not equal; which of the two is bestknown depends on the �ltering. However, to simplify the analysis it will beassumed that both exors are known with the same probability. This turns outto be a good approximation.The extended di�erential attack can be applied to determine k. If QM (0) >0:5, we decide that k = 0. In practice it is expected that, after a su�cientnumber of experiments, 1 � QM (0) will be a reliable estimate for k and willbe close to 1 (or 0) with high probability. An important question is how the



56 CHAPTER 4. IMPROVED DIFFERENTIAL CRYPTANALYSISinput exor S30E output exor S30O quality H(i; i�) 00xxx 01xxx 10xxx 11xxx Eq. (4.17)01x 2 18 18 26 0.719(0; 0) 2 14 10 6(1; 1) 0 4 8 2002x 2 10 26 26 0.688(0; 0) 0 8 16 8(1; 1) 2 2 10 1804x 4 8 24 28 0.688(0; 0) 4 8 8 12(1; 1) 0 0 16 1610x 4 24 12 24 0.688(0; 0) 0 8 8 16(1; 1) 4 16 4 820x 0 16 8 40 0.5(0; 1) 0 8 4 20(1; 0) 0 8 4 2024x 26 22 10 6 0.5(0; 1) 13 11 5 3(1; 0) 13 11 5 3Table 4.4: This table was formed by joining parts of the reduced forms of theexor-table and of the extended exor-table for S3. The rows are rearranged suchthat rows with a common input exor are near to one another. The only visibleinput bit is a, but the complete input exor is predicted by the characteristic.Variable x denotes an invisible bit, and the subscript x indicates hexadecimalnotation.required number of pairs depends on the required error probability.Denote by N(z) the required number of right pairs to predict a key bit withan error probability equal to z. Letq[i; u0] = Pr(K = 0 j i; i�; u0) ; (4.15)where i� is left omitted from the notation because for a good pair it is determinedby i and the characteristic. An estimation of N(z) is given by N 0(z), whereN 0(z) is de�ned byN 0(z) = 64 � ln � 1z � 1�ln (�) ; with � = 3Yv=0� 1q[0; v] � 1�eeF (0;0;v)�eeF (1;1;v) ;(4.16)



4.2. CRYPTANALYSIS OF THE DES IN THE CFB MODE 57where v indexes the four columns of the extended exor-table.This formula is motivated by the following. Suppose k = 0, and consider64 right pairs distributed according to the entries in the extended exor-table.Then Q64(0) = Q qi(0)Q qi(0) +Q(1� qi(0))= 11 +Q( 1qi(0) � 1)= 11 + ( 1q[0;0] � 1)eeF (0;0;0) � � � � � ( 1q[1;3] � 1)eeF (1;1;3) :From (4.15) it follows that q[0; v] + q[1; v] = 1, therefore1q[1; v] � 1 = 11� q[0; v] � 1 = ( 1q[0; v] � 1)�1 :This givesQ64(0) = 11 + ( 1q[0;0] � 1)eeF (0;0;0)�eeF (1;1;0) � � � � � ( 1q[0;3] � 1)eeF (0;0;3)�eeF (1;1;3)= 11 + � :For an arbitrary number of right pairs n this becomesQn(0) = 11 + �n=64 :To predict k = 0 with an error probability z, it is required that Qn(0) � 1� z.Equation (4.16) de�nes N 0(z) such that QN 0(z)(0) = 1� z.If the wrong pairs are randomly distributed then their inuences on Q cancelone another out. This follows from the fact that q[0; v] = 1� q[1; v] (the key bitis either 0 or 1). In this caseq[0; v] � q[1; v] = q[0; v](1� q[0; v])q[0; v](1� q[0; v]) + (1� q[0; v])q[0; v] = 12 :Thus it is expected that wrong pairs will produce the uniform distribution forQ(0). The total number of required pairs M(z) can then be estimated byp�1N 0(z).Note that (4.16) can be extended to the case where certain output exorsare �ltered: one can simply modify the corresponding table entries such thatees(0; 0; u0) = ees(1; 1; u0), yielding q[0; u0] = q[1; u0] = 0:5.



58 CHAPTER 4. IMPROVED DIFFERENTIAL CRYPTANALYSISThe optimisation of this attack, or equivalently the minimisation ofM is noteasy, since it also depends on the properties of the characteristic: the probabilityp, the possibility of �ltering and the non-uniformity in the extended exor-table.A good heuristic measure for the entries in the extended exor-table for a giveninput exor i is the expressionH = P3v0=0max(eeF (0; 0; v0); eeF (1; 1; v0))P3v0=0 eeF (0; 0; v0) + eeF (1; 1; v0) : (4.17)This measure is indicated in Table 4.4. H = 0:5 means that the extended attackis not applicable.4.2.2 An Attack on 4 RoundsIt follows from the previous section that the optimal input exor of S3 in thelast round is 01x. The characteristic has to predict only the input exor of S3in the last round and the exor of two bits that are added to the output ofS3 in the last round. This means that a truncated characteristic can be used,which has a higher probability. Figure 4.2 shows a di�erential characteristicwith high probability that produces the required input exor in the last round.The input exor to the �rst round is equal to (40 08 00 00x; 04 00 00 00x). Thecharacteristic has then a probability of 1=4 in the �rst round. In the third round,it is su�cient that the input exor to S3 is correct. This gives a probability of 3=4for the truncated characteristic in the third round. A close inspection revealsthat all pairs that go wrong in the third round result in an input exor of zerofor S3 in the last round. If the pairs with output exor 00xxx for S3 are �ltered,these wrong pairs can be �ltered out. Of the pairs that go wrong in the �rstround, approximately one quarter will produce an output exor 00xxx. Only afraction of 264 of the right pairs are lost. Further �ltering of the wrong pairs canbe done on the visible input bit of S3. From this it follows that the fraction ofright pairs after �ltering is equal to~p = p1p3 6264p1p3 6264 + (1� p1) � 34 � 12 = 0:392 :The following equation for q0;v the follows from (4.15) and (4.10):q0;v = 12 � ~p � eeF (0;0;v)30 + (1� ~p) � 13~p � eF (0;v)62 + (1� ~p) � 13 : (4.18)This assumes that the wrong pairs yield a uniform distribution of output exors,a fact which has been con�rmed by computer experiments. This gives q0;1 =0:609, q0;2 = 0:527, and q0;3 = 0:383.
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Figure 4.2: The optimal characteristic for an attack on 4 rounds.For an error probability of 5% (or z = 0:95), (4.16) gives M 0 = 16:6 and Mis estimated to be M 0=p = 89, which was con�rmed by computer simulations.A similar attack can be applied to determine a key bit entering S-boxes 5 and7; it will only be discussed for a larger number of rounds.If m = 8, a di�erential attack allows three key bits to be determined (namelyone bit corresponding to S3, S5 and S7), and if m = 16 this increases to six keybits. Even in that case, the maximal number of output bits of a single S-box isequal to two.4.2.3 5 Rounds and MoreIn order to develop an attack that is extendible to more rounds, an iterativecharacteristic will be used. Detailed calculation shows that the best result isobtained with the iterative characteristic � (s00 = 19 60 00 00x; t00 = 0x) [10].For �ve rounds, the fraction of right pairs after �ltering becomes 9:40 �10�3. For



60 CHAPTER 4. IMPROVED DIFFERENTIAL CRYPTANALYSISan error probability of 5% (or z = 0:95), (4.16) predicts that 370; 000 pairs aresu�cient to obtain a key bit (only 1 characteristic has been used). Computersimulations show that the actual number of pairs is even smaller.For S-boxes 6 and 7, a similar strategy can be followed. The best iterativecharacteristic for both S-boxes has input exor s00 = 00 00 1D 40x; t00 = 0. Thefraction of right pairs after �ltering is equal to 5:92 � 10�3 and 3:33 � 10�3, fromwhich it can be estimated that the number of required pairs is equal to 12 and8:4 million.To attack six rounds, the �rst round trick [10] can be used. The estimatednumber of pairs to �nd 1 and 3 key bits for 8-bit CFB are indicated in Table 4.5.The attack for R = 7 (without the �rst round trick) was implemented asa distributed application on a heterogeneous, non-dedicated farm of 30 DECworkstations, using the PVM (Parallel Virtual Machine) software [42] for inter-process communication. The program was generated and run from the HeNCE(Heterogeneous Network Computer Environment) software [9]. The correct keybits were retrieved from 235:2 pairs using a quartet structure; the attack tookabout 40 hours. Table 4.5 gives the required number of pairs for the DES re-duced to six, eight or ten rounds, and for the full DES. Since there are only 263di�erent pairs, the maximum number of rounds that can be broken, in theory,is ten.# rounds probability p # pairs1 bit 3 bits 1 bit 3 bits6 9:40 � 10�3 3:33 � 10�3 218:5 223:08 4:05 � 10�5 1:15 � 10�5 234:2 239:410 1:73 � 10�7 3:93 � 10�8 250:0 255:816 1:35 � 10�14 1:57 � 10�15 297:2 2104:7Table 4.5: Probability of the characteristic and number of pairs to �nd 1 and 3key bits in 8-bit CFB.4.2.4 DiscussionIndependent of our research, K. Ohta and M. Matsui developed a di�erentialattack [99] that can be used against reduced versions of the DES in m-bit CFBmode. Their attack can be applied to the DES, reduced to eight rounds, ifm � 24.If m increases, our attack becomes also more e�cient, and more key bits canbe found (�ve if m � 15). If m � 18, three output bits of a single S-box are



4.3. MAXIMUM LIKELIHOOD 61known, which implies that a smaller reduction has to be applied to the exor-tables. This results in a reduction of the required number of chosen ciphertextpairs. If m � 15, two bits of S8 in the last round are known, and the input tothe last round but one can be estimated. Only if m � 28 can information onboth input and output of a single S-box be obtained in this way, thus allowingkey bits in this round to be determined.This di�erential attack would be impossible without IP�1. In the absenceof IP�1 only information on the output of S-boxes of the last round would beavailable. The security of the DES in 1-bit CFB could be improved if the bitis selected from the left half of the ciphertext. Selecting all the CFB bits fromthe left half of the ciphertext thwarts the proposed di�erential attacks for smallvalues of m. Another way to strengthen the DES in the CFB mode againstdi�erential attacks could be a redesign of the S-boxes in the last round in orderto decrease the di�erence between the 0 � 0 and 1 � 1 entries in the reducedexor-table. Finally, a completely di�erent structure for the computation of theCFB bits from the inputs to the last round could be used.4.3 Maximum LikelihoodMaximum likelihood techniques can be used to improve di�erential cryptanalysisof a large class of block ciphers. As explained in the previous sections, whenthe output of the cipher is only partially visible, the basic di�erential attackcan recover only a small number of key bits. The maximum likelihood attackrecovers more key bits.The optimisations can be used for any block cipher of the Feistel type (cf.Section 2.1.1 and [37]). More generally, the analysis is applicable to all cipherswhere the input of each round is �rst combined with a part of the key andsubsequently transformed with a substitution.The technique is also applicable to linear cryptanalysis. In that case however,the improvement is only marginal for the cases that have been studied.4.3.1 General IdeaConsider a probabilistic relation � between plaintext, ciphertext and the key.The probability of this relation depends on the actual values of the input of thesubstitution. It follows that�(H;Z) = 0 with probability p = p(I); I = G�K ; (4.19)whereG;H are di�erent sets of plaintext or ciphertext bits;



62 CHAPTER 4. IMPROVED DIFFERENTIAL CRYPTANALYSISK;Z are di�erent sets of key bits;I is a set of input bits of the S-boxes in the �rst and/or last rounds.Any kind of relation will su�ce, provided that p is su�ciently large: for examplea di�erential relation (such as in [10]) which requires a chosen plaintext attack,or a linear relation (such as in [77, 78]) which corresponds to a known plaintextattack.Firstly the dependence of p on I is analysed. This o�-line analysis gives thetheoretical pattern pt(i).De�nition 4.2 Let �(H;Z) be a relation between Z, a set of key bits, and H, aset of plaintext and ciphertext bits, which holds with probability p. Let p dependon I. The table that for each value i of the variable I gives the value of p(I) iscalled the theoretical pattern pt(I).Subsequently plaintext-ciphertext pairs for the secret key k are taken intoaccount. Since the input of each round is added modulo 2 to the unknown key,the actual values of this input I are not known. However, for a constant valueof the key k, identical g-values yield identical i-values. By combining plaintextswith the same value g and noting for which z �(H = h; Z = z) = 0, the observedpattern pp(G) is constructed.De�nition 4.3 Let �(H;Z) be a probabilistic relation between Z; a set of keybits and H; a set of plaintext and ciphertext bits. Assume that the probability ponly depends on I, the actual input of certain S-boxes. Let I = G �K, whereK denotes unknown key bits, and G denotes bits that are visible in the plaintextor the ciphertext. Consider a number N of plaintext-ciphertext pairs. The tablethat gives, for each row g and for each column z, the fraction of text pairs forwhich �(h; z) = 0, is called the observed pattern pp. The row g is denoted pp(g).Proposition 4.4 Under the above mentioned conditions, the a posteriori distri-bution of K and Z only depends on the theoretical pattern pt(I) and the observedpattern pp.Proof: Bayes' rule says:Pr(Z;K j pp) = Pr(pp j Z;K) Pr(Z;K)Pr(pp) : (4.20)Pr(Z;K) is given by the a priori distribution of Z and K. Application of thesum rule givesPr(pp) =Xz;k Pr(pp j Z = z;K = k) Pr(Z = z;K = k) ;



4.3. MAXIMUM LIKELIHOOD 63which is independent of the values of Z and K. Therefore (4.20) reduces toPr(Z;K j pp) � Pr(pp j Z;K) : (4.21)Application of the product rule givesPr(pp j Z;K) =Yg Pr(pp(G = g) j Z;K) :Under the condition that p only depends on I , Pr(pp(G) j Z;K) follows fromthe binomial statistic with probability p = pt(G�K).Assuming that each value of G occurs with the same probability, one canconclude that the most probable value of Z;K is the one that gives the closestmatch for pp(G�K) and pt(I), after a guess for Z. Figure 4.3 gives a graphicalexample where Z is a single bit and K can take values between 0x and 3Fx. Amatching for pp and pt is good if peaks are mapped to peaks, and valleys tovalleys.An advantage of this approach is that it results in the complete a posterioridistribution of Z;K. This can be used to reduce the required number of texts.Instead of processing a �xed number of texts, one can look at the probabilitydistribution after processing N texts and decide whether the attack requiresmore texts, or make a guess about the correct key value. The optimal value of Nis determined by the relative cost of an encryption versus the cost of computingthe distribution. However, the most important e�ect is the decoupling betweenthe number of visible output bits and the number of recoverable key bits. Thisis now illustrated with two examples.4.3.2 Application of the Maximum Likelihood techniqueTwo maximum likelihood based attacks are presented. The �rst attack wasmeant to improve the linear attack on the DES. However, the expected im-provement was not observed. The second example improves the di�erentialattack on the DES in CFB-mode.4.3.3 The Linear AttackDescription of the attackFor �(H;Z) the relations given by M. Matsui [78] are used. In order to analyseR rounds of the DES, an (R�2)-round linear relation is required. For the linearattack the parameters from (4.19) correspond to:H: the exor of the plaintext and ciphertext bits that appear in the relation;
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4.3. MAXIMUM LIKELIHOOD 65Z: the exor of the key bits that appear in the relation;I: the 12 input bits that enter the S-boxes that are approximated in the �rstor last round;G: the 12 corresponding plaintext and ciphertext bits;K: the 12 corresponding key bits.The relation can be divided into two parts: over the middle R � 2 rounds ithas a �xed probability pR�2, over the �rst and the last round it holds withprobability 1 or 0, depending on the value of I . The most probable value z; k isthe value that gives the closest match forpp(G) and p0t(G) ;where the pattern p0t is de�ned as follows: for every g,p0t(g) = (1� z)pt(g � k) + z(1� pt(g � k)) :Algorithm 4.1 can be used to determine the closest match.Algorithm 4.1 Using maximum likelihood principles to optimize a linear at-tack.calculate the theoretical pattern ptpt(i) = 1 if �(i; 0) = 0 with probability pR�2initialize pp(hkg) = 0, for hkg = 0::213 � 1repeatfor i = 1::N dotake an encryptionincrement counter pp(g + 212 � h)calculate the a posteriori distribution of ZkKuntil a posteriori distribution satisfies stop criterionIt is clear that the data collecting phase is identical to the one describedin [78]. The di�erence is in the information extraction phase. The originallinear attack assumes that wrong subkey guesses will yield a low probabilityfor the relation �. This assumption is known as the hypothesis of wrong keyrandomisation [45]. Since the maximum likelihood method looks at the completepattern of the information, it will remain e�ective even when this hypothesisdoes not hold and two or more guesses for the subkey in a round yield aboutthe same probability for the relation �. Referring to the graphical example of



66 CHAPTER 4. IMPROVED DIFFERENTIAL CRYPTANALYSISFigure 4.3, the original linear attack only examines whether the highest peak ofpp is mapped to the highest peak of pt, while the maximum likelihood techniqueconsiders the mapping of all peaks and valleys.Experimental resultsApplication to the DES: The algorithm was applied to the DES and im-plemented on a cluster of DEC and HP workstations with the tool PVM3.3.3[42].The results of the maximum likelihood method and Matsui's method arealmost identical. Experiments were performed for the DES reduced to eightand twelve rounds with various numbers of plaintexts. Also the experimentalprobability that the right 13 bit key is among the t highest ranked candidates forboth methods was measured, with t = 1; 2; : : : ; 32: This also gives very similarresults for both methods.Figure 4.4 gives the probability of success as a function of the number ofplaintexts used for the case of the DES, reduced to eight rounds, for t = 1 andt = 30: Similar curves are obtained for the case of the DES, reduced to twelverounds.The probability of �nding k does not increase signi�cantly. A possible ex-planation is that for the linear relation which is used, the most likely subkey hasa higher probability than the other ones (there is only one peak). Therefore,Matsui's straightforward approach is su�cient.Akelarre: Akelarre [5] is a block cipher that was proposed at SAC'96. Thecipher has a block length of 128 bits and a variable key length (always a multipleof 64 bits). Its round function is built from components of IDEA [69] and RC5[115]. As can be seen in Figure 4.5, Akelarre uses modular addition, exorsand rotations. The round function has the typical IDEA structure, where theMultiplication-Addition structure has been replaced by an Addition-Rotationstructure. This AR-structure is based on RC5, but for the purposes of thisattack, it can be considered as a black box.The round function of Akelarre has a serious weakness. Denoting the fourinput words with u1; u2; u3; u4 and the four output words with v1; v2; v3; v4, thefollowing invariant holds:(v1 � v3)k(v2 � v4) = rotrmod64(u1 � u3)k(u2 � u4); (4.22)where r denotes the rotation key. This invariant can be concatenated for anynumber of rounds (Akelarre was originally proposed with four rounds). The ci-pher can be broken with a linear attack, using only ciphertexts. This is done byguessing the least signi�cant bytes of some keys in the input and output trans-formation and verifying whether (4.22) holds with high probability. Once the
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Figure 4.4: Probability of success as a function of the number of plaintexts usedfor the DES, reduced to eight rounds (t denotes the number of candidates forzkk).least signi�cant bytes are determined, we proceed with the next bytes. However,because the input and output transformation have no strong nonlinear elements,the hypothesis of wrong key randomisation does not hold. It has been experi-mentally veri�ed that the standard linear attack does not work here, whereasthe maximum likelihood technique allows the keys to be found very easily. Theattack was tested by encrypting the LATEX source of this text: 5000 ciphertexts(625 kbyte) su�ce to break the cipher.4.3.4 The Di�erential Attack on the m-bit CFB modeDescriptionIn order to simplify the discussion, only the attack on the DES reduced to 4rounds in the 8-bit CFB mode will be explained. The extension to attacks onmore rounds as described in Section 4.2 is straightforward.In 8-bit CFB mode, the extended di�erential attack from Section 4.1 allowsinformation on key bit k44, which enters S3 in the last round, to be obtained.
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4.3. MAXIMUM LIKELIHOOD 69In Section 4.2 it was shown that in order to achieve this goal, the characteristicof Figure 4.2 is optimal. This characteristic yields an input exor of 01x for S3in the last round.Only a single input bit of S3 is visible in the output: in the extended dif-ferential, pairs for which this input exor equals 1 are �ltered. As explained inSection 4.2.2, the attack can be improved by �ltering in addition the pairs withoutput exor 00xxx for S3. The fraction of right pairs after �ltering is now equalto 0:392, assuming that the wrong pairs yield a uniform distribution of outputexors.In the �rst round, only S2 is active. The input exor is equal to 08x, andthe corresponding right output exor is equal to Ax; it has a probability of 1=4.The corresponding row of the exor-table is the last row of Table 4.6. Theupper rows of Table 4.6 are rows from the extended exor-table of S2. Onlythe rows with input exor 08x are shown. Rows that di�er only in the third orfourth input bit are merged. Due to the symmetry of the exor operation, therows corresponding to the values (a; a � 08x) and (a � 08x; a) must always bemerged. This means that the value of the third input bit from the left has noinuence. In this particular case, it turns out that the value of the fourth bitalso has no inuence on the output exor.The pairs that follow the characteristic in the �rst round follow the charac-teristic in the last round with a probability of 3=4; in this case they are �lteredwith probability 2=64. If the pair does not follow the characteristic in the lastround then it is �ltered with probability 5=8. This yields a probability of �lteringof 34 � 264 + 14 � 58 = 23128 :For pairs which do not follow the characteristic in the �rst round, the probabilityof �ltering is equal to 5=8 = 80=128.The �ltering probability of a pair depends on the probability that it passesthe �rst round of the characteristic. This probability depends only on the valueof four input bits, that are given by the exor of four known plaintext bits andfour unknown key bits. This means that the relation � can be de�ned as follows:� = 1, the pair is �ltered :Experimental resultsFinding the 4 key bits with a success probability of 90% requires on average280 pairs; in order to increase this probability to 98% the attack requires onaverage 330 pairs. For the 8-bit CFB mode one of these 4 key bits overlaps withthe 3 bits found with the extended di�erential attack from Section 4.2. It is



70 CHAPTER 4. IMPROVED DIFFERENTIAL CRYPTANALYSISoutput exors (hexadecimal)input values 0x 1x 2x 3x 4x 5x 6x 7x 8x 9x Ax Bx Cx Dx Ex Fx00xx00x � 00xx00x 0 0 0 0 0 0 0 0 0 2 0 2 0 0 0 000xx01x � 00xx01x 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 000xx10x � 00xx10x 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 000xx11x � 00xx11x 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 201xx00x � 01xx00x 0 0 0 0 0 2 0 2 0 0 0 0 0 0 0 001xx01x � 01xx01x 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 001xx10x � 01xx10x 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 001xx11x � 01xx11x 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 210xx00x � 10xx00x 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 010xx01x � 10xx01x 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 010xx10x � 10xx10x 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 010xx11x � 10xx11x 0 0 0 2 0 0 0 2 0 0 0 0 0 0 0 011xx00x � 11xx00x 0 0 0 0 0 0 0 0 0 0 0 0 2 0 2 011xx01x � 11xx01x 0 0 0 0 0 0 0 0 0 2 0 2 0 0 0 011xx10x � 11xx10x 0 0 0 0 0 0 0 0 0 2 0 2 0 0 0 011xx11x � 11xx11x 0 0 0 2 0 2 0 0 0 0 0 0 0 0 0 0input exor = 08x 0 0 0 4 0 4 0 8 0 10 16 6 6 0 6 4Table 4.6: The rows with input exor 08x from the exor-table and the extendedexor-table of S2. Rows that only di�er in the third or the fourth bit are merged.possible to exploit this overlap to reduce the number of required pairs, but thisoptimisation has not been implemented.It is clear that these results can be extended directly to the attacks on morerounds. The main di�erence is that these attacks use another characteristic,which activates di�erent S-boxes. The number of key bits which can be found isequal to the number of input exor bits equal to 0 in the active S-boxes, minus thenumber of input bits which give no information (like the fourth input bit of S2above). In addition overlap between key bits should be taken into account. Dueto the nature of the attack, only probabilities in the �rst round are modi�ed,resulting in an increase in the number of chosen ciphertext pairs with a constantfactor between three and four. The attack still presents no serious threat forthe full DES in the CFB mode, but the attack on eight rounds becomes morerealistic, since it can �nd ten key bits with about 241 chosen ciphertexts. Notethat in some implementations of the CFB mode, the number of rounds wasreduced from 16 to 8 in order to improve the performance. In comparison withthe CBC mode of the full DES, the 8-bit CFB mode with the DES reduced



4.4. DIFFERENTIAL CRYPTANALYSIS OF HASH FUNCTIONS 71to eight rounds requires 64=8 � 8=16 = 4 times more work and gives a smallersecurity margin against a di�erential attack.4.4 Di�erential Cryptanalysis of Hash FunctionsIn this section an improvement of the di�erential attack on hash functions basedon block ciphers is presented [109]. In Chapter 2 it is explained how hashfunctions can be constructed from block ciphers. Twelve secure variants forconstructions where the length of the hash result equals the block length aredescribed in [103]. Only four of these variants can be attacked with the describeddi�erential attack, since it requires the cryptanalyst to have explicit control overthe plaintext input of the block cipher, and that the key is �xed. The hashfunction studied here uses the DES as compression function in the followingconstruction: hi = f(xi; hi�1) = DES[hi�1](xi)� xi : (4.23)A di�erential attack on block cipher based hash functions is similar to anattack on the underlying block cipher, but there are some important di�erences.By using the speci�c properties of the collision attack on hash functions, thework factor to �nd a pair that follows the characteristic can be reduced. Anew family of di�erential characteristics is proposed that are especially usefulin combination with the improved attack. Attacks on a hash function based onDES variants reduced to 12, 13 or 15 rounds become faster than brute forcecollision attacks. These results have been published in [109]4.4.1 Properties of the Hash ModeAn attack that is always applicable to hash functions is a brute force collisionsearch. Because of the birthday paradox this attack requires approximately2(l+1)=2 encryptions to produce a collision for a hash function with an l-bitoutput. For the case of the DES, l = 64 and about 232:5 encryptions are required.Di�erential cryptanalysis can be applied to hash functions in the same wayas to the corresponding block ciphers, but there are some important di�erences[104].� For the case of a collision attack, the plaintext input can be controlled.This a the di�erential attack on the hash function feasible. A di�erentialattack on a block cipher used as an encryption device, in contrast, ismainly of theoretic interest.� The key is known. Sometimes the key can be chosen freely, or the bestalternative can be chosen out of a set of possible keys. This can be ex-ploited in several ways. Firstly, when searching for a collision, input values



72 CHAPTER 4. IMPROVED DIFFERENTIAL CRYPTANALYSIScan be selected that follow the characteristic with probability one in cer-tain rounds. Precomputation of a few tables allows the inputs of four or�ve consecutive rounds to be chosen (cf. Section 4.4.2). Secondly, theprobability of some characteristics is key-dependent. If the key can becontrolled then it is chosen to be optimal for the used characteristic, oth-erwise a characteristic with optimal probability for the given key can beselected. Thirdly, an early abort strategy can be used: as soon as it isclear that the pair is a wrong pair, it is discarded. For most inputs, onlya few rounds have to be computed.� There are more restrictions on the characteristic: in block cipher analysisthe most probable characteristic can be used. For hash functions, thecharacteristic has to produce a collision, i.e., the output exor of the roundfunction f must be zero. For the construction of (4.23), this means thatthe output exor of the block cipher has to match the input exor. Moreover,the characteristic must cover all the rounds: 1R-, 2R-, or 3R-attacks donot apply. This reduces the probability of the characteristic.� Only one right pair is required to �nd a collision or a second preimage.In the rest of the section only collision attacks are considered.4.4.2 Choosing InputsIn a collision attack, the input values (or messages) are chosen arbitrarily. Thisfreedom is used to enhance the success probability. A naive approach is to selectmessages that will follow the proposed characteristic in the �rst two rounds withprobability one. Algorithm 4.2 allows four rounds to be passed with probabilityone. A very simple extension of the algorithm allows �ve rounds to be passedby adding an extra round at the beginning. Figure 4.6 de�nes the notation forintermediate values of the hashing.4.4.3 Good CharacteristicsIt has already been observed in [104, 59] that it is a non trivial problem to �ndgood even-round characteristics for the hash function of (4.23). Since all knownFeistel ciphers have an even number of rounds, the even-round characteristicsare of most interest. One-round iterative characteristics can have an arbitrarynumber of rounds, but they have a very low probability of 1234 per round (cf.Figure 4.7). Two-round iterative characteristics have the highest probability forseven rounds or more [80], but in hash functions they can only be applied to DESvariants with an odd number of rounds. This can be concluded from Figure 4.7.Each 0 x0 round has on average a probability of 1234 . Dependent on the round
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Figure 4.6: Four rounds of the DES.



74 CHAPTER 4. IMPROVED DIFFERENTIAL CRYPTANALYSISAlgorithm 4.2 An algorithm to easily �nd the good pairs of a given four rounddi�erential characteristic.Step 1:For a given key k calculate table T1 that lists all values of t1 that follow thecharacteristic in round 1. Repeat this for tables T2 and T3 that list the values off2 and t3 respectively. Since in each round only a few S-boxes are active, thesetables can be reduced in size by the use of `don't cares': the inputs of non-activeS-boxes are arbitrary and thus not speci�ed.Step 2:Match these three tables and look for all possible values of (t1; f2; t3).Step 3:Calculate table T4 with all values for t4. For every (t1; f2; t3) `invert' round twoand try to match the possible values of t2, F [k](t3) and t4.Step 4:For each match found, calculate the inputs to the �rst round.key, this probability is 1146 or 1585 . For 13 rounds, the attack requires the samenumber of encryptions as the brute-force collision attack. However, since theDES has 16 rounds, any serious attack requires a characteristic with an evennumber of rounds.(x0 , x0) (x0 , 0)0  x0 0  00  x0 0  x00  x0 0  00  x0 0  x00  x0 0  0(x0 , x0) (x0 , 0)Figure 4.7: One-round and two-round iterative characteristics.In [104], B. Preneel proposes the search for an input value x0 that is a good�xed point (x0  x0) and a good building block for an iterative characteristic(0 x0). In [59], L.R. Knudsen shows that such a characteristic cannot have ahigh probability. The problem is that all x0 with a high probability for 0 x0have low probability for x0  x0, and vice versa. L.R. Knudsen therefore pro-poses the use of an iterative characteristic based on a special four round buildingblock (cf. Figure 4.8). This building block has probability 2�23:6, averaged overall keys, and 2�23:0 for optimal keys. For a DES variant with eight rounds, thework factor is comparable to a brute-force collision search.The following approach gives a better result, especially in combination with



4.4. DIFFERENTIAL CRYPTANALYSIS OF HASH FUNCTIONS 75(E0000004x , E0000004x)00000002x  E0000004x00000002x  E0000006x00000002x  E0000006x00000002x  E0000004x(E0000004x , E0000004x)Figure 4.8: The 4-round iterative characteristic of L. Knudsen.(x0 , 0) (x0 , 0)0  0 0  00  x0 0  x0: : : : : : : : : : : :x0  x0 a0  x00  x0 x0 � b0  a0: : : : : : x0 � a0  b0b0  x00  0(x0 , 0) (x0 , 0)Figure 4.9: Two alternatives for the transient part of an iterative characteristic.the algorithm of Section 4.4.2. Take a value x0 with good probability for 0  x0. Instead of inserting one x0  x0 round, insert �ve `transient' rounds (cf.Figure 4.9). These �ve rounds have a low probability that is, however, betterthan the �xed point construction. The low probability is not a problem sincethe input values of these transient rounds can be chosen in such a way that therounds are passed with probability one. A computer search has indicated thatthe best transient rounds have a symmetrical pattern. The computer searchconsidered the 50 x0-values with the best 0  x0 probabilities. For each x0,all possible a0-values and b0-values were examined. The best combination isx0 = 0019 6000x and a0 = b0 = 0445 0180x. The probabilities of the di�erentrounds are given in Table 4.7. Note that there exist x0-values that yield a lowerprobability for which the optimal a0 and b0 are di�erent.The fact that the probability of these rounds depends on the key can beexploited to reduce the work/success ratio: eliminate the keys that give thecharacteristic a low (or zero) probability. For this choice of x0 and a0 (cf. Fig-ure 4.7), 4.5% of the keys have a non-zero probability. Stronger selection criteriafor the keys are possible. Table 4.8 gives the theoretical probabilities and work



76 CHAPTER 4. IMPROVED DIFFERENTIAL CRYPTANALYSISstructure probability comments0 x0 2�8 key independenta0  x0 2�10:8 2�9:95 for 50% of the keysx0 � a0  a0 2�20:5 2�18:1 for 4.7% of the keysTable 4.7: The di�erent rounds in the characteristic and their probabilities.# rounds probability work factor(log2) (log2)8 -65.8 89 -28.8 512 -81.8 21.413 -43.2 18.914 -89.8 29.215 -50.3 25.916 -97.8 37.0Table 4.8: A survey of probabilities of the characteristics and theoretical workfactors for reduced versions of the DES.factors for DES variants with various number of rounds. The probability of thegiven characteristic, is averaged over the keys with non-zero probability only.The work factors are calculated as follows: the reciprocal of the probability ofthe rounds where the input values cannot be controlled multiplied by a reduc-tion factor that takes the early abort strategy into account. The numbers forDES variants with an odd number of rounds are obtained by choosing inputvalues for �ve arbitrarily chosen consecutive rounds. The characteristic is thebest 2-round iterative characteristic of [10].4.5 ConclusionsThree extensions to di�erential cryptanalysis were introduced and successfullyapplied in practical situations.The �rst extension improves the di�erential attack on block ciphers in m-bit CFB mode (m small). The basic di�erential attack performs badly in thissituation because most good pairs will suggest all key values and therefore thenumber of requested good pairs increases signi�cantly. The extended attackallows the number of required plaintexts to be decreased. For an attack on theDES reduced to eight rounds, 240 pairs are required to recover three key bits.



4.5. CONCLUSIONS 77This result has been published in [105].The second extension introduces the principle of maximum likelihood toimprove di�erential and linear attacks. The number of recoverable key bits by adi�erential attack on encryption modes that hide a part of the output is raised.This is again very useful to extend the attack on block ciphers in m-bit CFBmode, where previously the number of recoverable key bits was upper boundedby m. For the case of the DES in 8-bit CFB mode, the number of recoverablekey bits is increased from three to ten. The information extraction phase of alinear attack is also optimised. This makes it possible to extend the linear attackto cases where the `hypothesis of wrong key randomisation' does not hold, e.g.in a ciphertext-only attack on Akelarre.The third extension is an improvement of the di�erential attack on hashfunctions that are based on block ciphers. By making use of the speci�c ad-vantages of the hash function context, a better attack is developed. A specialkind of di�erential characteristic is introduced, optimally suited for this attack.When applied to a hash function that uses the DES as its round function, thedi�erential attack becomes faster than the birthday attack if the DES is reducedto 12, 13 or 15 rounds. This result has been published in [109].
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Chapter 5Key Dependent AnalysisWhat we see depends on mainly what we look for.John LubbockThe hypothesis of stochastic equivalence (cf. Section 3.4 and the work ofX. Lai [69]) assumes that the probability of a di�erential characteristic (or thedeviation of a linear relation) for a given �xed key can be approximated by theaverage probability of the characteristic (or deviation of the relation) over allkey values (cf. Section 3.4).In this chapter the distinction between the unconditional probability of adi�erential and its probability conditioned on the key value is explained. Acompletely equivalent distinction can be made between unconditional and con-ditional input-output correlations.By taking into account the key dependence of di�erential characteristics andinput-output correlations it is possible to mount e�ective attacks, for instanceon ciphers with nonlinear key addition. This is illustrated with two attackson reduced IDEA, which have been published in [14], and an attack on MAA,which has been published in [106].5.1 Probability of a Di�erentialOne RoundConsider one round of an iterative block cipher. The stochastic variable thatproduces the text input is denoted by X , the key input by K and the output byY ; � denotes the number of possible text inputs and � the number of possiblekeys. The probability that the round transformation �[k](x) transforms an input79



80 CHAPTER 5. KEY DEPENDENT ANALYSISdi�erence x0 into an output di�erence y0 is given by:Pr(X 0 = x0 7! Y 0 = y0) = #fx; k j �[k](x � x0)��[k](x) = y0g� � �= PxPkPy ��[k](x � x0; y � y0) � ��[k](x; y)� � � ;where ��[k] is the characteristic function of the round transformation �[k]. Ap-plication of the sum rule leads toPr(X 0 = x0 7! Y 0 = y0) =Xk Pr(X 0 = x0 7! Y 0 = y0 j K = k) � Pr(K = k) ;(5.1)wherePr(X 0 = x0 7! Y 0 = y0 j K = k) = #fx j �[k](x � x0)��[k](x) = y0g�= PxPy ��[k](x � x0; y � y0) � ��[k](x; y)� :Since determining Pr(X 0 7! Y 0 j K = k) for all values k is often not feasible,and since the actual value of K is not known to the cryptanalyst, it is usuallyassumed that for most values k it holds that Pr(X 0 7! Y 0 j K = k) � Pr(X 0 7!Y 0). This assumption is known as `the hypothesis of stochastic equivalence' [69].The validity of this assumption depends on the structure of the round transfor-mation. A necessary condition is that the key addition is linear with respectto the di�erence operation �. The next example shows a round transformationwhere Pr(X 0 7! Y 0 j K = k) � Pr(X 0 7! Y 0). For a generic round transforma-tion, the conditional probability may heavily depend on the actual key value.For the round transformation of the DES, this was already observed in [57].Example 5.1 Let the round transformation be de�ned as �[k](x) = (x � k),with  an arbitrary substitution and � the commutative operation that is usedfor �, thenPr(X 0 = x0 7! Y 0 = y0 j K = k) = ��1 �#fx j �[k](x � x0)��[k](x) = y0g= ��1 �#fx j (x � x0 � k)�(x � k) = y0g= ��1 �#fx j (x � x0)�(x) = y0g :Therefore Pr(X 0 7! Y 0 j K = k) � Pr(X 0 7! Y 0).



5.1. PROBABILITY OF A DIFFERENTIAL 81More RoundsSince encryption algorithms necessarily involve nonlinear elements in the roundtransformation, the conditional probability of di�erentials over more than oneround always depends on the key value. Example 5.2 illustrates this. Equiva-lent observations can be made about the di�erence between unconditional andconditional input-output correlations.Example 5.2 Consider the round transformation �[k](x) = x3�k, de�ned overGF (23). If � is taken as the di�erence operation, the conditional probabilityof the one-round di�erentials is key independent. The �rst column of Table 5.1gives these probabilities for a �xed input di�erence 1x, and all the possible outputdi�erences. The two-round transformation can be written as �[k2](�[k1](x)) =((x� k1)3 � k2)3. The probability of the two-round di�erentials depends on thevalue of k2, which is also shown in Table 5.1.y0 p1 p2(k2)k20x 1x 2x 3x 4x 5x 6x 7x0x 0 0 0 0 0 0 0 0 01x 0.25 1 0.25 0 0.25 0 0.25 0 0.252x 0 0 0 0 0.25 0.5 0 0 0.253x 0.25 0 0.25 0 0 0.5 0.25 0 04x 0 0 0 0 0.25 0 0.25 0.5 05x 0.25 0 0.25 0 0 0 0 0.5 0.256x 0 0 0 0.5 0 0 0.25 0 0.257x 0.25 0 0.25 0.5 0.25 0 0 0 0Table 5.1: The conditional probabilities Pr(X 0 = 1x 7! Y 0 = y0 j K) forExample 5.2. The rows correspond to the di�erent values of y0. The �rstcolumn list the (key independent) probabilities for one-round di�erentials (p1),the next columns list the probabilities for di�erent values of the second roundkey (p2(k2)).Markov CiphersDe�nition 5.1 (X. Lai [67]) An iterated cipher is a Markov cipher if andonly if their exists a di�erence operation � such that the round operation of theblock cipher has the property that for all nonzero input di�erences the probabilityPr(X 0 7! Y 0) = Pr(X 0 7! Y 0 j X = x);



82 CHAPTER 5. KEY DEPENDENT ANALYSISif the round key is uniformly random.The de�nition uses probability distributions that are not conditional on thevalue of the key; they are thus averaged over all the key values. This means thatfrom the point of view of key dependent analysis, there is no di�erence betweenMarkov ciphers and other ciphers.Exploitation of Key DependenceFour approaches are discussed to exploit the key dependence of characteristicsand relations.1. If the conditional probability distribution of a di�erential is strongly non-uniform it is sometimes possible to mount an attack that works only forkeys withPr(X 0 = x0 7! Y 0 = y0 j K = k)� Pr(X 0 = x0 7! Y 0 = y0) :These keys are called weak keys. This approach is illustrated in [23] andin Section 5.3.2. Another approach is to use a set of di�erentials f(xi0; yi0)gni=1. The successrate of an attack will typically be determined by the maximum of theprobabilities of the di�erentials of the set. This approach is illustrated inSection 5.2.3.3. In Section 5.2.4 an attack is presented that works if the conditional prob-ability is either higher or lower than the unconditional probability. Thesuccess rate of the attack is determined by the di�erence between theprobabilities. This is reminiscent of the key search method in a linearattack (cf. Section 3.3 and [77, 79]), where the correct key is identi�ed bymeasuring the correlation between input bits and output bits.4. A fourth approach is to measure experimentally the probability of a dif-ferential and use this to determine the used key.The attacks presented in the next sections show that key dependent di�er-entials and/or linear approximations can be used successfully to cryptanalyseciphers that have no useful key independent di�erentials or input-output corre-lations.



5.2. APPLICATION TO IDEA 835.2 Application to IDEA5.2.1 Description of IDEAThe block cipher IDEA (International Data Encryption Algorithm) was pro-posed by X. Lai, J. Massey and S. Murphy in [69] as a strengthened versionof PES (Proposed Encryption Standard) proposed in [68]. IDEA is an iteratedblock cipher, consisting of 8 rounds followed by an output transformation. Ithas a 128-bit key and operates on data blocks of 64 bits. The round transforma-tion divides the data into four 16-bit blocks and uses three di�erent operations:bitwise exor, addition modulo 216 and multiplication modulo 216 + 1 (0000xrepresenting the element 216). \Mixing operations from three di�erent algebraicgroups," is an important design concept of the cipher. Figure 5.1 shows thecomputational graph of IDEA. The two multiplications and the two additionsin the middle of the round transformation correspond to the F-function in aFeistel Network and are called the MA-structure. The four 16-bit blocks thatenter round r (r = 0; : : : ; 7) are denoted xri , where i = 0; 1; 2; 3. The inputsof the output transformation are denoted x8i , and the ciphertext blocks are x9i .Every round uses six 16-bit subkeys zri that are derived from the key with asimple rotating selection scheme.The following expression will be used to denote one round of IDEA:(a; b; c; d) ! (e; f; g; h) (e�g;f�h)!(k;l)�����������! (e� l; g � l; f � k; h� k) :Here (a; b; c; d) denotes the input, consisting of four 16-bit words. The keyaddition transforms the input to (e; f; g; h). The MA-structure has input (e �g; f � h) and output (k; l). The output of the round is then given by (e� l; g�l; f � k; h� k). A di�erential characteristic is denoted in the same way as:(a; b; c; d) p1! (e; f; g; h) (e�g;f�h)p2!(k;l)�����������! (e� l; g � l; f � k; h� k) :Now a; b; c; d; e; f; g; h; k; l denote di�erences of 16-bit words. Let p1 and p2denote the probabilities of the transition. Note that the given probabilities willalways be calculated assuming independent transitions.IDEA was developed to resist di�erential cryptanalysis. In [67] X. Lai arguesthat for 3 rounds of IDEA there are no useful di�erentials and concludes thatIDEA is resistant against a di�erential attack after 4 of its 8 rounds. In his work,di�erences are de�ned corresponding to the modular addition and multiplicationoperations of IDEA, in order to allow Markov theory to be applied (IDEA is aMarkov cipher). However, in the analysis presented here the di�erence operationwill always be the exor operation, to which the Markov theory does not applyhere.
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� 7 more rounds9>>=>>; outputtransformationxri : 16-bit text sub-blockzri : 16-bit key sub-blockL : bit-by-bit exor of 16-bit sub-blocks+ : addition modulo 216 of 16-bit integersJ : multiplication modulo 216 + 1 of 16-bit integerswith the zero sub-block corresponding to 216Figure 5.1: Computational graph for the encryption process of the IDEA cipher.



5.2. APPLICATION TO IDEA 855.2.2 Key Dependent Di�erentials and RelationsModular multiplication and, to a lesser extent, modular addition, have the prop-erty that the unconditional probability of the di�erentials is low. Table 5.2 showsthis for multiplication modulo 28 + 1 and addition modulo 28. However, fromTable 5.2 it is also clear that the conditional probability of a di�erential moreoften takes a high value.Multiplication Additionp unconditional conditional unconditional conditional0 0.8 80.2 85.9 96.50 < � < 2�8 2.1 0 0 02�8 94.7 0 0 02�7 2.3 7.3 4.4 02�6 0.07 6.6 4.7 0.32�5 0.008 4.6 3.0 0.82�4 0.005 1.1 1.4 1.02�3 0.003 0.2 0.5 0.82�2 0.002 0.04 0.1 0.42�1 0 0.01 0.02 0.21 0 0.003 0.002 0.03Table 5.2: Distribution of the conditional and unconditional probabilities ofdi�erentials for multiplication modulo 28 + 1 and addition modulo 28. Theentries are in percentages.Table 5.3 gives the distribution of input-output correlations of these opera-tions.It can be observed that modular multiplication has no di�erentials withunconditional probability one (except for the trivial 0 7! 0) and neither doesit have input-output correlations with value 0.5. Modular addition has onedi�erential with probability one (change the most signi�cant bit) and one linearrelation with correlation one (in the least signi�cant bit, because of the absenceof a carry bit). In [23] the di�erentials with conditional probability one arechained to build di�erentials with (conditional) probability one for seven andeight rounds of IDEA. The key values for which this characteristic holds arecalled weak keys. There are 251 key values that exhibit a seven-round di�erentialwith probability one.In the following a di�erential-linear and a truncated di�erential attack willbe presented that use key dependent di�erentials.



86 CHAPTER 5. KEY DEPENDENT ANALYSISMultiplication Additionc unconditional conditional unconditional conditional0 0.8 18.0 66.7 77.82�7 0.001 0 3.0 02�6 1.9 25.8 7.6 6.32�5 57.8 17.9 9.9 3.62�4 39.5 25.9 7.8 5.92�3 0.003 10.5 3.9 3.82�2 0 1.7 1.1 1.82�1 0 0.1 0.09 0.61 0 0.008 0.002 0.1Table 5.3: Distribution of the conditional and unconditional input-output cor-relations of multiplication modulo 28 + 1 and addition modulo 28. The entriesare in percentages.5.2.3 Di�erential-Linear CryptanalysisIn this section a di�erential-linear attack on IDEA, reduced to three rounds,is presented [14]. The �nal swap of the second and the third output block areomitted. The notation is de�ned in Figure 5.1.A Set of RelationsFirstly we de�ne the words ei = 215�i, i = 0; : : : ; 15. We now consider thefollowing set of linear relations:e15 � ((k � x)� (k � (x � ei))) = 0 ; (5.2)with unconditional input-output correlation ci and conditional correlations ci(k).Table 5.4 lists the values of ci and the distributions of the ci(k) for some valuesof i. The table also gives the distribution of c(k) = maxi ci(k); which is of thegreatest interest for the purposes of this attack. Observe that c(k) � ci for alli and almost all k.This set of relations will be used in the linear-di�erential attack. The nextsection gives a di�erential characteristic that produces the di�erence ei at theinput of a multiplication in the second round. The attack produces pairs forevery value of ei. The relation that has the highest correlation determines thedata requirements of the attack.



5.2. APPLICATION TO IDEA 87e0 e2 e8 e15 c(k)ci 2�1 2�1 2�1 2�1ci(k) = 0 0.02 0.003 0.06 0 00 < ci(k) � 2�9 0.3 0.1 0.2 0 02�9 < ci(k) � 2�6 1.9 2.0 1.8 2.1 02�6 < ci(k) � 2�4 6.6 6.7 6.7 6.7 02�4 < ci(k) � 2�3 8.8 8.8 8.8 8.9 02�3 < ci(k) � 2�2 17.7 17.7 17.7 17.7 0.032�2 < ci(k) � 2�1 35.3 35.3 35.3 35.3 2.12�1 < ci(k) � 1 29.3 29.3 29.3 29.3 97.9Table 5.4: The correlation of Relation (5.2) for a subset of feig15i=0. The distribu-tions for di�erent ei-values are close to one another. The �rst row gives the un-conditional correlations ci. The next rows give the distribution of the conditionalcorrelations ci(k). The last column gives the distribution of c(k) = maxi ci(k).The distribution entries are in percentages.The Di�erential CharacteristicsThe attack starts with guessing the value of z03 . The �rst round of the charac-teristic looks like the following:(0; ei; 0; �i) 0:5! (0; ei; 0; ei) (0;0) 1!(0;0)�������! (0; 0; ei; ei) :With the (assumed) knowledge of z03 it is possible to choose the values of x03 and�i such that (x03� z03)� ((x03��i)� z03) = ei. The probability of the �rst roundthen equals the probability of the transition ei 7! ei in modular addition, whichis 0.5. The �rst half of the second round of the characteristic can be describedas follows: (0; 0; ei; ei) 0:5! (0; 0; ei; �) (ei;�)p2!(�;�)�������! (�; �; �; �) :The value of � is not important for the attack and is not speci�ed. This meansthat the di�erential becomes a truncated di�erential. The probability of thetruncated di�erential at the MA-structure of the second round equals 0.25. Forgood pairs the input exor of the �rst multiplication in the MA-structure of thesecond round equals ei. It follows from (5.2) that for every key there existsat least one ei such that the value of the least signi�cant bit of the output ofthis multiplication is highly biased. From now on the di�erential is truncatedeven further by specifying only the least signi�cant bit of the 16-bit words. Themodular addition now reduces to an exor operation. Denoting the output exors



88 CHAPTER 5. KEY DEPENDENT ANALYSISof the multiplications of the MA-structure with  and �, the second round ofthe characteristic can be completed:(0; 0; ei; ei) 0:5! (0; 0; ei; �) (ei;�)p2!(��;�)����������! (�; ei � �;  � �;  � � � �) :Figure 5.2 shows the second round of the characteristic.? ???0 0 ei eiz10 -J +� z11 z12 -+ J� z130 0 ei �
? ? ? ?
� -L ��?� -L ��?ei �z14 -J -+? ? �+� J� z15L� � -LL� � -L� ei � � � �   � � � �? ?````````````````̀                 ??Figure 5.2: Second round of the characteristic for the linear-di�erential attackon three rounds of IDEA. At the end, only the least signi�cant bits of the wordsare considered, such that the addition operation becomes equal to the exoroperation.Recovering z24The key input of the �rst multiplication of the MA-structure in the last roundis z24 . The text input of this multiplication can be calculated as x31 � x33. Thesevalues are visible in the ciphertext because the ciphertext is formed by theoutputs of the third round. Denote the least signi�cant bit of the output of this



5.2. APPLICATION TO IDEA 89multiplication �, and denote the least signi�cant bit of the output of the secondmultiplication of the MA-structure with �. Then � can be expressed as follows.x320 = � � ei � � � � (5.3)x330 = � �  � � (5.4)x320 � x330 = ei � � �  : (5.5)By assuming a value z24 it is possible to calculate �, and thus also .The attack proceeds as follows. A counter is initialised for every possible z24 .For every possible z03 and ei, a set of plaintext pairs is enciphered. Filtering ofthe wrong pairs is not possible. For every pair the value x31 � x33 is calculatedand by assuming a value for z24 it is possible to calculate  using (5.5). If  = 0,the counter corresponding to the key value is incremented. The calculation isrepeated for every value z24 . If z03 was guessed correctly, then only two valuesfor z24 will be suggested after enough pairs have been encrypted: the correct z24and its additive inverse modulo 216 + 1. Experimental results con�rm that forwrong guesses of z03 no key value will be suggested.Since the best ei is not known, the attack is tried with all ei-values. Com-puter experiments show that for a correct guess of z03 , the attack requires atmost 214 chosen plaintext pairs. On average, a correct guess is made after 215trials, resulting in 229 required plaintext pairs. Examining one plaintext pairtakes a few exor operations and 216 table look-ups, one for each value of z24 .Since 16 di�erentials are examined, the attack requires about 220 simple opera-tions, i.e., addition or exor, for each pair. The workload is therefore about 249simple operations. For a rough estimate of the equivalent number of encryp-tions, the required time for an addition is taken to be equal to the required timefor an exor. The required time for a modular multiplication is estimated to be3.5 times this time. This results in a workload of about 0:75 �244 3-round IDEAencryptions.5.2.4 Truncated Di�erential CryptanalysisIn this section a truncated di�erential attack on a reduced version of IDEA ispresented [14]. The reduced version consists of three rounds and the outputtransformation. The notation is the same as in the previous section. Note thatthe ciphertext consists now of the words x4i .



90 CHAPTER 5. KEY DEPENDENT ANALYSISProbability of the Truncated CharacteristicThe three-round truncated di�erential characteristic used in the attack is thefollowing:(a; 0; b; 0) 2�16! (c; 0; c; 0) (0;0) 1!(0;0)�������! (c; c; 0; 0)(c; c; 0; 0) 1! (d; e; 0; 0) (d;e)2�32! (e;d)���������! (0; d; 0; e)(0; d; 0; e) 2�16! (0; f; 0; f) (0;0) 1!(0;0)�������! (0; 0; f; f)(0; 0; f; f) 1! (0; g; 0; h) : (5.6)In each intermediate result, only the zero di�erences are predicted. Thedi�erences denoted with the letters a to h can take any non-zero value. Thedi�erential has a mirror image with the same probability:(0; a; 0; b) 2�16! (0; c; 0; c) (0;0) 1!(0;0)�������! (0; 0; c; c)(0; 0; c; c) 1! (0; 0; d; e) (d;e)2�32! (e;d)���������! (d; 0; e; 0)(d; 0; e; 0) 2�16! (f; 0; f; 0) (0;0) 1!(0;0)�������! (f; f; 0; 0)(f; f; 0; 0) 1! (g; 0; h; 0) : (5.7)To estimate the unconditional probability of the di�erential, all operationsare assumed to have independent inputs. The estimated unconditional proba-bility of the truncated di�erential is 2�64.Determination of the distribution of the conditional probability of the di�er-ential requires too much computational power. Therefore, the analysis is appliedto reduced versions of IDEA. Firstly IDEA(16) is analysed. This cipher usesthe same operations as IDEA, but operates on four nibbles (four bit quantities)instead of four 16-bit words [67]. For this cipher, the estimated unconditionalprobability of (5.6) becomes 2�16. The conditional probability of the di�erentialis determined by encrypting the 216 di�erent plaintexts under each of the 232possible keys. The resulting distribution is shown in Table 5.5. The main causefor the non-uniformity in the distribution is the second round of the di�eren-tial, where a di�erence (d; e) in the inputs to the MA-structure must result indi�erence (e; d) in the outputs of the MA-structure. The correct value of theunconditional probability of the di�erential can be calculated using (5.1); it isequal to 2�16:5, which is slightly less than the �rst estimate.For IDEA(32), operating on four bytes, it is no longer possible to determinethe conditional probability for all keys. The conditional probability distribu-tion of Table 5.6 is an estimate, based on the encryption of the 232 possibleplaintexts under 160 randomly selected key values. Based on these results, the



5.2. APPLICATION TO IDEA 91Probability #Keys/All keys0 13 %0 < p � 2�18 12 %2�18 < p � 2�17 21 %2�17 < p � 2�16 30 %2�16 < p � 2�15 14 %2�15 < p � 1 10 %Table 5.5: Distribution of the conditional probability of the di�erential (5.6) forIDEA(16).unconditional probability is estimated to be 2�32:7, which should be comparedwith the 2�32 that results from the �rst estimate.Probability #Keys/All keys0 � p � 2�35 14 %2�35 < p � 2�33:0 10 %2�33:0 < p � 2�32:5 31 %2�32:5 < p � 1 45 %Table 5.6: Distribution of the conditional probability of the di�erential (5.6) forIDEA(32).It can be expected that the behavior of IDEA can be extrapolated from theseresults.Using the Truncated Di�erentialThe attack uses structures of chosen plaintexts. A structure consists of 232texts: x01 and x03 are �xed, x00 and x02 take on all possible values. From such astructure it is possible to generate 232 � (232 � 1)=2 � 263 pairs that have thecorrect truncated input exor for (5.6). Filtering is possible since the di�erentialrequires that x400 = x420 = 0. On average, only one out of 232 pairs will survivethis test, or f = 2�32.Each surviving pair suggests values for two 16-bit words of the �rst roundkey. A value (z00 ; z02) is suggested if(x00 � z00)� (x00� � z00) = (x02 + z02)� (x02� + z02) : (5.8)The expected number of suggested values (z00 ; z02) by a pair can be estimatedto be 216. Each pair also suggests values for two 16-bit words of the key in the



92 CHAPTER 5. KEY DEPENDENT ANALYSISoutput transformation. A value (z31 ; z33) is suggested if(x41 � (z31)�1)� (x41� � (z31)�1) = (x43 � z33)� (x43� � Z33 ) : (5.9)In total, each pair that survives the �ltering is expected to suggest 232 64-bit key values, or s, the probability for a wrong key to be suggested, equals232=264 = 2�32 (cf. Section 3.2.2). Since f � s = 2�64 and every structurecontains 263 pairs, it can be expected that every structure will suggest 263 keysand every value of the key will on average be suggested 0:5 times per structureused.An important side remark can be made about the number of key bits at atime the attack has to search for. The key scheduling of IDEA consists of asimple rotation. This causes an overlap of 14 bits between (z00 ; z02) and (z31 ; z33).Furthermore, because of the absence of a carry bit after the highest order bitof the modular addition, key values z02 and z31 that di�er only in the highestorder bits are indistinguishable. These two observations are very importantto reduce the memory requirements of the attack. Instead of 64, only 48 keybits are searched simultaneously, reducing the number of counters by a factorof 216. The actual attack has only been implemented for the reduced versionsof IDEA previously de�ned. The key schedule for these reduced versions wasadapted to produce an overlap of relatively as many key bits. (For IDEA(32)and IDEA(16), seven and three bits overlap, respectively.) This means that inthese cases only 23 bit and 11 bit key values are searched for. To �nd other keybits, a similar attack with the second di�erential (5.7) can be performed.Exploitation of the Key DependenceThe signal-to-noise ratio of the attack can be calculated as:S=N = pf � s = p2�64 :Previous it was believed [10] that a di�erential attack can only be successfulif S=N > 1. However, in Section 3.2 it was already mentioned that a di�erentialattack can also �nd the used key if S=N < 1, provided that the signal-to-noiseratio is calculated with p equal to the probability of the maximal di�erential.From the �ltering, and from the Equations (5.8) and (5.9), it is clear thatthe maximal di�erential only speci�es the values a; b; c; f; g and h. The maximal



5.2. APPLICATION TO IDEA 93di�erential containing (5.6) is then given by:(a; 0; b; 0) 2�16! (c; 0; c; 0) (0;0) 1!(0;0)�������! (c; c; 0; 0)(c; c; 0; 0) 1! (d; e; 0; 0) (d;e)!(�;�)�������! (�; �; �; �)(�; �; �; �) ! (�; �; �; �) (�;�)!(�;�)������! (0; 0; f; f)(0; 0; f; f) 1! (0; g; 0; h) : (5.10)The problem of how to determine the probability of this maximal di�erentialarises. Further analysis shows, however, that all the pairs that follow the maxi-mal di�erential (5.10) also follow the truncated di�erential (5.6). Therefore theprobability of the maximal di�erential equals the probability of (5.6).Since the unconditional probability of the maximal di�erential is estimatedto be 2�64, the signal-to-noise ration is one, and a di�erential attack seemsimpossible. For the case of IDEA it turns out that the conditional probabilityof the di�erential strongly depends on the actual key value. Thus for many keys,the signal-to-noise ratio will either be signi�cantly higher than one, or it will besigni�cantly lower than one. Since the cryptanalyst does not know beforehandwhether S=N > 1 or S=N < 1, both the least suggested and the most suggestedkey value will be outputs of the analysis. The more the conditional probabilityof the di�erential deviates from f � s, the easier it becomes to recover the key.It is interesting to see that for IDEA(16), about 1 in every 8 possible values ofthe key result in a zero conditional probability for the used di�erential.The numbers in Table 5.5 also indicate that the attack will not work forsome classes of keys, namely the classes of keys for which the probabilities aretoo close to f � s.The relation between number of required plaintexts, the workload of theattack and the fraction of recoverable keys, was determined experimentally forthe two reduced versions of IDEA.IDEA(16): Table 5.7 lists the results of 1000 runs of the attack on IDEA(16)for an increasing number of chosen plaintexts. The key ranking technique [79]was used: the attack was considered successful if the correct key value wasamong the eight least and eight most suggested values. Thus the attack returns16 suggestions for 11 bits of the secret key. If all the plaintexts are used, thecorrect value of the key is among those 16 values in about 67 % of all cases.Note that there are a total of 216 plaintexts of IDEA(16) and that an exhaustivesearch for the key will take about 232 encryptions. The workload is the estimatednumber of operations required to perform the attack, measured as the numberof encryptions of the cipher. For each pair that survives the �ltering process,the 24 possible values of the a�ected keys of each side of (5.8) are tried.



94 CHAPTER 5. KEY DEPENDENT ANALYSISThe attack can be speeded up by pre-calculation of a table to avoid theexpensive multiplication operation. This table has a size of 28 nibbles. Underthe assumption that a multiplication takes the equivalent of 3.5 additions, andthat an addition, an exclusive-or and a table-lookup take about the same time,the workload becomes about 18 encryptions of IDEA(16) for every pair. In total,the workload is about 28 encryptions for every structure. Due to the overlap ofkey bits in this �rst round test with the key bits in the output transformation,the second part of the key search, i.e. using (5.9), is much faster than the �rstand can be ignored in the workload estimation.#Keys/All keys # Structures # Chosen plaintexts Workload25% 16 212 21240% 32 213 21351% 64 214 21459% 128 215 21567% 256 216 216Table 5.7: Fraction of recovered keys with an increasing number of chosen plain-texts for the attack on IDEA(16) with 3.5 rounds. (1000 runs of the attack wereperformed.)IDEA(32): The attack on IDEA(32) has a much higher workload. Table 5.8lists the results of 50 runs of the attack, using up to 211 structures. In orderto reduce the workload of the tests, 7 bits of the key were assumed to be al-ready known, leaving only 16 key bits to search for. The attack was consideredsuccessful if the correct value was among the 12 least and four most suggestedvalues. Thus the attack returns 16 suggestions for 16 bits of the secret key.IDEA: The above results on reduced versions of IDEA allow an estimate ofthe complexity of the attack on IDEA to be made. Table 5.7 shows that it ispossible to �nd 25 % and 51 % of the keys using 216�3=4 and 216�7=8 chosenplaintexts respectively for IDEA(16). Table 5.8 shows that it is possible to�nd 28 % and 64 % of the keys using 232�3=4 and 232�13=16 chosen plaintextsrespectively for IDEA(32). The estimated complexity of the attack on IDEAis given in Table 5.9, using the results on the reduced versions. For at leastone key out of every hundred, 240 chosen plaintexts and an e�ort of about251 encryptions su�ce to recover the key. More than 83 % of the keys can berecovered with 256 chosen plaintexts and an e�ort of about 267 encryptions. Notethat an exhaustive key search has an expected workload of 2127 encryptions.



5.2. APPLICATION TO IDEA 95
#Keys/All keys # Structures # Chosen plaintexts1 % 16 2207 % 64 22215 % 128 22331 % 256 22454 % 512 22565 % 1024 22683 % 2048 227Table 5.8: Fraction of recovered keys with an increasing number of chosen plain-texts for the attack on IDEA(32) with 3.5 rounds. (50 runs of the attack wereperformed.)
#Keys/All keys # Chosen plaintexts Workload> 1 % 28 � 232 251> 31 % 216 � 232 259> 83 % 224 � 232 267Table 5.9: Estimated fraction of recovered keys with an increasing number ofchosen plaintexts for the attack on IDEA with 3.5 rounds.



96 CHAPTER 5. KEY DEPENDENT ANALYSISFinding Additional Key BitsThe attack outlined above �nds 48 bits of the 128-bit key of IDEA. However,once these key bits have been found, a similar attack using the second truncateddi�erential can be performed. As noted earlier, the key-dependency of theprobability of the �rst di�erential comes mostly from the second round of thedi�erentials. Since the second round is the same for the two di�erentials, it canbe expected that for a �xed key, the probabilities of the two di�erentials arevery close. After doing the attack with the second di�erential all 64 key bits inthe beginning of the �rst round and all 64 key bits of the output transformationare obtained. Subsequently, similar attacks can be done on a further reducedversion of IDEA with a negligible complexity.5.3 Application to MAAIn [107], B. Preneel and P.C. van Oorschot presented a generic attack on MACalgorithms; in [108] this attack was applied to MAA, and a class of weak keysfor MAA was identi�ed. This section shows that some keys exhibit clusters ofcollisions, which is an undesirable property. In theory, a collision cluster couldbe used to recover the used key. These results on MAA have been published in[106].5.3.1 The Message Authenticator Algorithm MAAMAA is one of the primary MAC algorithms used historically, the other onebeing CBC-MAC [49, 51]. The Message Authenticator Algorithm (MAA) is anISO standard [49] which dates back to 1984 [31]. It is currently being used byseveral large �nancial institutions. While it was originally designed for use onmainframe computers, it is very fast on present PCs and workstations (aboutthe same speed as SHA-1 [41]). A complete description of MAA can be foundin [32]. All variables in the description are 32-bit words. The 64-bit key is splitinto two 32-bit words: j and k. The algorithm consists of three parts. Duringthe prelude the 64-bit key is used to initialise the chaining variables x0 and y0and to calculate four parameters v0, w, t, and s. The input m to MAA is ofarbitrary length; it is divided into q 32-bit words denoted by x1 through xq .The main loop takes the ith 32-bit message word mi, the chaining variablesxi�1 and yi�1, and the parameters v and w as input, and produces as outputthe updated chaining variables xi and yi. The last part is the coda; it simplyadds s and t as �nal message blocks (mq+1 = s and mq+2 = t) and computesthe 32-bit MAC as MAA[j; k](m) = xq+2 � yq+2.The ith iteration of the main loop (1 � i � q + 2) performs the followingoperations:



5.3. APPLICATION TO MAA 97vi = rol(vi�1);xi = (xi�1 �mi)
1 M1((vi � w) + (yi�1 �mi));yi = (yi�1 �mi)
2 M2((vi � w) + (xi�1 �mi)); .Here 
1 denotes multiplication modulo 232�1, 
2 denotes multiplication mod-ulo 232 � 2, + is addition modulo 232, and � is bitwise exor. Functions M1(�)andM2(�) are masking operations that each �x eight bits (four to zero and fourto one): M1(x) = (x _ A) ^ C M2(x) = (x _ B) ^D ;where A = 02040801x, B = 00804021x, C = BFEF7FDFx, and D = 7DFEFBFFx.In the following, vi � w is denoted by zi (or z, when the superscript is clearfrom the context).During the prelude the six variables x0, y0, v0, w, s, and t are checked forbytes that are equal to 00x or FFx. The prelude calls a special procedure toalter these bytes, the BYT procedure, because they are considered to be worthavoiding. If no 00x or FFx values are encountered, x0; v0 and s depend only onj, whereas y0; w and t depend only on k.ISO 8731 [49] limits the size of the messages to 4 � 106 bytes (� 3.8 Mbyte).Also, the standard de�nes a special mode for messages longer than 1024 bytes(256 blocks). In this mode, MAA is applied to the �rst 1024 bytes, and thecorresponding 4-byte MAC is concatenated to the next 1024 bytes of the messageto form the new input of MAA. This procedure is repeated with the next 1024-byte block, until the end of the message is reached.5.3.2 Known classes of weak keysIn [108] two classes of weak keys for MAA have been identi�ed. The �rst classof weak keys are external keys which result in an internal key v0 of rotationalperiod < 32. For such keys, rotating v0 over 2, 4, 8, or 16 positions will yield v0again (there are no keys v0 of period 1 since the all zero and all one values areeliminated). There are respectively 2, 14, 254, and 64 516 values of v0 for whichthis holds. Exhaustive examination can be used to determine which values ofthe �rst 32-bit word of the input key (j) yield such values of v0. The the numberof weak keys is independent of the second input key word (k), and is thus 232times larger. If v0 has period r then a forgery attack can be mounted, requiringr � (231 � 2) zero blocks. Verifying the forgery allows a cryptanalyst to obtaininformation on v0, which is undesirable since it leaks partial key bits. It isrelatively easy to detect whether a key is weak, leading to a key recovery attackon these keys [108].



98 CHAPTER 5. KEY DEPENDENT ANALYSISProposition 5.1 For MAA, one can detect, using 227 chosen messages of about1 Kbyte each, whether a key belongs to a subclass of 248 weak keys.The second class of weak keys allows the size of the message required foranother existential forgery attack described in [108] to be reduced. These weakkeys are not a problem if the long message mode is used.5.3.3 Collision Clusters for MAAConsider two di�erent messagesm and m� of length q. If xq = xq� and yq = yq�an internal collision is said to have occurred. If no internal collision occurs, butnonetheless MAA(m) = MAA(m�), then an external collision is said to haveoccurred. If the two messages have the �rst q � 1 blocks in common, thenxq�1 = xq�1� and yq�1 = yq�1�. Denote the di�erence in the last messageblock by d = mq� �mq . The two messages form an internal collision i�(xq�1 �mq)
1 M1((vq � w) + (yq�1 �mq)) =(xq�1 �mq � d)
1 M1((vq � w) + (yq�1 �mq � d)) (5.11a)(yq�1 �mq)
2 M2((vq � w) + (xq�1 �mq)) =(yq�1 �mq � d)
2 M2((vq � w) + (xq�1 �mq � d)) : (5.11b)For a given value of d,Pr ((xq ; yq) = (xq�; yq�)) � 2�64 :The expected number of internal collisions among the 232 messages that havethe �rst q � 1 blocks in common and take on all possible values for the lastblock, is equal to 1/2. In this section the existence of large classes of keys(� 233 elements) for which there exists a value of d such that2�21 � Pr ((xq ; yq) = (xq�; yq�)) � 2�13 ;will be demonstrated. For these keys, between 211 and 219 collisions occurbetween all q-block messages that di�er only in the last block. All collisionshave the same value of d. In this context a key is called `weak' if it has anumber of collisions that is substantially larger than two. Several classes ofweak keys can be distinguished. The �rst class described here in detail is themost easy to �nd. Afterwards other types of weak keys are mentioned.This property allows the detection and subsequent recovery of weak keysusing about 223 chosen texts. Also, a small subset of the messages can beforged using this property. Precisely which messages are forgeable depends onthe actual key value.



5.3. APPLICATION TO MAA 99Simple Weak KeysIn the following, �i denotes xi � yi. In the analysis, the superscript of z, �, x,y, v and w is omitted. A su�cient set of conditions for a collision is:x�m = M1(z + (x �m� �� d)) (5.12a)x�m� d = M1(z + (x �m� �)) (5.12b)x�m� � = M2(z + (x �m� d)) (5.12c)x�m� �� d = M2(z + (x �m)) : (5.12d)The Equations (5.12) can be written at bit level. In this analysis, the bits ofthe words are numbered from the right to the left (the least signi�cant bitsget number 0, the most signi�cant bits number 31). The carry bits of additionmodulo 232 (`+') into bit i are denoted by ui, vi, wi, and ti. The equations forthe carry bits become (with u0 = v0 = w0 = t0 = 0):ui+1 = ui(zi � xi �mi � �i � di)� zi(xi �mi � �i � di)vi+1 = vi(zi � xi �mi � �i)� zi(xi �mi � �i)wi+1 = wi(zi � xi �mi � di)� zi(xi �mi � di)ti+1 = ti(zi � xi �mi)� zi(xi �mi) :The masking of bit i determines the rest of the bit level equations. Four casescan be distinguished:0. When both M1 and M2 leave bit i unchanged:ui = vi = wi = ti = zi � �i � di :1. When M1 sets or clears bit i, but M2 does not:wi = ti = zi � �idi = 0xi �mi = M1i :2. When M2 sets or clears bit i, but M1 does not:ui = vi = zi � �idi = 0xi �mi � �i = M2i :3. When both M1 and M2 determine bit i:di = 0�i = M1i �M2ixi �mi = M1i :



100 CHAPTER 5. KEY DEPENDENT ANALYSISThe next step is to write down these equations for the 32 bits. The result isthree sets of equations:� A set of conditions on z and �: these conditions determine the class of weakkeys. The class of keys where z1 and �0 satisfy the equations is called thebase class of weak keys. If z1 and �0 do not satisfy the equations then itis still possible that zi and �i�1 (1 < i) do. These keys can be attackedby using messages consisting of i + 1 blocks, where the �rst i blocks arecommon. This means that by doing more work, the probability of successcan be enhanced. In the generic case there are 32 di�erent values forz (because of the rotation operation). By varying the choice of commonblocks, all values of � can be created (but the values cannot be controlled).� Equations that give d as a function of z and �.� Conditions on x�m that determine for given x a vector space of messages.These equations were solved for a reduced version of MAA that operateson 14-bit words instead of 32-bit words. For this version of MAA there areabout 214:6 keys in the base weak key class. Each weak key has an associateddi�erence d and an associated vector space. Two messages that have di�erenced will produce a collision with a probability of 2�4, 2�5, or 2�6. The probabilitydepends on the size of the vector space of messages associated with the weakkey. The expected number of basic weak keys for the full MAA is 233. For eachkey there exists an associated di�erence d such that between 211 and 219 blockmessages with this di�erence will collide.To demonstrate the existence of weak keys, a key that produces a z2 satis-fying the equations was searched for. Afterwards, a �rst message block m1 wassearched for such that �1 is also a solution.Example 5.3 Let j = e8813bb2x, k = 45cfb69cx, and m1 = 56e2x. Thereexist 218 pairs of two block messages with the �rst message block equal to m1 andthe second message blocks di�ering by d = 1c081098x, that produce an internalcollision.The Use of a Collision Cluster in an AttackThe existence of a collision cluster of size 2p can be used in a di�erential attackto recover the key. Two messages with di�erence d will produce a collision withprobability 2p�32. The �rst step is to recover d. Thirteen bits of d are knownto be zero. The message space can be divided into 213 subspaces, with constantvalues for these 13 bits. The collision cluster will be situated in one of thesesubspaces. In this subspace the di�erence will have a collision probability equalto 2p�19. Since it is not known beforehand which subspace is the correct one,



5.3. APPLICATION TO MAA 101the attack has to be repeated for all of them. The 19 unknown bits of d canbe found by encrypting randomly selected messages from the same subspace.With 2n texts, 22n�1 pairs can be generated. A pair with the correct di�erenced will generate a collision with probability 2p�19. A collision will occur withhigh probability when 22n�1 � �2�19 � 2p�19��1mn � 39� p2 :For the largest clusters, p = 19, and only 213 � 210 = 223 texts are required.When p = 11, 227 texts are required. Once d is known the bit equations canbe used to determine bits of x0; y0; x0 � y0, and z0. O�-line built tables (withsize 232) of x0(j); v1(j); y0(k), and w(k) allow j and k to be determined. Thefollowing proposition summarises this result.Proposition 5.2 A key that has an associated di�erence with a collision clus-ter of size 2p, can be detected with a di�erential attack using 213 � 2(39�p)=2 =2(65�p)=2 chosen messages. The value of the di�erence and the colliding mes-sages gives su�cient information for recovery of the key with a lookup table.The collision cluster can be used for forging messages that lie in the subspaceof the cluster. As explained above, a message m� will produce the same MACas the message m with probability 2p�19 � 2�19 = 2p�38. This probability variesbetween 2�19 and 2�27. However, which of the 213 subspaces is forgeable,depends on the actual key value.Involved Weak KeysThe set of collisions with the same di�erence d that occurs for weak keys, can beseen as a `burst' of collisions. Knowledge of one collision enables a cryptanalystto very easily create the whole vector space of collisions. The interaction betweenmasking and the two modular multiplications causes many other `bursts' ofcollisions. Below, one other example is presented.Example 5.4 Consider a reduced version of MAA, operating on 14-bit wordsinstead of 32-bit words. Let j = 72dx, k = 3a39x. There exist 29 one blockmessage pairs (m;m� 31d8x) that produce a collision.To explain the phenomenon, the example is analysed in some detail. Equa-tion (5.11a) gives:(1dcex �m)
1 M1(1 + (13cbx �m)) = (2c16x �m)
1 M1(1 + (2233x �m)) :(5.13)



102 CHAPTER 5. KEY DEPENDENT ANALYSISThe solution m = c22x is called the base solution. Filling in gives:11ecx �M1(1 + 1fe9x) = 11ecx � 1fcbx = 130bx + 8e7x � (214 � 1)2034x �M1(1 + 2e11x) = 2034x � 2e13x = 130bx + 172fx � (214 � 1)Now consider the slightly modi�ed Equation (5.13):(11ecx +m0)
1 (1fcbx +m00) = (2034x �m00)
1 (2e13x �m0) ; (5.14)which can be rewritten as11ecx � 1fcbx � 2034x � 2e13x + (1fcbx + 2034x)m0 + (11ecx + 2e13x)m00= 0 mod (214 � 1) :The base solution corresponds to m0 = m00 = 0. Since 11ecx+ 2e13x = 214 � 1and 1fcbx + 2034x = 214 � 1, all values of m0;m00 will satisfy Equation (5.14).It can be concluded that every m� for which an m0 and an m00 can be foundsuch that 1dcex �m� = 11cex +m0M1(1 + (13cbx �m�)) = 1fcbx +m002c16x �m� = 2034x �m00M1(1 + (2233x �m�)) = 2e13x �m0 ;will be a solution of (5.13). A similar equivalence between addition and theinteraction of M2, z, and exor has to exist for Equation (5.11b). The exampleshows that there exist keys and m-values in practice with a large cluster of m�values.ConclusionFor some values of z it is possible to �nd collision clusters that can be used ina di�erential attack. For the `weakest' values of z the attack requires only 223chosen texts to recover the key. The previous best known attack on MAA wasa forgery attack which requires about 224 chosen texts with 250 trailing blocks[108]. The problem could be eliminated in several ways: applying the BYTfunction to z, updating z in a more complex way or having di�erent values of zin the equations for xi and yi.5.4 ConclusionsIn this chapter it was demonstrated that the hypothesis of stochastic equivalence[69] does not always hold. The consequence is the existence of di�erential char-acteristics with key dependent probabilities and key dependent input-output



5.4. CONCLUSIONS 103correlations. The keys for which these relations lead to an attack on the cipher,are called `weak keys'. By considering key dependent relations and character-istics it is possible to mount attacks that perform better than the previouslyknown attacks.Two attacks on reduced versions of IDEA were presented. The �rst attackworks on IDEA reduced to three rounds and recovers the key by using a setof linear relations. The relations of the set are chosen such that, for each key,at least one relation has high correlation values. The attack requires at most229 chosen plaintexts and has a workload of about 244 encryptions. The secondattack uses truncated di�erentials and works on IDEA reduced to three rounds,followed by the output transformation. For 1% of the keys, the attack requiresonly 240 chosen plaintexts and has a workload of 251 encryptions. By using moreplaintexts the attack will recover more keys. Both attacks demonstrate thatsuccessful attacks can be mounted, even if the resistance of the cipher is goodon average. As stated in Section 3.4, the average probability of a characteristicor a relation is only of approximate value. The attacks have been published in[14].The analysis of MAA leads to a similar conclusion. The value of the keydependent parameter z is essential for the security of the algorithm. Weak valuesof z lead to collision clusters that can be used in a key recovery attack. A newkey recovery attack has been presented which requires fewer chosen plaintextsthan the best previously known attack on MAA, which is only a forgery attack.The results on MAA have been published in [106].
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Chapter 6Non-Surjective AttackIf it 's provably secure,it 's probably not.L.R. KnudsenAn important design criterion for block ciphers is performance. In order tobuild on the experience gathered from the cryptanalysis of DES, most designerspreserve the structure of a Feistel network, but suggest new structures for theround function that exploit in a more e�cient way the present day computerarchitectures. In this way they try to achieve a better trade-o� between securityand speed. Examples of such block ciphers are FEAL [88], LOKI91 [17], Blow�sh[121], and the CAST cipher family [2, 3, 48]. One approach is the use of largehighly nonlinear (or random) S-boxes. This allows the designers to reduce thenumber of rounds and optimise the speed of the algorithm, while maintaining orimproving the resistance against di�erential and linear cryptanalysis. However,reducing the number of rounds may introduce new vulnerabilities.This chapter focuses on a new attack on Feistel ciphers that exploits a weak-ness that is introduced by the use of non-surjective or, more generally, non-uniform round functions. The attack demonstrates that the round function ofa Feistel cipher with six to eight rounds needs to be surjective and su�cientlyuniform. The attack is explained in Section 6.1, and applied in Section 6.2to some members of the CAST family and LOKI91. These results have beenpublished in [112, 113].6.1 General PrincipleFirstly the notation is introduced. Next, the attack is presented, followed by anextension. Afterwards, a chosen plaintext variant is explained.105



106 CHAPTER 6. NON-SURJECTIVE ATTACK6.1.1 NotationConsider a Feistel cipher with R rounds (R even and R � 4), operating ontext blocks of width l. The values sr, tr and kr, r = 0; : : : R are de�ned inSection 2.1.1. A function is called unbalanced or non-uniform if it does not takeall the outputs in its range equally often. De�ne �� as:�� (s0; t0; k) = �=2Mr=1 F (k2r � t2r�1); � even and � 2 : (6.1)Under the assumption of independent and uniformly distributed round keys, itholds that for an unbalanced round function F , the sum �� will be unbalanced.It can be expected that this also holds for most key schedulings. Setting � equalto R, (6.1) becomes:�R(s0; t0; k) = R=2Mr=1 F (k2r � t2r�1) = t0 � sR : (6.2)If not all the values of �R have the same probability, a cryptanalyst can gatherstatistical information about the plaintext by analysing the ciphertext. In aknown plaintext setting, the value of �R�2 can provide information about thekey, as will be explained in the following section.6.1.2 Basic AttackIn the following, the concept of a random function is required. A randomfunction is de�ned as a function that is selected at random from the set of allpossible mappings from the domain to the range of the function.Taking the last round out of the sum, (6.2) becomes�R�2(s0; t0; k) = R=2�1Mr=1 F (k2r � t2r�1) = t0 � sR � F (kR � tR) : (6.3)Random non-surjective round functions F will result in a non-surjective �R�2for small R. This is quanti�ed in the following lemmas.Lemma 6.1 A random function with equal input and output size takes on av-erage a fraction of 1� e�1 of the possible outputs.Proof: Denote the number of inputs and outputs by p. The problem can bedescribed in terms of balls and bins. Every input corresponds to a ball throwninto a randomly chosen bin (there are 2p balls and bins). Of interest is the



6.1. GENERAL PRINCIPLE 107number of empty bins after all the balls have been thrown. The probability ofa bin remaining empty after one ball is thrown is given by 1 � 2�p. After 2pballs, this probability is (1� 2�p)2p . This value quickly approximates e�1 if pis large (e.g., for p = 16 the error is less than .001 percent).Lemma 6.2 Denote by f the fraction of p-bit vectors that are possible outputsof the round function, and by ft the fraction of possible values for �t. If theround function is a random function and has independent inputs in di�erentrounds then: f2 = f and f�+2 = 1� (1� f� � f)2p ; � � 2 : (6.4)Proof: From the de�nition of �� :��+2 = �� � F (k�+2 � t�+1) :Variable ��+2 can take the value x if there exists at least one y such that y isa possible value for �� and y � x is a possible output of F . Conversely, x is animpossible value for ��+2 if and only if there exists no such y. For a randomround function with independent inputs, the product rule can be applied toobtain 1� f�+2 = (1� f� � f)2p ;from which (6.4) follows.A non-surjective �R�2 makes the following attack possible. For all kR, cal-culate the right hand side of (6.3) by use of the known plaintext (s0; t0) and theciphertext (sR; tR). Check whether this is a possible value for �R�2. Wrong keyguesses will eventually produce an impossible value for �R�2. If there are 2�possible round keys kR, on average ��= log2(fR�2) plaintext/ciphertext pairsare required to determine the right value of kR. Indeed, the number m of knownplaintexts can be solved from the equation2� � fmR�2 = 1 :The work factor of the attack can be calculated as follows. Start with 2� possiblekeys and verify for each key whether it could produce the �rst known plaintext-ciphertext pair. A fraction of fR�2 of the keys survives this test. For these2�fR�2 keys, test whether they could produce the second plaintext-ciphertextpair, etc. This leads to a work factor ofm�1Xj=0 2� � f jR�2 � 2�1� fR�2 : (6.5)



108 CHAPTER 6. NON-SURJECTIVE ATTACKFor small values of �, or when consecutive round keys are strongly related,several round keys can be searched for at once. In this way, fR�j can be used(where j > 2) instead of fR�2, which will make the attack more e�ective, as canbe seen from (6.4) and (6.5). In general, let �(j) denote the number of key bitsthat have to guessed if j rounds are peeled o�. Let w(R � j) denote the workfactor of the attack for one key guess, and �(R) the total number of key bits.The maximum value for j for which the attack is less e�ort than an exhaustivekey search, is then determined by2�(j)w(R � j) < 2�(R) ;or �(j) + log2(w(R � j)) < �(R) : (6.6)6.1.3 Statistical AttackEquation (6.4) shows that for larger values of R, fR�2 approaches 1 very quickly,but �R�2 will not be uniformly distributed: all outputs are possible, but they donot occur with the same probability. For still larger values of R, �R�2 becomesclose to a `random function,' which should be a design goal. The attack can bemodi�ed to deal with surjective but non-uniform functions �R�2. Firstly theextension of the basic attack is described. The computation of the distributionof �R�2 and the expected number of known plaintexts is then explained.OutlineThe �rst step consists of computing the relative probabilities of each value of�R�2. Then the right hand side of (6.3) is computed for every kR and for everyknown plaintext-ciphertext pair. It is then possible to calculate the a posterioriprobability of the key candidates.By Bayes' rule, the probability Pr(kRjt0; sR; tR) that kR is the right key,given t0, sR, and tR, can be expressed as:Pr(kRjt0; sR; tR) = Pr(kR) Pr(t0; sR; tRjkR)Pr(t0; sR; tR) = Pr(kR) Pr(�R�2)Pr(�R) :Denote by Pri(kR), the a posteriori probability that kR is the right key afterthe processing of the ith known plaintext (Pr0(kR) = 1=2�). ThenPr i(kR) = Pri�1(kR) Pr(�iR�2)Pr(�iR) = 12� iYj=1 Pr(�jR�2)Pr(�jR) : (6.7)



6.1. GENERAL PRINCIPLE 109This expression can be evaluated for each key candidate; it assigns to each roundkey a probability that can be used to rank the keys according to decreasingprobability. In a practical implementation the logarithms of the probabilitiescan be added, rather than multiplying the values.Distribution of �R�2The calculation of the probability of each �R�2 turns out to be a non-trivialstep. One strategy is to count the occurrences of each �R�2 for each possibleinput of the round functions, but this is infeasible for realistic values of R. Amore convenient strategy uses the Walsh transform to compute the distributionof �R�2 from the distribution of its components. Suppose the Boolean vectory depends on the Boolean vectors v and w in the following way: y = v � w.Denote by fk(x) the distribution of k, i.e. the number of times that k equals x.The Boolean vector y is equal to x if v = s and w = s � x, and this holds forall possible values of s. Thereforefy(x) =Xs fv(s)fw(x� s) ;which means that fy is the convolution of fv and fw. The convolution of func-tions of Boolean vectors can be calculated by multiplying their Walsh trans-forms [8]. The Walsh transform of p-bit functions can be computed in O(p 2p)integer operations.To �nd the distribution of �R�2, �rst the Walsh transform of the distributionof the round function (or equivalently of �2) is calculated. This distribution canbe obtained from a counting operation, or it can be calculated by a Walsh trans-form itself if the round function exors the outputs of several S-boxes (e.g., theCAST round function, see Section 6.2.1). Since (R� 2)=2 round functions con-tribute to �R�2, the distribution of �R�2 is equal to the inverse Walsh transformof the (R � 2)=2th power of the transformed distribution of �2.In this way, a probability for each value of �R�2 is obtained. However,to estimate the number of plaintexts, is convenient to have a more compactrepresentation. De�ne d(r) = d(Pr(�R�2)) as the frequency distribution of�R�2, with mean value 2�p. Replacing the variable r by its logarithm l =ln(r) = ln(Pr(�R�2)), the distribution d(l) is obtained, with mean value �ln(2�p). The standard deviation is a measure of the imbalance of �R�2. A largestandard deviation means that there are values of �R�2 that occur much more,or much less frequently, than on average. In the subsequent sections, d(l) willbe called `the distribution of �R�2.'



110 CHAPTER 6. NON-SURJECTIVE ATTACKEstimation of the Number of PlaintextsEquation (6.7) enables a cryptanalyst to calculate the a posteriori probabilityof each round key. If only a small number of known plaintexts are available, itis very unlikely that the right round key has the highest rank, i.e., the largestprobability. As the number of plaintexts increases the probability that theright round key gets the highest rank will increase. Now the number m ofknown plaintexts that are required for the right key to have the highest rankwith probability 1=e (e is the base of the natural logarithm) will be estimated.Instead of multiplying probabilities in (6.7), the logarithms of the values will beadded.In order to estimate this number, it is examined in detail what happens fora candidate round key ~kR. For each ~kR,~�R�2 = ~�R�2(~kR) = t0 � sR � F (~kR � tR)is calculated from the plaintext and the ciphertext and l = ln(Pr( ~�R�2)) isobtained from the precalculated table and added to ~kR's counter. The ideais that for the right round key, values of ~�R�2 with a higher (logarithm of)probability, will occur more frequently. Therefore, high values of l will be addedto ~kR's counter more frequently than low values of l. In contrast, for a wrong ~kR,there is no correlation between the probability of ~�R�2 and the value added tothe counter; the increment is chosen more or less at random from the distributionof �R�2. After many plaintexts, the di�erence between a right and a wrong keyis likely to become clear.If all ~�R�2's occur with the same probability then this whole operation cor-responds to adding stochastic variables with a distribution equal to the distribu-tion of �R�2. If ~kR is not the right round key then this is actually what happens,because choosing the wrong round key can be thought of as adding an extraround instead of peeling one o� [46]. This means that in fact ~�R�2 = �R+2,which is almost uniform compared to �R�2, since the imbalance is strongly re-duced as the number of rounds increases. However, if ~kR is the right round keythen ~�R�2 = �R�2, so that values of ~�R�2 with a higher probability, and thuswith a higher l = ln(Pr( ~�R�2)), will occur more frequently. This means thatthe adding operation corresponds to adding a stochastic variable with a similardistribution, but slightly distorted to higher values of l.For one plaintext, there will be a large overlap between these two distribu-tions, which makes it almost impossible to distinguish between them. However,if the procedure is repeated a number of times, each of the two distributionsis convoluted with itself. Let �w, �w and �r, �r be the mean and standarddeviation of the distributions for a wrong and the right round key respectively.After m plaintexts, the distributions can be approximated by normal distribu-tions. The mean values are multiplied by m, but the standard deviations only



6.1. GENERAL PRINCIPLE 111by pm, which implies that the distributions will be easier to distinguish. Theprobability that a counter cw for a wrong round key is greater than the countercr for the right round key after m plaintexts is Pr(cw > cr) = Pr((cr� cw) < 0).The probability that cr is the largest of all the counters is(1� Pr((cr � cw) < 0))2p :If Pr((cr � cw) < 0) = 2�p then this probability equals e�1. The distribution ofcr � cw has mean m�r �m�w and standard deviation pm�2r +m�2w. Hence,Pr((cr � cw) < 0) = 2�pm� m(�r � �w)pm(�2r + �2w)! = 2�pmm =  ��1(2�p)p�2r + �2w�r � �w !2 ;where �(x) = (1 + erf(x=p2))=2 is the integral from �1 to x of the normalprobability density function, and ��1(x) is its inverse. The parameters �wand �w can be obtained from the distribution of �R�2, but for �r and �r the`distorted' distribution for the right round key is required. A straightforwardway to obtain an approximation of this distribution is to simulate it. However,the probability that the right round key 's counter is augmented by a value l asthe result of one plaintext can also be theoretically calculated.Pr(l) = X�R�2Pr(lj�R�2) Pr(�n�2)= X�R�2:ln(Pr(�R�2))=lPr(�R�2)� d(l) Pr(�R�2)� d(l) exp(l) ;where d(l) is the distribution of �R�2, as de�ned in Section 6.1.3. This impliesthat for the right round key, the distribution of �R�2 is multiplied by an ex-ponential function and a constant factor. The parameters �r and �r can becalculated from this new distribution.6.1.4 A Chosen Plaintext VariantThe principles of the known plaintext attack can be used to mount a chosenplaintext attack if the round function of the cipher consists of an addition of the



112 CHAPTER 6. NON-SURJECTIVE ATTACKoutputs of the S-boxes. By a careful choice of plaintexts, it is possible to �x theinput to some S-boxes in the �rst rounds. S-boxes with �xed input are calledinactive. The distribution of the output of an inactive S-box is an impulse.The attack then works as follows. Guess a part of the subkey in the �rstround, such that for given inputs x and x� x0, it becomes possible to calculatethe output di�erence y0 = F (x)�F (x�x0). Typically this means that the partof the subkey that enters one or two S-boxes has to be guessed. Encrypt severalplaintexts that have the following properties: the only active S-boxes in the �rstround are the boxes from which the inputs can be calculated by guessing the key(this gives a condition on t00); the resulting y0 is compensated for by choosingappropriate s00. This ensures that all S-boxes in round two are inactive, andthat in round three the same S-boxes as in round one are active. The resultingdistribution of �R is less uniform than for random plaintexts, provided that theguess for the round key was correct. By comparing the distributions for allpossible key guesses, the correct key can be determined.The main advantage of this attack is that it no longer requires extensiveprecalculations and storage of huge �R-tables. Moreover, it allows the subkeyto be attacked part by part, thereby greatly reducing the required disk space,the memory usage, and the workload per plaintext. However, the attack requiresabout the same number of plaintexts as the known plaintext attack.6.2 Application to CAST and LOKI91The CAST design procedure was introduced in [2]. The common feature of allknown members of the CAST family is that the round function uses S-boxeswith fewer input bits than output bits. In [2] it was suggested that the S-boxes be suggested from bent functions. Later, CAST with random S-boxeswas proposed [48]. For the purposes of the presented attack, this makes nodi�erence.There are also several varieties of key schedulings for CAST ciphers. Theciphers from [2, 3] use a 64-bit key, and round keys that have an entropy of16 bits (this is explained in the next section). The key scheduling of [2] addsthe round key after the S-boxes of the round function. This feature probablyweakens the cipher with respect to the proposal of [3]. In the remainder of thissection the cipher from [3] will be called CAST16. Other versions of CAST mayuse round keys with 32 bit entropy and will be denoted by CAST32.The attack is applied to CAST16 and CAST32: the complexity of the attackand the number of required known plaintexts is estimated and veri�ed withexperimental results.Finally it is explained how to apply the attack to LOKI91.



6.2. APPLICATION TO CAST AND LOKI91 113# S-boxes f1 5:96� 10�82 1:53� 10�53 3:90� 10�34 6:32� 10�1Table 6.1: Fraction f of possible output values for the combination of 1 to 4typical CAST S-boxes.6.2.1 CASTThe round function of a CAST cipher is constructed as follows. De�ne fourtables S1; S2; S3; and S4, with eight input and 32 output bits. If b1b2b3b4 denotesthe four byte input, the output is obtained by adding the output of the fourS-boxes: F (b1b2b3b4) = S1[b1]� S2[b2]� S3[b3]� S4[b4] :Since each S-box has only eight input bits, its output can only take 256 valuesin G32. If the four S-boxes are selected at random, Lemma 6.1 states that theexpected number of possible outputs is (1� e�1)� 232. This value can also becomputed from (6.4), since adding the outputs of the S-boxes is equivalent toconcatenating rounds. Table 6.1 gives the fraction f of possible output valuesfor the combination of 1, 2, 3 and 4 S-boxes.Some CAST16 S-boxes are constructed from 8-bit bent functions that arethe Walsh transforms of the concatenation of four 6-bit bent functions. S-boxesfollowing this design principle were constructed. Typically they have the samevalue of f .The CAST16 key scheduling is characterised by the following procedure: foreach round, �rstly an `initial value' of two bytes is calculated from the masterkey. This calculation is simple for the �rst rounds, and more complicated forthe last rounds. These two bytes are expanded in a nonlinear way to the 32-bitround key. The entropy of each round key is therefore at most 16 bits. Thisenables a cryptanalyst to perform an exhaustive key search for three round keysat once (see (6.6)).The basic attack can be applied to a CAST16 variant, reduced to six rounds.Equation (6.3) becomes:�2 = F (k2 � t1)= t0 � s6 � F (k4 � t6 � F (k5 � s6 � F (k6 � t6))) � F (k6 � t6):Value t0 is part of the plaintext, s6 and t6 form the ciphertext, and k4, k5, andk6 are the round keys that are searched. Note that by swapping plaintext and



114 CHAPTER 6. NON-SURJECTIVE ATTACK6 rounds 8 rounds4� 16 215 2235� 20 219 2276� 24 223 2388� 32 232 262Table 6.2: Estimates for the number of plaintexts for various reduced versionsof CAST32.ciphertext, the same attack can be applied to �nd k1, k2, and k3. The workfactor of the attack is then 1:5 � 248. The number of required texts is only� log(248)= log(1� e�1) � 82. Note that in [48] it is estimated that at least 218known plaintexts are required to break CAST16 reduced to six rounds with alinear attack. For CAST32 it is not feasible to search for several round keys atonce.Since the sum of two CAST round functions is surjective, the basic attackis not applicable to more than six rounds. The statistical attack requires atable of size 232. Although this is not infeasible, an implementation of thisattack is very demanding. Therefore the attack was implemented for severalmini-versions of CAST32 that use S-boxes of size 4 � 16, 5 � 20, and 6 � 24respectively. The properties of the 8� 32 S-boxes were approximated by usingbent functions or (for the 5 � 20 case) random functions with bent function-like imbalance; the experiments indicate that the imbalance of the individualfunctions has very little inuence on the distribution of �R�2 and consequentlyon the e�ectiveness of the attack.Since it is possible to search for three round keys of CAST16 at once, anattack on R rounds of CAST16 would require about the same number of knownplaintexts as an attack on R � 2 rounds of CAST32. Presumably, however, amuch higher work factor is involved in the former case.The precalculations for �R�2 composed of six up to twelve S-boxes werecarried out, 4r S-boxes being equivalent to 2(r + 1) rounds. In Figure 6.1,the distribution of �R�2 is shown for various numbers of 4 � 16 S-boxes (thedistribution is translated over ln(2p) such that it has zero mean). Figure 6.2shows the resulting estimates for the number of required plaintexts. The resultsare summarised in Table 6.2. Based on Figure 6.2, it can be extrapolated thatfor CAST16 with 8� 32 bit S-boxes and eight rounds, 232 known plaintexts arerequired, and about 262 known plaintexts for CAST32.
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Figure 6.1: Fraction of values of �R�2 with the same probability as a functionof the natural logarithm of that probability (translated over ln(2p)) for reducedversions of CAST32 with 4� 16 S-boxes.



116 CHAPTER 6. NON-SURJECTIVE ATTACKPSfrag replacements
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6.2. APPLICATION TO CAST AND LOKI91 117Veri�cationTo verify the estimates, the attack was implemented. The attack is very suitablefor a parallel implementation: each slave handles a set of plaintexts, and themaster collects the results from all slaves and draws conclusions. The idle cyclesof 50 workstations were used.The reduced version with 4� 16 S-boxes and �R�2 composed of 6 S-boxes,i.e., 6 rounds with only 2 S-boxes in the fourth round, was veri�ed extensively,and also the case of eight 4-bit S-boxes. Some results of the former are collectedin Figure 6.3.
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Figure 6.3: Cumulative probability for the rank of the right round key with, asparameter, the number of known plaintexts (for reduced CAST with six 4� 16S-boxes).Also, a number of attacks for ten 4-bit S-boxes, twelve 4-bit S-boxes, six 5-bit S-boxes, eight 5-bit S-boxes and six 6-bit S-boxes were executed. The attackon eight 5-bit S-boxes took about one day on the 50 workstations. The majorconclusion of all the experiments is that the estimates made in the previousparagraph seem quite accurate.This can also be seen from Figure 6.2, where some experimental results forfour bits are plotted, together with the theoretical estimates. The numbersplotted are the mean values (and standard deviations) of the number of plain-texts required to get the �rst ranking for the right round key. For six andseven S-boxes, the mean is taken over about 100 experiments; for eight, nineand ten S-boxes it is taken over 30 and for eleven S-boxes taken over only two



118 CHAPTER 6. NON-SURJECTIVE ATTACKexperiments.ComplexityA �rst parameter is the disk space required for the calculation and storage ofthe table of �R�2. For l = 32, this calculation requires 256 Kbyte, for l = 48this increases to 64 Mbyte, to become 16 Gbyte for l = 64.Other limiting factors are the memory usage and execution time per plaintextof the actual attack, because of the large number of counters (one for each keycandidate) that have to be in memory and updated for every plaintext. Memorycan be traded o� for time by dividing the attack into multiple passes, consideringonly part of the key candidates and/or �R�2-values in one pass.6.2.2 LOKI91The round function of LOKI91 takes a 32-bit message input and exors this witha 32-bit round key. These 32 bits are expanded to 48 bits and split into fourparts. Each part enters the 12 � 8-bit S-box. This produces the 8 � 4 = 32output bits. Note that of the 48 input bits to the nonlinear part, 32 bits arepairwise equal. In [59] L.R. Knudsen observed that this implies that the outputcan only take a fraction of 813 of the possible values.Each round key consists of 32 bits. The key scheduling of LOKI91 is suchthat k2r is obtained by rotating k2r�1 over 12 positions to the left. Thereforeit is possible to search for the round keys of two rounds at once, and the basicattack can be applied to �ve rounds of LOKI91. Since f is about the same forLOKI91 and CAST, comparable results for the extended attack are expected,except for the fact that only two rounds can be peeled o�. In [127] the strengthof various reduced versions of LOKI91 against linear and di�erential attacks isexamined. The results are summarised in Table 6.3, together with the estimatesof the strength against the new attack. For 9 rounds or more, the new attackbecomes less e�cient. Note that a di�erential attack requires chosen plaintexts,while the two other attacks require only known plaintexts.5 rounds 7 rounds 9 roundslinear attack 223 240 250di�erential attack 28 216 230non{uniform attack 26 232 262Table 6.3: Comparison of the data complexity of a linear attack, and estimatesfor the data complexity of a di�erential attack and the new attack for reducedversions of LOKI91.



6.3. CONCLUSIONS 1196.3 ConclusionsA new attack has been presented that is applicable to Feistel ciphers with a smallnumber of rounds (R � 8), that use a non-surjective round function. The attackeasily breaks six rounds of CAST16, requiring 232 known plaintexts. By peelingo� two additional rounds, the number of required plaintexts can be lowered to82, or eight rounds can be broken with the same number of plaintexts, but witha much higher work factor. It is estimated that the attack also breaks eightrounds of CAST32 if 262 known plaintexts are available. The attack leads to thefollowing design criterion. Feistel ciphers with non-surjective round functionsshould use a number R of rounds that is large enough to make �R�2 surjective,where the sum �r is de�ned in (6.1). In order to counter the statistical attack,�R�2 should have a distribution which is close to uniform.There exist block ciphers that are based on the Luby-Racko� [73] construc-tion. The construction uses pseudo-random round functions to obtain a pseudo-random permutation. It is believed that a pseudo-random permutation is a goodblock cipher. Designers argue that the pseudo-randomness of the round functionallows the number of rounds of the block cipher to be reduced to four. However,pseudo-random functions are non-surjective and the attack of this section alsoapplies to these ciphers. It imposes a lower bound on the number of rounds thatshould be used.With respect to the key scheduling of CAST [3], it can be seen that roundkeys with 16 bit entropy are inadequate. The computational cost for a cryptan-alyst to peel o� several rounds is too low. This makes CAST16 more vulnerableto the new attack than LOKI91. CAST32 with R rounds achieves the sameresistance against the attack as R+1 rounds of LOKI91. The attack on CASThas been published in [112, 113].
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Chapter 7Design Strategy &Components The protection provided by encryptionis based on the fact that most peoplewould rather eat liver than do mathe-matics. Bill NeugentThis chapter starts with explaining the Wide Trail design strategy [26]. Thestrategy is extended to include resistance to related-key attacks [55] and theinterpolation attack [54]. Since the nonlinear components of block ciphers havealready been studied extensively in the cryptographic literature, this chaptermainly focuses on the linear components. An important advantage of the WideTrail strategy is that it allows block ciphers to be designed with a high anduniform resistance to linear and di�erential cryptanalysis. The last sectionshows how block ciphers can be designed that have exactly one selection ofinput and output bits with a strong correlation, while the correlation for theother selections are weak. This property is actually a trapdoor. This result hasbeen published in [114].7.1 Wide Trail Design StrategyThe Wide Trail design strategy was introduced by J. Daemen [26] as a means toconstruct cryptographic algorithms that resist di�erential and linear cryptanal-ysis. After a short historic overview the strategy is explained and the proposedextensions are formulated. 123



124 CHAPTER 7. DESIGN STRATEGY & COMPONENTS7.1.1 Historic OverviewThe �rst theory behind the design of encryption algorithms can be found in[122], where C.E. Shannon proposes the building of strong ciphers by alternat-ing simple substitutions with mixing transformations. The result of the com-bination is that \any signi�cant statistics from the encryption algorithm mustbe of a highly involved and very sensitive type|the redundancy has been bothdi�used and confused by the mixing transformation." He observes that whileit is easy to `move' known quantities through the mixing transformations, thisis quite di�cult for unknown key dependent quantities, which are produced bythe substitutions.Feistel proposes in [36] the connection of small substitution boxes with a\properly chosen wire-crossing pattern" to provide di�usion. Confusion is pro-vided by the substitution boxes. The design principles of the DES (partiallyrevealed to the public world in [21]) give a �rst speci�cation of the requirementsfor the S-boxes and the permutation P in order to achieve adequate confusionand di�usion. Since then, a number of di�erent approaches has been developed.X. Lai, J. Massey and S. Murphy use a mix of operations over di�erent alge-braic groups to achieve strong ciphers [68, 69]. L.R. Knudsen and K. Nyberghave built ciphers with a provable resistance to various forms of cryptanalysis[96, 97]. The Wide Trail strategy was developed by J. Daemen in [26].7.1.2 DescriptionIn the Wide Trail strategy, the round transformation is composed of a numberof uniform transformations. Let x denote the text input and k the (round) keyinput of the round transformation �[k](x). The input x is divided into q p-bitblocks xi, 0 � i < q. The transformations are:1. a nonlinear substitution layer  operating separately on each p-bit block,2. a linear di�usion layer � mixing the p-bit blocks, and3. an a�ne key addition �[k].Here, only nonlinear substitution layers using p�p S-boxes are considered. TheS-boxes are selected in such a way that there are no nonzero input exors that leadwith high probability to certain output exors, and the input-output correlationsare small. The linear di�usion layer is chosen so that there are no di�erentialcharacteristics or linear relations over a small number of active S-boxes. Thekey addition speci�es how the round keys are mixed with the input of everyround. A fourth important component of a block cipher is the key schedule. Itspeci�es how the round keys are derived from the key. The last two operations



7.1. WIDE TRAIL DESIGN STRATEGY 125have no role in the original Wide Trail strategy, as described in [26]. The roundtransformation is then given byy = �[k](x) = � �  � �[k](x) : (7.1)The ordering of the di�erent transformations can vary in speci�c designs.The use of the term `linear' implies a choice concerning the operation thatwill be considered as the linear operation: exor, modular addition, division,: : : . The Wide Trail strategy works for any choice of operation, but a choicemust be made. The results obtained with respect to di�erential cryptanalysisare then only valid for the di�erence operation corresponding to the chosenlinear operation. Since the exor operation is by far the most common choiceof operation for successful cryptanalysis, in what follows it will be used as thelinear operation.By considering each component separately, a Wide Trail design becomesrobust. The di�usion layer is selected to have uniform and good di�usion prop-erties; the S-boxes are selected to have uniform nonlinear properties. The prop-erties of the components are evaluated without taking the details of their inter-action into account: there is no attempt made to compensate for weaknesses inthe nonlinear layer by additional properties of the linear di�usion layer, or viceversa.7.1.3 Di�erential and Linear CryptanalysisThe probability of the best di�erential characteristic is often used as a measureof the resistance of the cipher to di�erential cryptanalysis. As a rule of thumb,the number of chosen plaintexts that are required for a di�erential attack isproportional to the inverse of the probability of the used di�erential [10]. Theresistance to linear cryptanalysis is often measured by the highest input-outputcorrelation [77]. The number of known plaintexts required for a linear attack isproportional to the inverse of the squared input-output correlation. For mostproposed block ciphers it is di�cult to calculate this probability or correlation.Usually it is not feasible to calculate all probabilities in order to select the bestone. For some ciphers the search for the best characteristic or linear relation canbe performed by using techniques from arti�cial intelligence (such as branch andbound or pruning) [7, 80], but in general these techniques are not su�cient tomake the search practical. This is a problem for a designer who wants to verifythe resistance of his design to these two general attacks. On the other hand,it opens up the possibility of constructing a trapdoor cipher by deliberatelyinserting a linear relation that has high deviation (cf. Section 7.5).The Wide Trail strategy solves this problem by giving an upper bound forthe probability of a di�erential characteristic and for the input-output corre-lation. The upper bound for the probability of a di�erential characteristic is



126 CHAPTER 7. DESIGN STRATEGY & COMPONENTSdetermined as follows. Firstly observe that for the linear di�usion layer and thea�ne key addition, the output di�erence is determined uniquely by the inputdi�erence. The only place where the probability of a di�erential characteristicis lower than one, is in the inactive S-boxes of the nonlinear layer. If � is themaximal probability of a nonzero input di�erence leading to a certain outputdi�erence, and B is a lower bound for the number of active S-boxes in a di�eren-tial characteristic, then the probability of a di�erential characteristic is clearlyupper bounded by: p � �B : (7.2)Since the S-boxes are selected to have a low value for �, and the linear di�u-sion layer is selected to have a high value for B, this upper bound can be verylow. Note that this upper bound assumes that the rounds are independent (cf.Section 3.4). While in practice this assumption usually gives a good approxima-tion, it has to be handled with care, and the following remarks have to be made.Firstly, if l is the block length in bits of the cipher then for any value of the key,the probability of any di�erential will either be zero, or an integer multiple of21�l. Secondly, statistical techniques allow the following upper bound for theprobability of the best di�erential characteristic of a general l-bit block cipherto be determined [98]: p � l21�l :For a reasonable number of rounds, this bound is usually higher than (7.2). Aprudent approach might be to regard the highest of the bounds as an estimate ofthe probability of the best di�erential characteristic. The designer should keepin mind that the fact that all di�erential characteristics have low probabilities,does not guarantee that the cipher resists di�erential cryptanalysis, because thesuccess probability actually depends on the probability for a �xed key of thedi�erential.The input-output correlation can be bounded in the same way. For thelinear layers, every selection of input bits has correlation one with exactly oneselection of output bits, and correlation zero with all other selections. If themaximal input-output correlation of an active S-box is given by � and B isa lower bound for the number of active S-boxes in a linear relation, then theinput-output correlation for the cipher is upper bounded by:c � �B : (7.3)7.1.4 Di�erentials, Linear Hulls & Truncated Di�erentialsThe Wide Trail strategy gives upper bounds for the probability of di�erentialcharacteristics and the input-output correlation of a chain of linear relations



7.1. WIDE TRAIL DESIGN STRATEGY 127over the rounds of a block cipher, assuming that the round transformations actindependently. In fact the strategy gives no strict guarantees of the resistanceof the cipher to di�erential and linear attacks, because then the probability ofdi�erentials and linear hulls has to be used and the dependency of the roundshas to be considered. The Wide Trail approach di�ers from the designs withprovable security to linear and/or di�erential cryptanalysis by L.R. Knudsen enK. Nyberg [96, 97]. It should also be noted that the `provably secure' designsassume independent rounds and that the security proofs consider only a limitedset of the possible attacks. At the moment neither the Wide Trail strategy, northe provably secure approach take truncated di�erentials or new attacks intoaccount.However, the Wide Trail strategy emphasises the importance of di�usion aswell as nonlinearity, which are, according to C.E. Shannon [122], both necessaryfor a strong algorithm.7.1.5 ExtensionsMathematical structureThe building blocks of the round transformation can be selected in several ways.A �rst approach is to put forward a selection criterion and perform a randomsearch until a candidate has been found that meets the criterion. A secondapproach is to use a mathematical construction that guarantees the requiredproperties of the mappings. The second approach is usually much faster. How-ever the inherent mathematical structure can also be exploited by the crypt-analyst. The designer has to ensure that the mathematical structure of themappings does not translate to a mathematical structure for the cipher. Anexample of an attack that exploits the mathematical structure in the cipher isthe interpolation attack [54]: if the operation of the cipher can be described asa mathematical function with a small number of key dependent coe�cients thenthe cryptanalyst can collect a number of plaintext-ciphertext pairs and solve forthe unknown coe�cients. Once the coe�cients are known, encryption and/ordecryption of other messages can be done at will.This means that during the design, the di�erent components of the roundfunction cannot be considered independently: if both exhibit mathematicalstructure then the design has to ensure that the structures are not compati-ble.Key scheduleThe key schedule is an important component for the resistance of the cipher torelated-key attacks or attacks in which part of the key is known. If the block



128 CHAPTER 7. DESIGN STRATEGY & COMPONENTScipher is used in the compression function of a hash function, the cryptanalystcan choose the key. Neglecting the key schedule will almost certainly lead toweaknesses.The next sections discuss the required properties and construction methodsfor the separate round transformation components.7.2 Di�usion LayerIn Chapter 3, basic de�nitions are introduced of functions and S-boxes thatoperate on bit vectors, i.e. mappings from Gn to Gm. These de�nitions arenow extended to mappings from Gp�n to Gp�m. (Gp�n is the vector space ofdimension n, where the vectors have as components p-bit tuples.) The p-bittuples are considered as elements from the �nite �eld GF (2p). Since the vectorsof Gp�n can also be considered as elements of G(pn), the vector space of binary(pn)-tuples, mappings with domain Gp�n can be studied from two di�erentviewpoints. Sometimes it will be more convenient to consider the mappings asBoolean mappings, other times the representation with p-bit elements will bepreferred.From now on the Hamming weight of a vector means its number of non-zerocomponents, where a component now has p bits. The Hamming distance of twovectors is still de�ned as the Hamming weight of their di�erence.The addition of two elements from GF (2p) can be performed by exoring theindividual bits of the elements. This leads to the following lemma.Lemma 7.1 All functions that are linear over GF (2p) can be considered asS-boxes with component functions that are linear over GF (2), and vice versa.Proof: The proof follows from the de�nition of a linear function.f : (GF (2p))n ! GF (2p) : x 7! f(x) is linearm8x; y 2 (GF (2p))n : f(x� y) = f(x)� f(y)m8x; y 2 (GF (2))pn : fi(x� y) = fi(x)� fi(y); i = 1; : : : ;mmfi : (GF (2))pn ! GF (2) : x 7! fi(x) is linear; i = 1; : : : ;m :This lemma is used later, when di�usion layers are constructed that are linearin GF (2), based on codes that are linear over GF (2p). An important di�erencebetween linear functions from (GF (2))n to GF (2) and linear functions from(GF (2p))n to GF (2p) is the following. If a function f from (GF (2))n to GF (2)



7.2. DIFFUSION LAYER 129is linear then it can be described as a vector product. There always exists avector a 2 (GF (2))n such thatf(x) � a � x = nMi=1 ai � xi :This property does not hold for linear functions from (GF (2p))n to GF (2p). Thesimplest counterexample is the squaring operation. In a �eld with characteristicq, it holds that (x � y)q = xq � yq [66]. Thus, in GF (2p) (x � y)2 = x2 � y2;but there exists no a 2 GF (2p) such that x2 � a � x.The extension of di�erential cryptanalysis to functions operating on p-bitvalues is straightforward. A meaningful extension of linear cryptanalysis is lessobvious. The key element for linear cryptanalysis is the concept of correlation.It is not clear how this concept can be extended and used in GF (2p). Thereforeonly bitwise linear relations will be considered. To simplify the notation, thecorrelation between two functions from (GF (2p))n to GF (2p) will be de�nedas the maximum of the correlations between all linear combinations of theircomponent functions:c(f(x); g(x)) = max�;�2GF (2p) c(� � f(x); � � g(x)) : (7.4)7.2.1 Measuring Di�usionA necessary condition for a block cipher is completeness: every ciphertext bithas to depend on every plaintext bit and on every key bit. This objective is metby the block cipher in two steps:1. The most e�cient way to implement a nonlinear function is usually bymeans of table lookups. Since a function with n input bits and m outputbits requires a table of m2n bits, n and m are always chosen to be smallerthan l. If the nonlinear layer is implemented with p-bit S-boxes, each ofthe output bits is only inuenced by the p input bits of the S-box fromwhich it is an output, which depend on a restricted set of key bits andplaintext bits.2. The di�usion layer ensures the mixing of the sets, such that after a fewrounds completeness is reached. In the Wide Trail strategy, the p-bitoutput from an S-box is considered as one input value for the di�usionlayer. Completeness for the di�usion layer means then that every p-bitoutput depends on every p-bit input.The key addition is not used to provide di�usion.



130 CHAPTER 7. DESIGN STRATEGY & COMPONENTSThe requirement for completeness is a very weak and easily met requirement.To provide resistance to cryptanalysis it is necessary that every ciphertext bit isa complex function of all the plaintext bits and all the key bits. In the contextof di�erential cryptanalysis this means that small input changes should causelarge output changes, and conversely, to produce a small output change, a largeinput change should be necessary. Here a `small change' means a change inonly a few p-bit values, whereas a `large change' means that many p-bit valuesare changed. To provide resistance to linear cryptanalysis there should be nocorrelations between linear combinations of a small set of (p-bit) inputs andlinear combinations of a small set of (p-bit) outputs.In the literature several measures of the di�usion of a mapping have beenproposed.A mapping �(x) displays the avalanche e�ect [36] if on average one half ofthe component functions of �(x) are complemented when one component of xis complemented.If complementing one component of x causes every component of �(x) tocomplement with probability 0.5, � obeys the strict avalanche criterion (SAC)[132].A function f satis�es the propagation criterion of degree k, PC(k) (1 �k � n), if f(x) changes with probability 0.5 whenever i (1 � i � k) bits of xare complemented. The function satis�es the propagation criterion of degree kand order m if any function obtained from f by keeping m input bits constantsatis�es PC(k) [102].Three problems with the avalanche e�ect and SAC are evident from thede�nitions. A �rst problem is that only input changes of Hamming weight oneare considered. When larger changes are applied, the situation might be farworse.Example 7.1 Consider the mapping�(x) = y , yi = nMj=1;j 6=i xj � xi :It is easy to verify that � satis�es the SAC. However, if two components xt; xuare changed at the same time, only yt and yu change with probability 0.5. Allthe other components of y remain constant.A second problem is that the properties are probabilistic. If the di�usion isgood on average, cryptanalysts may be able to exploit an occasion where thedi�usion is much lower than the average value. A third problem is that thede�nitions only deal with resistance to di�erential attacks, and not with linearor other correlation-based attacks. The propagation criterion allows the �rsttwo problems to be solved by raising k and m. The third problem remains.



7.2. DIFFUSION LAYER 131The branch number B of a mapping is a measure that does not su�er fromany of these problems [26]. The branch number is especially useful to measurethe performance of the di�usion layer in a design that follows the Wide Trailstrategy. In order to get a more general result the de�nition of the branchnumber of a mapping presented here deviates slightly from the de�nition givenby J. Daemen [26]. It will be discussed under what conditions the de�nitionsare equivalent.7.2.2 Branch Numbers: Three De�nitionsJ. Daemen de�nes the branch number B(�) of a linear mapping � as follows:De�nition 7.1 (J. Daemen [26]) The branch number of a linear mapping isgiven by B(�) = mina6=0fwh(a) + wh(�(a))g : (7.5)Here the branch number of a general mapping will be de�ned. It is necessaryto make a distinction between the di�erential and the linear branch number.De�nition 7.2 The di�erential branch number of a mapping (linear or non-linear) is de�ned byBd(�) = mina;b6=afwh(a� b) + wh(�(a)� �(b))g (7.6)= mina6=0;b;e�(akb)6=0fwh(a) + wh(b)g : (7.7)The following proposition relates the value of Bd(�) to the worst case di�usionof � in a di�erential context.Proposition 7.2 For any iterated block cipher with S-boxes, the number ofactive S-boxes in a two-round di�erential characteristic is lower bounded by thedi�erential branch number of the mapping that is used in the di�usion layer.Proof: Consider two rounds of a block cipher, with di�usion layer �.�[k2] � �[k1](x) = � �  � �[k2] � � �  � �[k1](x)Let a; b be two inputs, where wh(a� b) = d. Since � and  do not mix di�erentp-bit values, the number of active S-boxes in  of the �rst round is given bywh(�[k1](a)� �[k1](b)) = d, and the number of active inputs of � iswh((�[k1](a))� (�[k1](b))) = d :



132 CHAPTER 7. DESIGN STRATEGY & COMPONENTSLet the number of active outputs of � be denoted by e, wheree = wh(�((�[k1](a)))� �((�[k1](b)))) :The number of active S-boxes in  of the second round is then also e. Equa-tion (7.6) guarantees that d+ e � Bd(�).For a linear mapping �(a)� �(b) = �(a� b), and (7.6) reduces to (7.5).De�nition 7.3 The linear branch number of a mapping is de�ned asBl(�) = min�;�;c(��x;���(x))6=0fwh(�) + wh(�)g (7.8)This de�nition is the equivalent of De�nition 7.2 in linear cryptanalysis. It canbe shown that Bl(�) gives a lower bound for the number of active S-boxes ina linear relation. If � is a linear mapping, characterised by the matrix 
 (cf.Section 3.1.3), then (7.8) can be reduced in the following way.Bl(�) = min� 6=0fwh(�) + wh(�t(�))g ; (7.9)where �t is the mapping characterised by transposed matrix 
t (cf. Section 3.1.3).Note that in general (7.9) is not equivalent to (7.5).7.2.3 Branch Numbers and Coding TheoryThe branch numbers of linear mappings can be studied using the framework oflinear codes over GF (2p) [74, 101, 130].De�nition 7.4 A linear [n; k; d] code over GF (2p) is a k-dimensional subspaceof the vector space (GF (2p))n, where any two di�erent vectors of the subspacehave a Hamming distance of at least d (and d is the largest number with thisproperty).The distance d of a linear code equals the minimum weight of any nonzerocodeword. A linear code can be described by each of the two following matrices:� A generator matrix G for an [n; k; d] code C is a k � n matrix whose rowsform a vector space basis for C (only generator matrices of full rank areconsidered). Since the choice of a basis in a vector space is not unique,a code has many di�erent generator matrices that can be reduced to oneanother by performing elementary row operations. If permutation of thecoordinate positions is allowed, it is always possible to �nd a generatormatrix having the form Ge = [Ik�k Ak�(n�k)] :This form is called the echelon form, or standard form of the generatormatrix. The code is then in systematic form.



7.2. DIFFUSION LAYER 133� A parity check matrix H for an [n; k; d] code C is an (n � k) � k matrixwith the property that a vector x is a codeword of C if and only ifHxt = 0 :If G is a generator matrix and H a parity check matrix of the same code, thenGHt = 0 :Moreover, if G = [I C] is a generator matrix of a code, then H = [�Ct I ] =[Ct I ] is a parity check matrix of the same code.The dual code C? of a code C is de�ned as the set of vectors that are orthog-onal to all the vectors of C;C? = fx j x � y = 0;8y 2 Cg :It follows that a parity check matrix of C is a generator matrix of C? and viceversa.Codes can be associated with mappings in the following way.De�nition 7.5 Let � be a mapping from (GF (2p))n to (GF (2p))n. The associ-ated code of �, C�, is the code that has codewords given by the vectors (xk�(x)).The code C� has 2n codewords and has length 2n.If � is de�ned as �(x) = x �A, then C� is a linear [2n; n; d] code. Code C� consistsof the vectors (xk(x �A)), where x takes all possible input values. Equivalently,the generator matrix G� of C� is given byG� = [I A] ;and the parity check matrix H� is given byH� = [�At I ] = [At I ] :It follows from De�nition 7.6 that the di�erential branch number of a mapping� equals the distance of the associated code C�. The theory of linear codesaddresses the problem of determining the distance of a linear code extensively.This theory can be used to determine the di�erential branch number of a linearmapping.Proposition 7.3 (The Singleton bound) If C is an [n; k; d] code, then d �n� k + 1.



134 CHAPTER 7. DESIGN STRATEGY & COMPONENTSA code that meets this bound, is called a Maximal Distance Separable (MDS)code. Applied to an n-dimensional linear mapping, this proposition states thatBd � n+ 1 :The upper bound is easily explained. For every mapping � it holds that wh(�(x)) �n. Since it is possible to choose x such that wh(x) = 1, it follows that Bd(�) �n+1. Mappings that reach this bound are called optimal (di�erential) di�usionmappings.Proposition 7.4 A linear code C has distance d if and only if every d � 1columns of the parity check matrix H are linearly independent and there existssome set of d columns that are linearly dependent.An MDS-code has distance n�k+1, thus every n�k columns of the paritycheck matrix are linearly independent. This property can be translated to arequirement for the matrix A [74]:Proposition 7.5 An [n; k; d]-code with generator matrix G = [Ik�k Ak�(n�k)]is a maximum distance separable (MDS) code if and only if every square sub-matrix of A is nonsingular.Corollary 7.6 All linear optimal (di�erential) di�usion mappings are invert-ible.This follows from the fact that A is nonsingular.The following proposition relates the linear branch number of a linear map-ping to the dual of the associated code.Proposition 7.7 If C� is the associated code of the linear mapping �, then thelinear branch number of � is equal to the distance of the dual code of C�.Proof: Lemma 3.1 states that the correlation between two linear functionscan take only two values: if the linear functions are di�erent, the correlationis zero, otherwise it is one. Therefore in (7.8) only the values for (�; �) wherec(� � x; � � �(x)) = 1 have to be considered. From (3.9) it follows that thecorrelation is one if Xx (�1)��x����(x) = 2n :This is equivalent to the requirement that for all codewords (xk�(x)) of C� � x� � � �(x) = (xk�(x)) � (�k�) = 0;or (�k�) 2 C?. The linear branch number of s is de�ned to be the minimumweight of the vectors (�; �), which is by de�nition the distance of C?.



7.2. DIFFUSION LAYER 135Corollary 7.8 The linear branch number of the linear mapping � : x 7! x � Ais equal to the di�erential branch number of the mapping �t : x 7! x �At.Example 7.2 shows that the di�erential and the linear branch number of alinear mapping need not to be equal.Example 7.2 Consider the mapping � : x 7! x �A over GF (4), withA = 24 1 0 02 1 22 2 1 35 :Since H = [At I ] has two equal columns, Bd(�) = 2. For [A I ], all sets of twocolumns are independent, and there are three linearly dependent columns. ThusBl(�) = 3.There do exist classes of mappings with equal di�erential and linear branchnumber. An obvious su�cient condition is the requirement that A be symmetric.A second class is the mappings that have an associated code that is MDS.Indeed, if all submatrices of A are nonsingular, then this holds also for At.Thus all mappings with optimal di�erential di�usion also have optimal di�usionagainst linear attacks. A third important class is the mappings with a circulantmatrix A.De�nition 7.6 An n�n matrix A is circulant if there exist n constants a1; : : : ; anand a `step' c 6= 0 such that for all i; j ( 0 � i; j < n)ai;j = ai+cj mod n :If gcd(c; n) = 1 then the branch numbers of � are equal.7.2.4 MDS-CodesA well-known subclass of MDS-codes is formed by the Reed-Solomon codes (RS-codes). RS-codes over the �eld GF (2p) can have lengths of up to 2p � 1 [74].RS-codes can be constructed very e�ciently as follows.Let a codeword b correspond to a polynomialb(x) = nMi=1 bixi�1 :Choose � as a primitive element in GF (2t). Then the polynomialg(x) = (x � �) � (x� �2) � : : : � (x� �n)



136 CHAPTER 7. DESIGN STRATEGY & COMPONENTSgenerates a (2n; n; n + 1)-Reed-Solomon code. The codewords are formed bythe polynomials of degree < 2n that are multiples of g(x).The standard form of the generator matrix can be constructed in the follow-ing way [101]. Let ai(x) be the remainder after dividing xi by g(x):xi = g(x) � q(x) � ai(x) :Then, xi � ai(x) = g(x) � q(x)is a codeword. We take these codewords for i = 2n� 1; 2n� 2; : : : ; n, as rowsof G. It follows that G = [In�n An�n]is the standard form of the generator matrix.MDS codes can also be generated by a random search for the matrix A. Dueto the large number of square submatrices and the non-negligible probability(2�p) that a determinant is 0, this approach is only suitable for small values ofn and becomes computationally infeasible as n grows. The number of squaresubmatrices is nm = nXi=1 �ni�2;and the expected number of trials isnt = (1� 2�p)�nm :Table 7.1 gives the values of nm and nt for various values of n, if p = 8.Note that nt can be reduced by looking for codes for which the matrix Ais circulant. In a circulant matrix many of the submatrices are equivalent.This results in a signi�cant reduction of nt. A closed formula for the numberof equivalence classes is di�cult to obtain. Table 7.1 shows the numbers forn = 1; : : : ; 8, which were all determined experimentally.7.2.5 Multi-Level Di�usionIn the mappings discussed in the previous sections, every output block candepend on every input block. Under this condition it is possible to constructmappings with a high branch number, that guarantee many active S-boxes inevery two-round di�erential characteristic or linear relation. It is possible to usea combination of incomplete mappings and still obtain adequate di�usion. This



7.2. DIFFUSION LAYER 137n nm ntgeneric circulant generic circulant1 1 1 1 12 5 3 1 13 19 7 1.1 14 69 17 1.3 1.15 251 41 2.7 1.26 923 111 37 1.57 3431 309 7 � 105 3.48 12869 935 7 � 1021 39Table 7.1: The number of square submatrices in a generic matrix of order n, thenumber of non-equivalent determinants in a circulant matrix of the same orderand the expected number of trials to �nd a matrix which has all submatricesnonsingular.section deals with the most simple extension: two-level di�usion. Only the caseof a di�erential characteristic is considered, since the linear case is equivalent.Two-level di�usion in the n-dimensional vector space proceeds in severalstages. The n inputs of the mappings are divided into n2 classes of n1 inputseach, n = n1n2. There are two mappings �1; �2, both incomplete, that will beused alternately to produce the strong di�usion:� Mapping �1 mixes only inputs of the same class; it can be considered asthe parallel application of n2 mappings hi, each having n1 inputs.�1(x) = (h1(x1; : : : ; xn1); h2(xn1+1; : : : ; x2n1); : : : ; hn2(x(n2�1)n1+1; : : : ; xn))Mapping �1 is clearly incomplete and its di�erential branch number is theminimum of the di�erential branch numbers of the mappings hi.� Mapping �2 mixes the inputs of di�erent classes. The di�usion of �2 ismeasured in terms of classes rather than in terms of the n individualinputs. If one class is considered as one input, then the di�usion of �2 canalso be measured by the di�erential branch number. In the following, B�dwill denote the di�erential branch number with respect to classes.Proposition 7.9 bounds the di�usion in a construction with two-level di�usion.Proposition 7.9 Consider the following transformation:A�1;�2(x) =  � �1 �  � �2 �  � �1 � (x) ;



138 CHAPTER 7. DESIGN STRATEGY & COMPONENTSwhere �1 and �2 are di�usion mappings and  is a nonlinear layer, implementedwith S-boxes. The total number of active S-boxes in a four-round di�erentialover A is lower bounded by Bd(�1)� B�d(�2).Proof: De�ne A�1 =  � �1 �  and A�1;�2 = A�1 � �2 � A�1 . Proposition 7.2implies that the number of active S-boxes in the transformation A�1 is lowerbounded by Bd(�1). Since �1 does not mix inputs of di�erent classes, the numberof active classes stays invariant under A�1 and the number of active S-boxes islower bounded by Bd(�1) times the number of active classes. Thus, the numberof active S-boxes in a characteristic overA�1;�2 is lower bounded by Bd(�1) timesthe sum of the number of active classes before and after �2. By de�nition, thelatter sum is lower bounded by B�d(�2), which proves the proposition.Application in a DesignFor some applications, the implementation of a di�usion layer that is based ona complete mapping is not acceptable because of the computational e�ort thatis required to evaluate it. Mappings with good two-level di�usion can provide agood alternative. An example is given in Chapter 8: the block cipher Squarehas a block length of 128 bits, which makes the computation of the result of acomplete mapping very expensive.The most obvious way to apply the result of Proposition 7.9 is to de�ne ablock cipher with two di�erent round operations, that are used alternately. Inprinciple this construction is no longer an iterated block cipher. Since mostfast implementations of block ciphers unroll loops, it might be that there are nopractical objections. However, there is a way to unify the two di�erent roundtransformations again. De�ne an extra transformation � that permutes thep-bit values. Let � = � � �1. The round transformation becomes:�[k](x) = � � �1 �  � �[k] � � � �1 �  � �[k](x) : (7.10)Since  operates on each p-bit value separately, it commutes with �:� � (x) =  � �(x) :Also, under �[k] the tuples are transformed independently of one another:� � �[k](x) = �[�(k)] � �(x) :Consider now the following transformation, where � is left out to simplify no-tation: T = � � � � � � �= � � �1 �  � � � �1 �  � � � �1 �  � � � �1 � = � � �1 � � �  � �1 �  � � � �1 � � �  � �1 � = � � �1 � � � A�1;���1�� :



7.3. NONLINEAR LAYER 139The transformation A is de�ned as in Proposition 7.9, where �2 equals � ��1 � �. The di�usion of the transformation T is then bounded by the resultsof Proposition 7.9. Square (cf. Section 8.2) is an example of a cipher withtwo-level di�usion, but identical round operations.In general, t-level di�usion can be accomplished by de�ning t mappings �i:�1 operates separately on classes of n1 inputs, �2 operates on super-classes ofn2 classes, and so on for �3; : : : This can be implemented e�ciently if the roundfunctions are permitted to vary; if all the round functions have to be equal thenthe analysis becomes di�cult.7.3 Nonlinear LayerThe nonlinear layer provides resistance to linear and di�erential cryptanalysis.It is implemented with S-boxes. A large number of S-box criteria, sometimescontradictory, have been published (see, for example, [21, 33, 56, 92, 93]).As explained above, the Wide Trail strategy uses p � p S-boxes where �,the maximal probability that a non-zero input exor leads to a certain outputexor, and �, the maximal input-output correlation, are low. Only constructionmethods for p� p S-boxes will thus be discussed.As in the case of the di�usion layer, there are essentially two approachespossible for generating S-boxes: either generate a set of random S-boxes andselect the instances that perform best with respect to the criterion, or search forexplicit constructions. Section 7.3.1 discusses a method of constructing S-boxeswith optimal nonlinearities. Section 7.3.2 discusses a method of removing reg-ularities that may result from explicit construction methods, and Section 7.3.3discusses the results that can be achieved by random search methods.7.3.1 Explicit ConstructionThe construction of nonlinear S-boxes has already been discussed extensivelyin the cryptographic literature [1, 56, 93]. For S-boxes with the same numberof inputs and outputs, the lowest values for � and � are obtained using theconstruction methods presented in [93]. The following mappings are presented:� s(x) = x2k+1 in GF (2p):This mapping has the following properties: � = 2�p�gcd(k; p); if p=gcd(k; p)is odd, then s is invertible and � = 2(gcd(p;k)�p)=2. Note that p=gcd(p; k)can only be odd if p has an odd factor (p cannot be a power of two). Thecomponent functions and all the linear combinations of the componentfunctions then have nonlinear degree 2.



140 CHAPTER 7. DESIGN STRATEGY & COMPONENTS� s(x) = x�1 in a �nite �eld:If p is odd, then � = 21�p, otherwise � = 22�p. Also, � � 2(2�p)=2. Thenonlinear degree of the component functions and all the linear combina-tions of the component functions is p� 1.� s(x) = ux in a prime �eld GF (q):If the order of u is t, then � = q�1(1 + (q � 1)=t).The disadvantage of any explicit construction is that the resulting S-boxescontain some structure which could be exploited by a cryptanalyst in an in-terpolation attack [54]. One technique of destroying this structure is to applyan invertible bitwise a�ne transformation to the output bits of the S-box. Inthis way, the description of the mapping s as a polynomial over GF (2p) canbe made very complex. Note that any p-bit mapping can be represented asa polynomial or a rational form in GF (2p). Therefore it seems plausible thatthe application of an a�ne transformation can make the constructed S-box assecure as a random S-box against attacks that exploit existing structure.7.3.2 Modi�cationsAnother approach to destroying the structure of a mapping that is constructedas in the previous section is to apply some random changes to the output. Thedisadvantage of this approach is that � and/or � will increase.Some experiments were performed starting from the mapping s(x) = x�1over GF (28) as described in Section 7.3.1. This mapping has � = 4 � 2�8 and� = 8 � 2�6. In this mapping a number of entries were randomly swapped andthe resulting values of � and � were recorded. For the swapping of two entries,all possibilities were tried; for the swapping of more entries, the best results outof 300 000 samples were recorded for each case. Table 7.2 shows the results ofthese experiments.7.3.3 Random SearchAmong many cryptographers there is a strongly held belief that the existence ofany structure in the components of a block cipher should be avoided. Accordingto this line of thought, a good block cipher is a block cipher with as manyrandomly selected elements as possible. A consequence of this belief is thatthe best S-box is a random S-box. In [98] the average di�erential properties ofpermutations are investigated and a bound for the expected value of � is given.For an m-bit permutation, limm!1 E[�2m]2m � 1 :



7.3. NONLINEAR LAYER 141modi�cations (%) � �0 4 � 2�8 8 � 2�60.8 4 � 2�8 9 � 2�61.6 4 � 2�8 9 � 2�63.1 6 � 2�8 10 � 2�64.7 6 � 2�8 10 � 2�66.3 6 � 2�8 11 � 2�612.5 6 � 2�8 12 � 2�625 8 � 2�8 13 � 2�650 8 � 2�8 15 � 2�6Table 7.2: Experimental values of � and � obtained by randomly swappingentries from the mapping s(x) = x�1 over GF (28). For the second row, allpossibilities were tried. For the other rows, the best results out of 300 000samples were recorded.Often a collection of random S-boxes are generated and evaluated againstsome design criteria. The S-box that performs best is selected. In order to getan idea of what the typical � and � values are for a random S-box, 1.5 millionsamples were generated and evaluated. Table 7.3 shows the results. The S-boxes with the highest resistance to both linear and di�erential cryptanalysishave � = 10 � 2�8 and � = 15 � 2�6. The experimental results giveE[�2m]2m = 11:3 � 2�8 � 2�82 � 8 = 0:71 :It is an open question as to whether the approach of generate-and-test re-sults in S-boxes without structure: it might well be that the evaluation criteriaimplicitly impose a certain structure on the S-boxes. If this is the case, then the`randomly' selected S-boxes with the highest performance values with respectto the criteria would also have the most structure.Randomly selected S-boxes have a second important problem. If the designerdoes not present the user with an unambiguous construction method for the S-boxes, then the user has to trust the designer that the S-boxes do not exhibitsome hidden properties (trapdoors). In Chapter 8 it is explained how trapdoorciphers can be built by using S-boxes that are computationally indistinguishablefrom randomly selected S-boxes.7.3.4 Branch NumbersThe branch numbers of nonlinear mappings can also be calculated and usedas a design criterion. For example, in DES-like ciphers, where the individual



142 CHAPTER 7. DESIGN STRATEGY & COMPONENTS� � 2�6 � � 2�88 10 12 14 16 18 2015 0 0.07 0.07 0.006 0.0001 0 016 0.0003 4.77 5.58 0.58 0.04 0.002 017 0.002 15.63 20.55 2.24 0.15 0.007 0.000418 0.0002 12.21 17.17 1.96 0.13 0.007 0.000519 0.0004 4.91 7.31 0.87 0.05 0.003 020 0 1.52 2.34 0.28 0.02 0.001 021 0 0.41 0.64 0.08 0.004 0.001 0Table 7.3: Maximum input-output correlation and di�erence propagation prob-ability of randomly generated 8-bit permutations. The entries denote the per-centage of the generated mappings that have the indicated � and �.output bits are permuted to the inputs of di�erent S-boxes in the next round, itmakes sense to have S-boxes with high branch numbers in order to ensure gooddi�usion properties.In the framework of the Wide Trail strategy, the branch numbers of theS-boxes used in the nonlinear layer are not important. However, it is possibleto use a nonlinear di�usion layer instead of a linear layer. By doing so, thedi�usion layer can be selected from a much larger set of mappings. Also, it canbe argued that a nonlinear mapping is more random-like than a linear mapping.As argued in the previous section, branch numbers are important parametersfor a di�usion layer.As already mentioned, the linearity of a mapping is not an absolute notion,but always used in relation to a speci�c choice of `linear operation'. A di�usionlayer that is linear for one choice will be nonlinear for other choices. However,without the support from linear coding theory, not much can be said aboutthe branch numbers of a mapping. There are no general and e�cient methodsknown to determine the branch numbers of nonlinear mappings, or to constructnonlinear mappings with high branch numbers. The only remaining result isgiven in the following proposition.Proposition 7.10 If a mapping s from (GF (2p))n to (GF (2p))n is not invert-ible, then its di�erential and linear branch number are upper bounded by n.Proof: A mapping s is not invertible if and only if there exist at least twodi�erent vectors x; y such that s(x) = s(y). Since wh(x�y) � n, the di�erentialbranch number is bounded by:Bd(s) � wh(x � y) + wh(s(x) � s(y)) � n+ wh(0) = n :



7.4. KEY SCHEDULE 143A mapping s is not invertible if and only if there exists a non-trivial linearcombination of the output bits that is not balanced [72, p. 350]. This meansthat there exists a � such that c(0 � x; � � s(x)) 6= 0, andBl(s) � wh(0) + wh(�) � n :Other Choices of Di�erencesRecall the upper bound for the probability of a di�erential characteristic, givenby (7.2): p � �B :This bound depends on the speci�c choice of the di�erence operation � in thefollowing way. A di�erent choice for � will change � in an unpredictable way.However it can be seen that if a box is active for one choice of �, it will beactive for any choice of �. Thus, B stays constant. Note that (7.2) assumesthat the key addition is a�ne. If the key addition is not a�ne (this depends onthe choice for �) then the probability of a di�erential characteristic might beeven further reduced.7.4 Key ScheduleThe key schedule expands the cipher key k to the round keys kr; r = 1; : : : R. Itis used to achieve the following goals:� Provide resistance to attacks in which part of the key is known or guessedby the cryptanalyst, and against attacks that recover �rst a part of around key, and then use this knowledge to attack the rest of the cipher.� Provide resistance to related-key attacks. In a related-key attack, thecryptanalyst compares the encryption of the same plaintexts under a setof keys that di�er only in a few bits. Related-key attacks can be successfulif keys that di�er only in a few bits produce round keys that have a smalland predictable di�erence.� Provide resistance to attacks where the key can be chosen, e.g., if thecipher is used as the compression function of a hash function.� Remove any symmetry between the rounds by ensuring that the distancebetween the round keys of any two rounds is large.



144 CHAPTER 7. DESIGN STRATEGY & COMPONENTS� Remove any symmetry in the round transformation.The �rst two objectives bene�t from a key schedule with high di�usion, thelast three ask for a key schedule that behaves irregularly with respect to thecomponents of the round transformation. More generally, the key schedule canbe designed in such a way that when some bits of one round key are known,it is not possible to calculate many bits of any of the other round keys. Thedi�erential attack on the full DES [10] exploits the fact that this calculation ofround key bits can be done quite easily.The key schedule should also be e�cient for applications that need to changethe key frequently. At the same time, when the round keys corresponding to akey k are known, the calculation of the round keys for another key k0 shouldnot be more e�cient than the original key schedule, so that a cryptanalyst whoperforms an exhaustive key search gains no obvious advantages. Two kinds ofkey schedules can be distinguished.Pseudo-RandomThe cipher key is used to seed a pseudo-random noise (PRN) generator. Theround keys are the output of the PRN generator. Examples are RC5 [115],CAST (some versions) [4], Blow�sh [121] and Shark [111]. The latter two usethe encryption algorithm itself as a PRN generator.This scheme has several advantages. It is very easy to make the key lengthvariable. The relation between the cipher key and the round keys is quitecomplex. This removes symmetry and provides resistance against the aforemen-tioned attacks, in the sense that it becomes almost impossible for a cryptanalystto describe the dependencies between the round keys of di�erent rounds or theround keys derived from di�erent cipher keys. It is, however, equally di�cultfor the designer to `prove' the resistance.The most important disadvantages are that the schemes are slow and thatthe round keys cannot be generated during the encryption process, which canpose a problem for implementations on processors with a very limited amountof memory (such as smart cards).Key EvolutionThe basic construction takes the cipher key as the �rst round key. The keysof the next rounds are derived from the previous round key by means of atransformation  , called the key evolution:k0 = kki =  (ki�1) :



7.5. TRAPDOORS 145A more general construction uses an initial transformation ', state variables �i,and a selection function �. The state variables are produced from the cipherkey by means of the transformations ' and  . The round keys are produced byselecting bits from the state variables; as follows:�0 = '(k)�i =  (�i�1)ki = �(�i) :The transformations  ; ' can take many forms: bit permutations (e.g., the DES[39]), rotations (e.g., IDEA [69], LOKI [17]), addition with a round constant(e.g., Threeway [24]), or more general linear (e.g., Square [27]) or nonlinearfunctions (e.g., Safer [75], CAST [3] (other versions)). In order to counterrelated-key attacks, the transformations  and ' have to be invertible.The advantages of this scheme are that the key evolution  and the selection� can be made fast and simple, hence the round keys can be generated as theencryption proceeds. Similarly to Section 7.2, coding theory can be used toprove properties of the key schedule. Consider the code Ck, de�ned asCk = f(�('(k))k�( ('(k)))k�( ( ('(k)))k : : : )g : (7.11)The distance of Ck gives the minimum di�erence between the round keys of twodi�erent cipher keys.A disadvantage of the key evolution scheme is that the structure may alsobe exploited in attacks.7.5 TrapdoorsA trapdoor cipher contains some hidden structure; knowledge of this structureallows a cryptanalyst to obtain information on the key or to decrypt certainciphertexts; without this trapdoor information, the block cipher seems to besecure. Researchers have been wary of trapdoors in encryption algorithms eversince the DES [39] was proposed in the seventies [124]. In spite of this, noone has been able to show how a practical block cipher with a trapdoor canbe constructed. For most current block ciphers it is relatively easy to providestrong evidence for the non-existence of full trapdoors. A full trapdoor is de�nedto be some secret information which allows a cryptanalyst to obtain knowledgeof the key by using a very small number of known plaintexts, no matter whatthese plaintexts are, or what the key is.This section presents several methods of constructing block ciphers with apartial trapdoor, i.e. a trapdoor that does not necessarily work for all keys, or



146 CHAPTER 7. DESIGN STRATEGY & COMPONENTSthat gives a cryptanalyst only partial information on the key [114]. It is demon-strated that for certain block ciphers, trapdoors can be built-in that make thecipher very susceptible to linear cryptanalysis; however, �nding these trapdoorscan be made very hard, even if the general form of the trapdoor is known. Atrapdoor is said to be detectable (undetectable) if it is computationally feasible(infeasible) to �nd even if the general form of the trapdoor is known.Finally, it is demonstrated how such a trapdoor can be used to design apublic key encryption scheme based on a conventional block cipher.7.5.1 Trapdoor m� n S-boxesIn this section the construction and hiding of trapdoors in S-boxes is discussed.ConstructionThe construction starts with an m� (n� 1) S-box S(x). The n� 1 componentfunctions fi, i = 1; : : : ; n, i 6= q are selected randomly (or following an arbi-trary design criterion). Parameter q can take any value between 1 and n. Thetrapdoor m�n S-box T (x) is derived from S(x) by adding an extra function inthe following way. An n-bit Boolean vector � is chosen with �q = 1, then fq ischosen such that fq(x) = nMi=1;i 6=q �i � fi(x) ; (7.12)with probability pT . Now, � � T (x) = 0 (7.13)holds with probability pT (�). This is equivalent to a correlationcT (�) = 2 � pT (�)� 1between the output bits that are selected by �. The trapdoor information is thevector �.Hiding the TrapdoorIf the S-box is claimed to be randomly selected according to a uniform distri-bution from all m � n S-boxes, then it is not di�cult to hide a trapdoor init. Indeed, for large values of m and n, the function fq(x) is computationallyindistinguishable from a randomly selected one. Firstly, it is proven that thisconstruction in fact introduces only one �-vector with a high correlation value,not accompanied by a range of �-vectors with `slightly smaller' correlation val-ues. The di�culty of �nding this trapdoor vector is then discussed.



7.5. TRAPDOORS 147Introducing no more than one � with high correlation: Suppose thatS(x) is an m� (n� 1) S-box with input-output correlations bounded by �: forall n-bit vectors , cS() � � : Consider now the m� n S-box T (x) that resultsfrom adding fq(x) to S(x). For all  with q = 0 it holds thatcT () = cS() � � ;so only the cases where q = 1 remain. If pT = 1, then � � T (x) = 0 and � T (x) = ( � T (x))� (� � T (x))= ( � �) � T (x) : (7.14)Since q � �q = 0, for all  6= �,cT () = cS( � �) � � : (7.15)In practice, (7.14) holds with probability pT < 1 and (7.15) may not hold.In this case, consider the S-box T 0(x) that results from (7.12) if pT = 1. Allcorrelations of T 0(x) are less than �. Thus T (x) can be thought of as beingconstructed by applying (1 � pT ) � 2m random changes to one component ofT 0(x). The probability that these random changes to the random S-box willresult in a signi�cant change of � is very small.Recovering � If a cryptanalyst suspects a relation of the form (7.13), then the2n � 1 non-zero values of � can be exhaustively examined. For each value of �,verifying pT requires the computation of a Walsh-Hadamard transform on anm-bit Boolean function [8], which requires O(m�2m) operations. If (m;n) = (8; 32)this is feasible and the trapdoor is detectable, but for (m;n) = (8; 64), thisrequires about 264 Walsh-Hadamard transformations on 8-bit functions, whichis currently quite hard. For (m;n) = (10; 80), an exhaustive search is currentlynot feasible. The speed of search can possibly be increased by lattice methods(such as LLL [71]) or coding theory techniques, but the applicability of thesetechniques is still an open problem.The search for the �-vector that has the highest correlation is equivalentto the problem of determining a parity function in the presence of noise. TheParity Assumption [13] suggests that this problem is probably NP-hard. Thisclassi�cation only deals with the general problem; speci�c instances might beeasier to solve. For instance, if pT is very close to one, then it is possible to useGaussian elimination to solve the problem.De�ne the n Boolean vectors aj , j = 1; : : : ; n, as aji = fj(i), i = 0; : : : 2m�1.Equation (7.12) can then be translated intonMi=1 �i � ai = � : (7.16)



148 CHAPTER 7. DESIGN STRATEGY & COMPONENTSIf (7.12) holds with probability one, or pT (�) = 1, then � = 0. In this case theai's are linearly dependent and the linear relation between the vectors can berecovered in a very e�cient way using Gaussian elimination on (7.16). If theprobability of (7.12) is smaller than one, then the vectors ai are independent;� 6= 0 is unknown to the cryptanalyst, and the Hamming weight of � is given bywh(�) = 2m(1� pT ) :The cryptanalyst can still try to recover � by guessing a value for � and solvingthe set of Equations (7.16). Equation (7.16) will only have a solution when theguess for � is correct. A better strategy for the cryptanalyst may be to use thefollowing equations: nMi=1 �i � ai = dMi=1 i � �i : (7.17)The d vectors �i are guessed by the cryptanalyst. If the unknown � can beexpressed as a linear combination of the vectors �i, then the cryptanalyst canhope to �nd the trapdoor by solving (7.17) for � and . The probability that �is a linear combination of the d vectors �i increases with d.If the �i vectors are linearly independent, then they generate a vector spaceof size 2d. To simplify the discussion, only the case of a large positive input-output correlation is considered here. In that case the Hamming weight of � willbe low. Also it will be assumed that all the �i-vectors have Hamming weightone. The number of vectors in a d-dimensional space with Hamming weight� D is given by DXk=1�dk� :Table 7.4 shows the numerical values for several choices of D and d.For example, with a 10� 40 S-box, there are 210 inputs. For each input theequations may or may not hold, resulting in a number of 2210 possible �-vectors;2202 of them have Hamming weight � 32. If d = 64, then the probabilityplc that � is a linear combination of d randomly chosen �i vectors is equal to263=2202. The work factor of this algorithm is determined by plc and by thework necessary to solve (7.17), which is O((2m + n + d)3) (note that the bestasymptotic algorithms reduce the exponent from 3 to 2.376 [20]).It is possible to increase plc by increasing d. However, if d becomes largerthan a certain threshold value, then spurious solutions for � will start to appearthat have a large Hamming weight. These unwanted solutions correspond to� vectors with low correlation values. This e�ect limits the use of Gaussianelimination. This algorithm will be be more useful than exhaustive search for� if D and n are small, and m is large.



7.5. TRAPDOORS 149D d = 64 d = 128 d = 256 d = 10241 26 27 28 21010 237 244 258 27820 255 268 298 213932 263 286 2136 220240 264 292 2156 2240Table 7.4: The number of vectors in a d-dimensional space with Hamming weight� D.Bent FunctionsThe construction method can be extended to deal with additional constraintsimposed on the functions fi(x). For example, in some block ciphers (such as theCAST family [2]), it is necessary that the component functions fi(x) are bentfunctions. The Maiorana construction for bent functions [35] can then be usedto obtain an S-box satisfying Property (7.13): an m-bit bent function f(x) (mis even) is obtained from an m=2-bit permutation �(y) and an arbitrarym=2-bitfunction g(z) as follows:f(x) = f(y; z) = �(y)� z � g(z) :Here `�' denotes multiplication in GF (2m=2). If two component functions fi(x)and fj(x) are derived from the same permutation �(y) then,fi(y; z)� fj(y; z) = gi(z)� gj(z) ;which can be chosen arbitrarily close to a constant function. Hiding (7.13) ina bent function based S-box can be done as follows. A � with even Hammingweight is chosen randomly. The set of indices where �i = 1 is divided arbitrar-ily into pairs. For each pair of indices a di�erent mapping x 7! (y; z) and adi�erent permutation � are selected. The m=2-bit functions gi(z) are de�ned,and extended to full m-bit functions by adding zero values. It then follows that� � T (x) = mMi=1 �i � gi(x) = 0with probability pT .This construction shows that it is possible to �nd a set of bent functionsthat sum to an almost constant function.



150 CHAPTER 7. DESIGN STRATEGY & COMPONENTS7.5.2 Trapdoor CiphersThis section proposes several constructions for trapdoors in block ciphers start-ing from the building blocks, i.e., the round functions.Trapdoor Round FunctionsTrapdoors in S-boxes can be extended to trapdoors in the round function of aFeistel cipher [37]. The round functions of variants on CAST [48] and LOKI91[17] are considered.tCAST: The CAST ciphers are described in Chapter 6. Using four S-boxeswith the same trapdoor � (but with a di�erent value of cT , denoted by cT i),� � F (x1; x2; x3; x4) = 4Mi=1 � � Ti(xi) :Hence some output bits of the round function have a correlationcF = cT1cT2cT3cT4 :As previously mentioned, 8�32 S-boxes can be checked for this type of trapdoor.However, if CAST is extended in a natural way to an 128-bit block cipherby using 8 � 64-bit S-boxes, then �nding this trapdoor becomes very di�cult.The technique can be extended to CAST variants where the exor operation isreplaced by a modular addition or multiplication.tLOKI: The expansion in the round function of LOKI91 [17] allows for asubtle trapdoor, not visible in the individual S-boxes, but only in the roundfunction.The round function of LOKI91 uses the same 12� 8 S-box four times, andis de�ned as: F (x1; : : : ; x32) = P (S(x29; x30; x31; x32; x1; : : : ; x8) kS(x5; x6; : : : ; x16) kS(x13; x14; : : : ; x24) kS(x21; x22; : : : ; x32)) :In this analysis the bit permutation P is not relevant and will be ignored.Since some of the bits are used as input to the S-boxes twice, it is possibleto hide a trapdoor in this round function. The trapdoor involves nonlinearfunctions of the bits that are used twice. Note that the use of nonlinear relationstogether with a linear relation has already been studied by L.R. Knudsen andM. Robshaw [64]. Let a1(x), a2(x), a3(x), and a4(x) be four 8-bit (nonlinear)



7.5. TRAPDOORS 151Boolean functions and � = �1k�2k�3k�4 a 32-bit Boolean vector. Suppose thefollowing relations hold with probabilities p1, p2, p3, p4 respectively:�1 � S(x1; : : : x12) = a1(x1; x2; x3; x4)� a2(x9; x10; x11; x12)�2 � S(x1; : : : x12) = a2(x1; x2; x3; x4)� a3(x9; x10; x11; x12)�3 � S(x1; : : : x12) = a3(x1; x2; x3; x4)� a4(x9; x10; x11; x12)�4 � S(x1; : : : x12) = a4(x1; x2; x3; x4)� a1(x9; x10; x11; x12) :The trapdoor is based on the fact that the nonlinear functions are all usedtwice with the same input bits, and thus cancel out. The correlation betweenthe output bits selected by� � F (x1; : : : ; x32) = �1 � S(x29; : : : ; x8) � �2 � S(x5; : : : ; x16)� �3 � S(x13; : : : ; x24) � �4 � S(x21; : : : ; x32) ;is now given by (2p1�1)(2p2�1)(2p3�1)(2p4�1). For the parameters of LOKI91this is probably a detectable trapdoor, at least for someone who knows whatto look for. Again, larger block sizes and S-boxes would make such trapdoorsharder to detect.Trapdoor CiphersThe trapdoor round functions de�ned above can be used to construct a trapdoorcipher. The resulting cipher will have iterative linear relations that approximatethe output of every other round. For a cipher with R rounds, about R=2 roundapproximations are required.For example, consider a version of tCAST with 16 rounds, block size 80bits, and using four 10 � 40 S-boxes. If pT = 1 � 2�5 then the round key ofthe �rst and the last round can be recovered using a linear attack [80], usingapproximately 875 known plaintexts. Since the Hamming weight of � is 32, theGaussian elimination technique to �nd the trapdoor will not work faster thanexhaustive search.7.5.3 ExtensionsThe trapdoors considered here, all use `type II' linear relations, as de�ned in[79]: correlations that exist between the output bits of the round function. Itis also possible to hide `type I' linear relations: correlations between input andoutput bits of the round function. For example, S-boxes can be constructedsuch that � � S(x) = � � x (A)and � � S(x) = � � x (B) ;



152 CHAPTER 7. DESIGN STRATEGY & COMPONENTSwith high probability. It is easy to see that these relations can be concatenatedin the following way: AB � BA � AB � : : : The main advantage of this typeof relation is that there are more of them than the number of type II relations:2n+m instead of 2n. If (m;n) = (8; 32), as in CAST, then there are already 240cases to verify.When building the trapdoor into the round function of tLOKI, the fact thatin LOKI91 the key is added before the expansion is used. In the DES, the key isadded after the expansion; in this case trapdoors can also be introduced. A �rstapproach consists of choosing the functions ai(x) as linear functions. In thisway the absolute value of the correlation between bits is independent of the key.However this imposes a severe restriction on the number of possible trapdoors,which makes them easy to detect. (The DES was checked for these trapdoors,but none was found.) Another option is to hide several key dependent trapdoors.The key schedule could be carefully adapted in such a way that only a smallnumber of key bits have an inuence.In a similar way, di�erentials can be hidden in block ciphers, in order tomake them vulnerable to di�erential cryptanalysis [10]. However, exploitationof such trapdoors requires chosen, rather than known, plaintexts, which is muchless practical.7.5.4 Public Key EncryptionBesides the obvious use by government agencies for law enforcement purposes,trapdoor block ciphers can also be used for public key cryptography. For thisapplication, a block cipher with variable S-boxes is selected and made widelyavailable (it is a system-wide public parameter). Bob generates a set of S-boxeswith a secret trapdoor. These S-boxes form his public key. If Alice wants tosend a con�dential message to Bob, then she generates a random session key,encrypts her message and a �xed set of plaintexts, and sends the ciphertexts toBob. The set of plaintexts can be �xed, or can be generated from a short seedusing a pseudo-random bit generator. Bob uses the trapdoor and the knownplaintexts to recover the session key and decrypts the message.There seems to be no obvious way to extend this construction to digitalsignatures.7.6 ConclusionsThe Wide Trail strategy of [26] was developed to design cryptographic algo-rithms that resist linear and di�erential cryptanalysis. In this chapter the strat-egy was extended and construction methods for the di�erent components weredeveloped.



7.6. CONCLUSIONS 153The framework of linear codes over a �nite �eld GF (2p) enables the e�cientconstruction of di�usion layers with strong di�usion properties. A code C� canbe associated with every mapping �, whereC� = f(xky) j y = �(x)g:If the mapping � corresponds to a matrix multiplication,�(x) = x � A;then the associated code C� is a linear code. The distance of C� is equal to thedi�erential branch number of �. The distance of the dual code of C� is equal tothe linear branch number of �. If C� is a Maximum Distance Separable code,then � has optimal di�usion properties. Reed-Solomon codes are an example ofMDS-codes that can be constructed very easily and have the typical dimensionsthat are required for the di�usion layer of a block cipher. Mappings with optimaldi�usion are always complete mappings. The di�usion of incomplete mappingscan never be as fast as for MDS-codes. Multi-level di�usion constructions are ameans of combining incomplete mappings in such a way that over a number ofrounds that depends on the level of di�usion a well-de�ned amount of di�usioncan be guaranteed.The construction of nonlinear S-boxes has already received a great deal ofattention in the cryptographic literature. Algebraic constructions have the dis-advantage that they exhibit internal structure which might be exploited in aninterpolation attack. This structure can be removed by applying a�ne mappingsto the output, which conserve the nonlinear properties, or by applying nonlinearmodi�cations, which usually weaken the nonlinear properties. It is also possibleto generate S-boxes at random and test them against some nonlinearity criteria.However, it remains an open question as to whether S-boxes generated in thisway exhibit less structure than (modi�ed) algebraic constructions.The key schedule originally had no place in the Wide Trail strategy. However,it is necessary to include it in order to provide resistance to related-key attacks,or when considering the case that a block cipher is used as the compressionfunction of a hash algorithm. Two approaches are possible. The �rst approachuses the key as a seed for a pseudo-random noise generator; the round keys arederived from the output of the PRN generator. This construction is di�cult toanalyse and hopefully also di�cult to cryptanalyse. The second approach is toderive each round key from the key by means of a few a�ne operations, rotationsand permutations. This approach has two advantages: the key setup time isusually much smaller, and the theory that was developed for the di�usion layerscan also be applied here, e.g., to �nd the minimum distance between round keysderived from a di�erent key.The last section of this chapter discussed a way of hiding trapdoors inrandom-looking S-boxes. The basic construction introduced a high correlation



154 CHAPTER 7. DESIGN STRATEGY & COMPONENTSbetween some of the output bits of the S-boxes. If the dimensions of the S-boxesare su�ciently large (e.g., 10�80), then it is impossible to detect the trapdoor.A second method uses the expansion function of the round transformation tohide a trapdoor. The conclusion is that a user cannot trust a random S-boxthat has been generated by someone else, unless the generation process is clearlyexplained. If the algorithm as a whole is secret, like Skipjack, then the problemis even worse. The results of this section have been published in [114].



Chapter 8Block Cipher ProposalsIt is your job to devise a code that isso di�cult that your opponent cannotbreak it. At the same time, you try tobreak your opponent's code, using theminimum number of moves.This chapter presents two block ciphers, published in [111, 27, 28]. Theciphers are constructed following the Wide Trail design strategy (cf. Chapter 7and [26]), and in the light of the remarks from Chapter 7.8.1 SharkShark [111] is an iterated block cipher. It uses highly nonlinear S-boxes and aReed-Solomon code to guarantee a good di�usion. The cipher resists linear anddi�erential cryptanalysis after a small number of rounds. Shark is orientedtowards 64-bit architectures.8.1.1 StructureShark has a block length of 64 bits, but it can easily be extended to largerblock lengths. The key length is variable; it is advised to use a key lengthbetween 64 and 128 bits. Shark is not a Feistel cipher, but uses a uniformround transformation, consisting of three operations, selected using the WideTrail strategy: a nonlinear substitution , a linear di�using layer �, and an a�nekey addition �. The arrangement of the three operations is shown in Figure 8.1.155



156 CHAPTER 8. BLOCK CIPHER PROPOSALS

6 rounds 8>>>>>>>>>>>>><>>>>>>>>>>>>>:
PLAINTEXT? ? ? ? ? ? ? ? �[kr]? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? �? ? ? ? ? ? ? ? �[k6]? ? ? ? ? ? ? ?CIPHERTEXTFigure 8.1: The structure of Shark. The cipher uses a linear key addition �[kr],a nonlinear substitution  and a linear di�usion layer �.



8.1. SHARK 157The nonlinear substitution Shark uses eight instances of the same 8 � 8 invertible S-box, based on themapping s(x) = x�1 over GF (28) and given by:(x) = (S[x1]; S[x2]; : : : ; S[x8]) :The maximum entry in the exor-table of the S-box is four (except from the trivialentry at (0; 0)), or � = 2�6 and the maximal correlation � = 2�3. This is the onlyconstruction from Section 7.3.1 that can be used to produce invertible mappingswith the given dimensions. In order to get a more complicated description ofthe mapping and to distort other internal structure caused by the constructionmethod, the output bits are transformed by an invertible a�ne transformationin (GF (2))8.The di�usion layer �The di�usion layer � is a linear mapping from (GF (28))8 to (GF (28))8. It isbased on a [16; 8; 9]-Reed-Solomon-code: � can be written as a matrix multipli-cation, �(x) = x � A; (8.1)where the matrix A is the right hand side of the standard form of the gener-ator matrix of the RS-code. As explained in Section 7.2.3, this constructionguarantees that the branch number of � is 9.The key addition �[kr]The basic version of Shark exors the 64-bit round key with the round input.If ck denotes the vector of 8-bit components that is de�ned by k, then the keyaddition is given by �[k](x) = x� c[k] :This method is fast and uniform and there are no weak keys, in the sense thatthe nonlinear layer and the di�usion layer have the same properties for all keys.There is also an extended version of Shark where the round keys have 128bits. In this version every key k corresponds to an 8 by 8 diagonal matrix B[k]and a vector c[k]. The key addition is then de�ned as:�[k](x) = x �B[k]� c[k] :The matrix B[k] has to be invertible. If this is accounted for, there are no weakkeys. The advantage of this method is that the round key space is much larger;



158 CHAPTER 8. BLOCK CIPHER PROPOSALSthis provides resistance against attacks where one round key has to be guessedby the cryptanalyst. The computational overhead, however, is signi�cant. InSection 8.1.2 it is explained how to implement this variant in an e�cient way.PropertiesIn the next section the following properties of the key addition and the di�usionoperation are used to develop an e�cient implementation:1. For every key k there is a key l such that �[k]�1 � �[l]. This key l is givenby B[l] = B[k]�1 and c[l] = c[k], and is denoted k�1.2. The order of the key addition and the di�usion operation can be inter-changed: � � �[k](x) = (x � B[k]� c[k]) � A= x � A � A�1 �B[k] �A� c[k] � A= �[t�(k)] � �(x) : (8.2)The operation t� is de�ned as follows:t�(k) = l , B[l] = A�1 �B[k] � A and c[l] = c[k] � A :3. If B[k] is the identity matrix, then k�1 = k and t�(k) � �(k).Key ScheduleShark uses a key schedule based on a pseudo-random noise generator (cf. Sec-tion 7.4). The cipher key is concatenated with itself until it has a length of7 � 64 bits, or 7 � 128 bits for the extended version. This string is encrypted withShark in CFB-mode [52], using a �xed key. The �rst 448 bits of the outputform the round keys c[kr]. For the extended version, the next 448 bits are usedto form the diagonal elements of the matrices B[kr]. If one of these elements iszero, then it is discarded and all the following values are shifted down one place.An extra encryption of the all-zero string is added at the end to provide theextra diagonal elements. The �xed key used during the key schedule is formedin the following way. The matrices B[kr] are equal to the identity matrix. Thevectors c[kr] are the �rst 7 entries of the expanded substitution table T0, thatwill be de�ned in Section 8.1.2.The Cipher SharkThe round transformation of Shark is denoted by �[k] and given by:�[k] = � �  � �[k] :



8.1. SHARK 159Figure 8.1 shows that Shark consists of 6 rounds, followed by an extra keyaddition and an extra di�usion layer, which is the inverse of the round di�usionlayers. The encryption function is given byShark[k] = ��1 � �[k6] � �[k5] � �[k4] � � � � � �[k0] : (8.3)The purpose of the extra key addition is to prevent a cryptanalyst from peelingo� the last round. The extra di�usion layer is required to make the structureof the decryption similar to the structure of the encryption. Section 8.1.2 ex-plains how the di�erent operations can be combined in table-lookups, in orderto optimise the performance.8.1.2 ImplementationAt �rst, the complexity of the di�usion operation of Shark seems to be a seriousdrawback. Instead of a simple permutation or a few exor operations, a matrixmultiplication is required to calculate the output of the di�usion layer. Thissection shows how the di�usion operation can be combined in an e�cient waywith the S-boxes.Let the row vector x = (x1; : : : ; x8) represent the input of a round, and ythe output. Layer � maps x to x �A. The entries of the matrix A are denoted byai;j , a row is denoted by ai. The combined operation � �  can then be writtenas: y = (S(x1); S(x2); : : : ; S(x8)) � A= S(x1) � a1 � S(x2) � a2 � � � � � S(x8) � a8 : (8.4)Here `�' is used to denote addition of elements of GF (28) and of vectors of(GF (28))8; `�' is used to denote multiplication in GF (28) and the scalar mul-tiplication of a vector by an element of GF (28). We now de�ne the expandedsubstitution tables Ti(x):Ti(x) = S(x) � ai= (S(x) � ai;1; S(x) � ai;2; : : : ; S(x) � ai;8) :Equation (8.4) then becomes:y = T1(x1)� T2(x2)� � � � � T8(x8) : (8.5)This operation requires only eight table lookups and seven exor operations (of64-bit values). The memory requirements increase: the eight T -tables each have28 entries of eight bytes. This sums to 32 kilobytes, which should be comparedwith a straightforward implementation of the operations, where S(x) and Atake only 320 bytes.



160 CHAPTER 8. BLOCK CIPHER PROPOSALSThe key addition �[kr] can also be incorporated into the S-boxes. This canbe done by de�ning the key dependent tablesUri (x) = Ti(�[kr ](x)) :Since every round has di�erent U -tables, the memory requirements increase bya factor of six. If the key addition is a simple exor, then the U -tables are formedby a simple rearrangement of the rows of the T -tables.If the key addition includes a key dependent a�ne transformation and theU -tables are not calculated beforehand, then the round operation becomes veryslow.8.1.3 Inverse CipherOne of the properties of the Feistel structure is that, for any choice of the roundfunction, the encryption mode and the decryption mode of the cipher di�eronly in the ordering of the round keys. Block ciphers that use a uniform roundtransformation lose this general property. However for Shark, the structure ofthe decryption algorithm is equal to the structure of the encryption algorithm.The used components however, are di�erent. Note that this situation di�ersfrom the block cipher IDEA, where encryption and decryption have identicalstructure and components.The following analysis demonstrates how the components for the decryptionmode can be derived from the encryption mode components. For the sake ofsimplicity, the number of rounds is reduced to two. The encryption operationis then given by:y = ��1 � �[k2] � � �  � �[k1] � � �  � �[k0](x) : (8.6)In Section 8.1.2 it was explained how � �  can be combined into one e�cientoperation. An e�cient implementation of Shark will use a slightly di�erentround operation for the last round. Application of (8.2) to (8.6) results in:y = �[t�1� (k2)] �  � �[k1] � � �  � �[k0](x) : (8.7)In an implementation that follows this formula, the additional inverse di�usionlayer does not cause any overhead.The decryption operation is given by:x = �[(k0)�1] � �1 � ��1 � �[(k1)�1] � �1 � ��1 � �[(k2)�1] � �(y) : (8.8)Application of (8.2) to (8.8) results in:x = �[(k0)�1] � �1 � �[t��1((k1)�1)] � ��1 � �1 � �[t��1((k2)�1)](y) : (8.9)This equation has the same structure as (8.7) where  and � are replaced by�1 and ��1, and the round keys are di�erent.



8.1. SHARK 1618.1.4 CryptanalysisLinear and di�erential cryptanalysisShark was designed according to the principles of the Wide Trail strategy(cf. Chapter 7) in order to make it resistant to linear and di�erential cryptanal-ysis. Table 8.1 gives the upper bounds for the probability of an R-round di�er-ential characteristic and the input-output correlation (squared) after R rounds,using Formulae (7.2) and (7.3). These values are compared to the correspondingvalues for the DES. Since the DES is a Feistel cipher, a fair comparison can onlybe made if the number of rounds in the DES is doubled.Shark DESR p (dc) c2 (lc) R p (dc) c2 (lc)2 2�54 2�54 4 2�9:6 2�64 2�108 2�108 8 2�30:5 2�19:56 2�162 2�162 12 2�46:2 2�33:548 2�128 2�148Table 8.1: Probabilities for the best di�erential characteristics and linear ap-proximations as a function of the number of rounds, calculated with Formulae(7.2) and (7.3).Note that an attack on an R-round scheme does not necessarily require an R-round di�erential characteristic. It can be assumed that for a di�erential attackon R rounds of Shark, a characteristic of at least R�2 rounds will be required.The same remark has to be made for a linear attack. Also, the probability ofthe best di�erential can be several times higher than the probability of the bestcharacteristic. Equivalently, the correlation between input bits and output bitsof the cipher is only approximated by the product of the correlations in eachround. When the probability of a di�erential characteristic or the correlationbetween a linear combination of input bits and a linear combination of outputbits drops below 2�63, it can be considered as irrelevant.Therefore the values of Table 8.1 can only be used as an indication of thesafety margin against linear and di�erential attacks. For applications that re-quire only 40 bits security, four rounds may su�ce. For applications where aconservative security margin is much more important than encryption speed,eight or ten rounds can be used. According to Table 8.1, eight rounds of Sharkgive a security level that is comparable to triple-DES (assuming that a charac-teristic covering R � 2 rounds is necessary for an attack).



162 CHAPTER 8. BLOCK CIPHER PROPOSALSInterpolation attackThe danger of algebraic structures present in the design of a block cipher isdemonstrated by the interpolation attack of T. Jakobsen and L.R. Knudsen[54]. They consider a modi�ed version of Shark, that has S-boxes based ons(x) = x�1, but without the a�ne transformation of the output bits. Therelation between round outputs and round inputs is then given by:yj = 8Mi=1 (ci � xi)�1ai;j :More generally, the relation between the outputs after r rounds and the inputscan be expressed as yj = p1(x1; : : : ; x8)p2(x1; : : : ; x8) ; (8.10)where p1 and p2 are polynomials over GF (28). It can be shown [54] that thenumber of unknown coe�cients in p1 and p2 after R rounds is 2(8R�1 + 1)8.The complexity of p1 and p2 is determined by the number of di�usion layersencountered. The coe�cients can be determined by an extension of the La-grange interpolation formula to multivariate polynomials [120]. Since r roundsof Shark count only R�1 di�usion layers, the number of coe�cients is actuallyonly 2(8R�2 +1)8. Given an equal number of known plaintexts it is possible tobuild and solve the set of equationsp2(x1; : : : ; x8)yj � p1(x1; : : : ; x8) = 0;which are linear in the coe�cients of p1 and p2. Solving a set of u linearequations requires O(u2) memory locations and O(u3) operations.Equation (8.10) can be used to determine the round key of the last roundin the following way. The cryptanalyst guesses the byte of the last round keythat is added to the output byte yi from the last round. Given the ciphertextit is then possible to compute one output byte of the last round. Subsequently2(8R�3 + 1)8 known plaintexts are used to determine p1 and p2. Once p1 andp2 are determined, a few additional plaintexts are used to verify whether (8.10)holds. If it does not hold then the key byte guess was wrong and the attack hasto be repeated using another guess.The attack can be optimised using a meet-in-the-middle approach. Themeet-in-the-middle attack reduces the complexity of the attack by searching fora round key of a round in the middle of the cipher, instead of for the last round.Briey, R-round Shark can be split up into two parts:y = g � f(x)and g�1(y) = f(x);



8.1. SHARK 163where f and g correspond approximately to R1 and r2 rounds of Shark (R1 +R2 = R). Six-round Shark involves �ve e�ective di�usions, which have tobe divided as evenly as possible over f and g. There exist then polynomialsp1; p2; p3; p4 such thatp1(x1; : : : ; x8)p2(x1; : : : ; x8) = p3(y1; : : : ; y8)p4(y1; : : : ; y8)p1(x1; : : : ; x8)p4(y1; : : : ; y8) = p2(x1; : : : ; x8)p3(y1; : : : ; y8) :The last equation has 2(8R1�1 + 1)8(8R2�2 + 1)8 unknown coe�cients (the dif-ference in the exponents comes from the fact that the last di�usion layer of fdoes not vanish). Table 8.2 gives the complexities for versions of Shark withthree to six rounds. In a chosen plaintext attack, some of the bytes of the inputcan be �xed. This allows the complexity of the attack to be decreased, but if toomany bytes are �xed, not enough plaintexts are left. If c bytes are �xed, thenthe number of unknown coe�cients is given by 2(8R1�1 + 1)8�c(8R2�2 + 1)8.The solving of the set of equations dominates the memory requirements and theworkload of the attack.# rounds type # texts memory workload3 chosen 211 222 2333 known 217 234 2514 chosen 222 244 2664 known 235 270 21055 chosen 239 278 21175 known 252 2104 21566 known 275 2150 2225Table 8.2: Complexities for the meet-in-the-middle interpolation attack.Structure attackShark reduced to three rounds is vulnerable to a dedicated attack that exploitsthe structure of the cipher. The attack was originally developed for Squarein [27], but it is also applicable to Shark. The attack is independent of thechoice of S-boxes, the key scheduling, and the particular choice of � (as long asit has a di�erential branch number of 9). It is a chosen plaintext attack, usingstructures of 256 plaintexts that have seven constant bytes and one byte thattakes every value from 0 to 255 exactly once. Such a structure is called a �-set.De�nition 8.1 Let � be a set of indices. A �(�)-set is a set of 256 vectors



164 CHAPTER 8. BLOCK CIPHER PROPOSALSsuch that 8x; y 2 �� xi 6= yi if i 2 �xi = yi else :Since �[k] and  operate on each byte separately, application of �[k] or  to a�-set gives another �-set with the same �. Also, it is easy to see that applying� to �(fig) results in a set of the type �(f1; 2; : : : ; 8g).The attack starts with a �(fig)-set. After one round of encryption, theset becomes a �(f1; 2; : : : ; 8g)-set. In the second round, � and  leave the setinvariant. The operation � destroys this property. However, the sum of thevalues that a byte takes over all texts of the set remains zero, since every byteyi of the output of � is a linear combination of the components of the inputvector x: yi =L8j=1 xjai;j . The sum over all values in the set is then given by:255Ml=0 yi = 255Ml=0 8Mj=1 ai;jxj = 8Mj=1 ai;j 255Ml=0 xj = 8Mj=1 ai;j0 = 0 : (8.11)In the third round � conserves Property (8.11), but  does not. If the thirdround is the last round, the � operation is canceled by the ��1 operation at theend. The cryptanalyst guesses a value for one byte of the key in the last keyaddition (a byte of t�1� (k3) is guessed, cf. (8.7)). The last � and  operationsare inverted for the corresponding ciphertext byte for all texts in the set anda check is made as to whether (8.11) is ful�lled. If it is, the guessed key valueis correct with high probability. A second �-set can be used to make sure thatevery byte of the last round key is determined uniquely. The cryptanalyst canreuse the chosen plaintexts to determine all bytes of the key.On Shark reduced to three rounds, the attack requires 29 chosen plaintextsand a memory of size 28. It has a workload of approximately 217 encryptions.There seems to be no obvious way to extend the attack to more than threerounds.8.1.5 PerformanceSince Shark operates on 64-bit words, it will bene�t from a 64-bit architecture.Table 8.3 compares the performance of implementations of Shark, SAFER andIDEA on a 266 MHz DEC{Alpha and on a 90 MHz Pentium. The Alpha imple-mentations are written in C, the implementations on the Pentium are partiallywritten in assembler. On a Pentium ,Shark runs at approximately the samespeed as SAFER. Experiments with smaller S-boxes show that this degradationof performance is due to the limited on-chip cache size. On a Pentium II, whichhas a double cache size, Shark will run at a speed of 5.4 Mbyte/s, assuming



8.2. SQUARE 165the same clock speed of 90 MHz. With a more realistic clock speed of 166 MHzthis scales up to 10 Mbyte/s [15].ALPHA PentiumShark 6.30 Mbyte/s 1.23 Mbyte/sSAFER 1.03 Mbyte/s 0.725 Mbyte/sIDEA 1.53 Mbyte/s 1.22 Mbyte/sTable 8.3: Performance of Shark, SAFER and IDEA on a 64-bit workstation,and on a Pentium.
8.2 SquareSquare [27, 28] is an iterated block cipher. The structure of the cipher isdesigned to permit e�cient implementations on a wide range of processors. Thedi�erent transformations have been chosen to optimise resistance to di�erentialand linear cryptanalysis. The main di�erence between Square and Shark isthat the linear transformation of the former is more suitable for implementationon smaller processors. A consequence is that the di�usion in Square is slower;therefore the number of rounds is increased.8.2.1 StructureSquare has a block length and a key length of 128 bits. However, its modulardesign approach allows extensions to larger block lengths in a straightforwardway. The cipher has a uniform round transformation, composed of four distincttransformations that are selected according to the Wide Trail strategy. Sec-tion 8.2.2 shows how these four transformations can be combined into a singleset of table-lookups and exor operations.To make the description of Square more compact, the input of the trans-formations is represented by a 4� 4 matrix of bytes. The element of an inputX in row i and column j is speci�ed as xi;j . Both indices start from 0. The32-bit value that is formed by row i of the matrix A is denoted by xi. Figure 8.2shows three of the round operations.
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a b c d abcd-�
Figure 8.2: Geometrical representation of the basic operations of Square. Op-eration � consists of 4 parallel linear di�usion mappings,  consists of 16 separatesubstitutions, and � is a transposition.The Linear Transformation �Operation � is de�ned as a matrix multiplication (over GF (28)): � : X 7! Y =X �A, where A is a circulant matrix:A = 2664 a0 a1 a2 a3a3 a0 a1 a2a2 a3 a0 a1a1 a2 a3 a0 3775 :



8.2. SQUARE 167It can be seen that � operates separately on each of the four rows of its input,since yi;j = ajxi;0 � aj�1xi;1 � aj�2xi;2 � aj�3xi;3;where the indices of a must be taken modulo 4. The linear code associated with� has generator matrix G = 2664 A 0 0 00 A 0 00 0 A 00 0 0 A 3775 :Therefore � has a linear and di�erential branch number 5 if and only if all sub-matrices of A are nonsingular. Table 7.1 shows that for a random choice of coef-�cients the probability of not having a singular submatrix is (1� 1256 )17 � 0:93.This means that most choices for ai will be good. In a smart card implementa-tion there is only a small amount of memory available and there is no place forlarge tables. This means that � and  cannot be combined into one set of tables,as in Section 8.1.2 and � has to be implemented as a matrix multiplication. Thefollowing choice is probably optimal for a smart card implementation:� a0 a1 a2 a3 � = � 2x 1x 1x 3x � :Multiplication with 1x costs nothing, multiplication with 2x can be implementedwith one shift and one exor for the reduction and, �nally, multiplication with3x can be implemented as the sum of the �rst two. Operation ��1 correspondsto a multiplication with B = A�1, also a circulant matrix, where� b0 b1 b2 b3 � = � Ex 9x Dx Bx � :The Nonlinear Transformation Transformation  is a nonlinear byte substitution, identical for all bytes. It usesan invertible 8-bit S-box that is constructed by taking the mapping s(x) = x�1over GF (28) and applying a bitwise a�ne transformation to the output bits (cf.Section 7.3.1). For this choice, � = 2�6 and � = 2�3.The Byte Permutation �The e�ect of � is a transposition of the input: � : X 7! Xt. Clearly � is aninvolution.



168 CHAPTER 8. BLOCK CIPHER PROPOSALSThe Key Addition �The key addition �[Kr] consists of the bitwise addition of a round key matrixKr: �[Kr] : X 7! X �Kr, and is also an involution.PropertiesAs in Shark, the order of the � and � can be changed:�[Kr] � �(X) = X �A�Kr= (X �Kr �A�1) � A= � � �[��1(Kr)] :The same property holds for � and �.Since � only transposes the bytes xi;j , and  only operates on the individualbytes, independent of their position (i; j), the order of � and  can also bechanged: �1 � � = � � �1:The Round Key Evolution  The round keysKr are derived from the cipher key K in the following way. KeyK0 equals the cipher key K. The other round keys are derived iteratively bymeans of the invertible a�ne transformation  :Kr =  (Kr�1) ;where  is de�ned in terms of the rows of the matrix that is formed by the key.The left byte-rotation operation rotl(ki) is de�ned byrotl[ki;0ki;1ki;2ki;3] = [ki;1ki;2ki;3ki;0] ;and the right byte-rotation rotr(ki) as its inverse. The key evolution is de�nedby:  (Kr�1) = Kr , kr0 = kr�10 � rotl(kr�13 )� Cr�1kr1 = kr�11 � kr0kr2 = kr�12 � kr1kr3 = kr�13 � kr2 :The round constants Ct are also de�ned iteratively: C0 = 1x and Cr = 2x �Cr�1.This choice removes regularities in the round function.The 128 bits of the round keys kr can be divided over eight sets li of 16 bits:two bits are in the same set if their positions in the vector k are equal, modulo



8.2. SQUARE 169eight. The input of each S-box of  is inuenced by one bit from each set ofround key bits, and  acts separately on each set li: (li) = li � 2664 I I I I0 I I I0 0 I IJ J J J � I 3775 = li �D ;where I is the 4� 4 unity matrix, andJ = 2664 0 0 0 11 0 0 00 1 0 00 0 1 0 3775 :The round keys can be described using eight instances of the linear code C ,that has the following generator matrix:G = [I D D2 D3 : : : D8] :Since the distance of this code is 32, the round keys that are derived from twodi�erent keys di�er in at least 32 bits. Since D is invertible, these di�erences arespread over the nine round keys. It would be possible to have better di�usion,but only by making the key schedule slower to execute.The Cipher SquareThe building blocks are combined into the round transformation denoted by�[Kr]: �[Kr] = �[Kr] � � �  � � : (8.12)Square is de�ned as eight rounds, preceded by a key addition �[K0] and by��1: Square[K] = �[K8] � �[K7] � � � � � �[K1] � �[K0] � ��1 : (8.13)For critical applications the number of rounds can be increased. This can bedone in a straightforward way and requires no adaptation of the key schedule.8.2.2 ImplementationIn a similar way to Shark, the di�erent operations of the Square round trans-formation can be e�ciently combined in table lookups. While Shark uses64-bit words, Square uses only 32-bit words. Furthermore, the operations ofSquare have been chosen such that implementations on platforms with smallerword lengths can also be e�cient.



170 CHAPTER 8. BLOCK CIPHER PROPOSALS8-bit ProcessorOn an 8-bit processor Square can be programmed by simply implementingthe di�erent component transformations. This is straightforward for � and�. The transformation  requires a table of 256 bytes. Operation � requiresmultiplication in the �eld GF (28). The matrix A has been chosen to makethis very e�cient. The key evolution  has been chosen to make it easy tocalculate the round keys during the encryption. J. Daemen has written anAssembler implementation for Motorola's M68HC05 microprocessor, typical forSmart Cards. The code occupies a total of 547 bytes of ROM, requires 36 bytesof RAM, and one encryption (including the key schedule) takes about 7500cycles. This corresponds to less than 2 msec using a 4 MHz Clock.Since ��1 has a higher complexity than �, an implementation of the inversecipher uses more memory and the decryption is signi�cantly slower than theencryption. In practical applications, often only the encryption operation isneeded on a smart card.32-bit ProcessorAnalogously to Shark, the following succession of steps� � �[Kr] � � �  = �[K 0r] � � � � �  ;with K 0r = �(Kr), occur in Square. The operations � �� � can be combined,and Y = �(�((X))) can be expressed for each row yi asyi = (S(x0;i); S(x1;i); S(x2;i); S(x3;i)) �A= S(x0;i) � a0 � S(x1;i) � a1 � S(x2;i) � a2 � S(x3;i) � a3 : (8.14)The expanded substitution tables Ti(x) are de�ned byTi(x) = S(x) � ai :Since A is circulant, its rows ai are rotated versions of row a0. Thus, the entriesof the tables Ti are also rotations of the entries of T0. Equation (8.14) thenbecomes: yi =Mj rotrj(T0(xji)) :This means that � � � �  can be done using 16 table lookups, 12 rotationsand 12 exors of 32-bit words. The table T0 has 256 entries of 32 bits, or onekilobyte in total. Alternatively, the four tables Ti might be used, eliminatingthe requirement for rotations, but increasing the memory requirement for thetables to 4 kilobytes.



8.2. SQUARE 171Analogously to Shark, the application of ��1 will lead to the canceling of� in one round. Consider the �rst round, and the preceding � and ��1:�[k1] � �[k0] � ��1 = �[k1] � � �  � � � �[k0] � ��1= �[k1] � � �  � �[�(k0)] :For the �rst round, � �  has to be implemented instead of � �� � . This wouldmean that the table S also has to be in memory. However, since a1 = 1x, theentries of the S-box S[x] can be extracted from T0, removing the extra storagerequirement for S.8.2.3 Inverse CipherIt will be shown that the structure of the inverse cipher is equal to the structureof the cipher itself. The components and the round keys are di�erent. Considera one-round version of Square. The decryption operation is given by� � �[K0] � �[K1]�1 = � � �[K0] � ��1 � �1 � � � �[K1] :Using the transformation's properties, this can be rewritten as:� � �[K0] � �[K1]�1 = �[�(K0)] � � � �1 � �[K1]= �[�(K0)] � � � �1 � �[K1] � ��1 � �= �[�(K0)] � � � �1 � ��1 � �[�(K1)] � �= �0[�(K0)] � �[�(K1)] � �;where the new round transformation is de�ned as�0[Kr] = �[Kr] � � � �1 � ��1 :This derivation can be generalized in a straightforward way to include morethan one round. Hence the inverse cipher is equal to the cipher itself with replaced by �1, � by ��1, and with di�erent round key values.8.2.4 CryptanalysisLinear and Di�erential CryptanalysisSquare was designed according to the principles of the Wide Trail strategy (cf.Chapter 7). It is an example of a cipher with two-level di�usion. Consider fourrounds of Square, without key addition to simplify the discussion:� � � � � � � = � �  � � � � �  � � � � �  � � � � �  � �= � �  � � �  � � � � � � �  � � �  � � � �= A�;����� :



172 CHAPTER 8. BLOCK CIPHER PROPOSALSThe results of Proposition 7.9 can be applied to determine the minimum numberof active S-boxes in a di�erential characteristic or a linear approximation. Ithas already been shown that � operates separately on each row of its input andhas linear and di�erential branch number 5. It remains to determine what thebranch numbers of �2 = � �� �� are with respect to the rows of the input. Fromthe de�nitions of � and �, it follows that �2 : X 7! At �X . Expressing this interms of the rows yields:yi = a�i � x0 � a1�i � x1 � a2�i � x2 � a3�i � x3 :The associated code of �2, with the rows xi; yi as components, has generatormatrix G = [I At] :The choice of A in Square makes the code MDS, and B�d(�2) = B�l (�2) = 5.Therefore the minimum number of active S-boxes over four rounds is 5�5 = 25.Application of (7.2) and (7.3) results in an upper bound of (2�6)25 = 2�150 forthe probability of a four-round di�erential characteristic and (2�3)25 = 2�75 forinput-output correlation over four rounds. As mentioned before, these numbersgive only an indication of the security level of the cipher.Structure attackThe structure of Square allows for an e�cient dedicated attack, that is anextension of the structure attack on Shark (cf. Section 8.1.4). The attackis faster than an exhaustive key search for versions of Square with up to sixrounds. After describing the basic attack on four rounds, the extension to �veand six rounds will be discussed.Four Rounds Recall the de�nition of a �-set from Section 8.1.4. The setof indices � becomes a set of index pairs (i; j). Application of  or �[k],still results in a �-set with the same �. Application of � to a �-set with� = f(i1; j1); : : : (iu; ju)g, results in a �-set with � = f(j1; i1); : : : (ju; iu)g.Application of � to a �-set with � = f(i; j)g, results in a �-set with � =f(i; 0); (i; 1); (i; 2); (i; 3)g. A second application of � results in a �-set containingall 16 index pairs.The attack starts with a �(f(i; j)g)-set. Since the � of the �rst round iscanceled, the �rst round does not inuence the index set. In the second roundthe �-set is converted to a �-set with � = f(i; 0); (i; 1); (i; 2); (i; 3)g. After thethird round, there is still a �-set, with � now containing all index pairs. After �



8.2. SQUARE 173of the fourth round, for each byte the sum over all values in the set equals zero:255Ml=0 yi;j = 255Ml=0Mv aj�vxi;v =Mw aw 255Ml=0 xi;w+j =Mw aw0 = 0 :This balance is destroyed by the subsequent application of . The cryptanalystguesses a value for one byte of the last round key. The last �, � and  operationsare inverted for one ciphertext byte in all texts of the set and the balance ofthis sum is checked. If the sum is not balanced, the guess for the key bytewas wrong. A second �-set may be necessary to catch all wrong guesses. Theplaintexts can be reused to determine all bytes of the last round key.Extension by a round at the end Since the single-round di�usion ofSquare is rather limited, the above technique can still be applied when a roundis added at the end. Any byte from the output of � in the �rst round can becalculated from the ciphertext by guessing the corresponding byte of the fourthround key, and the four bytes of the �fth round key that are involved.In this 5-round attack, 240 key values must be checked, and this must berepeated four times in order to determine the �fth round key. Checking a single�-set leaves only 1=256 of the wrong key assumptions as possible candidates.Therefore only �ve sets are required to recover the key.Extension by a round at the beginning The basic idea is to choose a setof plaintexts that result in a �-set at the output of the second round with onlyone index pair in �. This requires the assumption of values of four bytes of theround key k0.The cryptanalyst starts with a pool of 232 chosen plaintexts, that have aconstant value for all bytes in three of the four `columns'. The fourth columntakes all possible values. The four key bytes of the �rst key addition are guessedand 256 plaintexts are selected that will produce the required �-set after thesecond round, assuming that the �rst round key guess is correct. The standardfour-round attack is performed to recover the last round key. If the attack failsto suggest a single key value, the initial guess for the four bytes of the �rst roundkey must be wrong. The cryptanalyst then assumes another value for the �rstround key and selects another set of 256 texts from the pool.Complexity of the attacks Combining both extensions results in a six roundattack. Although infeasible with current technology, this attack is faster thanexhaustive key search. Table 8.4 summarises the attacks.There seems to be no obvious way in which the attack can be extended toseven rounds or more.



174 CHAPTER 8. BLOCK CIPHER PROPOSALSAttack Plaintexts Time Memory4-round 29 29 small5-round type 1 211 240 small5-round type 2 232 241 2326-round 232 273 232Table 8.4: Complexities of the attack on Square.8.2.5 PerformanceThe reference implementation is written in C and runs at 2.63 Mbyte/s on a100 MHz Pentium with the Windows95 operating system. An assembler imple-mentation of the algorithm [15] runs at 4.94 Mbyte/s on the same computer.The M68HC05 Smart Card implementation �ts in 547 bytes and takes lessthan 2 msec. (4 MHz Clock). The high degree of parallelism allows compacthardware implementations in Gbit/s range with current technology.8.3 ExtensionsThe modular design of the ciphers makes it easy to extend both block ciphersto larger block lengths. This can be done by increasing the number of parallelS-boxes and/or by increasing the size of the S-boxes.Both ciphers use a uniform round transformation. It is also possible to designa Feistel cipher using the same building blocks. This Feistel cipher would havetwice the block length of the original designs, and the round transformationwould be sr+1 = trtr+1 = sr � �(tr; kr) :An advantage of this approach is that the inverse of cipher does not require theinverse of �. This allows more freedom in the choice of S-boxes, because theyno longer have to be invertible. Also, the di�usion layer and the key additiondo not have to be interchangeable. This means that it becomes possible to usea nonlinear di�usion layer �. In order to be able to apply � with a single setof table lookups (cf. Section 8.1.2), the mapping � should still be additivelyseparable.De�nition 8.2 A mapping � is additively separable iff(x; y) � f(x; 0)� f(0; y) :



8.4. CONCLUSIONS 175Considering the expanded tables T [x] as the `real' S-boxes, such a cipherwould be very similar to the CAST algorithms. Both ciphers use S-boxes withsmall input size and large output size. The important di�erence is that theround transformation of the presented designs has a guaranteed di�usion andnonlinearity. If � is chosen to be invertible, then the round function is balancedand is not vulnerable to the attack that is presented in Chapter 6.8.4 ConclusionsTwo new block ciphers have been presented. Both ciphers have a uniform roundstructure. Shark is a 64-bit block cipher oriented towards 64-bit architectures.The key length can vary between 64 and 128 bits. Since it has optimal di�usion,the cipher is proposed with only six rounds. On a 266 MHz DEC Alpha, a Cimplementation of Shark runs at 6.30 Mbyte/s. While the performance onPC's is not impressive, Shark will be very fast on tomorrow's computers. Theassembler implementation runs at 1.23 Mbyte/s on a 90 MHz Pentium, but itwill run at 10 Mbyte/s on a 166 MHz Pentium II. There exists one attack onthree rounds, requiring 29 chosen plaintexts, a memory of size 28 and an e�ortof about 217 encryptions. A second attack breaks four rounds of a modi�edversion of Shark, but it is not applicable to the actual algorithm. The designof Shark has been published in [111].Square is a 128-bit block cipher with a 128-bit key. It can be e�cientlyimplemented on a wide range of processors, including smart cards. The cipheruses a two-level di�usion structure and is proposed with eight rounds. On a100 MHz Pentium Square runs at 4.94 Mbyte/s. The same attack that breaksthree rounds of Shark, breaks six rounds of Square. It requires 232 chosenplaintexts, a memory of size 232 and an e�ort of about 273 encryptions. Thedesign of Square has been published in [27, 28].
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Chapter 9Conclusions and OpenProblemsIn this thesis a number of block ciphers have been studied. Block ciphers arenecessarily algorithms with a sophisticated structure. The complexity of thestructure makes the design and the analysis very di�cult. The �rst part of thisthesis groups our contributions to the analysis of block ciphers. The second partgroups our contributions to the design of new block ciphers.9.1 Cryptanalysis of Block CiphersDuring the last decade a number of simple statistical techniques have been de-veloped that can be used in the study of cryptographic algorithms. Di�erentialcryptanalysis [10] studies the propagation of di�erences through the variousstages of an algorithm and linear cryptanalysis [77] studies the correlation be-tween linear combinations of input bits and output bits. Both techniques aredescribed in Chapter 3 together with the most common variants and extensions.A theoretical derivation leads to the observation that di�erential attacks in prin-ciple can also be applied when the signal-to-noise ratio, as de�ned by E. Bihamand A. Shamir, is smaller than one, contrary to what was believed earlier. Thisis illustrated in Chapter 5 with an attack on a reduced version of IDEA.In order to make the analysis of block ciphers more tractable, it is often nec-essary to make a number of simplifying assumptions. The �rst basic assumptionis that the di�erent rounds of the cipher operate independently of one anotherand that they can be decoupled. Moreover, it is often assumed that the separatebuilding blocks of the round transformation operate independently and can bestudied separately. A third simpli�cation is made by averaging the key depen-177



178 CHAPTER 9. CONCLUSIONS AND OPEN PROBLEMSdent behaviour of the transformations over all possible keys. In this way a kindof `average behavior' for the block cipher is studied, that is independent of thekey. These approximations are useful, but they also have limitations. Chapter 4and 5 discuss our extensions of the known analysis techniques that have beenobtained by removing some of the simpli�cations.Chapter 4 discusses the introduction of probability theory techniques. Theuse of maximum likelihood estimators and Bayes' rule instead of the customarycounters allows the extension of di�erential cryptanalysis to modes where theoutput of the block cipher is only partially visible, e.g., the m-bit CFB modewith small m. Other optimisations have been made in order to analyse blockciphers that are used as the compression function of a hash algorithm. Theoptimisations are based on the fact that in this situation the cryptanalyst hasmuch more control over the inputs of the cipher than in the encryption modes.Chapter 5 introduces techniques that exploit key dependent relations. Somealgorithms (such as IDEA and MAA) rely to a great extent on nonlinear keyaddition in order to provide the security of the algorithm. In this case there areoften `weak keys', for which the nonlinear addition can be approximated veryeasily. For these weak keys, the algorithm becomes highly vulnerable to certainattacks. Di�erentials with a probability that is too low `on average' turn out tobe useful because for a large number of the keys their probability is signi�cantlyhigher than the average. Another presented attack strategy combines attacksthat each work for a class of `weak keys'. By performing the attacks in parallelit is possible to recover any key belonging to any of the classes.In Chapter 6 a new attack has been presented. While the attack was origi-nally developed to break algorithms of the CAST family, it is also applicable toreduced versions of LOKI and Luby-Racko� constructions.The main conclusion that can be drawn is that the analysis of block ciphersis still in its infancy. There are a few basic analysis techniques that can beapplied with some success to most designs, but these techniques have to beextended and adapted for almost every new design that is investigated. Thecomplexity and the nature of existing block cipher analyses could result in anamount of frustration: on a �rst view it is not easy to distinguish a strong blockcipher from a weak one. There are no known techniques for a designer to provethe security of his block cipher. On the other hand, demonstrating weaknessesin bad block ciphers designs may actually require more work than the designitself. Most block ciphers lie in the twilight zone between probably secure andprovably not.Regrettable as it is, this situation must not lead to a careless attitude where\since nothing is proven, everything is allowed." The cryptanalysis of MacGu�nshortly after its publication, the devastating attack on Akelarre and the factthat several important design aws in early members of the CAST family ofalgorithms have been pointed out, show that there are situations where an



9.2. DESIGN OF BLOCK CIPHERS 179incautious design can be corrected. Also, the extensions and modi�cations ofthe basic techniques that are made during the analysis of practical designs, leadto a better understanding of the inherent trade-o�s in block cipher design.9.2 Design of Block CiphersThe second part of this thesis elaborates on the Wide Trail design strategyof J. Daemen [26]. Chapter 7 extends the strategy and discusses constructionmethods for the building blocks of the round transformation of block ciphers.Here the most important contribution consists of the application of the theoryof linear codes to construct mappings with good di�usion properties. Linearcodes de�ne associated mappings; the di�erential and linear branch number ofthe mappings are equal to the distance of the associated code and the distanceof the dual of the associated code, respectively. Optimal di�usion layers can bebuilt from Maximum Distance Separable Codes. It is shown how incompletemappings can be used in the round transformation and still provide good dif-fusion by means of a multi-level di�usion construction. For the nonlinear layer,S-boxes can be derived from the inverse mapping in the �nite �eld GF (28) [93],or they can be randomly generated and tested. Coding theory can also be usedto construct a key scheduling with provable properties. Alternatively, the keyscheduling can be based on a pseudo-random noise generator that is seeded withthe key.Finally, in Chapter 8 two new block ciphers have been proposed that weredesigned using the wide trail strategy. Shark is a 64-bit cipher with optimaldi�usion, oriented towards 64-bit architectures. Square is a 128-bit cipher thatuses two-level di�usion and that can be implemented e�ciently on a wide rangeof processors, from smart cards to 64-bit processors. Both ciphers use expandedtables that combine the di�usion layer with the nonlinear layer to reduce theextra work that has to be done for the more complex di�usion layer.Probably the most important result from this part of the thesis is the ob-servation that it is possible to construct mappings with good cryptographicproperties by using results from other sub�elds of mathematics. An advantageis that this allows to construct block ciphers with some provable properties, al-though it is still not possible (yet) to prove the security of the resulting ciphers.9.3 Open ProblemsThe following problems were encountered during the research that was per-formed for this thesis, and are still unsolved.



180 CHAPTER 9. CONCLUSIONS AND OPEN PROBLEMSTruncated di�erentials are an interesting extension of di�erential cryptanal-ysis. Unlike for ordinary di�erentials, the probability of truncated di�erentialsis to a large extent independent of the nonlinear elements of a round transfor-mation. It would be interesting to develop a heuristic rule to determine theresistance of a given cipher against truncated di�erential attacks. Also it re-mains an open question whether there exists an equivalent concept for linearcryptanalysis.Key dependent relations can be a very powerful tool for a cryptanalyst, butat the moment there exists no e�cient way to �nd the best relations and theweakest keys. Key dependent relations could be very useful to analyse a cipherlike Blow�sh, with key dependent S-boxes.The CAST block cipher family has given birth to new members, with an asyet unknown security level.A problem with optimal di�usion mappings is that they require many op-erations to execute. Using the theory of linear codes it is probably possible toinvestigate the trade-o� between fast di�usion and fast executing.It remains an open question as to whether it is possible to �nd S-boxeswith maximal distance to all linear functions, and with minimal di�erentialuniformity, without at the same time introducing mathematical structure. Andif it is theoretically possible, is it practically feasible ?In Chapter 7 it was indicated how trapdoor block ciphers can be used to builda public key encryption scheme, but this matter requires further investigationbefore a practical design can be proposed.The ciphers Shark and Square await further cryptanalysis.
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Appendix ABlock Cipher SurveyIn recent years there has been a considerable number of new block cipher pro-posals. This appendix attempts to provide a survey of the most importantproposals, and the best published attacks on them. (Speaking about Sisypheantasks, : : : )The following abbreviations are used:l block lengthk key lengthR number of roundsF or U the type of the block cipher: F stands for Feistel network, U stands foruniform transformationFor theoretical attacks the work e�ort to obtain the required plaintext-ciphertextpairs is not counted.The block ciphers are listed in alphabetical order.Blow�sh : l = 64, k � 448, R = 16, F [121].Blow�sh uses key dependent S-boxes. If the S-boxes are known, there isa di�erential attack [131] that works for a fraction 2�17 of the keys. Itrequires 251 chosen plaintexts, a memory of 232 and an e�ort of about 257encryptions. The attack breaks eight rounds for any key with 248 chosenplaintexts, a memory of size 232 and an e�ort of about 245 encryptions.Section 3.6 describes an attack on four rounds that recovers the full key.CAST : l = 64, k = 64 to 128, R = 8 to 16, F [1, 2, 3, 4].CAST is actually a design procedure. Ciphers designed according to this193



194 APPENDIX A. BLOCK CIPHER SURVEYprocedure inherit its name. Chapter 6 describes an attack on eight rounds[112, 113]. The attack requires 262 chosen plaintexts. For CAST [2, 3]with 16-bit round keys the attack requires a memory of size 216 and ane�ort of about 275 encryptions. For CAST with 32-bit round keys or 37-bit round keys [4] this becomes a memory of size 232 or size 237 and ane�ort of about 291 or 296 encryptions respectively. For versions reducedto six rounds, the attack becomes very practical.DES : l = 64, k = 56, R = 16, F [39].The best theoretical attack known is the linear attack [77], requiring 243known plaintexts, a memory of size 213 and an e�ort of about 219 encryp-tions. Due to the short key, an exhaustive key search is feasible [133].FEAL : l = 64, k = 64, R = 8; 16; 24 or 32, F [123].The best attack known on eight rounds is a di�erential-linear attack [6].It requires 12 (twelve) chosen plaintexts, 218 bytes of memory and hasa workload of 35 days computer time. The versions with 16, 24 or 32rounds are vulnerable to a di�erential attack that requires 230; 246 or 267chosen plaintexts and has a workload of 230; 246 or 267 encryptions [10].The 16-round and 24-round versions are also vulnerable to a linear attack,requiring 219 or 242 known plaintexts [89]. The di�erential attacks alsoapply to FEAL-X and FEAL-NX [10].GOST : l = 64, k = 256, R = 32, F [19]. The S-boxes of GOST are notspeci�ed.The only published attack is a related-key chosen plaintext attack [55].The probability of the di�erential characteristic depends on the S-boxes.Over a large set of randomly selected S-boxes this probability varies be-tween 2�43 and 2�80 for a characteristic that may be used in an attack ontwelve rounds.IDEA : l = 64, k = 128, R = 8(8:5), F (generalised). The output transforma-tion is sometimes counted as an extra half-round [69].The best attack known is a truncated di�erential attack on three roundsincluding the output transformation [14] (cf. Section 5.2). About 1% ofthe keys can be recovered using 240 chosen plaintexts, a memory of 248and an e�ort of about 251 encryptions. To �nd 31% of the keys, 248 chosenplaintexts are required, the same amount of memory and an e�ort of 259encryptions.Khafre : l = 64, k = 64 or 128, R = 16; 24; 32; : : : , F [87].The best attack known is a chosen plaintext attack on 24 rounds [10]. Itrequires 253 chosen plaintexts, a memory of 28 and one hour of computertime.



195Khufu : l = 64, k � 512, R = 16; 24; 32; : : : , F [87].The best attack is a chosen plaintext attack on 16 rounds [44]. It re-quires 243 chosen plaintexts, a memory of 225 and an e�ort of about 243operations.LOKI91 : l = 64, k = 64, R = 16, F [17].There is a chosen plaintext attack on LOKI91 that breaks 13 rounds [59].It requires 258 chosen plaintexts. The memory requirements are negligibleand the e�ort can be estimated at about 248 encryptions. By using 233chosen plaintexts, it is possible to speed up an exhaustive key search bya factor of four: only 261 encryptions need be done on average [59]. Thebest known plaintext attack breaks 12 rounds [119]. It requires 263 knownplaintexts, a memory of 221 and an e�ort of about 263 encryptions.MISTY : l = 64, k = 128, R = 8; 12, F (generalized)[81]. There are actuallytwo MISTY algorithms: MISTY1 is an eight-round Feistel cipher with anew kind of key addition, MISTY2 has a more generalized Feistel structureand has 12 rounds.To date no attack has been published.RC5 : l; k and R are variable. The \nominal" values for the parameters arel = 64, k = 128, R = 12, U [115]. Every round of RC5 is composed of twoFeistel rounds.The best attack on this version is a chosen plaintext attack [65]. It requires254 chosen plaintexts and a small amount of memory and work. For someweak keys, these numbers are lowered. If l is increased to 128, then anattack on 24 rounds would require 2123 chosen plaintexts.REDOC-II : l = 70, k = 70, R = 10, U [22]The best attack is a chosen plaintext attack on four rounds [10]. It requires266 chosen plaintexts and a memory of size 215.SAFER : l = 64, k = 64 or 128, R = 6, 8 or 10, U [75, 76]. Currently there arefour versions of SAFER published: SAFER K-64 has k = 64 and R = 6,SAFER SK-64 has k = 64 and R = 8, SAFER K-128 and SAFER SK128have k = 128 and R = 10. The key scheduling of the K versions has aweakness [61].The best attack is a truncated di�erential attack on �ve rounds of SAFERK-64 [62]. It requires 245 chosen plaintexts, a memory of 232 and has a work-load of 246 encryptions. The attack also recovers 32 key bits of SAFER K-128, reduced to �ve rounds.Shark : l = 64, k = 64 to 128, R = 6, U [111] (cf. Section 8.1).The best attack is a structure attack on three rounds (cf. Section 8.1.4).



196 APPENDIX A. BLOCK CIPHER SURVEYIt requires 29 chosen plaintexts, a memory of size 28 and has a workloadof 217 encryptions.Square : l = 128, k = 128, R = 8, U [27, 28] (cf. Section 8.2).The best attack is a structure attack on six rounds (cf. Section 8.2.4, [27]).It requires 232 chosen plaintexts, a memory of size 232 and has a workloadof 273 encryptions.3DES : l = 64, k = 112 or 168, R = 48, F. 3DES consists of three DESencryptions in cascade. The three DES operations can use three di�erentkeys, or the �rst and the last key can be equal [50].The best attack on three-key 3DES is the meet-in-the-middle attack: ituses two known plaintexts, a memory of 256 and has a workload of 2112encryptions. The best chosen plaintext attack on two-key 3DES requires256 chosen plaintexts, a memory of size 256 and has a workload of 256encryptions [85]. The best known plaintext attack involves a trade-o�[128]. When given 2n known plaintexts, it requires a memory of 256 anda work e�ort of about 2120�n encryptions.3-Way : l = 96, k = 96, R = 11, U [24].To date no attack has been published.



Nederlandse SamenvattingDit proefschrift behandelt de analyse en het ontwerp van een bepaalde klassevan cryptogra�sche algoritmen: iteratieve blokcijfers. De blokcijfers wordengeanalyseerd in verschillende modes: de standaard ECB mode waarin elk blokapart vercijferd wordt, de `Cipher Feed Back' mode [40] en een mode waarin zegebruikt worden als hutsfunctie.1 Inleidende BegrippenIn de huidige maatschappij wint cryptologie elke dag aan belang. Waar het ver-cijferen en ontcijferen van boodschappen vroeger enkel een militaire aangelegen-heid was, is in 1977 met de publicatie van de Amerikaanse encryptie-standaard,de DES [39], het startschot gegeven voor uitgebreid academisch onderzoek opdit terrein. Vandaag de dag verdienen mensen hun brood met het verkopen vancryptogra�sche producten voor niet-militaire toepassingen.Het belang van cryptologie volgt uit het feit dat deze wetenschap bestudeerthoe informatie beschermd kan worden. Informatie is h�et handelsproduct vandeze tijd. Moderne digitale technieken maken het mogelijk om informatie snelen goedkoop op te slaan en uit te wisselen, zodat beslissingen steeds kunnengebaseerd worden op recente informatie. De keerzijde van de medaille is datinformatie snel veroudert en dat het overzichtelijk catalogeren van de bergeninformatie een ware Sisyphus-arbeid is. Hoewel informatie in ruwe vorm zeergoedkoop is, kan verwerkte informatie dus waardevol zijn, en moet zij beschermdworden.Informatie kan beschermd worden tijdens het transport of wanneer ze op-geslagen wordt, tegen ongeoorloofde modi�catie en tegen `diefstal' (copi�eren).Traditioneel wordt bescherming geboden door encryptie: de informatie wordt ge-codeerd met een algoritme dat afhankelijk is van een kleine hoeveelheid geheimeinformatie, de sleutel, op zo'n manier dat het onmogelijk is om de informatieweer te decoderen als de sleutel niet gekend is.De ontwikkeling van nieuwe technieken zoals hutsfuncties en publieke-sleu-197



198 NEDERLANDSE SAMENVATTINGtelalgoritmes heeft geleid tot de ontwikkeling van nieuwe toepassingen zoalsdigitale handtekeningen en elektronisch geld.1.1 Cryptogra�e en CryptanalyseDe veiligheid van een algoritme kan gede�nieerd worden op drie verschillendemanieren [102]. De eerste de�nitie komt uit de informatietheorie: een algoritmeis onvoorwaardelijk veilig als het niet kan gebroken worden door een tegenstandermet onbeperkte rekenkracht. De tweede de�nitie komt uit de complexiteitsthe-orie: een algoritme is veilig als men kan bewijzen dat het aantal bewerkingendat nodig is om het te breken exponentieel toeneemt als functie van het aantalbewerkingen dat men nodig heeft om te coderen. De studie van de aanvallenop cryptogra�sche algoritmes wordt cryptanalyse genoemd; in de cryptogra�ebestudeert men het ontwerp van nieuwe algoritmes en toepassingen.De derde aanpak is gebaseerd op de praktijk. De veiligheid van een algo-ritme wordt bepaald door zo nauwkeurig mogelijk te schatten hoeveel tijd enrekenkracht een aanvaller nodig zal hebben om het algoritme te breken. Deschatting wordt gebaseerd op de resultaten van gekende analysetechnieken eneen onderzoek door ervaren cryptanalysten. Deze aanpak heeft het belangrijkevoordeel dat er op relatief eenvoudige wijze praktisch bruikbare algoritmes meeontworpen kunnen worden. De betrouwbaarheid van de aanpak is echter sterkafhankelijk van de kwaliteit van de cryptanalyse die gedaan wordt.1.2 Iteratieve BlokcijfersIn [122] beschrijft C.E. Shannon als eerste encryptie-algoritmes die opgebouwdworden door verschillende transformaties te concateneren: de zogenaamde product-algoritmes. Feistel is de eerste die een algoritme beschrijft dat gevormd wordtdoor een herhaalde toepassing van dezelfde transformatie [37].De�nitie A.1 Een iteratief blokcijfer is een algoritme dat als invoer een klaar-tekstblok met een lengte van l bits heeft en als uitvoer een cijfertekstblok meteen lengte l0. De transformatie van klaartekst naar cijfertekst gebeurt onderinvloed van een sleutel en door middel van een herhaalde toepassing van eeninverteerbare transformatie �, de rondetransformatie.De sterkte van een blokcijfer wordt vooral bepaald door de eigenschappen vande rondetransformatie. De twee meest gebruikte types rondetransformaties zijnhet Feistel Netwerk [37] en de Uniforme transformatie [36].Bij een Feistel netwerk wordt de invoer van � gesplitst in twee helften. E�enhelft wordt gekopieerd naar de uitvoer en gebruikt als invoer voor een niet-lineaire functie, de zogenaamde F-functie, bij de andere helft wordt de uitvoervan de F-functie opgeteld. Het voordeel van deze constructie is dat ze altijd



2. CRYPTOGRAFISCHE BASISTECHNIEKEN 199inverteerbaar is, onafhankelijk van de keuze voor de F-functie. De rondetrans-formatie van de DES heeft deze structuur.De Uniforme transformatie wordt soms ook een Substitutie-permutatie-net-werk genoemd. Bij de uniforme transformatie wordt de volledige invoer eerstdoor een niet-lineaire substitutietabel geleid en dan vervolgens gewijzigd dooreen transformatie met goede di�usie-eigenschappen. De rondetransformatiesvan SAFER [75], Shark [111] en Square [27] hebben deze structuur.Blokcijfers kunnen gebruikt worden in verschillende modes [40] en toepassin-gen. In deze thesis worden blokcijfers geanalyseerd in de basismode (`ElectronicCode Book') en de `Ciphertext Feed Back' mode. Daarnaast wordt ook het ge-bruik van een blokcijfer in een hutsmode bestudeerd. Er wordt ook een maniervoorgesteld om blokcijfers te gebruiken in een asymmetrisch encryptieschema.1.3 AanvallenBij de analyse van een cryptogra�sch algoritme wordt er altijd van uitgegaandat aanvallers beschikken over een volledige beschrijving van het algoritme enalle details, behalve de gebruikte sleutel. Wanneer een cryptanalyst uit onder-schepte cijferteksten en statistische informatie over de klaarteksten de sleutelkan terugvinden of de klaarteksten, dan spreekt men van een enkel-cijfertekstaanval. De meeste blokcijfers zijn bestand tegen een enkel-cijfertekst aanval.Wanneer men veronderstelt dat de aanvaller bij enkele cijferteksten de bijho-rende klaartekst kent, dan spreekt men van een gekende-klaartekst aanval. Bijeen gekozen-klaartekst aanval mag de aanvaller de cijferteksten opvragen vanklaarteksten naar zijn keuze. In een verwante-sleutel aanval beschikt de aan-valler over de cijferteksten die bekomen werden door dezelfde set klaartekstente vercijferen onder verschillende sleutels. Hoewel deze aanvallen steeds min-der en minder uitvoerbaar worden in de praktijk, worden ze toch bestudeerdomdat men op die manier een soort veiligheidsmarge kan inbouwen: algoritmesdie bestand zijn tegen een gekozen-klaartekst aanval geven vermoedelijk een be-tere bescherming dan andere algoritmes, zelfs als de enige praktisch uitvoerbareaanval een enkel-cijfertekst aanval is.2 Cryptogra�sche BasistechniekenWanneer de aanvallen op blokcijfers ingedeeld worden volgens de wiskundigetechnieken die zij gebruiken, kunnen er twee grote klassen onderscheiden worden.Beide klassen van aanvallen kunnen bestudeerd worden gebruik makend vanwiskundige technieken die ontwikkeld werden voor de studie van Booleaansefuncties: Walsh transformatie, Hamming afstand, correlaties, : : : .



200 NEDERLANDSE SAMENVATTING2.1 Di�erenti�ele CryptanalyseDe eerste klasse valt onder de noemer di�erenti�ele cryptanalyse [10]. Bij dezeaanvallen wordt de encryptie bestudeerd van een set klaarteksten die onderlingeen welbepaald verschil vertonen. Zelfs indien de sleutel niet gekend is, is hetmogelijk om vertrekkende van twee klaarteksten die een bepaald verschil ver-tonen (een `paar'), de verschillen van de tussenresultaten te voorspellen meteen bepaalde kans. Een di�erenti�ele karakteristiek is gede�nieerd als het tu-pel dat gevormd wordt door de voorspelde verschillen in de tussenresultaten.De kans van een di�erenti�ele karakteristiek is de kans dat de verschillen in detussenresultaten van een willekeurig paar encrypties correct voorspeld worden.De voorspelde verschillen in de tussenresultaten en de geobserveerde waardenvan de klaarteksten en cijferteksten suggereren een aantal mogelijke waardenvoor de sleutel. Als de kans van de karakteristiek kleiner is dan 1, is men nietzeker dat de voorspelde tussenresultaten correct zijn en moet de aanval herhaaldworden voor een aantal paren. Als de kans van de karakteristiek voldoendehoog is, en er per paar niet teveel foute waarden voor de sleutel gesuggereerdworden, dan zal na verwerking van een voldoende groot aantal paren de vaakstgesuggereerde waarde voor de sleutel de correcte waarde zijn.De di�erenti�ele aanval kan op verschillende manieren geoptimiseerd wordenen aangepast aan de speci�eke structuur van het geanalyseerde algoritme. Eeneerste observatie is dat tussenresultaten eigenlijk alleen correct voorspeld moe-ten worden als ze ook in de aanval gebruikt worden. Bepalend voor het succesvan een aanval is dan niet de kans van �e�en di�erenti�ele karakteristiek, maar welde som van de kansen van alle mogelijke karakteristieken die dezelfde waardenvoorspellen voor de tussenresultaten die gebruikt worden in de aanval. Een dif-ferenti�ele bundel [69] wordt gede�nieerd als het tupel dat gevormd wordt doorhet gedeelte van de (voorspelde) tussenresultaten dat gebruikt wordt, en kangezien worden als een verzameling di�erenti�ele karakteristieken die verschillenin de waarden van de niet voorspelde tussenresultaten. De kans van een dif-ferenti�ele bundel is gelijk aan de som van alle karakteristieken die er deel vanuitmaken.Bij afgeknotte di�erenti�ele bundels [60] wordt voor voorspelde tussenresulta-ten nog meer vrijheid gelaten; er wordt bijvoorbeeld enkel voorspeld of bepaaldebytes verschillen van nul of niet. Deze techniek is vaak bruikbaar om algoritmeste analyseren die werken op bytes in plaats van op individuele bits, bijvoorbeeldSAFER [75]. Bij hogere orde di�erenties worden in plaats van verschillen vantwee waarden verschillen van verschillen gebruikt.



3. VERBETERDE DIFFERENTI�ELE CRYPTANALYSE 2012.2 Lineaire CryptanalyseLineaire aanvallen [77] exploiteren correlaties tussen lineaire combinaties vanuitgangsbits van de rondetransformatie en lineaire functies van hun ingangsbits.De verwachte waarde van de correlatie tussen bits over verschillende rondenheen wordt benaderd door de verwachte waarden voor de correlaties over deafzonderlijke ronden te vermenigvuldigen. Deze benadering komt overeen methet gebruik van een di�erenti�ele karakteristiek in di�erenti�ele cryptanalyse; en erbestaat ook hier een uitbreiding die vergeleken kan worden met een di�erenti�elebundel: de lineaire omhulling, die rechtstreeks de correlatie over de verschillenderonden heen gebruikt.In een di�erentieel-lineaire aanval [70] wordt een di�erenti�ele karakteristiekgebruikt om een lineaire aanval te optimiseren.2.3 VereenvoudigingenOm de toepasbaarheid en de complexiteit van di�erenti�ele aanvallen te schat-ten worden vaak een aantal vereenvoudigende veronderstellingen gemaakt: dekans van een di�erenti�ele bundel wordt benaderd door de kans van een ka-rakteristiek, er wordt aangenomen dat de ronden onafhankelijk opereren en erwordt een soort gemiddelde van de kansen over alle mogelijke waarden van desleutels gemaakt. Dezelfde benaderingen worden doorgevoerd voor lineaire aan-vallen. Deze vereenvoudigingen laten vaak toe om op e�ci�ente wijze aanvallente bedenken. Dit werd ge��llustreerd op twee algoritmes: MacGu�n [12] en eengereduceerde versie van Blow�sh [121]. MacGu�n is niet beter bestand tegendi�erenti�ele cryptanalyse dan de DES, en is ook gebroken met een lineaire aan-val. Blow�sh gereduceerd tot vier ronden werd gebroken met een tweede ordedi�erenti�ele aanval.3 Verbeterde Di�erenti�ele CryptanalyseDoor gebruik te maken van een aantal technieken uit de theorie van de kans-berekening is het mogelijk om de di�erenti�ele aanval uit te breiden en toe tepassen op blokcijfers in de m-bit CFB mode, ook voor kleine waarden van m.Daarnaast wordt er in dit hoofdstuk een verbeterde aanval gepresenteerd voorhutsfuncties die gebaseerd zijn op een blokcijfer.3.1 Cryptanalyse van de DES in de CFB ModeWanneer een blokcijfer in de m-bit CFB mode gebruikt wordt, met m klein, danwerkt de gewone di�erenti�ele aanval niet meer. m bepaalt hoeveel bits van deoutput van het blokcijfer zichtbaar zijn in de output; in de gewone di�erenti�ele



202 NEDERLANDSE SAMENVATTINGaanval vormt dit aantal een strikte bovengrens voor het aantal sleutelbits datkan bepaald worden. Als m klein is, kan er maar een klein aantal klassen van`equivalente' sleutels onderscheiden worden (2m) en de meeste paren zullen danalle waarden voor de sleutel suggereren. De di�erenti�ele aanval wordt nu uit-gebreid door het eenvoudige onderscheid `gesuggereerde sleutel | niet gesug-gereerde sleutel' te vervangen door een waarschijnlijkheidsverdeling: aan elkewaarde voor de sleutel wordt een a posteriori waarschijnlijkheid toegekend diemet behulp van de regel van Bayes berekend wordt uit de a priori waarschijn-lijkheid en de waarden van de klaarteksten en cijferteksten voor het verwerktepaar. Deze techniek maakt beter gebruik van de beschikbare informatie dan degewone aanval. Met 239 gekozen klaarteksten kunnen drie sleutelbits bepaaldworden voor de DES in 8-bit CFB mode, gereduceerd tot 8 ronden. Voor gro-tere waarden van m kunnen meer sleutelbits teruggevonden worden en kan hetaantal nodige klaarteksten gereduceerd worden.3.2 Maximum LikelihoodDoor het gebruik van maximum likelihood schatters kunnen zowel de lineaireals de di�erenti�ele aanval verbeterd worden. De techniek gebruikt een probabi-listische relatie tussen klaartekst en cijfertekst, waarvan de kans op eenvoudigewijze afhangt van een deel van de sleutel. De cryptanalyst verzamelt klaartek-sten en cijferteksten en kan zo de kans van de probabilistische relatie schatten.De maximum likelihood schatter zal dan de meest waarschijnlijke waarde voorde sleutel opleveren. Om de di�erenti�ele aanval op een blokcijfer in de CFB-mode te verbeteren, wordt de di�erenti�ele karakteristiek als relatie gebruikt. Opdie manier kunnen voor de DES in 8-bit CFB-mode, gereduceerd tot 8 ronden,10 sleutelbits teruggevonden worden in plaats van slechts drie.De techniek werd ook toegepast op de lineaire aanval op de DES, maarexperimenten toonden aan dat hierdoor geen verbetering optreedt. De techniekis wel nuttig bij blokcijfers waar de gewone lineaire aanval geen onderscheidkan maken tussen een hele klasse van sleutels, zoals bijvoorbeeld het blokcijferAkelarre [5].3.3 Di�erenti�ele Cryptanalyse van HutsfunctiesHutsfuncties die gebaseerd zijn op blokcijfers kunnen onderworpen worden aaneen di�erenti�ele aanval die veel gelijkenis vertoont met de di�erenti�ele aanval ophet onderliggende blokcijfer. Er zijn echter een paar belangrijke verschillen diemaken dat een gewone di�erenti�ele aanval sub-optimaal presteert. Er werd eennieuwe aanval ontwikkeld en karakteristieken gezocht die optimaal afgestemdzijn op de nieuwe aanval. Met deze aanval kan een botsing gevonden wordenvoor een hutsfunctie die gebaseerd is op de DES, gereduceerd tot 12 ronden,



4. SLEUTELAFHANKELIJKE ANALYSE 203met een werkfactor van 221:4 encrypties. De klassieke aanval, die gebaseerd isop de verjaardagsparadox, heeft een werkfactor van 224:6 encrypties.4 Sleutelafhankelijke AnalyseZoals reeds aangehaald gebruikt men voor de schatting van de performantie encomplexiteit van een aanval op een cryptogra�sch algoritme vaak een soort ge-middelde waarde over alle mogelijke sleutels. Hierbij wordt er vanuit gegaan datde verschillende ronden onafhankelijk van elkaar opereren. Deze benaderingengeven niet altijd correcte resultaten. Er kan bijvoorbeeld een klasse van sleutelsbestaan waarvoor de kans van sommige di�erenti�ele karakteristieken en/of som-mige bitcorrelaties een veel hogere waarde hebben dan de gemiddelde waarde.Deze sleutels worden dan `zwakke sleutels' genoemd. Er wordt gedemonstreerddat het authenticatie-algoritme MAA [32] verschillende klassen van zwakke sleu-tels heeft. Een boodschap die geauthenticeerd werd met behulp van een zwakkesleutel is relatief gemakkelijk te vervalsen en het is ook gemakkelijker om zo'nzwakke sleutel terug te vinden.Een andere manier om blokcijfers aan te vallen waarbij de kans van di�e-renti�ele karakteristieken sterk afhankelijk is van de sleutel, is om verschillendekarakteristieken in parallel te gebruiken. De performantie van de aanval wordtdan bepaald door het maximum van de kansen van de gebruikte karakteristie-ken. Dezelfde techniek kan gebruikt worden in een lineaire aanval en wordtge��llustreerd met een aanval op een gereduceerde versie van IDEA [69]. Metdeze aanval is het mogelijk om 3 ronden van IDEA te breken.Er wordt ook aan aanval gepresenteerd die werkt als de kans van een af-geknotte di�erenti�ele bundel groter of kleiner is dan de gemiddelde waarde.Deze aanval geeft een nieuw inzicht in de werking van di�erenti�ele cryptanalyse;totnogtoe werd steeds aangenomen dat alleen di�erenti�ele karakteristieken ofbundels met een grote kans gebruikt konden worden. De nieuwe techniek wordthier gebruikt om 3.5 ronden van IDEA te breken.5 Niet-Surjektieve AanvalEen belangrijk ontwerpcriterium voor nieuwe blokcijfers is vaak de snelheid diegehaald kan worden op een moderne processor. Daarom worden meestal basis-bewerkingen gebruikt die snel uitgevoerd kunnen worden door een processor enwaarvan men hoopt dat ze bijdragen tot de veiligheid van het algoritme. Eenvoorbeeld hiervan is het gebruik van sterk niet-lineaire substitutietabellen. Ditlaat toe om het aantal ronden van een algoritme laag te houden en toch sterkeweerstand tegen di�erenti�ele en lineaire cryptanalyse op te bouwen. Echter,



204 NEDERLANDSE SAMENVATTINGhet gevaar van deze aanpak is dat het algoritme kwetsbaar wordt voor andereaanvallen.Er wordt een aanval ontwikkeld die werkt op Feistel cijfers met een beperktaantal ronden en een niet-surjektieve F-functie, of meer algemeen, een niet-gebalanceerde F-functie. De aanval bewijst dat Feistel cijfers met een niet-surjektieve F-functie minstens 8 �a 10 ronden moeten hebben om veilig te zijn.Deze aanval wordt toegepast op verschillende algoritmes die ontwikkeld wer-den met de CAST ontwerpstrategie [2, 3, 48] en ook op LOKI91 [17]. LOKI91gereduceerd tot 7 ronden kan gebroken worden met deze aanval. De aanval toontaan dat de CAST algoritmes met 8 ronden slechts marginale veiligheid bieden.Bovendien werd er een duidelijke zwakheid ge��denti�ceerd in het sleutelschemavan een enkele vroege voorstellen voor CAST algoritmes.6 Ontwerpstrategie & BouwblokkenDe eerste theoretische beschouwingen over het ontwerp van encryptie-algoritmeskunnen gevonden worden in het werk van C.E. Shannon [122], waar voorgesteldwordt om eenvoudige substituties af te wisselen met transformaties die een sterke`vermenging' veroorzaken. Het resultaat van de combinatie is dat \iedere signi-�cante statistische relatie tussen ingang en uitgang van het encryptie-algoritmezeer ingewikkeld is en sterk afhankelijk van alle betrokken parameters|de re-dundantie is verspreid (di�used) en verborgen (confused) door de vermengendetransformatie."Vervolgens zijn er verschillende strategie�en voorgesteld door H. Feistel [36],X. Lai, J.L. Massey en S. Murphy [68, 69], L.R. Knudsen en K. Nyberg [96, 97]en anderen. In [26] ontwikkelde J. Daemen de strategie van het brede spoor.In de strategie van het brede spoor wordt de rondetransformatie opgebouwduit een aantal transformaties:1. een niet-lineaire substitutie die opereert op blokken van p bits,2. een lineaire di�usielaag die de verschillende p-bit blokken vermengt, en3. een a�ene sleuteltoevoeging.Een vierde belangrijke bouwblok voor een goed blokcijfer is het sleutelschema.Aan de laatste twee bouwblokken werd in de oorspronkelijke formulering van deontwerpstrategie minder aandacht besteed.De verschillende componenten worden onafhankelijk ge�evalueerd ten op-zichte van een ontwerpcriterium en geselecteerd. Hierdoor is het mogelijk omalgoritmes te construeren die met een zeer grote waarschijnlijkheid bestand zijntegen lineaire en di�erenti�ele cryptanalyse. Dit gebeurt door de niet-lineaire



6. ONTWERPSTRATEGIE & BOUWBLOKKEN 205bouwblokken zo te kiezen dat de maximale kans van een di�erenti�ele karak-teristiek over �e�en blok klein is en door de lineaire bouwblokken zo te kiezendat de uitvoer van de niet-lineaire bouwblokken van de vorige ronde optimaalgespreid wordt over de invoer van de niet-lineaire bouwblokken in de volgenderonde. Hetzelfde e�ect wordt beoogd voor de correlaties tussen ingangsbits enuitgangsbits van de rondetransformatie. Hoewel deze strategie geen bewijsbaarveilige constructies oplevert, lijken de goede di�usie-eigenschappen en de sterkeniet-lineariteit toch sterke algoritmes te waarborgen.6.1 Nieuwe Elementen in de OntwerpstrategieDe belangrijkste aanvulling op de strategie van het brede spoor wordt gevormddoor de introductie van lineaire codes. De toepassing van codetheorie laat toeom op eenvoudige wijze transformaties met optimale di�usie-eigenschappen teconstrueren. Hiervoor wordt gebruik gemaakt van `Maximum Distance Sepa-rable codes' (MDS-codes). Bovendien kunnen een aantal eigenschappen van detransformaties op elegante wijze bewezen worden.Transformaties met optimale di�usie hebben een bepaalde minimale com-plexiteit; voor sommige toepassingen is deze complexiteit te groot. Het is danmogelijk om transformaties te gebruiken die in plaats van al na 1 ronde pas eengoede di�usie garanderen na 3 of meer ronden. Dit leidt uiteindelijk tot con-structies waarbij de di�usietransformatie niet meer gelijk gekozen worden vooralle ronden zodat de verschillende rondetransformaties niet meer aan mekaargelijk zijn.Er zijn in de cryptogra�sche literatuur al verschillende methodes beschrevenom goede niet-lineaire substitutietabellen expliciet te construeren [93]. Voortoepassingen waar de inherente mathematische structuur van deze constructiesongewenst is, werd bestudeerd wat het e�ect is van kleine willekeurige wij-zigingen in de tabellen en wat de verwachte performantie is van willekeuriggeconstrueerde tabellen.De theorie van de lineaire codes kan ook gebruikt worden om sleutelschema'ste construeren met bewijsbare eigenschappen.6.2 ValluikcijfersValluikcijfers zijn cijfers met een verborgen structuur, een valluik. Voor gebrui-kers die de verborgen structuur niet kennen lijken het veilige algoritmes, maarmensen die het valluik kennen, kunnen het cijfer eenvoudig breken. Er wordteen manier voorgesteld om valluiken te verbergen in blokcijfers. Dit kan zo ge-beuren dat het met de beschikbare rekenkracht onmogelijk is om het valluik tedetecteren, zelfs als men weet wat de algemene structuur van het valluik is.



206 NEDERLANDSE SAMENVATTING`Willekeurige' substitutietabellen kunnen op eenvoudige wijze zo aangepastworden dat het verband tussen bepaalde ingangsbits en uitgangsbits bijna lineairwordt. Op die manier zal een lineaire aanval zeer eenvoudig worden voor iemanddie het verband kent. Door de tabellen aangepast te dimensioneren (bv. 10ingangsbits en 40 uitgangsbits), is het voor iemand anders niet doenbaar omhet verband te vinden.Gelijkaardige valluiken kunnen geconstrueerd worden door de verschillendetabellen van een rondetransformatie in functie van mekaar te bepalen, zodatde afzonderlijke tabellen veilig genoeg lijken, maar hun combinatie weer eenverborgen relatie bevat.Deze valluikcijfers zouden kunnen gebruikt worden in een encryptieschemamet publieke sleutels. De techniek toont ook aan dat een men niet blind magvertrouwen op andermans ontwerpen, zeker niet als er gebruik gemaakt wordtvan `willekeurige' of geheime tabellen.7 Nieuwe BlokcijfersTwee blokcijfers werden ontworpen met behulp van de strategie van het bredespoor.7.1 SharkShark is geen Feistel cijfer, maar heeft een uniforme rondetransformatie. Hetvercijfert klaartekstblokken van 64 bits, de sleutel kan elke lengte tussen 64en 128 bits hebben. Shark gebruikt een lineaire transformatie met optimaledi�usie en sterk niet-lineaire substitutietabellen. Het is al na zes ronden bestandtegen di�erenti�ele en lineaire cryptanalyse.Voor een e�ci�ente implementatie kan de di�usietransformatie opgenomenworden in de substitutietabellen. Vooral als het onderliggend platform 64-bitoperaties ondersteunt leidt dit tot een hoge encryptiesnelheid (6.3 Mbyte/s opeen 266 MHz DEC-Alpha).De beste bekende aanval op Shark breekt 3 ronden met 29 gekozen klaar-teksten. De aanval is echter niet uitbreidbaar naar meer ronden.7.2 SquareOok Square heeft een uniforme rondetransformatie. Het vercijfert klaartekst-blokken van 128 bits, onder invloed van een sleutel van 128 bits. De lineairetransformatie van Square heeft geen optimale di�usie, maar is wel zo gekozendat de di�usie over 4 ronden zeer sterk is De keuze van de lineaire transfor-



8. BESLUIT EN OPEN PROBLEMEN 207matie laat toe om Square e�ci�ent te implementeren op een heel scala vanprocessoren, van goedkope smart cards tot performante werkstations.Square telt 8 ronden en is bestand tegen di�erenti�ele en lineaire cryptana-lyse. Er bestaat wel een aanval die 6 ronden breekt met 232 gekozen klaartekstenen een werkfactor van 273 encrypties, maar deze aanval kan niet uitgebreid wor-den naar 7 of meer ronden [27].Op een 100 MHz Pentium haalt een assembler implementatie van Squareeen encryptiesnelheid van 4.94 Mbyte/s. De referentie-implementatie in C haalt2.63 Mbyte/s.8 Besluit en Open ProblemenBlokcijfers zijn per de�nitie algoritmen met een ingewikkelde structuur, die hetontwerp en de analyse ervan moeilijk maken. Het eerste deel van dit proefschriftbevat onze bijdragen aan de analyse van blokcijfers. Het tweede deel bevat onzeaanvullingen op een ontwerpstrategie voor cryptogra�sche algoritmen en tweenieuwe ontwerpen.De bijdragen aan de cryptanalyse van blokcijfers bestaan vooral uit de intro-ductie van enkele gevorderde statistische technieken. De technieken zijn vooralbruikbaar in situaties waar de gebruikelijke aannames niet gelden, bijvoorbeeldwanneer het blokcijfer niet gebruikt wordt in de standaard ECB-mode of wan-neer de karakteristieken van het cijfer sterk afhangen van de gebruikte sleutel.Er wordt ook een nieuwe aanval ge��ntroduceerd.De complexiteit van blokcijfers en hun analyses kan gemakkelijk aanleidinggeven tot een soort fatalisme: er bestaan (nog) geen bewijsbaar veilige blokcij-fers en het vinden van de zwakheden in een blokcijfer vraagt een hele inspan-ning. De meeste blokcijfers bevinden zich ergens tussen de polen `waarschijnlijkveilig' en `aantoonbaar onveilig'. Dit mag echter niet leiden tot een zorgelozehouding tijdens het ontwerp. De snelle cryptanalyse van MacGu�n en het feitdat verschillende belangrijke ontwerpfouten zijn aangetoond in de eerste CAST-algoritmes tonen dit aan.Het ontwerp van blokcijfers gebeurt meestal op een ad hoc manier; ook hierzou veel gewonnen kunnen worden door een beter aanwenden van het beschik-bare arsenaal aan wiskundige technieken. Een eerste stap werd gezet door eenverband te leggen tussen sommige bouwblokken van een rondetransformatie enlineaire codes.Enkele idee�en voor verder onderzoek zijn de volgende:� De weerstand van een algoritme tegen een aanval met afgeknotte di�e-renti�ele bundels wordt meestal niet bepaald door de niet-lineaire bouw-blokken, maar wel door de algemene structuur van de rondetransformatie.



208 NEDERLANDSE SAMENVATTINGHet zou interessant zijn om te kunnen beschikken over een heuristiek omde weerstand van een blokcijfer te bepalen. Ook is nog niet bekend of detechniek kan uitgebreid worden naar lineaire cryptanalyse.� Een verdere studie van sleutelafhankelijke relaties in blokcijfers.� Studie van de veiligheid van de nieuwe cijfers die ontwikkeld zijn met deCAST ontwerpstrategie.� Een verdere studie van codetheorie om betere compromissen te vindentussen goede di�usie en snelle implementaties.� Onderzoeken of het mogelijk is om goede niet-lineaire substitutietabellente construeren zonder tegelijkertijd wiskundige structuren in te bouwendie gevaarlijk kunnen zijn.� Een praktisch ontwerp voor een asymmetrisch encryptieschema dat ge-bruik maakt van blokcijfers met een valluik.� Cryptanalyse van Shark en Square.


