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Summarx

There is a class of antennas whose pattern
as well as impedance is practically independent
of frequency for all frequencies above a certain
value. The general formula for their shape is

r = ea(¢+mo)F(9)
where r © ¢ are the usual spherical coordinates,
a and 9, are constants and F(0) is any function
of 6. Assuming a to be positive, @ ranges from
-» to some finite value which determines the
low frequency limit. For such antennas a change
of frequency is equivalent to a rotation of the
antenna about 6=0. It appears that the pattern
converges to the characteristic pattern as the
frequency is raised, if a is not « and that
the impedance converges to the characteristic
impedance for all a.

Antennas Specified by Angles

It is common experience that if all the
dimensions of a lossless antenna are increased
by a facter K, the pattern and impedance remain
fixed if the operating wavelength is also
increased by the factor K. In other words, the
performance of a lossless antenna is independent
of frequency if its dimensions measured in
wavelengths are held constant. It follows that
if the shape of the antenna were such that it
could be specified entirely by angles, its per-
formance would be independent of frequency. The
infinite biconical antenna is the most familiar
example: it is specified by the angles of the
two cones and the angle between their axes.
There is, however, an infinite variety of shapes
which are completely specified by angles and
these form the starting point for the design of
frequency independent antennas. They must all
extend to infinity (because if they did not they
would have at least one characteristic length)
and therefore they do not immediately lead to
practical designs. The key problem is therefore
to determine how rapidly, if at all, the per-
formance of the finite structure converges to
that of the infinite structure. Let us, however
defer consideration of this question until we
have explored some applications of the "angle
method™ to familiar antennas.

The problem of a typical directional
antenna can be illustrated by considering a
unipole 1in front of a plane reflector as shown
in Fig. 1: it is specified by the lengths
ABCDdE  One of the major limitations on its
pattern and impedance bandwidth is represented
by the distance, D, from the unipole to the
reflector. By changing the reflector and unipole
to coapical cones all dimensions except B and 4
are replaced by angles. This simple application
of the angle method does indeed give significant
improvement of the impedance and pattern
bandwidth4. The impedance is practically constant
above a certain frequency but unfortunately the
pattern is not. This appears to be typical of
most conventional antennas designed according to
the angle method. However, there is a whole
class of unconventional antennas which have not
only an impedance but also a pattern which
remains practically constant above a certain
frequency. 1In view of the fact that all
experience suggests that the pattern of any
antenna develops more and sharper lobes as the
frequency is increased, this result is indeed
remarkable.

The General Approach

To illustrate the general approach,consider
all plane curves which remain essentially the
same when scaled to a different unit of length.
Such curves can be used to determine the shape
of a plane sheet antenna, by taking the imput
terminals at the common point of intersection of
four curves, as illustrated in Fig. 2. It
follows then, that the antenra is unchanged when
scaled to a different wavelength, provided we add
the condition that the terminals stay fixed when
the scale is changed. Now the fact that a typical
curve remains essentially unchanged by a change of
scale implies that the new curve can be made to
coincide with the old one by translation and
rotation. Since a translation is eliminated by the
requirement that the common point remain fixed,
the problem is to determine all curves such that a
change of scale is equivalent to a rotation. This
can be stated symbolically in the form

Kr(e) = r(o+C) )
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where r(¢) denotes the radius r as a functien of
the polar angle ¢, K is the scale change and C the
angle of rotation to which it is equivalent. Thus
K depends on C but K and C are independent of
¢{and r).

dK . 9r(e+C) 2
r{o) i 3C (2)
and
K dcle) - or{e+C) . (3)
do Op
But
ar{e+) - dr(e+C) . Sr(e+C) 4)
aC d{e+C) [el]
dK _ dr(e) 5
r(p) i K 5 (5)
or dr - 4 (6)
do
where a is independent of o@:
=1 dK, 7
a=¢ % (7)

It follows from (6) that

r = re?? where r, is a constant. (8)

Let t, = ePo where ¢, is a constant (9)
or agy= In r,. (10)
Then r = 2(9*9,) (11)
1/a, (12)

or 9+¢,= In r
We recognize (11) or (12) as the formula for an
equiangular spiral: it contains the two
parameters, a, which represents the rate of
expansion, and Py which represents the
orientation. Thus the shape of all plane sheet
frequency independent antennas mst be defined

by equiangular spirals. (Note that when 1/a = 0
the spiral degenerates into the straight line

® = - ¢,.) Theoretically it might appear that

we co 13 obtain four curves such as shown in

Fig. 2 by selecting four different combinations
of a and g,, but it is easily verified that
unless a is the same for all, such curves overlap
at infinitesimal values of r, thus placing a
short circuit across the terminals. It is
therefore necessary to choose four different g,
with the same a.

The general problem is to find all surfaces
which have the property that a change in the
unit of length is equivalent to a certain
rotation. Then if we construct a metal antenna
whose surface is one of these surfaces, its per-
formance will be the same at all wavelengths
except for a rotation of the coordinate system.
This problem is much more difficult to analyze
than the plane case we have just considered, and
we shall simply give an outline of the method.
The typical surface can be represented by the

formula
r = f(69) (13)

where r 0 and ¢ are the usual spherical
coordinates. After a rotation the surface is
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represented by (14)

r = f(8'¢%H
where 6 p’are related to 8y by the rotation. Then

the condition that the rotation be equivalent to
a uniform expansion is expressed by the equation

Kf(6g) = f(6’¢) for all B¢ (15)

where K is independent of 09 but depends on the
parameters of the rotation,

There are two difficulties in trying to find
the function f from (15): one is that the relation
between 0’¢’and 6 9 is very involved and the other
is that the rotation depends on three parameters,
such as the two spherical coordinates which specify
the axis of rotation, and the angle of rotation
about the axis. To express the transformation
from 8 ¢ to 6'¢’explicitly let u represent a unit
vector in the (8¢) direction, 1i.e.,

u, = sin 0 cos® uy = sin & sing u, = cos 8 (16)

Similarly let u'be defined for ool
Then the transformation is expressed by

w=Tu 17)
where T is a matrix which is independent of
6, 9, o/ and ¢”: T is a function of the three
parameters, ajy, ag, ag, of the rotation. We can
now obtain a set of partial differential equations
for the function f by differentiating (15) in a
way analagous to the determination of the
function r from (1). let r and r/ denote f(Bg)
and f(0/q’).
Differentiation of (15) with respect to 6 and ¢
gives

Ka=Ma' (2 equations) (18)
where
e; =% i-12( -6 &=0 (19)
d R /
an ae
) —1
M;; 36, (20)
Differentiation of (15) with respect to a; gives
rB=35 ' (3 equations) (21)
where
B; = 2K  i-1,2, 3 (22)
1 aai 3 ’
7/
_ 08 _ .o
Sij = o i=1,2,3 j=1,2.  (23)

Differentiation of (17) with respect to 6; gives

~ P .
AT = MA" (6 equations) (24)
where )
dui oy .
A.. = =1 AL = = = =
ij " 55,0 M aei, J=1,2,3 i=1,2 (25)

v . . o~ ~
(T is T transposed, 1i.e., Tij=T31, TT=1),

Differentiation of (17) with respect to a; gives

N=SA’ (9 equations) (26)



Tk w5=1,2,85 =123 @)

The next step is to eliminate g:from (18) and
(21} using {24) and (26) to evaluate M and S.
The algebra can be greatly simplified if we
choose the coordinates so that the z axis is the
axis of rotation corresponding to a particular
expansion K: this does not imply that the axis of
rotation is fixed for all K. Thus in (27) we
perform the differentiation before substitution
of the particular values of ajagag which
correspond to this choice of axes. With this
simplification, which does not involve any loss
of generality, it is practical to derive a set
of equations of the form

(28)

where P is a known (3 x 2) matrix expressed in
terms of O¢p and the angle of rotation.Recalling
the definitions of ¢ and B we see that (28)
constitutes a set of partial differential
equations for K as a function of ajagaz and r as
a function of 6¢. It turns out that the only
non-trivial solution is the simple case where the
axis of rotation is fixed, i.e. K depends on
only one rotation parameter. The problem now is
essentially the same as the plane case. The
solution can be written in the form

r = e2(9%9,) F(g) (29)

where in principle F(6) can be any function of
0. The shapes represented by (29) can be very
complicated because in general an increase of
2r in ¢ does not give the same r: as @ ranges
from -» to « the surface weaves around through
all space. Fig. 3 illustrates a simple example
which gives a practical antenna design. Fig. 4
illustrates the case where 4n F(8) is periodic
in © with period 2n a. This gives a simple
surface like a screw thread which is uniformly
expanded in proportion to the distance from the
origin: an increase of 2% in ¢ is equivalent to
moving one turn along the screw. The plane
antennas considered in the accompanying paper by
R.H. DuHamel and D.E. Isbell3d represent a cross
section through the axis of this kind of antenna.

rf=Pg (3 equations)

The Pattern

To examine the question of pattern
convergence we make use of a characteristic of
the field which depends on the fact that a
rotation is equivalent to an expansion. Since we
are dealing with the frequency independent mode,
the analysis of the field can be simplified by
considering the static or DC case. For this
case it has been shown by P.E. Mast that for the
plane antenna the field is a function of the two
variables S = re 2® and 6, rather than the three
variables rf¢. (Note that S is constant on any
equiangular spiral in the family characterized
by the parameter a). This result implies that
the direction of the current on the antenna is
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along the lines S = constant, i.e., the currents
follow a spiral flow. The simplest way to
analyze the pattern is to make use of the
intuitive idea of coupling between adjacent turns
of this spiral flow. Assuming to begin with that
the AC current distribution is like the DC
distribution traveling with the free space phase
velocity, we see that a "resonance" will bunild

up in the current distribution where the mean
circumference of the spiral is about one
wavelength. This resonance will be highly damped
by radiation so that most of the current is
dissipated in the first resonance. The pattern
due to the first resonance is therefore almost
the same as the pattern due to the infinite
structure. Admittedly this argument is weak but
it is not altogether worthless because it does
give a simple way of estimating the pattern,
which agrees satisfactorily with measurements on
finite antennas. It shows that the condition for
pattern convergence is that the current flow be
spiral rather than rectilinear, i.e., that the
parameter a should not be infinite.

These theoretical conjectures are borne out
in practice. The case a = o represents the
piconical type of antenna for which the pattern
does not converge. Various cases for a # o
have been investigated by J.D. Dyson4and
R.L. Carrel”® and convincing evidence of the
constancy of the pattern over a 20:1 frequency
range has been obtained. Note that a change of
frequency is equivalent to a rotation. The
pattern at one frequency, fl’ is the same as the
pattern at another frequency, fo, if the
coordinate system is rotated abeut the 6 = 0 axis
through an angle 1/a 1n f1/f9: the pattern scans
around the 6 = 0 axis at a rate which depends on
a. If measurements are made in a fixed plane, the
pattern in general varies with frequency and the
frequency independent nature of the complete

spherical pattern may be missed in such measure-
ments .

The Impedance

The convergence of the input impedance to a
constant value as the frequency is increased is
familiar in connection with the biconical antenna.
It has been confirmed in all cases of the general
type represented by (29) which have been
investigated.®+9. The determination of the charac-
teristic impedance is an important problem in
connection with frequency independent antennas.
Schelkunoff’s well known formula for the charac-
teristic impedance of two coaxial cones! is

377 In (tan A Cot B)
2 2

where A and B are the cone angles measured from
the common axis. The formula for two inclined

cones 1is
{:t.an ?2:‘
2
w
5 tan 3

377/ tanh-1
where 9] ®5 and y are defined in Fig. 5.

Ttan A
2 14 tanh-1
v

tan



The formula for a symmetrical plane sheet antenna
consisting of_two triangles with a common apex at
the terminals’ is

189 K(cosw)
K(siny)

where K represents the elliptic integral defined
by K(x) = —8t and y represents

’ ° (1-t2)(1-x2¢2) e

the half angle of the triangular strips measured
from the common axis.

In connection with the impedance we should
note an interesting property which was pointed out
by Mushiake in one of the Tohoku University
reports. It is that the impedance of any plane
sheet antenna whose shape is the same as the
shape of its complement (except for a trivial
change of coordinates) is independent of frequency
and equal to 60n = 189 ohms. The complementary
antenna is defined as the portion of a metal plane
which is not covered by the original antenna:
when the antenna and its complement are fitted
together they completely cover the wheole plane
without overlapping. The constant impedance of
a "self-complementary” antenna follows from the

relation 9
2179 = (60m)

between the impedance Zj of the antenna and the
impedance Z9 of its complement. Fig. 6 gives some
examples of self-complementary shapes.

Pseudo Frequency Independent Antennas

The idea of a pseudo frequency independent
antenna is i1llustrated by the horn antenna shown
in Fig. 7. It consists of metal sheet perforated
by holes of uniformly expanding size: any hole 1is
exactly like its neighbor on the left except for
a fixed expansion. The idea is that the effective
size of the horn remains roughly independent of
wave length because the metal sheet becomes
approximately transparent once the holes become
greater than about half a wavelength square. More

|
L

Fig. 1

precisely, it can be seen that if the horn started
from a point and extended to infinity, it would
"look” the same to any two wavelengths whose

ratio was equal to the expansion factor. Some
interesting examples of pseudo frequency
independent antennas are described in the
accompanying paper by R.H. DuHamel and D.E. Isbhell.
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