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Summary 

There is  a c l a s s  of  antennas whose p a t t e r n  
a s  well a s  impedance is prac t ica l ly   independent  
of  frequency  for a l l  frequencies  above a c e r t a i n  
va lue .  The general   formula  for   their   shape is 

where r 8 9 a re   t he   u sua l   sphe r i ca l   coo rd ina te s ,  
a and 9, are   constants   and  F(B) is any  function 
of 8 .  Assuming  a t o  be p o s i t i v e ,  cp ranges  from 
-m t o  some f i n i t e   v a l u e  which  determines  the 
low frequency limit. For such  antennas a change 
of  frequency is e q u i v a l e n t   t o  a r o t a t i o n  of t he  
antenna  about B=O. It appea r s   t ha t   t he   pa t t e rn  
c o n v e r g e s   t o   t h e   c h a r a c t e r i s t i c   p a t t e r n  as  the  
frequency is r a i s e d ,   i f  a is not m, and t h a t  
t he  impedance  converges t o   t h e   c h a r a c t e r i s t i c  
impedance f o r   a l l   a .  

Antennas  Specified by Angles 

It is common e x p e r i e n c e   t h a t   i f  a l l  t he  
dimensions  of a l o s s l e s s   an t enna   a r e   i nc reased  
by a f a c t o r  K ,  t he   pa t t e rn   and  impedance  remain 
f ixed   i f   t he   ope ra t ing   wave leng th  is a l s o  
increased  by t h e   f a c t o r  K .  In   other   words,   the  
performance of  a l o s s l e s s   an t enna  is  independent 
of f requency   i f  its dimensions  measured i n  
wavelengths   a re   he ld   cons tan t .  It fo l lows   t ha t  
i f   t h e   s h a p e  of the  antenna were s u c h   t h a t  i t  
could be s p e c i f i e d   e n t i r e l y  by angles ,  i ts per- 
formance  would be independent of frequency. The 
i n f i n i t e   b i c o n i c a l   a n t e n n a l  is t h e  m o s t  f a m i l i a r  
example: i t  is s p e c i f i e d  by the  angles   of   the  
two cones  and  the  angle  between  their  axes. 
There i s ,  however,  an i n f i n i t e   v a r i e t y  of  shapes 
which a re   comple t e ly   spec i f i ed  by angles  and 
these   fo rm  the   s t a r t i ng   po in t   fo r   t he   des ign   o f  
frequency  independent  antennas. They  must a l l  
extend t o  i n f i n i t y   ( b e c a u s e   i f   t h e y   d i d   n o t   t h e y  
would  have a t   l e a s t  one c h a r a c t e r i s t i c   l e n g t h )  
and therefore   they  do  not   immediately  lead  to  
p r a c t i c a l   d e s i g n s .  The  key  problem is the re fo re  
t o   d e t e r m i n e  how r a p i d l y ,   i f  a t  a l l ,   t h e  per- 
formance  of t h e   f i n i t e   s t r u c t u r e   c o n v e r g e s   t o  
t h a t  of t h e   i n f i n i t e   s t r u c t u r e .  Let us ,  however 
de fe r   cons ide ra t ion  of t h i s   q u e s t i o n   u n t i l  w e  
have  explored some appl ica t ions   o f   the   "angle  
method" t o   f a m i l i a r   a n t e n n a s .  

The problem of  a t y p i c a l   d i r e c t i o n a l  
antenna  can be i l l u s t r a t e d  by cons ider ing  a 
un ipo le   i n   f ron t  of  a p l a n e   r e f l e c t o r   a s  shown 
in   F ig .  1: it is  s p e c i f i e d  by the  lengths  
ABQM4 One of the  major l i m i t a t i o n s  on its 
pattern  and  impedance  bandwidth is represented  
by the   d i s t ance ,  D, from the   un ipo le   t o   t he  
r e f l e c t o r .  E3y changing  the  ref lector   and  unipole  
to   coapica l   cones  a l l  dimensions  except B and 4 
a re   r ep laced  by angles .   This   s imple  appl icat ion 
of   the  angle  method does   indeed   g ive   s ign i f icant  
improvement  of t he  impedance  and p a t t e r n  
bandwidth2. The  impedance is p r a c t i c a l l y   c o n s t a n t  
above a cer ta in   f requency  but   unfortunately  the 
p a t t e r n  is no t .   Th i s   appea r s   t o  be t y p i c a l  of 
most convent ional   antennas  designed  according  to  
the  angle  method. However, t he re  is a whole 
c l a s s  of unconventional  antennas  which  have  not 
only  an  impedance  but  also a p a t t e r n  which 
remains  pract ical ly   constant   above a c e r t a i n  
frequency.  In v i e w  o f   t h e   f a c t   t h a t   a l l  
exper ience   sugges ts   tha t   the   pa t te rn  of any 
antenna  develops more and  sharper   lobes  as   the 
frequency is  i n c r e a s e d ,   t h i s   r e s u l t  is indeed 
remarkable. 

The General  Approach 

To i l l u s t r a t e   t he   gene ra l   app roach ,cons ide r  
a l l  plane  curves  which  remain  essentially  the 
same when s c a l e d   t o  a d i f f e r e n t   u n i t  of length .  
Such  curves  can be used to   determine  the  shape 
of  a p lane   shee t   an tenna ,  by t a k i n g   t h e   i n p u t  
t e r m i n a l s   a t   t h e  Common poin t  of in te rsec t ion   of  
four   curves ,  as i l l u s t r a t e d   i n   F i g .   2 .  I t  
fol lows  then,   that   the   antenna is unchanged when 
s c a l e d   t o  a different   wavelength,   provided w e  add 
the   cond i t ion   t ha t   t he   t e rmina l s   s t ay   f i xed  when 
the  scale is changed. Now t h e   f a c t   t h a t  a t y p i c a l  
curve  remains  essentially  unchanged by a change of 
s c a l e   i m p l i e s   t h a t   t h e  new curve  can be made t o  
coincide  with  the  old one  by t r a n s l a t i o n   a n d  
ro t a t ion .   S ince  a t r a n s l a t i o n  is e l imina ted  by the  
requirement   that   the  common point  remain  f ixed, 
the  problem is t o  determine a l l   c u r v e s   s u c h   t h a t  a 
change  of s c a l e  is equ iva len t  t o  a ro t a t ion .   Th i s  
can be s t a t ed   symbol i ca l ly   i n   t he  form 

Kr(9) = r(cp+C) (1) 

114 



where r(cp,) denotes   the   rad ius  r as a func t ion  of 
the   po lar   angle  q ,  K is the  scale   change  and C the  
ang le  of r o t a t i o n   t o  which it is  equ iva len t .  Thus 
K depends on C but K and C are   independent  of 
d a n d  r ) .  

or dr = a r  
dlp 

where a is  independent  of cp: 

a = L d K .  
K dC 

It follows  from ( 6 )  that 

r = roeaq  where ro is a cons t an t .  

kt ro = eaqo  where q,, is a cons t an t  

o r  avo=  In ro. 

Then r = ea(9+cp0) 

or p+cp, = In  r l / a .  
- 

We recognize  (11) or (12)   as   the  formula  for   an 
e q u i a n @ l a r   s p i r a l :  i t  con ta ins   t he  two 
pa rame te r s ,   a ,   wh ich   r ep resen t s   t he   r a t e  of 
expansion,  and cp,, which r e p r e s e n t s   t h e  
o r i e n t a t i o n .  Thus the  shape of a l l  p lane   shee t  
frequency  independent  antennas must be def ined  
by e q u i a n g u l a r   s p i r a l s .   ( N o t e   t h a t  when l / a  = 0 
t h e   s p i r a l   d e g e n e r a t e s   i n t o   t h e   s t r a i g h t   l i n e  
q = - cp . )  T h e o r e t i c a l l y  i t  might  appear that 
w e  cou l8   ob ta in  four curves  such as shown i n  
F ig .  2  by s e l e c t i n g   f o u r   d i f f e r e n t   c o m b i n a t i o n s  
of  a  and 'p0, but  it is e a s i l y   v e r i f i e d   t h a t  
un le s s  a is the  same f o r   a l l ,   s u c h   c u r v e s   o v e r l a p  
a t   i n f i n i t e s i m a l   v a l u e s   o f  r ,  t hus   p l ac ing  a 
s h o r t   c i r c u i t   a c r o s s   t h e   t e r m i n a l s .  It is 
t h e r e f o r e   n e c e s s a r y   t o   c h o o s e   f o u r   d i f f e r e n t  'po 
with   the  same a .  

which  have  the  property  that  a change i n   t h e  
unit of  length is e q u i v a l e n t   t o  a c e r t a i n  
r o t a t i o n .  Then i f  we cons t ruc t  a metal antenna 
whose su r face  is one  of t h e s e   s u r f a c e s ,  its per- 
formance w i l l  be the  same a t   a l l  wavelengths 
except  fo r  a r o t a t i o n  of  the  coordinate  system. 
lhis problem is much more d i f f i c u l t   t o   a n a l y z e  
than  the  plane case we have ju s t   cons ide red ,   and  
w e  sha l l   s imp ly   g ive   an   ou t l i ne  of the  method. 
The typ ica l   su r f ace   can  be represented  by the  
formula 

where r e and q a r e   t h e   u s u a l   s p h e r i c a l  
coord ina te s .   Af t e r  a r o t a t i o n   t h e   s u r f a c e  is 

The general  problem is t o   f i n d   a l l  surfaces 

r = f (8q)   (13)  

represented  by 
r = f ( e f q J )  (14) 

where d q ' a r e   r e l a t e d   t o  8q by t h e   r o t a t i o n .  Then 
t h e   c o n d i t i o n   t h a t   t h e   r o t a t i o n  be e q u i v a l e n t   t o  
a uniform  expansion is expressed by the   equat ion  

Kf(Bq,) = f ( e ' d   f o r   a l l  I3q (15) 
where K is independent  of Bq but  depends on the  
parameters o f   t he   ro t a t ion .  

t he   func t ion  f from  (15): one is t h a t   t h e   r e l a t i o n  
between  8'q'and 8 q is very  involved  and  the  other  
is tha t   t he   ro t a t ion   depends  on three  parameters ,  
such   a s   t he  two spher ica l   coord ina tes   which   spec i fy  
t h e   a x i s  of r o t a t i o n ,  and  the  angle   of   rotat ion 
abou t   t he   ax i s .  To express   the   t ransformat ion  
from e q t o   e ' q ' e x p l i c i t l y  l e t  g r ep resen t  a unit 
v e c t o r   i n   t h e  (ecp) d i r e c t i o n ,   i . e . ,  

There   a re  two d i f f i c u l t i e s   i n   t r y i n g  to f i n d  

+ = s i n  0 cosq,  uy = s i n  e s i n 9  uz = cos e (16.) 
S i m i l a r l y  l e t  &'be def ined  for d q !  
Then the   t ransformat ion  is expressed by 

- u'= T u  (17) 
where T is a matrix  which is independent  of 
8, q ,  e l  and q': T is a funct ion  of   the  three 
p a r a m e t e r s ,   a l l   a 2 ,   a 3 ,  of t h e   r o t a t i o n .  We can 
now ob ta in  a set of p a r t i a l   d i f f e r e n t i a l   e q u a t i o n s  
f o r   t h e   f u n c t i o n  f by d i f f e r e n t i a t i n g   ( 1 5 )   i n  a 
way ana lagous   to   the   de te rmina t ion   of   the  
func t ion  r f rom  (1) .   Let  r and  r 'denote   f (eq)  
and f (B'cp'). 
D i f f e r e n t i a t i o n  of ( 1 5 )   w i t h   r e s p e c t   t o  e and cp 
gives  

K a- = M (2 equat ions)   (18)  
where 

(20) 

D i f f e r e n t i a t i o n  of (15 )   w i th   r e spec t   t o  a; g ives  

r = S 1 (3 equa t ions )  (21) 
I 

where 

D i f f e r e n t i a t i o n  of ( 1 7 )   w i t h   r e s p e c t   t o   8 i   g i v e s  

AT = N4' ( 6  equa t ions )  (24) 
AI 

where 

(25 1 

(T is T t ransposed ,  i . e . ,  T.  -=T . .  , ==1) 

D i f f e r e n t i a t i o n  of (17 )   w i th   r e spec t   t o  a; g ives  

N=SA' ( 9   e q u a t i o n s )  (26 1 

v d II 

1J J 1  
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where - 
The n e x t   s t e p  is t o   e l i m i n a t e  &'from (18)  and 
(21) using  (24)   and (26.) t o   e v a l u a t e  M and S. 
The algebra  can be g r e a t l y   s i m p l i f i e d   i f  we 
choose  the  coordinates so t h a t   t h e  z a x i s  is the  
a x i s  of r o t a t i o n  corresponding t o  a particular 
e r p n n s i o n  K: t h i s   does   no t   imp ly   t ha t   t he   ax i s  of 
r o t a t i o n  is f i x e d   f o r   a l l  K. Thus i n  (27 )  w e  
pe r fo rm  the   d i f f e ren t i a t ion   be fo re   subs t i t u t ion  
of   the   par t icu lar   va lues   o f   a la2a3   which  
co r re spond   t o   t h i s   cho ice   o f   axes .  With t h i s  
s i m p l i f i c a t i o n ,  which  does  not  involve  any loss 
of   genera l i ty ,  it is p r a c t i c a l   t o   d e r i v e  a set 
of equat ions  of   the   form 

(28 1 
where P is a known (3 X 2) matrix  expressed 
terms of 89 and  the  angle  of ro ta t ion .Reca1  
t h e   d e f i n i t i o n s   o f   & a n d  & w e  see t h a t  (28) 
c o n s t i t u t e s  a set of p a r t i a l   d i f f e r e n t i a l  

i n  
l i n g  

equa t ions   fo r  K a s  a func t ion  of a laza  and r a s  
a func t ion   of  8p. It t u r n s   o u t   t h a t  t 2 e only 
n o n - t r i v i a l   s o l u t i o n  is the  s imple  case  wherethe 
a x i s   o f   r o t a t i o n  is f ixed ,  i . e .  K depends on 
only  one ro ta t ion   parameter .  The problem now is 
e s s e n t i a l l y   t h e  same a s   t h e   p l a n e   c a s e .  The 
so lu t ion   can  be w r i t t e n   i n   t h e  form 

r = ea(q+go)  F(B) ( 2 9 )  

where i n   p r i n c i p l e  F(8)  can be any   func t ion  of 
8 .  The shapes  represented by (29) can be very 
complicated  because  in   general   an  increase of 
2~ i n  'p does  not   give  the same r: a s  9, ranges 
from -a t o   t h e   s u r f a c e  weaves  around  through 
a l l   s p a c e .   F i g .  3 i l l u s t r a t e s  a simple  example 
which  gives a p rac t i ca l   an t enna   des ign .   F ig .  4 
i l l u s t r a t e s   t h e   c a s e  where 4h F(8) is pe r iod ic  
i n  6 with   per iod  2rc a .  This gives  a simple 
s u r f a c e   l i k e  a screw  thread  which is uniformly 
expanded i n   p r o p o r t i o n   t o   t h e   d i s t a n c e   f r o m   t h e  
o r ig in :   an   i nc rease  of ZIT i n  p is e q u i v a l e n t   t o  
moving  one turn   a long   the   sc rew.  The plane 
antennas  considered  in  the  accompanying paper by 
R.H. N a m e 1  and D.E. I sbe l13   r ep resen t  a cross 
s e c t i o n   t h r o u g h   t h e   a x i s  of t h i s   k i n d  of antenna. 

The P a t t e r n  

To examine  the  quest ion  of   pat tern 
convergence we make use of  a c h a r a c t e r i s t i c  of 
t h e   f i e l d  which  depends on t h e   f a c t   t h a t  a 
r o t a t i o n  is equ iva len t   t o   an   expans ion .   S ince  we 
are   dea l ing   wi th   the   f requency   independent  mode, 
t h e   a n a l y s i s  of t h e   f i e l d   c a n  be s i m p l i f i e d  by 
c o n s i d e r i n g   t h e   s t a t i c  or M: case .  For t h i s  
case  it has  been shown  by P.E.  Mast t h a t   f o r   t h e  
p l ane   an tenna   t he   f i e ld  is a func t ion   of   the  two 
va r i ab le s  S = re-aq  and 8, r a t h e r   t h a n   t h e   t h r e e  
v a r i a b l e s  rep. (Note t h a t  S is cons tan t  on any 
e q u i a n g u l a r   s p i r a l   i n   t h e   f a m i l y   c h a r a c t e r i z e d  
by the   pa rame te r   a ) .   Th i s   r e su l t   imp l i e s   t ha t  
t h e   d i r e c t i o n   o f   t h e   c u r r e n t  on the  antenna is 

aloDg t h e   l i n e s  S = c o n s t a n t ,   i . e . ,   t h e   c u r r e n t s  
fo l low a s p i r a l   f l o w .  The s imples t  way t o  
a n a l y z e   t h e   p a t t e r n  is t o  make use  of  the 
i n t u i t i v e   i d e a  of coupl ing  between  adjacent   turns  
o f   t h i s   s p i r a l   f l o w .  Assuming t o  begin  with that 
the  AC c u r r e n t   d i s t r i b u t i o n  is l i k e  the Dc 
d i s t r i b u t i o n   t r a v e l i n g   w i t h   t h e   f r e e  space phase 
v e l o c i t y ,  we see that a "resonance" will bu i ld  
up i n   t h e   c u r r e n t   d i s t r i b u t i o n  where t h e  mean 
circumference of t h e   s p i r a l  is about one 
wavelength. This resonance w i l l  be h igh ly  damped 
by r a d i a t i o n  s o  that m o s t  o f   the   cur ren t  is 
d i s s i p a t e d   i n   t h e   f i r s t   r e s o n a n c e .  The p a t t e r n  
due t o   t h e   f i r s t   r e s o n a n c e  is therefore   a lmost  
t h e  same as t h e   p a t t e r n   d u e   t o   t h e   i n f i n i t e  
s t ruc ture .   Admit ted ly  this argument is weak but  
it is not   a l toge ther   wor th less   because  it does 
g ive  a simple way o f   e s t i m a t i n g   t h e   p a t t e r n ,  
wh ich   ag rees   s a t i s f ac to r i ly   w i th   measu remen t s  on 
f i n i t e   a n t e n n a s .  It shows t h a t   t h e   c o n d i t i o n   f o r  
pat tern  convergence is t h a t   t h e   c u r r e n t   f l o w  be 
s p i r a l   r a t h e r   t h a n   r e c t i l i n e a r ,   i . e . ,   t h a t   t h e  
parameter a should  not  be i n f i n i t e .  

i n   p r a c t i c e .  The case  a = a r e p r e s e n t s   t h e  
o i c o n i c a l  type of   an tenna   for   which   the   pa t te rn  
does  not   converge.   Various  cases   for  a # a 
have  been  investigated by  J.D.  Dyson4and 
R:L. CarrelS and  convincing  evidence  of  the 
constancy of the   pa t t e rn   ove r  a 20:l frequency 
range  has  been  obtained. Note t h a t  a change  of 
frequency is e q u i v a l e n t   t o  a r o t a t i o n .  %e 
p a t t e r n   a t  one  frequency, f l ,  is t h e  same a s   t h e  
p a t t e r n   a t   a n o t h e r   f r e q u e n c y ,   f 2 ,  if t h e  
coordinate   system is r o t a t e d   a b s u t   t h e  8 = 0 a x i s  
th rough  an   angle   1 /a   In   f l / f2 :  t he  p a t t e r n   s c a n s  
a round  the  8 = 0 a x i s  a t  a r a t e  which  depends  on 
a. I f  measurements a r e  made i n  a f ixed   p lane ,   the  
pa t t e rn   i n   gene ra l   va r i e s   w i th   f r equency   and   t he  
frequency  independent  nature of the  complete 
s p h e r i c a l   p a t t e r n  may be missed in   such  measure-  
ments. 

These   t heo re t i ca l   con jec tu res   a r e   bo rne   ou t  

The Impedance 

The convergence of the  input  impedanee t o  a 
cons tan t   va lue  as the   f requency is increased  is 
fami l i a r   i n   connec t ion   w i th   t he   b i con ica l   an t enna .  
It has  been  confirmed  in a l l  cases   o f   the   genera l  
type  represented by (29) which  have  been 
i n v e ~ t i g a t e d . ~ ~ s .  The de termina t ion  of t he   cha rac -  
t e r i s t i c  impedance is an  important  problem  in 
connection  with  frequency  independent  antennas.  
S c k l k u n o f f ' s  w e l l  known formula   for   the   charac-  
t e r i s t i c  impedance  of  two  coaxial  cones1 is 

where A and B are  the  cone  angles  measured  from 
the  common a x i s .  The formula  for two i n c l i n e d  

where  q1 9 and   a r e   de f ined   i n   F ig .  5. 
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The formula   for  a symmetr ical   p lane  sheet   antenna 
c o n s i s t i n g  of  two t r i a n g l e s   w i t h  a common apex a t  
t he   t e rmina l s7  is 

where K r e q r e s e n t s   t h e   e l l i p t i c   i n t e g r a l   d e f i n e d  
by K(x) = J t  = d t  and y~ r e p r e s e n t s  

(1- t2) (1-x2t2)  
t h e   h a l f   a n g l e   o f   t h e   t r i a n g u l a r   s t r i p s   m e a s u r e d  
from  the common a x i s .  

no te   an   i n t e re s t ing   p rope r ty   wh ich  was pointed  out  
by hbshiake   in  one  of the  Tohoku U n i v e r s i t y  
r e p o r t s .  It is t h a t   t h e  impedance of any  plane 
shee t   an tenna  whose shape is t h e  same a s   t h e  
shape  of i ts  complement  (except  for a t r i v i a l  
change of c o o r d i n a t e s )  is independent  of  frequency 
a n d   e q u a l   t o  60rr = 189 ohms. The  complementary 
antenna is d e f i n e d   a s   t h e   p o r t i o n   o f  a metal   plane 
which is not  covered by the   o r ig ina l   an t enna :  
when the  antenna  and i ts  complement a r e   f i t t e d  
together   they  completely  cover   the  whole  plane 
without   overlapping.  The c o n s t a n t  impedance  of 
a "self-complementary"  antenna  follows  from  the 

In  connection  with  the  impedance w e  should 

between  the  impedance Z1 of  the  antenna  and  the 
impedance Z2 of i ts  complement.  Fig. 6 g ives  some 
examples  of s e l f  -complementary  shapes. 

Pseudo  Frequency  Independent  Antennas 

The idea  of a pseudo  frequency  independent 
antenna is i l l u s t r a t e d  by the  horn  antenna shown 
i n   F i g .   7 .  It cons i s t s   o f   me ta l   shee t   pe r fo ra t ed  
by holes  of  uniformly  expanding s i ze :  any  hole is 
e x a c t l y  l i k e  its neighbor on t h e   l e f t   e x c e p t   f o r  
a f ixed   expans ion .  The idea  is t h a t   t h e   e f f e c t i v e  
s i z e  of  the  horn  remains  roughly  independent  of 
wavelength  because  the  metal   sheet  becomes 
approximately  t ransparent   once  the  holes  become 
greater than  aDout  half  a wavelength  square.  More 

p r e c i s e l y ,  it can be s e e n   t h a t   i f   t h e   h o r n   s t a r t e d  
from a p o i n t  and  extended t o   i n f i n i t y ,  it would 
"look"  the same t o  any two wavelengths whose 
r a t i o  was e q u a l   t o   t h e   e x p a n s i o n   f a c t o r .  Some 
i n t e r e s t i n g  examples  of  pseudo  frequency 
independent   an tennas   a re   descr ibed   in   the  
accompanying  paper by R.H.  DuHamel and  D.E. I s b e l l .  
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