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Abstract—The goal of the Advanced Encryption Standard (AES) is to achieve secure communication. The use of AES does not,

however, guarantee reliable communication. Prior work has shown that even a single transient error occurring during the AES

encryption (or decryption) process will very likely result in a large number of errors in the encrypted/decrypted data. Such faults must

be detected before sending to avoid the transmission and use of erroneous data. Concurrent fault detection is important not only to

protect the encryption/decryption process from random faults. It will also protect the encryption/decryption circuitry from an attacker

who may maliciously inject faults in order to find the encryption secret key. In this paper, we first describe some studies of the effects

that faults may have on a hardware implementation of AES by analyzing the propagation of such faults to the outputs. We then present

two fault detection schemes: The first is a redundancy-based scheme while the second uses an error detecting code. The latter is a

novel scheme which leads to very efficient and high coverage fault detection. Finally, the hardware costs and detection latencies of

both schemes are estimated.

Index Terms—Advanced Encryption Standard, AES, fault tolerance, fault detection, parity codes.
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1 INTRODUCTION

THE Rijndael Advanced Encryption Standard (AES)
algorithm is a secret-key crypto-system recently ap-

proved as standard by NIST [5]. AES is intended to replace
the widely used DES and Triple-DES crypto-systems due to
the last two’s limited level of security [4], [6]. AES is an
evolution of DES and extends it with respect to three
different sets of features: the mathematical structure—AES
is more complex than DES, requiring a larger number and
more powerful basic operations; the control-path—AES
uses longer keys than DES does; and the data-path—AES
operates on larger blocks of data than DES.

Implementations of DES, both in software and in hard-
ware, have existed for quite some time [14], [15]. Several
software and hardware implementations of AES have
recently been proposed. The software solutions have targeted
various platforms [5], [12] with the goal of reducing the
number of clock cycles required to encrypt a data block.
Hardware solutions have been presented for field-program-
mable VLSI devices (e.g., FPGA implementations [7]). The

objectives there were to increase the throughput while
reducing the number of gates in the FPGA and to obtain
reconfigurable devices able to cope with the different sizes
allowed by AES for the keys and the data blocks. Custom
devices, in contrast, are less flexible, but are more resistant
against tampering or physical alteration than field-pro-
grammable ones. Some macrocell and coprocessor crypto-
graphic architectures (also known as crypto-processors) of
this kind have been proposed and evaluated at the
simulation level [7], [8], [9], [10]. These crypto-processor
architectures are particularly optimized for embedded
systems and even smart-card systems.

Fault detection and possibly fault tolerance are undoubt-
edly key issues when designing a crypto-processor custom
VLSI architecture for implementing the AES crypto-system
since it is considerably more complex than the DES crypto-
system it replaces. In fact, AES executes a very nonlinear
algorithm and has an iterative structure requiring several
repetitions of the same basic pattern of operations. There-
fore, an AES crypto-processor is larger, more complex, and,
hence, more likely to be subject to faults than the existing
and commercially available DES crypto-processors [8], [9],
[12]. Moreover, fault detection is a desirable property for
preventing malicious attacks, aimed at extracting sensitive
information, like the secret key, from the device [6], [11].

The issue of fault detection and tolerance in AES seems
to be a new and mostly unexplored field. Karri et al. have
recently addressed this topic in [11] from the perspective of
preventing attacks based on malicious injection of faults.
Their assumption is that, by suitably tampering with the
device and analyzing the obtained erroneous outputs,
sensitive data could be inferred. The proposed solutions
consist of using various forms of redundancy to obtain an
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attack-resistant architecture. These solutions have different
detection time latencies and hardware costs and, in general,
exhibit a large cost close to that of duplication.

However, the above work does not include either an
analysis of the propagation of errors in AES or less
expensive fault detection techniques, like those based on
error detection codes. In [1], a preliminary study of the error
propagation in AES was carried out but only for a simple
fault model, namely, single transient faults. A simple fault
detection technique was also introduced, based on the idea
of exploiting the decryption block for checking the correct-
ness of the encryption process. The analysis of the error
propagation in AES has been extended in [2] to multiple
and permanent faults and the presence of faults has been
modeled at a finer-grained level. In both papers, the
characterization of the behavior of AES in the presence of
injected errors has been obtained by simulation.

In this paper, we present a comprehensive study of fault
detection in a generic hardware VLSI implementation of
AES. The paper summarizes previous experimental results
concerning error propagation in AES for several different
fault models, presents some theoretical interpretation there-
of, and discusses previous and novel fault detection
techniques. In particular, a simple but efficient error
detection code for AES is developed and evaluated. This
last result proves the nonobvious conclusion that it is
practical to devise efficient error detection codes, even for a
complex and nonhomogeneous algorithm like AES.

The paper is organized as follows: In Section 2, a brief
overview of the AES algorithm is presented, including the
implementation details which are necessary for under-
standing our proposed error detection schemes. Section 3
describes the analysis of error propagation in the encryption
and decryption units for a simple single bit transient fault
model [1]. The error analysis is then extended in Section 4 to
a more practical fault model which also includes multiple
faults and permanent faults [2]. This analysis allows us to
obtain a rather comprehensive picture of the general
behavior of AES in the presence of faults. The analysis is
carried out by simulation since the structure of AES is too
complex for an exhaustive theoretical analysis. Section 5
describes two fault detection algorithms. The first is a
redundancy-based technique which has already been
partially described in [1], while the second is novel and is
based on exploiting error detecting codes, properly orga-
nized so as to fit AES (some hints are in [3]). Finally,
Section 6 concludes the paper. Appendices A and B outline
several mathematical proofs for the error detection codes
which are proposed in Section 5. Appendix C outlines the
proof of the coverage of the parity code scheme.
Appendix D contains the evaluation of the hardware
overhead due to such a parity code.

2 THE RIJNDAEL ALGORITHM

The Rijndael AES is a secret-key (symmetric) block cipher
crypto-system [5] which encrypts (or decrypts) one block of
data at a time. The encryption algorithm accepts one data
block (or plain text) and the key and produces the
encrypted data block (the input and output data blocks
are of identical size). The decryption algorithm accepts one

encrypted data block and the key and outputs the plain text.
Both encryption and decryption use the same secret key.

Internally, the AES encryption algorithm can be parti-
tioned into two processes, performed in parallel: encryption
and key schedule. In the case where the AES encryption
process is executed by a dedicated device (or crypto-
processor), these two processes can be viewed as the data-
path and the control-path of the complete AES crypto-
processor. The decryption algorithm is similarly partitioned
into the decryption and inverse key schedule processes.
Encryption and decryption are mathematically inverse, as
are key schedule and inverse key schedule.

2.1 The Data-Path

AES is a flexible crypto-system allowing the sizes of the
data block and the secret key to be any combination of 128,
196, and 256 bits. However, NIST has restricted the size of
the data blocks to only 128 bits, while the key still has all
three options. The version with data block and key of equal
size of 128 bits each is regarded as the basic and most
practical one and has an adequate security level for most
civil applications.

AES has an iterative structure consisting of a repetition
of a round which is applied to the data block to be
encrypted for a fixed number of times. The number of
rounds is determined by each key size. For the three key
sizes of 128, 196, and 256 bits, a number of 10, 12, and
14 rounds is required, respectively, plus an initial special
round (called round 0). Fig. 1a shows the steps of the
Encryption process for a 128-bit key.

A round consists of a fixed sequence of transformations.
Except for the first round (round 0) and the last round, the
other rounds (internal rounds) are identical and consist of
four transformations each. The first and last rounds are
incomplete. The four round transformations are called
SubBytes, ShiftRows, MixColumns, and AddRoundKey,
see Fig. 1b. The transformation AddRoundKey is the point
where the secret key enters the Encryption process and
contributes to the final result.

The four round transformations are invertible, hence the
round itself is invertible. The inverse round consists of the
sequence, in reversed order, of the inverses of the four
transformations.
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Fig. 1. (a) The data-path for data block and key size of 128 bits,

(b) generic structure of one internal round.
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2.2 The Control-Path

Each round accepts a (partially processed) data block and a
round key and outputs a (further processed) data block. All
round keys have the same size as the secret key, but there is
a distinct round key for each round. The round keys are
ultimately derived from the secret key by means of the key
schedule process. More precisely, if sk is the secret key and
rkj is the jth round key (for j � 1), then key schedule
computes rkjþ1 ¼ KSjðrkjÞ as a function of the previous
round key rkj; the process starts with rk0 ¼ sk. Key
schedule is invertible: Fig. 2 shows the inputs and outputs
of the key schedule and inverse key schedule processes. The
reader is referred to [5] for further details.

The concatenation of the secret key and of all the round
keys is a sequence of bits called key material. Basically, there
are two methods for calculating the round keys, called key
unrolling and key on-the-fly [13]. The former method
computes and stores the key material in advance, accessing
it whenever a round key is required. The latter computes
each round key just before starting the related round and
discards it immediately after completing that round.

2.3 Basic AES Operations

All four internal transformations of one AES round work on
byte elements, and are rooted in the algebra of finite fields
(Galois fields, GF ) [16]. The finite fields of interest for AES
are the binary fields, of type GF ð2nÞ. The integer n (n � 1)
identifies the number of bits used to represent the field
elements. The field GF ð2Þ ¼ hf0; 1g;þ; �i is the well-known
field of addition (þ) and multiplication (�) modulus 2; these
two operations are executed by the XOR and AND logic
gates, respectively.

The basic operations of AES are defined over elements of
the field GF ð28Þ, i.e., on byte elements of n ¼ 8 bits each.
AES uses the standard basis, or polynomial, representation
for the field GF ð28Þ [16]. One byte can be represented as a
polynomial AðxÞ of degree 7 or less, with coefficients over
the field GF ð2Þ:

AðxÞ ¼
X7

i¼0

aix
i ¼ a0 þ a1xþ � � � þ a7x

7; ð1Þ

where ai 2 f0; 1g for every 0 � i � 7. For convenience, a
byte can also be represented in binary or hexadecimal in
addition to its polynomial presentation. For instance, the
binary number 0010 1101, or in hexadecimal 2d, represents
the polynomial x5 þ x3 þ x2 þ 1. AES uses the following

irreducible polynomial �ðxÞ of degree 8 as generator for the
finite field GF ð28Þ:

�ðxÞ ¼ x8 þ x4 þ x3 þ xþ 1: ð2Þ

The round transformations use the following basic opera-
tions over polynomials:

AðxÞ �BðxÞ ¼ AðxÞ þBðxÞmod �ðxÞ
AðxÞ 
BðxÞ ¼ AðxÞBðxÞmod �ðxÞ

Aÿ1ðxÞ ¼ BðxÞ s:t: AðxÞ 
BðxÞ ¼ 1:

Addition � reduces to a simple bit-wise XOR of the
coefficients of the two summand polynomials, thus not
requiring the use of the generator polynomial �ðxÞ. Multi-
plication 
 and inversion ðÞÿ1, in contrast, do require the
use of the generator �ðxÞ. Several algorithms for computing
finite field arithmetic operations can be found in [16].

2.4 Round Transformations

A precise mathematical formulation of the four round
transformations is presented in what follows. This provides
the necessary background for the presentation of the error
detection schemes in Section 5. Consider, for simplicity, the
case of a data block and a secret key having the same size of
128 bits. The data block db is partitioned into 16 bytes dbi,
with 0 � i � 15. This byte sequence is rearranged as a 4� 4
matrix S, called “state matrix” (or simply state).

S ¼

s0;0 s0;1 s0;2 s0;3

s1;0 s1;1 s1;2 s1;3

s2;0 s2;1 s2;2 s2;3

s3;0 s3;1 s3;2 s3;3

2664
3775: ð3Þ

Denote by sr;c (with 0 � r; c � 3) the element in row r

and column c of the state S, then the rearrangement scheme
is: sr;c ¼ dbrþ4c. In other words, the state S is organized by
columns. Each byte sr;c is an element of the finite field
GF ð28Þ. The state S is modified by the round transforma-
tions as follows.

SubBytes. Every element sr;c of the state S is first inverted
and then processed through an affine transformation T :

sr;c 7! T ðsÿ1
r;c Þ for 0 � r; c � 3: ð4Þ

Clearly, SubBytes is a nonlinear transformation, mainly due
to the inversion it contains.

The SubBytes transformation operates independently on
each byte of the state S; therefore, it can be computed in
parallel for all the state elements. For reasons of efficiency,
in most practical implementations of AES, SubBytes is
computed in advance and stored in a look-up table of 28 ¼
256 elements. In this paper, it is assumed that SubBytes is
implemented as such a look-up table, which is referred to as
the Sbox.

ShiftRows. The rows of the state S are progressively
rotated, as follows:

S 7!

s0;0 s0;1 s0;2 s0;3

s1;1 s1;2 s1;3 s1;0

s2;2 s2;3 s2;0 s2;1

s3;3 s3;0 s3;1 s3;2

2664
3775: ð5Þ
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Fig. 2. The control-path for a key size of 128 bits.
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The first row is left unchanged, the second row is rotated
one byte position to the left, the third row two byte
positions, and the fourth row three. ShiftRows is a linear
transformation.

MixColumns. This is a linear transformation operating on
the elements of the state S as shown below, where � ¼
02 ¼ x and � ¼ 03 ¼ xþ 1 are fixed coefficients.

s0;c 7! �
 s0;c � � 
 s1;c � s2;c � s3;c; ð6Þ

s1;c 7! s0;c � �
 s1;c � � 
 s2;c � s3;c; ð7Þ

s2;c 7! s0;c � s1;c � �
 s2;c � � 
 s3;c; ð8Þ

s3;c 7! � 
 s0;c � s1;c � s2;c � �
 s3;c; ð9Þ

for every column 0 � c � 3. Each transformed byte is a
linear combination of the four bytes of the state S in the
same column c.

AddRoundKey. Every 128-bit round key rk is partitioned
into 16 bytes rki, 0 � i � 15, similarly to the data block.
AddRoundKey is a linear transformation and modifies the
elements of the state S as shown below.

sr;c 7! sr;c � rkrþ4c for 0 � r; c � 3: ð10Þ

This is equivalent to rearranging the round key rk as a
matrix, similarly to the data block db and adding the two
matrices. It is also equivalent to bit-wise XORing the two
128-bit words db and rk.

The above presentation of the four round transforma-
tions has been tuned to a data block and a key of size
128 bits each. The transformations can be generalized to the
other allowed sizes by using rectangular state matrices with
more columns. The reader is referred to [5] for details.

The Key Schedule functions KSj process the round keys
using the same basic constituents of the round transforma-
tions. A function KSj is a combination of the following
operations: a right rotation, the SubBytes operation, and an
addition of a byte constant.

3 ERROR ANALYSIS: SINGLE FAULT

In this section, the error propagation behavior of the data-
path (i.e., the encryption or decryption process) is studied.

The purpose of this study is to understand the effect of a

fault occurring during the execution of the algorithm on the

final result. This is an important first step when developing

fault detection and tolerance schemes. For simplicity, the

single faulty bit model is adopted in this section, i.e., only a

single bit may become faulty at any given time instant.

Furthermore, since the encryption and decryption algo-

rithms include a large number of steps, attention is

restricted to single faulty bits inserted at the beginning of

each round rather than during the intermediate steps within

a round.

3.1 Error Propagation in the Data-Path

Fig. 3 shows the results of simulation experiments in which

a faulty bit has been injected into the AES data-path. A data

block and key both of size 128 bits were used in most of the

experiments, but it has been verified that the observed

behavior is similar for the other two admissible key sizes. In

these simulations, attention has been focused on the effect

of an injected fault on the encrypted result and on the result

of the decryption, where “effect” means the number of

erroneous bits caused by a single faulty bit injected at some

stage of the computation.
From Fig. 3a, it is possible to see that a faulty bit inserted

in the first round of encryption causes a large number of

erroneous bits in the final encrypted data. Applying

decryption to the corrupt data reconstructs a decrypted

block containing a single faulty bit. This behavior should be

expected since the AES algorithm is invertible. Still,

injecting a single error in the input message in any round

between 2 and 8 yields a corrupt encrypted message which

is considerably different from the correct one. Our simula-

tions have shown that, on the average, 64 output bits were

erroneous. Note, however, that if the faulty bit is inserted in

the last two rounds of encryption, it spreads over a much

smaller number of bits in the final enciphered message (1 or

16 versus 64 in earlier rounds). Similarly, injecting a single

faulty bit in the early rounds of decryption yields a

decrypted message which is quite different from the

original correct message, as shown in Fig. 3b. No faults

were injected prior to round 0 because this would be

equivalent to considering a different message.
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Fig. 3. Mean number of erroneous bits in the encrypted (a) and the decrypted (b) data block, versus the injection round of the faulty bit.
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3.2 Error Propagation in the Control-Path

Another part of the algorithm implementation that can be
affected by faults is the key schedule. A complete key
unrolling is subject to two types of errors: either a single
faulty bit corrupting the stored key material or a faulty bit
injected during the round key computation process,
spreading to many bits. In contrast, the key on-the-fly
approach can be subject only to the second type of error
since the key material is never completely computed and
stored. A faulty bit injected during the unrolling process
may cause a large number of erroneous bits in the next
round keys.

Both situations have been simulated: The former case is
equivalent to the injection of a single error in the data-path
since the round key is added to the state matrix at the end of
each round. As for the latter case, [1] and [2] show that the
number of erroneous bits obtained in the key material can
be as high as 360 out of 1,408 bits composing the complete
key material.

3.3 The Effect of an Error in the Control-Path
on the Data-Path

When the data-path is assumed to be fault-free and the key
scheduling is affected by the injection of a single faulty bit at
some round, it has been verified that a faulty bit injected in
the early rounds causes a high number of erroneous bits in
the decryption process. If the erroneous round key is used
for decryption, it is not possible to detect the presence of a
faulty bit in the key material. The sender will be unable to
realize that the transmitted encrypted data is corrupted and
the receiver will decrypt useless data. Consequently, special
attention must be paid to the fault management of the
round key.

4 ERROR ANALYSIS: INTERNAL AND MULTIPLE

FAULTS

In this section, we extend the fault model to first include
single faults during the internal transformations of a round,
and then to multiple faults.

4.1 Internal Faults

First, the effect of a single fault at any step of the process is
analyzed. A fault injected during the very first round
(round 0) is comparable to encoding a different input. The
only operation performed at this stage is the key addition,
which does not interfere with the error propagation: This is
confirmed by Fig. 4, where it is shown that the decoded
output differs from the correct one by exactly one bit.

The injection of a fault during one of the inner rounds is
more complicated and it is necessary to follow the errors as
they propagate along the execution path. The generic
Encryption round of AES consists of four round transfor-
mations: SubBytes, ShiftRows, MixColumns, and
AddRoundKey (see Section 2.4). Hence, there are five
positions where an error may be injected, from the
beginning (before any other operation) to the end of the
round. However, a fault injected at the end of a round,
provided that it is not the last round, is equivalent to an
injection at the beginning of the following round. Thus, one
position of the possible five need not be analyzed.

The propagation of a single fault injected in the other
four positions is influenced by the execution of the round
components. The result can be classified into two cases: The
fault spreads considerably or it affects only one output of
the component. The latter situation includes the ShiftRows
and the AddRoundKey transformations, where the error is
only moved within a row of the state matrix or left
untouched, respectively. The relative position of the fault
with respect to these transformations does not affect the
amount of errors in the output since only trivial operations
like byte rotation or linear ones like XOR are involved. The
two remaining round transformations are more complex
and will therefore greatly influence the propagation of
errors.

Fig. 4 shows how the number of erroneous bits changes as
the position of fault injection is changed from round to round
and within each round, using a specific input and injecting a
fault into every single bit. The differences are more apparent
in the boundary rounds, where their effects are not masked.
Examining the first and the last rounds confirms that the
positions most sensitive to faults precede the execution of
Sbox and their respective inverse transformations.

An analysis of the way these two round transformations
spread a single fault leads to some interesting observations.
The application of the Sbox substitution creates a number of
errors ranging from 1 to 8 with the most common being 4, as
Fig. 5a shows. Such data suggest that the number of
erroneous output bits follows a binomial distribution,
implying that the result would actually be random.
Applying the �2 test to the frequencies generated by the
simulation shows that the data fits the suggested model
very well. Further analysis focusing on single output bits
has shown that the distribution of the fault is quite uniform,
that is, every bit is equally likely to be erroneous.

The other complex round transformation is MixColumns:
The distribution of the number of errors generated from a
single injected fault by this transformation is completely
discrete. When injecting a fault before MixColumns, either 5
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Fig. 4. Effects of a transient fault in the state for encryption (a) and

decryption (b).
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or 11 errors are obtained at the output; similarly, when

injecting a fault in the InvMixColumns, the number of errors
is 11, 19, 21, or 23; both cases are shown in Fig. 5b. This

behavior is due to the finite field multiplication performed in
(Inv)MixColumns. In fact, MixColumns shows the same fault

distribution pattern as the finite field product in GF ð28Þ,
although scaled in the number of bits involved. Consider, for
instance, Fig. 6: It shows the effect of the injection of a fault

into the operation AðxÞ 
 x, with AðxÞ 2 GF ð28Þ. When the

fault is injected into the most significant bit of AðxÞ, it is
spread by the field generator polynomial �ðxÞ over a large

number of bits, while, for any other injection position, the
error is only shifted. A similar error pattern has been

identified in the spreading of errors caused by a single faulty

bit injected into one column of the state, when performing
MixColumns and InvMixColumns [2].

4.2 Multiple Faults

In Section 3, we considered the case when a fault affects

only one bit during the computation. In this section, we

analyze the behavior of the AES implementation when
multiple faults are present. Two such situations are studied:

multiple temporary faults and permanent faults; the
similarities and the differences with respect to the single

fault model are presented.
A single error occurring in the inner part of encryption

has led to completely different outputs, both encrypted and

decrypted (see Fig. 4). The average number of different bits
is about 64, which is the expected value of a completely
random string since a random single bit is correct half the
time. Injecting two independent faults at different rounds
shows similar results, as depicted in Fig. 7. Only when the
faults are injected at the very first or at the very last rounds
are the outputs partially related to the correct value (about
20 or fewer erroneous bits), while, in most cases, the final
output is random. A permanent fault sets the value of a
specific bit to a constant 0 or 1 and may be the result of a
short or open circuit. This yields a variable number of
injected faults, depending on the original bit value: In the
worst case, it may amount to one error in each round. The
results of this experiment resemble the results of injecting
multiple temporary faults and, as the number of temporary
faults increases, the results of the two experiments get
closer. A similar behavior has been observed when two or
more faults were injected in the key material. Experiments
with injecting multiple faults lead to two important
observations. First, only a very few experiments yielded a
small number of erroneous bits; in most cases, the number
of erroneous bits was 64 on average, leaving an apparent
gap between the common case and the few cases with 20 or
less errors (see Fig. 7). Second, no masking effects of faults
were revealed during our extensive experiments. A mask-
ing effect can still be obtained by injecting one fault into the
state and a second one into the corresponding bit in the key
material. However, such faults are an unlikely event. Faults
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Fig. 5. Effect of the injection of a single faulty bit on the outputs of Sbox and InvSbox (a) and on the outputs of MixColumns and InvMixColumns (b).

Fig. 6. Spreading of errors caused by the injection of a fault into the

multiplication AðxÞ 
 x.
Fig. 7. Effect of two fault injections in the state for the encrypted and

decrypted output.
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injected at different rounds would not normally overlap
due to the nonlinearity that is spreading the error very
efficiently.

Injecting multiple faults during the MixColumns trans-
formation gives different results as the injection affects the
direct or the inverse transformation. While the latter quickly
becomes stable and distributes the error uniformly over the
output due to its complexity, the former is much simpler
and keeps the same fault distribution pattern, even with
multiple faults. The number of output errors can belong to a
wider set of possible values, although it maintains some
sort of parity property, i.e., the injection of an even (odd)
number of faults results in an even (odd) number of output
errors.

5 FAULT DETECTION TECHNIQUES

A proposal for error detection in the data-path of AES was
described in [11]. The goal there was to prevent an attacker
from breaking the cipher system by injecting one or more
incorrect bits. This paper has an additional objective: to
detect a fault in order to prevent the transmission and use of
incorrect data. This issue is important as any hardware
implementation of AES is bound to be complex and,
consequently, likely to be subject to fault occurrences. In
this section, two techniques for fault detection in a generic
hardware custom implementation of an AES crypto-
processor are presented. The first technique is based on
redundancy (see also [1], [2]) and is similar to those
presented in [11]. The second one is a novel technique
which is based on error detecting codes, namely, a suitably
designed multiple parity bit code. The latter proves to be
very efficient and has a rather low hardware overhead.

Our objective is to develop fault detection techniques
which will be independent of the particular hardware
implementation chosen. To this end, we make the following
assumptions:

. The AES crypto-processor is partitioned into three
basic hardware modules: encryption, decryption,
and key schedule (an inverse key schedule module is
a possible enhancement).

. All the modules have in common the same basic
operations; hence, only the encryption module is
examined here in detail since most conclusions will
hold for the remaining modules as well.

In what follows, the two fault detection techniques are
described and validated, their characteristics are evaluated
through simulation, and their hardware costs are estimated.

5.1 Redundancy-Based Technique

The redundancy-based solution for implementing fault
detection in the encryption module is based on the idea of
performing a test decryption immediately after the encryp-
tion and then checking whether the original data block is
obtained. If a decryption module is already present in the
implementation, the hardware overhead reduces to the cost
of a comparator for two data blocks of 128 bits. Otherwise,
the overhead is close to 100 percent since the decryption
module is very similar to the encryption one. The time
penalty in either of these two cases is the time required to

decrypt a data block, plus the time required for the
comparison. Clearly, this technique is independent of the
adopted fault model.

A finer-grained error detection, able to inspect the
internal stages of each of the four transformations forming
one round (see Section 2.4), would allow a smaller fault
detection latency. This would prevent the execution of
useless operations on already corrupt data, but would
require a larger hardware overhead since comparison will
have to be done at the transformation level. Considering the
four transformations in a round, suitable points where such
finer error detection would be recommended are the
SubBytes and the MixColumns transformations, due to
their evidently higher complexity compared to ShiftRows
and AddRoundKey.

The key schedule module deserves particular attention
since a fault in this part of the AES crypto-system is not
detected by the techniques used for detecting faults in the
data-path. In [1], it was suggested to use an inverse key
schedule module,1 allowing us to reconstruct the previous
round key from the current one. If the result of the inverse
key schedule module matches the round key computed by
the key schedule module, the computation is correct and
can proceed; otherwise, a fault has been detected. Clearly,
this scheme is also independent of the selected fault model.

5.2 Error Detecting Codes

Error detecting codes (EDCs) have been widely used in
practice. EDCs may at first seem unsuitable for implement-
ing error detection in AES since AES is a rather non-
homogeneous and strongly nonlinear algorithm and
because errors spread quickly over the data block (see
Sections 3 and 4). In this section, an efficient EDC scheme
for AES will be described and evaluated. It achieves a high
level of fault coverage at a limited hardware overhead cost
and low detection latency.

5.2.1 The Basic Principle

One of the simplest EDCs is perhaps the well-known parity
code, which is capable of detecting all single bit errors and
those multiple bit errors where the number of errors is odd.
We cannot, however, employ just a single parity bit for fault
detection in the AES for the following reasons:

. As shown in Sections 3 and 4, errors spread quickly
throughout the data block as encryption goes on
and, on the average, about half of the state bits
become corrupt. Hence, the fault coverage of the
parity code would be at best around 50 percent,
which is unacceptable in practice.

. Predicting the parity bit for the various round
transformations is a complex and slow task due to
the large size of the data block (128 bits): The parity
bit would have a global dependence on all informa-
tion bits.

To circumvent these problems, we propose associating one
parity bit with each byte element of the state matrix S (see
(3)), for a total of 16 parity bits. These parity bits can be
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1. Normally, this module would not be necessary since the key material
can be stored and read back in reverse order to feed the round keys to the
decryption module.
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arranged as a 4� 4 parity matrix, the bit elements of which
are in one-to-one correspondence to the byte elements of the
state matrix S. Each parity bit is computed so that the parity
of the data byte and the associated parity bit will be even.

The parity matrix certainly allows us to detect all single
bit errors and all errors consisting of an odd number of
erroneous bits. It can also detect some (possibly many)
errors consisting of an even number of erroneous bits,
provided that the erroneous bits are distributed over the
state S in such a way that at least one byte of the state is
affected by an odd number of erroneous bits. Moreover,
each parity bit will now depend only on a limited portion of
the data block, which may lead to a considerable reduction
in the complexity of the parity prediction process.

To implement this coding scheme, it is necessary to
develop, for each round transformation, a method for
predicting the output parity, given the input state and the
input parity. We then need to schedule checkpoints during
the encryption process. At least one checkpoint is required,
but possibly two or more for increasing the fault coverage
and reducing the detection latency.

We next describe the structure of the parity bits’
prediction and checking scheme, we then verify the
characteristics of our scheme through simulation and
estimate its cost. Further details about the coding scheme,
its fault coverage, and hardware overhead are included in
Appendices A through D.

5.2.2 Structure of the Coding Scheme

A parity prediction algorithm must be designed for each of
the four round transformations employed by the encryption
module. Since all byte elements of the output state for each
transformation are computed in parallel, we must do the
same with the output parity bits. We present in what
follows our proposed parity prediction algorithms for the
individual transformations.

SubBytes (or Sbox). The Sbox is usually implemented as a
256� 8 bits memory, consisting of a data storage section
and an address decoding circuit. The incoming data bytes
will normally have properly generated even parity bits. To
generate the outgoing parity bits, an even parity bit can be
stored with each data byte in the Sbox memory, which will
now be of size 256� 9 bits. To detect input parity errors and
some internal memory (data or decode) errors, we propose
replacing the original 8-bit decoder with a 9-bit one,
yielding a 512� 9 memory. If a 9-bit address with an even
parity is decoded, the corresponding output byte with its
associated even parity bit is produced. Otherwise, a
constant word of 9 bits with a deliberately odd parity is
output, e.g., 00000000 1. Thus, half of the entries in the Sbox
memory will be deliberately wrong.

There is still one type of internal memory error which
will not be detected by the above scheme. These are faults in
the address decode circuitry which may result in accessing
a wrong location that has a valid even parity bit. If such
faults are expected, we can add a separate 256� 1-bit
memory which will include the predicted parity bit for the
correct output byte. This separate memory will only allow
detection of a mismatch between the parity bit of the correct
output byte and the parity bit of the incorrect (but with a
valid parity) output byte. We can increase the detection

capabilities of this scheme by adding one (or more) correct
output data bit to each location in the small memory, thus
increasing its size. Comparing the output of this memory to
the appropriate output bits of the main Sbox memory will
allow the detection of most of the addressing circuitry
faults.

ShiftRows. The prediction of the output parity bits is
straightforward: It is simply a rotated version of the input
parity bits following (5).

MixColumns. The prediction of the output parity bits of
MixColumns is the most mathematically complex one. The
detailed solution is described in Appendix A. The final set
of equations for predicting the parity bits are, however,
quite simple; see (15)-(18) in the appendix.

AddRoundKey. The prediction of the output parity bits is
almost straightforward: It consists of adding the input
parity matrix associated with the data block to the parity
matrix associated with the current round key; see (10) for
details.

The complete prediction scheme for one round is
obtained by cascading the prediction schemes of the four
round transformations. To check the parity bits and
generate a parity error flag, we need a set of byte parity
generators and comparators which will compare the
predicted parity bits to the generated parity bits (see
Appendix D for a detailed discussion of the required
hardware).

It is also necessary to decide on the scheduling of the
parity checks. Assuming that the rounds are computed
sequentially, the three possible choices are:

1. Perform a check at the output of each round
transformation. The resulting detection latency is
the shortest possible, but four parity checkers are
needed.

2. Perform a check only at the end of every round. The
detection latency is longer, but only one parity
checker is needed.

3. Perform a single check at the end of the last round.
The detection latency is the highest and, as in case 2,
only one parity checker is needed.

Each of these scheduling policies will somewhat slow down
the encryption due to the parity check circuitry. Policy 1 is
the most expensive in terms of extra encryption delay and
hardware costs. However, this policy will yield the highest
(among the three) fault coverage with the smallest detection
latency. Policies 2 and 3 are less expensive, but have a
higher latency and may have a lower fault coverage.

In the next section, we will show that even policies 2 and
3 reach a high fault coverage, namely, equal to 100 percent,
for the single faulty bit model and the multiple faulty bit
model of odd order (for single faults, the proof is in
Appendix C). This is a nonobvious result since the behavior
of AES, as described in Sections 3 and 4, is highly dispersive
with respect to errors and this may, in principle, cause error
masking.

A similar EDC scheme can also be adopted for the
inverse rounds forming the Decryption module; see
Appendix B for the prediction scheme for the inverse
round transformation InvMixColumns, which is the most
complex one of the four. The same approach (with a few
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adjustments) also works for the (inverse) key schedule

module as this module employs the same basic operations

as the encryption (and decryption) module.

5.2.3 Fault Coverage of the Proposed Parity Code

In this section, we describe the results of extensive

simulation experiments which were carried out to evaluate

the fault coverage of the proposed parity-based EDC

scheme for the encryption module. We start with single

bit faults injected into the data block at the beginning of the

rounds, i.e., faults are not injected between the round

transformations. Six types of tests were performed with

data block and key of 128 bits.

1. Five thousand data blocks were selected randomly
and a single bit error was injected into every
position of the data block at each of the 10 rounds.
The total number of tests of this type has been
5; 000� 10� 128 ¼ 6:4� 106. All these tests used the
same secret key. Our parity bits scheme detected all
the faults.

2. Five thousand secret keys were randomly selected
and used with the same 128-bit data block. All
possible single bit errors were injected, as in (1), for a
total of 6:4� 106 tests. Here too, all the faults were
detected by our parity scheme.

3. One hundred random secret keys and 1,000 random
data blocks were selected and every data block was
encrypted with each secret key. One thousand two
hundred eighty single bit errors were injected into
every encryption for a total of 1:28� 108 tests. All the
faults were detected.

In the above three types of tests, the parity check was

performed at the end of the 10th round. In the next type of

tests, the parity check was instead done at the end of the

single round performed.

4. Five hundred thoursand random data blocks were
selected and a single bit error was injected in each
position of the data block. A single round was then
performed, yielding 100 percent fault coverage. The
t o t a l n u m b e r o f t e s t s o f t h i s t y p e w a s
5� 105 � 128 ¼ 6:4� 107.

The next two types of tests consider a single simplified

round consisting only of SubBytes and MixColumns since

these transformations affect the error propagation in the

most complex way. The parity check is performed at the

end of the (simplified) round. The observed fault coverage

has been 100 percent.

5. Two hundred fifty-six 32-bit data words of the type
ðx000Þ8 were considered and a single bit error was
injected into the first byte (the one that is varying).
The total number of tests of this type was
256� 8 ¼ 2; 048. All the faults were detected.

6. One thousand 128-bit random data blocks were
selected and a single bit error was injected in each
position of the data block. The number of tests of this
type was 1; 000� 128 ¼ 1:28� 104. Again, all the
injected faults were detected.

These six types of tests strongly suggest that the parity-based
EDC achieves a 100 percent fault coverage for single bit faults.
In fact, it can be proven that: The proposed parity-based EDC
with a single checkpoint scheduled at the end of the last round is
capable of detecting every single bit fault injected into the data block
in the encryption module, at the beginning of the rounds or between
two round transformations. The proof is in Appendix C; the
appendix states clearly the assumptions regarding the fault
model and the scheduling of checkpoints.

It remains to investigate the detection capabilities of the
parity-based EDC in the presence of multiple bit faults. An
experiment has been carried out, injecting multiple bit
faults (between 2 to 16) at the beginning of the rounds in the
encryption module, with randomly selected data block and
secret key. 107 encryptions have been simulated for every
number of faults from 2 to 16. Fig. 8 shows the percentages
of undetected faults, for 3 to 16 injected faults.

For double faults, the observed percentage of undetected
faults was 0.875 percent, but it is not shown in Fig. 8 to
avoid flattening to 0 of all the remaining percentages. One
notable result is that all odd-order faults (i.e., multiple faults
of order 3, 5, etc.) were always detected. The percentage of
undetected even-order faults drops slowly to about
0.003 percent and remains stable at this value up to faults
of order 100 and over, with a very small deviation.

Further analysis of the simulation results has revealed
that the relatively high percentage of undetected double
faults is mostly due to injections of both bit errors into the
same data byte; an event which clearly causes masking. The
probability of injecting all faults of an even order into the
same data byte2 decreases with the order of the fault. This
explains why the percentages in Fig. 8 are decreasing. Due
to the high dispersion of errors in AES (see Sections 3 and
4), it is reasonable to expect that such behavior remains
essentially unchanged when the faults are injected between
two round transformations.

Fig. 8 shows that the detection of odd-order faults
reaches 100 percent. It can be proven that: The proposed
parity-based EDC with a single checkpoint scheduled at the end of
the last round is capable of detecting every multiple fault of odd
order, where the bit errors are injected into the data block at the
beginning of the rounds or between two round transformations.
The proof is omitted for the sake of brevity.
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Fig. 8. Percentage of the undetected multiple faults injected in the

encryption module.
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In summary, the coverage of the parity-based EDC is

very high and, for single bit faults and multiple bits faults

of odd order, it reaches 100 percent. For multiple faults of

even order, the coverage is below 100 percent, but very

close to it. Asymptotically, the global coverage converges

to 99.997 percent.

5.2.4 Cost of the Proposed Parity Code

The cost in terms of hardware overhead for the parity-based

EDC described above is limited. In Appendix D, it is shown

that this overhead falls in the range 10-20 percent with

respect to the nominal hardware cost of the encryption

module, for the two checking policies 2 and 3 described in

Section 5.2.2. Such a cost is acceptable since the resulting

fault coverage is high and is comparable to the cost of other

current fault detection circuits, like those used in memories.
The detection latency is relatively short, for checking

policy 2, or longer, for checking policy 3. Since the fault

coverage is approximately the same for both policies, they

offer two feasible solutions and the choice depends on the

time constraints of the application.
These fault coverage and cost figures are likely to extend

—with only a little modification—to the other modules

forming an AES crypto-processor: decryption and (inverse)

key schedule. The reasons behind this conjecture have

already been discussed in Sections 2 and 5.2 and rely

mainly on the fact that all the AES modules have the same,

or very similar, basic operations in common. Therefore, the

proposed parity EDC scheme is an efficient and low-cost

fault detection technique for AES.

6 CONCLUSIONS

A detailed analysis of the behavior of the AES crypto-

system in the presence of faults has been carried out. This

analysis summarizes and integrates those presented in [1],

[2]. Previous studies (e.g., [11]) have only considered the

data-path, ignoring the key schedule. The behavior of AES

in the presence of faults seems to be almost independent of

the assumed fault model and is highly dispersive.
Two proposals for fault detection have been presented in

this paper. The second one, which is based on the use of

parity codes, exhibits very good fault coverage, limited

hardware overhead cost, and short detection latency. For

single bit faults and multiple bit faults of odd order, it has

been proven that (under reasonable assumptions) the fault

coverage of the parity-based detection technique is 100 per-

cent. Future research directions include a wider exploration

of the application of parity-based EDCs to AES, as well as

the exploration of fault tolerance techniques, based on error

correcting codes.

APPENDIX A

PARITY PREDICTION IN MIXCOLUMNS

In this appendix, we describe the formal construction of the

parity prediction scheme for the MixColumns round

transformation (see Section 2.4).
The parity operator pðÞ is a function of the type:

p : GF ð2nÞ ! GF ð2Þ;

calculated as

Xnÿ1

i¼0

aix
i 7!

Xnÿ1

i¼0

ai; for any n � 1:

In other words, the coefficients ai of the polynomial
AðxÞ are added modulus 2. It is also well-known that
pðAðxÞÞ ¼ AðxÞmod ðxþ 1Þ. Clearly, the parity is a
linear operator, i.e., pðAðxÞ �BðxÞÞ ¼ pðAðxÞÞ þ pðBðxÞÞ.
If pðAðxÞÞ ¼ 0; 1, then the polynomial AðxÞ is said to have an
even or odd parity, respectively.

The following lemma provides the basis for predicting
the parity bits for the outputs of the MixColumns
transformation, assuming that the inputs and their corre-
sponding parity bits are known.

Lemma A.1 (Parity of product). Given the following two

polynomials with coefficients over GF ð2Þ, for some n � 1,

AðxÞ ¼
Xnÿ1

i¼0

aix
i and GðxÞ ¼ xn þ

Xnÿ1

i¼0

gix
i;

where ai; gi 2 f0; 1g, d enot e , by pA ¼ pðAðxÞÞ and

pG ¼ pðGðxÞÞ, their respective parity bits. Then, the following

parity prediction relationships hold:

pð02�AmodGÞ ¼ anÿ1pG þ pA ð11Þ

pð03�AmodGÞ ¼ anÿ1pG; ð12Þ

where, for brevity, AðxÞ and GðxÞ are shortened as A and G,

respectively.

Proof. First, we prove (11). Recall that 02 ¼ x (see
Section 2.3),

02�AmodG ¼ x�
Xnÿ1

i¼0

aix
i

 !
modG

¼
Xnÿ1

i¼0

aix
iþ1

 !
modG ¼ anÿ1x

n þ
Xnÿ2

i¼0

aix
iþ1

 !
modG

and, since reducing this expression modulus G means
setting G ¼ xn þ

Pnÿ1
i¼0 gix

i ¼ 0, i.e., xn ¼
Pnÿ1

i¼0 gix
i, we

obtain:

anÿ1x
n þ

Xnÿ2

i¼0

aix
iþ1

 !
modG ¼ anÿ1

Xnÿ1

i¼0

gix
i þ
Xnÿ2

i¼0

aix
iþ1

¼ anÿ1 g0 þ
Xnÿ1

i¼1

gix
i

 !
þ
Xnÿ2

i¼0

aix
iþ1

¼ anÿ1g0 þ anÿ1

Xnÿ1

i¼1

gix
i þ
Xnÿ2

i¼0

aix
iþ1

¼ anÿ1g0 þ
Xnÿ2

i¼0

anÿ1giþ1x
iþ1 þ

Xnÿ2

i¼0

aix
iþ1

¼ anÿ1g0 þ
Xnÿ2

i¼0

anÿ1giþ1 þ aið Þxiþ1:

We next calculate the parity of the product
02�A modG:
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p 02�AmodGð Þ ¼ p anÿ1g0 þ
Xnÿ2

i¼0

anÿ1giþ1 þ aið Þxiþ1

 !

¼ anÿ1g0 þ
Xnÿ2

i¼0

anÿ1giþ1 þ aið Þ

¼ anÿ1g0 þ anÿ1

Xnÿ2

i¼0

giþ1 þ
Xnÿ2

i¼0

ai

¼ anÿ1g0 þ anÿ1

Xnÿ1

i¼1

gi þ
Xnÿ2

i¼0

ai ¼ anÿ1 g0 þ
Xnÿ1

i¼1

gi

 !

þ
Xnÿ2

i¼0

ai

¼ anÿ1

Xnÿ1

i¼0

gi þ
Xnÿ2

i¼0

ai ¼ anÿ1

Xnÿ1

i¼0

gi þ 1þ 1

 !
þ

þ
Xnÿ2

i¼0

ai þ anÿ1 þ anÿ1 ¼ anÿ1

Xnÿ1

i¼0

gi þ 1þ 1

 !

þ
Xnÿ1

i¼0

ai þ anÿ1:

Substituting pG ¼
Pnÿ1

i¼0 gi þ 1 and pA ¼
Pnÿ1

i¼0 ai we

obtain:

anÿ1

Xnÿ1

i¼0

gi þ 1þ 1

 !
þ
Xnÿ1

i¼0

ai þ anÿ1

¼ anÿ1ðpG þ 1Þ þ pA þ anÿ1

¼ anÿ1pG þ anÿ1 þ pA þ anÿ1 ¼ anÿ1pG þ pA:

This completes the proof of (11).
To prove (12), note that 03 ¼ 02þ 01 modG and, since

the parity operator pðÞ is linear it follows:

p 03�AmodGð Þ ¼ p 02�AþAmodGð Þ
¼ p 02�AmodGð Þ þ p Að Þ ¼ anÿ1pG þ pA þ pA ¼ anÿ1pG:

This completes the proof of (12). tu
For AES and the finite field GF ð28Þ, (11) and (12) can be

further simplified. We set n ¼ 8 and observe that the parity

of the AES field generator polynomial �ðxÞ (see (2)) is

pð�ðxÞÞ ¼ 1. Substituting these two equalities in (11) and

(12), we obtain:

pð02
AÞ ¼ a7 þ pðAÞ ð13Þ

pð03
AÞ ¼ a7: ð14Þ

Incidentally, note that every generator polynomial irredu-

cible over the coefficient field GF ð2Þ must have an odd

parity; otherwise, it would have the factor xþ 1. Therefore,

the above holds for every binary finite field of type GF ð2nÞ,
independent of the representation chosen for the field. Note

also that (14) might be rewritten using the input parity bit

pA, as follows: pð03
AÞ ¼
P6

i¼0 ai þ pðAÞ. However, this

form is more expensive than form (14) since it contains

more modulus 2 additions (i.e., more XOR gates). The

complete parity prediction scheme of MixColumns can now

be described.

Lemma A.2 (Parity of MixColumns). Consider the MixCol-

umns transformation given by mappings (6)-(9). Denote by

pr;c the parity bit of the byte element sr;c and by sðiÞr;c the ith bit

of the byte element sr;c; 0 � r; c � 3. Then, the predicted parity

bits of MixColumns are:

p0;c 7! p0;c þ p2;c þ p3;c þ sð7Þ0;c þ s
ð7Þ
1;c ð15Þ

p1;c 7! p0;c þ p1;c þ p3;c þ sð7Þ1;c þ s
ð7Þ
2;c ð16Þ

p2;c 7! p0;c þ p1;c þ p2;c þ sð7Þ2;c þ s
ð7Þ
3;c ð17Þ

p3;c 7! p1;c þ p2;c þ p3;c þ sð7Þ3;c þ s
ð7Þ
0;c : ð18Þ

Sketch of Proof. We first prove mapping (15). Using

mapping (6) and the fact that the parity operator pðÞ is

linear, we obtain:

p0;c 7! pð�
 s0;c � � 
 s1;c � s2;c � s3;cÞ
¼ pð02
 s0;cÞ þ pð03
 s1;cÞ þ pðs2;cÞ þ pðs3;cÞ
¼ sð7Þ0;c þ pðs0;cÞ þ sð7Þ1;c þ pðs2;cÞ þ pðs3;cÞ

¼ p0;c þ p2;c þ p3;c þ sð7Þ0;c þ s
ð7Þ
1;c :

The remaining mappings (16)-(18) can be proven

similarly and the proofs are omitted for the sake of

brevity. tu

APPENDIX B

PARITY PREDICTION IN INVMIXCOLUMNS

The InvMixColumns transformation is readily obtained by

inverting MixColumns. Since MixColumns is linear (see

mappings (6)-(9)), it can be represented in a matrix form with

elements over GF ð28Þ. A similar representation exists for

InvMixColumns by taking the inverse matrix in GF ð28Þ. We

observe that the InvMixColumns transformation uses more

coefficients than MixColumns, namely: 09, 0b, 0d, and 0e.

Lemma A.1 can be extended to this set of four coefficients,

yielding the following parity prediction equations:

pð09
AÞ ¼ a5 þ a6 þ a7 ð19Þ

pð0b
AÞ ¼ a5 þ a6 þ pðAÞ ð20Þ

pð0d
AÞ ¼ a5 þ pðAÞ ð21Þ

pð0e
AÞ ¼ a5 þ a7 þ pðAÞ: ð22Þ

The proof of these equations is similar to the proof shown

above for the coefficients 02 and 03. We may then rephrase

Lemma A.2 for InvMixColumns, obtaining the necessary

equations for predicting the parity bits of the outputs of

InvMixColumns. The resulting equations have the same

kind of structure as those for MixColumns and are only

slightly more complicated. These equations are omitted for

the sake of brevity.
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As already observed before regarding (14), it is possible
to eliminate from (19)-(22) the dependence on the input
parity bit. For instance, (20) may be rewritten as:
pð0b
AÞ ¼ a0 þ a1 þ a2 þ a3 þ a4 þ a7. However, such a
form has a hardware cost higher than that of (20). Equations
(13)-(14) and (19)-(22) have minimum hardware cost.

APPENDIX C

SINGLE FAULT COVERAGE—PROOF

In this appendix, we show that the parity code scheme
described in Section 5.2.2 achieves, under conditions to be
stated, a 100 percent detection coverage with respect to
single bit faults in the encryption module.

C.1 Fault and Error Dispersion Model

The following fault model is assumed: one single bit error
injected in the encryption module during the encryption
process, at the inputs of one of the four round transforma-
tions. It is also assumed that the key schedule module is
fault-free, hence the key material is error-free. It is further
assumed that the parity bits are checked at the end of the
10th round. Note that the above fault model does not
consider the possibility of faults occurring in the internal
circuitry of the submodules performing each transforma-
tion. Recall that each byte element sr;c of the state matrix S is
associated with a parity bit pr;c, for every 0 � r; c � 3. Define
an error bit er;c as follows: er;c ¼ pðsr;cÞ þ pr;c, for
0 � r; c � 3. Since even parity is used, the value er;c ¼ 0; 1

indicates whether the 9-bit sequence sr;c; pr;c has a correct
(even) or incorrect (odd) parity status, respectively. In order
to study the propagation of incorrect parity states during
the rounds, we define a 4� 4 error state matrix E, as
follows:

E ¼

e0;0 e0;1 e0;2 e0;3

e1;0 e1;1 e1;2 e1;3

e2;0 e2;1 e2;2 e2;3

e3;0 e3;1 e3;2 e3;3

2664
3775:

To investigate the dispersion of errors in the encryption
process, it suffices to examine how the round transforma-
tions modify the error state matrix E.

SubBytes (or Sbox). The error status of each input byte
element propagates unaltered through Sbox. Note that the
number and positions of the erroneous bits may change
from the input to the output bytes, but their parity states
remain the same. Hence, Sbox maps the error state matrix E
to itself.

AddRoundKey. The behavior is the same as above since
the round key is assumed to be error-free.

The remaining two round transformations behave in a
more complex way.

ShiftRows. The parity states of the input bytes are
preserved but rotated, according to mapping (5).

MixColumns. MixColumns is the most complex round
transformation; it modifies the error state matrix E as
follows:

e0;c 7! e0;c þ e2;c þ e3;c ð23Þ

e1;c 7! e0;c þ e1;c þ e3;c ð24Þ

e2;c 7! e0;c þ e1;c þ e2;c ð25Þ

e3;c 7! e1;c þ e2;c þ e3;c ð26Þ

for every 0 � c � 3.

To explain the above mapping, notice that the topmost

line is a direct consequence of mapping (15), which states

that p0;c 7! p0;c þ p2;c þ p3;c þ sð7Þ0;c þ s
ð7Þ
1;c . The remaining three

mapping relations can be justified in a similar manner. In

summary, only ShiftRows and MixColumns determine the

propagation of parity errors during the rounds and both

behave in a linear way.

C.2 Proof of the Coverage

We prove now that the proposed parity-based detection

technique achieves a 100 percent coverage for single bit faults

in the encryption module. The key issue is whether an

incorrect parity status of a data byte may be masked at a later

step of the encryption process. Assuming the same fault

model as above, we observe that the dispersion of errors in the

error state and, hence, error masking, depend only on the

round transformations ShiftRows and MixColumns. Further-

more, since ShiftRows is a rotation of the error state, it

cannot cause error masking as the number of entries of

value 1 in E is not changed. In summary, error masking (if

any) is due to MixColumns alone.
Therefore, a formal analysis of the way MixColumns

modifies the error state E will reveal the error detection
capabilities. From mappings (23)-(26), it is clear that
MixColumns is a linear transformation and, hence, we can
use matrices for its representation:

Ec 7!MEc;

where

Ec ¼

e0;c

e1;c

e2;c

e3;c

2664
3775 and M ¼

1 0 1 1
1 1 0 1
1 1 1 0
0 1 1 1

2664
3775

for every column Ec (0 � c � 3) of the error state E. We next
prove the following statement:

Statement C.1 (100 Percent Coverage). The parity-based EDC
detects single bit faults in the encryption module with
100 percent coverage.

Proof. Single bit faults injected in the encryption module

will not be detected only if error masking occurs. Based

on the discussion above, error masking may occur only

in MixColumns if the equality MEc ¼ O holds, where O

is the null error state column vector. It is well-known that

a linear homogeneous system of equations MX ¼ O,

where X is a column vector of four variables over GF ð2Þ,
will admit a nonnull solution, i.e., X 6¼ O, only if the

matrix M is singular, i.e., detðMÞ ¼ 0. But, a direct

computation (here omitted) shows that detðMÞ ¼ 1. To
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justify this, notice that M is an orthogonal matrix.3

Hence, MEc 6¼ O for every nonnull error state column

vector Ec and, therefore, MixColumns cannot mask

errors. In conclusion, masking of single bit faults never

occurs in the encryption module. tu

APPENDIX D

HARDWARE OVERHEAD OF THE FAULT DETECTION

PARITY CODES

In this appendix, we estimate the hardware overhead of the
parity code-based fault detection scheme presented. Since
many different implementations of AES are possible, some
assumptions are made. Only the encryption module is
considered since the decryption and key schedule algo-
rithms have very similar parity prediction schemes; the size
of the secret key is 128 bits; every round transformation is
computed in parallel. The SubBytes round transformation is
stored in a ROM. The other round transformations are
implemented in a purely combinatorial way. Only XOR and
2-input AND logic gates are used for designing the round
transformations (other than SubBytes) and the parity
checkers. These assumptions yield the worst-case overhead.
In fact, the prediction of the parity bits can be performed in
a sequential manner, thus reusing some logic circuits,
reducing the hardware overhead. The costs are estimated in
terms of the number of XOR and 2-input AND logic gates.
We must emphasize that, in practice, the overheads are
largely dominated by those of SubBytes since this round
transformation is computed by using 16 ROMs in parallel.
The area of Sbox increases slightly more than 12.5 percent.
The cost of ShiftRows is increased 12.5 percent, while
MixColumns and AddRoundKey are increased 10.2 percent
and 12.5 percent, respectively. Finally, the overhead of the
parity checkers is much lower than 20 percent.

Therefore, a very conservative conclusion is that the total
hardware overhead of the fault detection scheme for AES
based on the parity code is approximately 10-20 percent.
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