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Introduction

The Universal Serial Bus (USB) is a fast and flexible interface for connecting
devices to computers. Every new PC has at least a couple of USB ports. The
interface is versatile enough to use with standard peripherals like keyboards
and disk drives as well as more specialized devices, including one-of-a-kind
designs. USB is designed from the ground up to be easy for end users, with
no user configuring required in hardware or software.

In short, USB is very different from the legacy interfaces it’s replacing. A
USB device may use any of four transfer types and three speeds. On attach-
ing to a PC, a device must respond to a series of requests that enable the PC
to learn about the device and establish communications with it. In the PC,
every device must have a low-level driver to manage communications
between applications and the system’s USB drivers.

Developing a USB device and the software that communicates with it
requires knowing something about how USB works and how the PC’s oper-
ating system implements the interface. In addition, the right choice of con-

USB Complete Xiii



Introduction

troller chip, device class, and tools and techniques can go a long way in

avoiding snags and simplifying what needs to be done. This book is a guide

for developers of USB devices. Its purpose is to introduce you to USB and to

help get your project up and running and troublefree as quickly and easily as

possible.

Who should read this book?

This book is for you if you want to know how to design a USB peripheral,

or if you want to know how to communicate with USB peripherals from the

applications you write. These are some of questions the book answers:

Xiv

What is USB and how do peripherals use it to communicate with PCs?
There’s a lot to the USB interface. Learning about it can be daunting at
first. This book’s focus is on the practical knowledge you'll need to com-
plete your project.

How can I decide if my project should use a USB interface? Maybe your
design isn't suited for USB. I'll show you how to decide whether it is. If
the answer is yes, I'll help you decide which of USB’s speeds and transfer
types to use.

How do I choose a USB controller chip for my peripheral design? Every USB
peripheral must contain an intelligent controller. There are dozens of
controller chips designed for use in USB peripherals. In this book, I com-
pare popular chip families and offer tips on how to decide, based on both
your project’s needs and your own background and preferences.

How do applications communicate with USB peripherals? To communicate
with a USB peripheral, a PC needs two things: a device driver that knows
how to communicate with the PC’s USB drivers and an application that
knows how to talk to the device driver. Some peripherals can use drivers
that are built into Windows. Others may require a custom driver. This
book will show you when you can use Windows’ built-in drivers and how
to communicate with devices from Visual Basic and Visual C++ applica-
tions. You'll also find out what’s involved in writing a device driver and
what tools can help to speed up the process.

USB Complete
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* How do USB peripherals communicate? USB peripherals typically use a
combination of hardware and embedded code to communicate with
PCs. In this book, I show how to write the code that enables Windows to
identify a device and load the appropriate device driver, as well as the
code required for exchanging data with applications.

* How do I decide whether my peripheral can use bus power, or whether it
needs its own supply? A big advantage to USB is that many peripherals can
be powered entirely from the bus. Find out whether your device can use
this capability and how to manage power use, especially for devices that
use battery power.

*  How can I be sure that my device will operate as smoothly as possible for its
end users? On the peripheral side, smooth operation requires understand-
ing the specification’s requirements and how the device can meet them.
In the PC, proper operation requires a correctly structured information
(INF) file that enables Windows to identify the device and software that
knows how to communicate with the device as efficiently as possible.
This book has information and examples to help with each of these.

What’s new in the Second Edition?

In the months after the publication of the first edition of USB Complete,
much happened in the world of USB, including the release of version 2.0 of
the USB specification. USB 2.0 supports a bus rate of 480 Megabits per sec-
ond, forty times faster than USB 1.1. This and other developments in hard-
ware and software prompted this second edition of the book.

Rather than just tacking on a chapter about USB 2.0, I've revised the book
from start to finish to reflect the changes in 2.0. By popular request, another
addition is Visual C++ code to accompany the Visual Basic examples for
application communications with USB devices. I've also expanded the mate-
rial about Windows drivers and applications to include Windows 2000, and
have added information on new controller chips and development tools.
Other additions and updates are sprinkled throughout, many prompted by
reader suggestions.
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Is this book really complete?

Although the title is USB Complete, please don’t expect this book to contain
every possible fact about USB. That would take a library. The Complete in
the title means that this book will guide you from knowing nothing about
USB to developing all of the code required to get a USB peripheral up and

communicating with a PC.

There are many other worthy topics related to USB, but limitations of time
and space prevent me from including them all.

My focus is on communicating with Windows PCs. Although the basic
principles are the same, I don’t include details about how to communicate
with peripherals on a Macintosh or a PC running Linux or other non-Win-
dows operating systems.

I cover the basics of the device driver’s responsibilities and what’s involved in
writing a driver, but the details of driver writing can easily fill a book (and in
fact there are excellent—and lengthy—books on this topic). This book will
help you decide when you need to write a custom driver and when and how
to use a class driver included with Windows.

To understand the material in the book, it’s helpful to have basic knowledge
in a few areas. I assume you have some experience with digital logic, applica-
tion programming for PCs and writing embedded code for peripherals. You
don’t have to know anything at all about USB.

Additional Resources, Updates, and Corrections

XVi

For more about using USB, I invite you to visit my USB Central page at
Lakeview Research’s website, www.Lvr.com. This is where you'll find com-
plete code examples, updates, links to vendors, information and tools from
other sources, as well as links to anything else I find that’s relevant to devel-
oping USB products. If you have a suggestion, code, or other information
that you'd like me to post or link to, let me know at jan@lvr.com.

In spite of my very best efforts, I know from experience that errors will slip
through in this book. As they come to light, I'll document them and make a
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list available at Lakeview Research’s website. If you find an error in the book,
please let me know and I'll add it.

Thanks!

USB is way too complicated to write about without help. I have many peo-
ple to thank.

I owe an enormous thank you to my technical reviewers, who generously
read my rough and rocky drafts and provided feedback that has improved
the book enormously. (With that said, every error in this book is mine and
mine alone.)

I thank Paul E. Berg of PEB Consulting; Brian Buchanan, Mark Hastings,
Lane Hauck, Bijan Kamran, Kosta Koeman, Tim Williams, and Dave
Wright of Cypress Semiconductor; Joshua Buergel of BSQUARE Inc.; Gary
Crowell of Micron Technology; Fred Dart of Future Technology Devices
International (FTDI); Dave Dowler; Mike Fahrion and the engineers at
B&B Electronics; John M. Goodman, author of Hard Disk Secrets, Peter
Norton's Inside the PC, Memory Management for All of Us, and other books;
John Hyde, USB enthusiast and author of USB Design by Example; David
James of 1Zerol Technologies; Christer Johansson of High Tech Horizon;
Jon Lueker of Intel Corporation; Bob Nathan of NCR Corporation; Robert
Severson of USBMicro; and Craig R. Smith of Ford Motor Company,
R&VT department.

Others I want to thank for their help in my researching and writing this
book are Walter Banks of Byte Craft; Jason Bock; Michael DeVault of
DeVaSys Embedded Systems; Pete Fowler, Joseph McCarthy, and Don Park-
man of Cypress Semiconductor; Brad Markisohn of INDesign LLC; Daniel
McClure of Tyco Electronics; Tawnee McMullen of Belkin Components;
Rich Moran of RPM Systems Corporation; Dave Navarro of PowerBasic;
and Amar Rajan of American Concepts Consulting.

I hope you find the book useful. Comments invited!

Jan Axelson, June 2001
Jjan@lyr.com
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A Fresh Start

A Fresh Start

Computer hardware doesn't often get a chance to start fresh. Anything new
usually has to remain compatible with whatever came before it. This is true
of both computers and the peripherals that connect to them. Even the most
revolutionary new peripheral has to use an interface supported by the com-
puters it connects to.

But what if you had the chance to design a peripheral interface from scratch?
What qualities and features would you include? It’s likely that your wish list
would include these:

* Easy to use, so there’s no need to fiddle with configuration and setup
details.

e Fast, so the interface doesn’t become a bottleneck of slow communica-
tions.

¢ Reliable, so that errors are rare, with automatic correction of errors that
do occur.

* Flexible, so many kinds of peripherals can use the interface.
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* Inexpensive, so users (and the manufacturers who will build the inter-
face into their products) don’t balk at the price.

* Power-conserving, to save battery power on portable computers.

* Supported by the operating system, so developers don't have to strug-
gle with writing low-level drivers for the peripherals that use the inter-
face.

The good news is that you don’t have to create this ideal interface, because
the developers of the Universal Serial Bus (USB) have done it for you. USB
was designed from the ground up to be a simple and efficient way to com-
municate with many types of peripherals, without the limitations and frus-
trations of existing interfaces.

Every new PC has a couple of USB ports that you can connect to a key-
board, mouse, scanners, external disk drives, printers, and standard and cus-
tom hardware of all kinds. Inexpensive hubs enable you to add more ports
and peripherals as needed.

But one result of USB’s ambitious goals has been challenges for the develop-
ers who design and program USB peripherals. A result of USB’s versatility
and ease of use is an interface that’s more complicated than the interfaces it
replaces. Plus, any new interface will have difficulties just because it’s new.
When USB first became available on PCs, Windows didn’t yet include
device drivers for all popular peripheral types. Protocol analyzers and other
development tools couldn’t begin to be designed until there was a specifica-
tion to follow, so the selection of these was limited at first. Problems like
these are now disappearing, and the advantages are increasing with the avail-
ability of more controller chips, new development tools, and improved oper-
ating-system support. This book will show you ways to get a USB peripheral
up and running as simply and quickly as possible by making the best possi-
ble use of tools available now.

This chapter introduces USB, including its advantages and drawbacks, a
look at what’s involved in designing and programming a device with a USB
interface, and a bit of the history behind the interface.
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What USB Can Do

USB is a likely solution any time you want to use a computer to communi-
cate with devices outside the computer. The interface is suitable for
one-of-kind and small-scale designs as well as mass-produced, standard

peripheral types.

To be successful, an interface has to please two audiences: the users who
want to use the peripherals and the developers who design the hardware and
write the code that communicates with the device. USB has features to

please both.

Benefits for Users

From the user’s perspective, the benefits to USB are ease of use, fast and reli-
able data transfers, flexibility, low cost, and power conservation. Table 1-1
compares USB with other popular interfaces.

Ease of Use

Ease of use was a major design goal for USB, and the result is an interface
that’s a pleasure to use for many reasons:

One interface for many devices. USB is versatile enough to be usable with
many kinds of peripherals. Instead of having a different connector type and
supporting hardware for each peripheral, one interface serves many.

Automatic configuration. When a user connects a USB peripheral to a
powered system, Windows automatically detects the peripheral and loads
the appropriate software driver. The first time the peripheral connects, Win-
dows may prompt the user to insert a disk with driver software, but other
than that, installation is automatic. There’s no need to locate and run a
setup program or restart the system before using the peripheral.

No user settings. USB peripherals don't have user-selectable settings such as
port addresses and interrupt-request (IRQ) lines. Available IRQ lines are in
short supply on PCs, and not having to allocate one for a new peripheral is
often reason enough to use USB.
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Table 1-1: Comparison of popular computer interfaces. Where a standard
doesn’t specify a maximum, the table shows the typical maximum.

Interface Format Number of |Length Speed Typical Use
Devices (maximum, [(maximum,
(maximum) |feet) bits/sec.)
USB asynchronous |127 16 (orupto |1.5M, 12M, |Mouse,
serial 96 ft. with 5 [480M keyboard, disk
hubs) drive, modem,
audio
RS-232 asynchronous |2 50-100 20k (115k Modem, mouse,
(EIA/TIA- serial with some instrumentation
232) hardware)
RS-485 asynchronous |32 unit loads |4000 10M Data acquisition
(TTA/EIA- serial (up to 256 and control
485) devices with systems
some
hardware)
IrDA asynchronous |2 6 115k Printers, hand-
serial infrared held computers
Microwire synchronous |8 10 2M Microcotroller
serial communications
SPI synchronous |8 10 2.1M Microcotroller
serial communications
’C synchronous |40 18 3.4M Microcotroller
serial communications
IEEE-1394 serial 64 15 400M Video, mass
(FireWire) (increasing to |storage
3.2G with
IEEE-1394b
IEEE-488 parallel 15 60 8M Instrumentation
(GPIB)
Ethernet serial 1024 1600 10M/100M/ |Networked PC
1G
MIDI serial current |2 (more with |50 31.5k Music, show
loop flow-through control
mode)
Parallel Printer |parallel 2 (8 with 10-30 8M Printers,
Port daisy-chain scanners, disk
support) drives
4 USB Complete




A Fresh Start

Figure 1-1: The two USB connectors (right) are much more compact than typical
RS-232 serial (left) and Centronics parallel (center) connectors.

Frees hardware resources for other devices. Using USB for as many
peripherals as possible frees up IRQ lines for the peripherals that do require
them. The PC dedicates a series of port addresses and one interrupt-request
(IRQ) line to the USB interface, but beyond this, individual peripherals
don’t require additional resources. In contrast, each non-USB peripheral
requires dedicated port addresses, often an IRQ line, and sometimes an
expansion slot (for a parallel-port card, for example).

Easy to connect. With USB, there’s no need to open the computer’s enclo-
sure to add an expansion card for each peripheral. A typical PC has at least
two USB ports. You can expand the number of ports by connecting a USB
hub to an existing port. Each hub has additional ports for attaching more

peripherals or hubs.

Simple cables. The USB’s cable connectors are keyed so you can’t plug
them in wrong. Cables can be as long as 5 meters. With hubs, a device can
be as far as 30 meters from its host PC. Figure 1-1 shows that the USB con-
nectors are small and compact in contrast to typical RS-232 and parallel
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connectors. To ensure reliable operation, the specification includes detailed
requirements that all cables and connectors must meet.

Hot pluggable. You can connect and disconnect a peripheral whenever you
want, whether or not the system and peripheral are powered, without dam-
aging the PC or peripheral. The operating system detects when a device is
attached and readies it for use.

No power supply required (sometimes). The USB interface includes
power-supply and ground lines that provide +5V from the computer’s or
hub’s supply. A peripheral that requires up to 500 milliamperes can draw all
of its power from the bus instead of having its own supply. In contrast, most
other peripherals have to choose between including a power supply in the
device or using a bulky and inconvenient external supply.

Speed

USB supports three bus speeds: high speed at 480 Megabits per second, full
speed at 12 Megabits per second, and low speed at 1.5 Megabits per second.
Every USB-capable PC supports low and full speeds. High speed was added
in version 2.0 of the specification, and requires USB 2.0-capable hardware
on the motherboard or an expansion card.

These speeds are signaling speeds, or the bit rates supported by the bus. The
rates of data transfer that individual devices can expect are lower. In addition
to data, the bus must carry status, control, and error-checking signals. Plus,
multiple peripherals may be sharing the bus. The theoretical maximum rate
for a single transfer is over 53 Megabytes per second at high speed, about 1.2
Megabytes per second at full speed, and 800 bytes per second at low speed.

Why three speeds? Low speed was included for two reasons. Low-speed
peripherals can often be built more cheaply. And for mice and devices that
require flexible cables, low-speed cables can be more flexible because they
don’t require as much shielding.

Full speed is comparable to or better than the speeds attainable with existing
serial and parallel ports and can serve as a replacement for these.
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After the release of USB 1.0, it became clear that a faster interface would be
useful. Investigation showed that a speed increase of forty times was feasible
while keeping the interface backwards-compatible with low- and full-speed
devices. High speed became an option with the release of version 2.0 of the
USB specification.

Reliability

The reliability of USB results from both the hardware design and the
data-transfer protocols. The hardware specifications for USB drivers, receiv-
ers, and cables eliminate most noise that could otherwise cause data errors.
In addition, the USB protocol enables detecting of data errors and notifying
the sender so it can retransmit. The detecting, notifying, and retransmitting
are typically done in hardware and don't require any programming or user
intervention.

Low Cost

Even though USB is more complex than earlier interfaces, its components
and cables are inexpensive. A device with a USB interface is likely to cost the
same or less than its equivalent with an older interface. For very low-cost
peripherals, the low-speed option has less stringent hardware requirements
that may reduce the cost further.

Low Power Consumption

Power-saving circuits and code automatically power down USB peripherals
when not in use, yet keep them ready to respond when needed. In addition
to the environmental benefits of reduced power consumption, this feature is
especially useful on battery-powered computers where every milliampere
counts.

Benefits for Developers

The above advantages for users are also important to hardware designers and
programmers. The advantages make users eager to use USB peripherals, so
there’s no need to fear wasting time developing for an unpopular interface.
And many of the user advantages also make things easier for developers. For
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example, USB’s defined cable standards and automatic error checking mean
that developers don’t have to worry about specifying cable characteristics or
providing error checking in software.

USB also has advantages that benefit developers specifically. The developers
include the hardware designers who select components and design the cir-
cuits, the programmers who write the software that communicates with
USB peripherals, and the programmers who write the embedded code inside
the peripherals.

The benefits to developers result from the flexibility built into the USB pro-
tocol, the support in the controller chips and operating system, and the fact
that the interface isn’t controlled by a single vendor. Although users arent
likely to be aware of these benefits, they’ll enjoy the result, which is inexpen-
sive, trouble-free, and feature-rich peripherals.

Flexibility

USB’s four transfer types and three speeds make it feasible for many types of
peripherals. There are transfer types suited for exchanging large and small
blocks of data, with and without time constraints. For data that can’t toler-
ate delays, USB can guarantee a transfer rate or maximum time between
transfers. These abilities are especially welcome under Windows, where
accessing peripherals in real time is often a challenge. The operating system,
device drivers, and application software can still introduce unavoidable
delays, but USB makes it as easy as possible to achieve transfers that are close
to real time.

Unlike other interfaces, USB doesn’t assign specific functions to signals or
make other assumptions about how the interface will be used. For example,
the status and control lines on the PC’s parallel port were defined with the
intention of communicating with line printers. There are five input lines
with assigned functions such as indicating a busy or paper-out condition.
When developers began using the port for scanners and other peripherals
that send large amounts of data to the PC, the limitation of having just five
inputs was an obstacle. (Eventually the interface was expanded to allow eight
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bits of input.) USB makes no such assumptions and is suitable for just about
any device type.

For communicating with common device types such as printers and
modems, there are USB classes with defined device requirements and proto-
cols. This saves developers from having to re-invent these.

Operating System Support

Windows 98 was the first Windows operating system to reliably support
USB, and its successors, including Windows 2000 and Windows Me, sup-
port USB as well. This book focuses on Windows programming for PCs,
but other computers and operating systems also have USB support. On
Apple’s iMac, the only peripheral connectors are USB. Other Macintoshes
also support USB, and support is in progress for Linux, NetBSD, and
FreeBSD.

However, a claim of operating-system support can mean many things. The
level of support can vary! At the most fundamental level, an operating sys-
tem that supports USB must do three things:

* Detect when a device is attached to or removed from the system.

* Communicate with newly attached devices to find out how to exchange
data with them.

* Provide a mechanism that enables software drivers to communicate with
the host computer’s USB hardware and the applications that want to
access USB peripherals.

At a higher level, operating system support may also mean the inclusion of
software device drivers that enable application programmers to access
devices by calling functions supported by the operating system. If the oper-
ating system doesn’t include a device driver appropriate for a specific periph-
eral, the peripheral vendor has to provide one.

Microsoft has added class drivers with each release of Windows. Device
types with included drivers now include human interface devices (key-
boards, mice, joysticks), audio devices, modems, still-image cameras and
scanners, printers, and mass-storage devices. A filter driver can support
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device-specific features and abilities. Applications use Applications Program
Interface (API) functions or other operating-system components to commu-
nicate with the device drivers.

In the future, Windows will likely include support for more device classes.
In the meantime, some chip vendors provide drivers that developers can use
with their chips, either as-is or with minimal modifications.

USB device drivers use the new Win32 Driver Model (WDM), which
defines an architecture for drivers that run under Windows 98, Windows
2000, Windows Me, and future Windows editions. The aim is to enable
developers to support all of the operating systems with a single driver. The

reality is that some devices still require two, though similar, WDM drivers,
one for Windows 98/Windows Me and one for Windows 2000.

Because Windows includes low-level drivers that handle communications
with the USB hardware, writing a USB device driver is easier than writing a
driver for devices that use other interfaces.

Peripheral Support

On the peripheral side, each USB device’s hardware must include a control-
ler chip that handles the details of USB communications. Some controllers
are complete microcomputers that include a CPU and memory to store
device-specific code that runs inside the peripheral. Others handle only
USB-specific tasks, with a data bus that connects to another microcontroller
that performs non-USB related functions and communicates with the USB
controller as needed.

The peripheral is responsible for responding to requests to send and receive
configuration data, and for reading and writing other data when requested.
In some chips, some functions are microcoded in hardware and don’t need
to be programmed.

Many USB controllers are based on popular architectures such as Intel’s
8051, with added circuits and machine codes to support USB. If you're
already familiar with a chip architecture that has a USB-capable variant,
there’s no need to learn an entirely new architecture in order to use USB.
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Most peripheral manufacturers provide sample code for their chips. Using
this code as a starting point for your own developing can give you a quick
start.

USB Implementers Forum

Unlike other interfaces, where youre pretty much on your own when it
comes to getting a design up and running, USB offers plenty of help via the
USB Implementers Forum, Inc. (USB-IF) and its website (www.usb.org).
The Forum is the non-profit corporation founded by the companies that
developed the USB specification. The Forum’s mission is to support the
advancement and adoption of USB technology.

To that end, the Forum offers information, tools, and testing. The informa-
tion includes the specification documents, white papers that delve into spe-
cific topics in detail, FAQs, and a web board where developers can post and
answer questions on any USB-related topic. The tools include software and
hardware to help in developing and testing products. Testing includes devel-
oping compliance tests to verify proper operation, holding compliance
workshops where developers can have their products tested, and granting
the rights to use the USB Logo on products that pass the tests.

It’s Not Perfect

All of USB’s advantages mean that it’s a good candidate for use with many
peripherals. But one interface can't do it all.

User Challenges

From the user’s perspective, the downside to USB includes lack of support
in older hardware and operating systems, speed and distance limits that
make USB impractical for some uses, and problems with some products due
to difficulties experienced by the developers of early USB products.

Lack of Support for Legacy Hardware

Older (“legacy”) computers and peripherals don’t have USB ports. If you
want to connect a non-USB peripheral to a USB port, a solution is a con-
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verter that translates between USB and the older interface. Several sources
have converters for use with peripherals with RS-232, RS-485, and Cen-
tronics-type parallel ports. However, the converter solution is useful only for
peripherals that use conventional protocols supported by the converter’s
device driver. For example, a parallel-port converter is likely to support
printers but not other peripheral types.

If you want to use a USB peripheral with a PC that doesn’t support USB,
the solution is to add USB capabilities to the PC. This requires two things:
USB host-controller hardware and an operating system that supports USB.
The hardware is available on expansion cards that plug into a PCI slot (or on
a replacement motherboard). The version of Windows should be Windows
98 or later. A few peripherals have drivers for use with later releases of Win-
dows 95, but it’s best not to count on these being available. If the hardware
doesn’t meet Windows 98’s minimum requirements, it will need upgrades.
The upgrades may end up costing more than a new system with USB, so
replacing the system may be the best option.

If upgrading the PC to support USB isn’t feasible, what about using a con-
verter to translate the peripheral’s USB interface to the PC’s RS-232, paral-
lel, or other interface? Interface converters are generally designed for use
between a USB port on a PC and a peripheral with a legacy interface. A con-
verter for the other direction would be much more complicated because the
peripheral would have to contain the host-controller hardware and code that
normally resides in the PC. So a converter isn’t normally an option when the
PC has the legacy interface.

Even on new systems, users may occasionally run applications on older
operating systems such as MS-DOS. But the drivers that Windows 98 appli-
cations use to communicate with USB devices are specific to Windows.
Without a driver, there’s no way to access a USB peripheral. Although it’s
possible to write a USB driver for DOS, the reality is that few peripherals
provide one.

However, for the mouse and keyboard, which are standard, essential periph-
erals, the system’s BIOS is likely to include support to ensure that the
peripheral is usable any time, including from within DOS, from the BIOS
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screens that you can view on bootup, and from Windows’ Safe mode (used
in system troubleshooting). If there is no BIOS or other support, the system
will need to have an old-style keyboard interface and a spare keyboard for
these uses.

Speed Limits

USB is versatile, but it’s not designed to do everything. USB’s high speed
makes it competitive with the IEEE-1394 (Firewire) interface’s 400 Mega-
bits per second, but IEEE-1394b will be faster still, at 3.2 Gigabytes per sec-

ond.

Distance Limits

USB was designed as a desktop bus, with the expectation that peripherals
would be relatively close at hand. A cable segment can be as long as 5
meters. Other interfaces, such as RS-232, RS-485, and Ethernet, allow
much longer cables. You can increase the length of a USB link to as much as
30 meters by using cables that link five hubs and a device, using 6 cable seg-
ments of 5 meters each.

To extend the range beyond this, an option is to use a USB interface on the
PC, then convert to RS-485 or another interface for the long-distance
cabling and peripheral interface.

Peer to Peer Communications

The assumption that USB is a desktop bus also means that every USB sys-
tem has a host computer to manage the bus communications. Peripherals
can’t talk to each other directly. All communications are to or from the host
computer. Other interfaces, such as IEEE-1394, allow direct periph-
eral-to-peripheral communications.

USB provides a partial solution with USB On-The-Go, introduced in 2001
in a supplement to the 2.0 specification. USB On-The-Go defines a host
computer with reduced capabilities, suitable for use in embedded devices
that need to connect to a single USB peripheral.
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Products with Problems
When USB works, it’s great. But the reality is that some USB products don’t

work as well as they should. When something misbehaves, the result can be
an inability to communicate with a peripheral or an application or system
crash. The source of the problem may be in hardware or software, in the PC
or in the peripheral. Problems like these are a result of USB’s complexity and
newness combined with inadequate testing.

But there are plenty of products that do perform exactly as they should. The
problems are diminishing as the operating-system support has improved and
developers have become more familiar with USB.

Developer Challenges

14

From the developer’s perspective, the main downside to USB is the increased
complexity of the programming. Bugs in the USB hardware in the periph-
eral or PC can also slow project development and cause problems after a
product is released. However, these problems are also diminishing as the
operating-system support increases, more chips and development tools are
available, and everyone gains more experience.

Protocol Complexity

To program a USB peripheral, you need to know a fair amount about the
USB’s protocols (the rules for exchanging data on the bus). The controller
chips handle much of the communications automatically, but they still must
be programmed, and this requires the knowledge to write the programs and
the tools to do the programming. Chips vary in how much support they
require to perform USB communications. On the PC side, the device driver
insulates application programmers from having to know many of the details,
but device-driver writers need to be familiar with USB protocols and the
driver’s responsibilities.

In contrast, some older interfaces can connect to very simple circuits with
very basic protocols. For example, the PC’s original parallel printer port is
just a series of digital inputs and outputs. You can connect to basic input
and output circuits such as relays, switches, and analog-to-digital converters,
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with no computer intelligence required on the peripheral side and no device
driver required on the PC (just direct port reads and writes).

Evolving Support in the Operating System

Windows includes class drivers that enable applications to communicate
with some devices. This is great if you can design your device to use one of
the provided drivers. If not, in many cases you can use or adapt a driver pro-
vided by the controller-chip vendor, so you don't have write a driver from
scratch. Several vendors offer toolkits that make the job of writing USB
drivers easier.

Hardware Bugs

Some early host-controller hardware wasn’t bugfree, and some peripheral
chips have had problems as well. In most cases, the manufacturers make
fixes available with new drivers or coding workarounds. The way to keep on
top of these problems is to choose your hardware carefully and visit manu-
facturers’ websites for the latest information and fixes.

Fees

The USB Implementers Forum provides the USB specification, related doc-
uments, software for compliance testing, and much more, all for free on its
website. Anyone can develop USB software without paying a licensing fee.

However, anyone who sells a device with a USB interface must obtain legal
access to use a Vendor ID. The administrative fee for obtaining a Vendor ID
from the Forum is $1500. Or if you join the Forum at $2500/year, the Ven-
dor ID is free, along with many other benefits such as compliance work-
shops. The Vendor ID and a Product ID assigned by the vendor are
embedded in each device to identify it to the operating system. The fee is no
problem for developers of high-volume products, but it can be an impedi-
ment to developers for the hobbyist market who expect to sell only small
quantities of inexpensive devices. Some chip manufacturers will assign their
Vendor ID and a block of Product IDs to customers for use with the manu-
facturer’s chips.
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History

To understand what USB is all about, it helps to know a little history. The
main reason that new interfaces don’t come around very often is that exist-
ing interfaces have the irresistible pull of all of the existing peripherals that
users don’t want to scrap. Also, using an existing interface saves the time and
expense of designing something new. This is why the designers of the origi-
nal IBM PC chose compatibility with the existing Centronics parallel inter-
face and the RS-232 serial-port interface—to speed up the design process
and enable users to connect to printers and modems already on the market.
These interfaces proved serviceable for close to two decades. But as com-
puter power and the number of peripherals have increased, the older inter-
faces have became a bottleneck of slow communications, with limited
options for expansion.

The Motivation for Change

16

A break with tradition is justified when the desire for enhancements over-
shadows the inconvenience and expense of changing. This is the situation
that prompted the development of USB. The result is a versatile interface
that can replace existing interfaces to standard and custom peripherals on
computers of all types.

In the past, development of a new interface was often the work of a single
company. Hewlett Packard developed the HP Interface Bus (HPIB), which
came to be known as the GPIB (general-purpose interface bus) for lab
equipment, and the Centronics Data Computer Corporation popularized a
printer interface that is still referred to as the Centronics interface.

But an interface controlled by a single company isn't ideal. The company
may forbid others from using the interface, or charge licensing fees. Even if
the interface is freely available, a company may be reluctant to commit its
products to an interface controlled by another company who may be a com-
petitor and may change the interface without warning.

For these reasons, more recent interfaces are often the product of a collabo-
ration of manufacturers who share a common interest. In some cases, an
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organization like the IEEE (Institute of Electrical and Electronics Engineers)
or TTA (Telecommunications Industry Association) sponsors committees to
develop specifications and publishes the results. In fact, many of the older
manufacturers’ standards have been taken over by these organizations. The
IEEE-1284 standard evolved from the Centronics interface, and the GPIB
was the basis for IEEE-488.

In other cases, the developers of a standard form a new organization to
release the standard and handle other development issues. This is the
approach used for USB. The copyright on the USB 2.0 specification is
assigned jointly to seven corporations, all heavily involved with PC hard-
ware or software: Compaq, Hewlett-Packard, Intel, Lucent, Microsoft,
NEC, and Philips. All have agreed to make the specification available with-
out charge (which is a refreshing change from the standards published by
other organizations). The USB Implementers Forum’s website has the latest
versions of all USB specifications and other information for both developers
and end users.

An early specification with many USB-like features was the ACCESS.bus
sponsored by Philips and Digital Equipment Corporation, who made it
available as an open standard. ACCESS.bus was in turn derived from the
I’C synchronous serial bus. Although the electrical interface is different,
many of the functions and features are a lot like what ended up in USB.

ACCESS.bus was designed for interfacing keyboards, pointing devices, and
other devices at speeds of 100 kilobits per second. The bus supports up to
125 devices and 10-meter cables. Devices are hot-pluggable. The cable
includes +5V and ground wires. Classes are defined for keyboards, pointing
devices (called locators), monitor/display control and text devices. Unlike
USB, ACCESS.bus uses open-collector drivers, with one data wire and one
clock wire.

ACCESS.bus never caught on with PCs, but is still used in other applica-

tions, including smart battery control.
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The Specification’s Release
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Release 1.0 of the USB specification in January 1996 followed several years
of development and preliminary releases. The 1.1 release is dated September
1998. USB 1.1 fixed problems identified in release 1.0 and added one new
transfer type (Interrupt OUT). In this book, 7.x refers to USB 1.0 and 1.1.
April 2000 saw the release of USB 2.0 with the new high-speed option. An
Engineering Change Notice (ECN) in December 2000 provided corrections
and defined a new mini-B connector.

Although companies may begin designing products while a specification is
still under development, by necessity, the availability of products on the
market lags the specification’s release.

USB capability first became available on PCs with the release of Windows
95’s OEM Service Release 2. There were at least two editions of this release,
OSR 2.1 and 2.5. Neither was available directly to retail customers. They
were sold only to vendors who installed Windows 95 on the PCs they sold.
The USB support in these versions was limited and buggy, and there weren't
a lot of USB peripherals available, so use of USB was limited in this era.

Things improved with the release of Windows 98 in June 1998. By this
time, many more vendors had USB peripherals available, and USB began to
take hold as a popular interface. A service pack for Windows 98 and the
release of Windows 98 Second Edition (SE) fixed some bugs and further
enhanced the USB support. The original version of Windows 98 is called
Windows 98 Gold, to distinguish it from Windows 98 SE.

This book concentrates on PCs running Windows 98 and later Windows
editions. Windows N'T4 preceded Windows 98 and doesn’t have USB sup-
port built in, but its successor, Windows 2000, does. Windows 98’s succes-
sor, Windows Me, also supports USB. Generally, Windows 2000 is more
stable and is targeted for business users, while Windows 98 and Windows
Me are more flexible and targeted for home users.

Following these editions is Windows XP, which is based on the Windows

2000 kernel but includes editions for both home and business users, with
the goal of replacing both Windows 98/Windows Me and Windows 2000.

USB Complete



A Fresh Start

In this book, the term PC includes all of the various computers that share
the common ancestor of the original IBM PC. The expression Windows 98
and later means Windows 98, Windows 98 SE, Windows 2000, Windows
Me, and Windows XD, and is also likely to apply to any Windows editions
that follow. A USB-capable PC is assumed to be using Windows 98 or later.

USB 2.0

A big step in USB’s evolution was version 2.0, whose main added feature is
support for much faster transfers. The original hope when researching the
new high speed was a 20-times increase in speed, but studies and tests
showed that this estimate was low. In the end, a 40-times increase was found
to be feasible, for a bus speed of 480 Megabits per second. This makes USB
much more attractive for peripherals such as printers, scanners, drives, and
even video.

USB 2.0 is backwards compatible with USB 1.1. Version 2.0 peripherals can
use the same connectors and cables as 1.x peripherals. To use the new, higher
speed, peripherals must connect to 2.0-compliant hosts and hubs. 2.0 hosts
and hubs can also communicate with 1.x peripherals. A 2.0-compliant hub
with a slower peripheral attached will translate as needed between the
peripheral’s speed and high speed. This increases the hub’s complexity but
makes good use of the bus time without requiring different hubs for differ-
ent speeds.

USB versus IEEE-1394

The other major interface choice for new peripherals is IEEE-1394. Apple
Computers implementation of the interface is called Firewire. USB and
IEEE-1394 take complimentary approaches, with IEEE-1394 being faster
and more flexible, but more expensive. IEEE-1394 is best suited for video
and other links where speed is essential or a host PC isn’t available. USB is
best suited for typical peripherals such as keyboards, printers, scanners, and
disk drives as well as low- to moderate-speed, cost-sensitive applications. For
many devices, either interface would work.
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With USB, a single host controls communications with many peripherals.
The host handles most of the complexity, so the peripherals’ electronics can
be relatively simple and inexpensive. IEEE-1394 uses a peer-to-peer model,
where peripherals can communicate with each other directly. A single com-
munication can also be directed to multiple receivers. The result is a more
flexible interface, but the peripherals’ electronics are more complex and
expensive.

IEEE-1394’s 400 Megabits per second is more than 30 times faster than
USB 1.x’s 12 Megabits per second. As USB is getting faster with version 2.0,
IEEE-1394 is getting faster with the proposed IEEE-1394.b. Its 3.2 Giga-
bits per second is over six times faster than USB 2.0’s 480 Megabits per sec-
ond.
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