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ABSTRACT 

From 1.9(;1(;1 through 1.97fl, the Artificia.l Intelligence Center iit SRI 

conducted reaeiirch on 11 mobile robot •Y•tem nickniimed "Shiikey." 

Endowed with 11 limited iibili.ty to perceive iind model its environment, 

Skiikey could perform tiisk• thiit required pliinning, route-finding, iind the 

rearranging of •imple objects. Although the Shakey project led to 

numerous advance• in AI technique•, man11 of which were reported in the 

literature, much •pecifie information that might be u•eful in current 

robotic• rueareh appear• only in a 11erie11 of relativel11 an11eee1111i6le SRI 

technica.l report•. Our purpo11111 here, con1111quently, u to miike thi.11 

material more readily avaifoble 611 e:ctracting and reprinting tho11e 

sections of the report• that 11eem piirticularly interuting, relevant iind 

important. 
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CHAPTER ONE 

Introduetion 

From 1966 th.rough. 197!!, th.e Artificial Intelligence Center at SRI 

conducted research. on a mobile robot system. nicknamed "Sh.a.key." Th.is 

research. was spon•ored by th.e Aduanced Re.earch. Projects Agency under 

a succession of contracts with. th.e Rome Air Deuelopm.ent Center, th.e 

National Aeronautic• and Space Adm.ini•tration, and th.e Army Research. 

Office. Two complete uer•ions of Sh.alcey were deueloped. In 1989 we 

completed our fir•t integrated robot •yatem.: a mobile ueh.icle equipped 

with. a 1V camera and 0th.er senaor-all radio-controlled by an SDS-fl.+0 

computer. In 1971 we completed a more powerful robot system. by making 

substantial program im.prouem.enta and by replacing th.e SDS-9,+0 

computer with. a Digital Equipment Corporation PDP-10/PDP-15 facility. 

Dramatic recent progreH in reducing th.e ai.r:e and cost of powerful 

computer h.ardware makes th.e proapeet of autonomous robots much. more 

realistic th.an it was fifteen 11ear• ago. Th.ere are .eueral new robot 

projects underway th.at migh.t benefit from. Sh.ake11'• legacy. The Sh.ake11 

project led to Bf!uera.1 aduance• in AI tech.niques, m.an11 of wh.ich. were 

reported in th.e literature, but a great deal of •pecific information 

neverth.eles• appeara only in a aerie• of relatiuely inaccHsible SRI 

technical reports {1·1R}. Th.t1.rt1.fore, to ma.kt!. th.i• material more readily 

availablt1., we h.aue decided to t1.:i:tract a.nd reprint h.ere wh.at seem to bl!. the 

most releuant and important Hction• of th.e.e report•. 0 f partiev.lar 

interest a.re (1) th.e tech.niqut1.a u•ed in Sh.akt1.y'• action routines th.at 

enabled fle:i:ible recouer11 from inappropriatt1.l11 e:ucuted action•, {R) th.e 

meth.od of integrating perception with. action, and (SJ the techniques for 

planning and e:i:ecv.ting comple:i: •equencea of action•, (Th.t1. rea.dt1.r who 

needs a.dditiona.l details can obta.in copiea of the original reports from th.e 

National Technical Information Seruice {NTIS). See the NTIS acce•• 

numbers in th.e reft1.rences at th.e end of th.ill rt1.port.) 
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This report will describe only the aecond of the two Shalcey ayatems 

because it was far more advanced than its predeceasor. (A summary of 

the first system appears in {5].) The material is reprinted in its original 

form, but with minor changes to make figure, chapter, and citation 

numbers consistent. Whenever deemed adviaable and helpful, the te:i:t is 

supplemented by occcuional e:i:planatory comment• in italics. Unlel!JB 

otherwise attributed, any chapter or aection reference• included in these 

commentaries pertain to the present collection only. 

We begin with an e:i:cerpt from the firat report {1], ia•ued in 1988. 

Major Goals and Objectives or this Program 

It is the objective or thill program to develop concepts and teehniques in artificial 

intelligence enabling an automaton to runction independently in realistic environments. 

Tbese concepts shall be demonstrated by means or a breadboard, mobile vehicle 

containing visual, tactile, and acoustic sensors, signal procesing and pattern-recognition 

equipment, and computer programming. Primary goals shall be the solution or 

incompletely specified problems (requiring creation of intermediate strategies and goals) 

and improvement of performance with training experience. 

Some of the ground rules guiding our research were established immediately. First, it was 

decided that the basic goal of this project was to design an integrated system consisting or 

a mobile vehicle under the real·time control and supervision of a powerful digital 

computer. The·vehicle should be equipped with a.t least rudimentary manipulative 

abilities, and with sensory and communication subsystems. Various automata. have been 

built which a.re controlled by relatively few, simple, onboard logic circuits, but the essence 

of this project is real-time control by a full-scale, programmable, digital computer. 

Second, we decided to minimize hardware complexities whenever possible to allow us to 

focus primary attention on the problem of directing the automaton's actions and planning 

by meruis of a hierarchy of computer programs. For this projeet the mechanical 

engineering problems of building a robot'with articulated limbs and delicate grasping 

abilities a.re irrelevant. One can face very tough problems in artificial intelligence direetly 

in attempting to write computer programs to control even a very simple vehicle. It is for 
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l his reason also that we shall make no attempts here to design highly miniaturized 

computers that can fit into the "head" of an automaton. Technology will sooner or later 

provide us with such small but powerful computers in any case; in the meantime, we shall 

learn how to program their large and cumbersome ancestors to control an automaton 

remotely vin cable or radio link. 

Third, we decided to conduct no extensive research on the subject of visual pattern 

rerognit.ion in this project, This ground rule by no means should be taken as minimizing 

t-he importance of the problem of visual perception. On the contrary, it is probably one of 

the most important problems to be faced in designing automata. But we felt that the 

perceptual abilities conferred by employing presently existing pattern-recognition methods 

were more t,han adequate to permit the use of a real environment sufficiently rich to tax 

our skills in developing control programs for that environment. In the meantime, research 

on mechanizing perception could and should continue independently. 

F'ourt.h, we decided that the environment of the automaton should be large in extent. Its 

components may be simple in quality in the beginning, but there should be a non-trivial, 

extensive environment that the automation ill expected to deal with. This ground rule 

forces us immediately to coru,ider only methodl! for efficient internal representations of 

the world! 

The ele.,en.th. report {11} 11a."e a. eonci•e •umma.rp of th.e or11a.n.iza.tion of 

the Sh.a.kev spriem which can a.l•o •er"e cu a.n o""""iew to th.e pre.tent 

n.ate: 

The robot system is a hierarchical structure in which we shall identify five major levels. 

Alt.hough some of these levels are much more dearly defined than others and some have 

considerable substructure, the five levels described below coru,titute a useful division for 

t-his exposition. Also, the effectiveness of the system is largely derived from the clear 

specifications for these levels and their interconnections. 

The bottom level of the system coru,ists of the robot vehicle and its connection to the user 

programs. This connection includes radio and microwave communication links, a PDP· IS 

peripheral computer and its software, and a communicatioru, channel, with its associated 

software, between the PDP· IS and the PDP·IO. This bottom level may be thought of as 

defining the elementary physical capabilities of the system. 

• From {1/, pages 1-f!. 
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The robot vehicle is described in. Cha.pter Two an.d Appen.di:r: A of the 

presen.t report, an.d the PDP-1.5/PDP-1.0 inter fa.ce is described in. Appen.di:r: 

G of {1.0j. 

The heo.rt of the aoftwa.re that con.trol11 Sha.key i11 it. "model" of the 

world it in.ho.bit11. Thia model i11 a global data 11tructure that can. be 

acceaaed an.d modified by the other routin.e.e. It i11 de11cribed in. Chapter 

Three. 

Con.tin.uin.11 with the e:r:cerpt from {1.1J: 

The second level consists or what we call Low-Level Actions, or "LLAs." These are the 

lowest-level robot control programs available to user programs in the LISP language, our 

principal programming tool. The LLAs are program a tic handles on the robot's physical 

capabilities such as "ROLL" and "TILT." They are described in detail in Chapter Four. 

So that it can exhibit interesting behavior, our robot system has heen equipped with a 

library of Intermediate-Level Actions, or "ILA,." These third-level elements are 

preprogrammed packages of LLAs, embedded in a Markov table framework with various 

perception, control and error-correction features. (Markov formalizations are explained in 

Chapter Five, Section B.) Each ILA represents built-in expertise in some significant 

physical capability, such as "PUSH" or "GO TO." The ILA, might be thought of as 

instinctive abilities of the robot, analogous to such built-in complex animal abilities as 

"WALK" or "EAT." Chapter Five contains a description or the present set of ILAs, 

along with the conditions under which they a.re applicable and how they each can affect 

the state of the world. 

The principal sensor of the perceptual system is the TV camera. Programs for processing 

picture data have been restricted to a few special "vision" routines, that orient the robot 

and detect and locate objects. These programs a.re incorporated into the system at either 

the ILA or LIA level. The algorithms in these routines are described in Chapter Six and 

Appendix B. 

Above the ILAs we have the fourth level, which is concerned with planning the solutions 

to problems. The basic planning mechanism is STRIPS, described in Chapter Seven. 

STRIPS constructs sequences of lLAs needed to carry out specified tasks. Such a 

sequence, along with its expected effects, can be represented by a triangular table called a 
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MA CROP ("macro operation"). Chapter Eight describes how such MACROPs can be 

~rncrated in generalized form, thereby enabling an interesting form of learning and plan 

selection to take place. 

Finally. the fifth, or top, le,el of the system is the executive, the program that actually 

inrnkcs and monitors execution~ of the ILAs specified in a MACROP. The current 

cxecut.ive program, called PLANEX, is brieny described at the end of Chapter Eight.• 

• From {11}, page, S-4. 
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CHAPI'ER 7WO 

The Robot Vehicle, The Computer•, and Other. Hardware 

A. The Vehicle and ita Environment 

The robot vehicle itself is shown in Figures 1 and 2. It is propelled by two stepping 

motors independently driving a wheel on either side of the vehicle. It carries a vidicon 

television camera and optical range-finder in a movable "head." Control logic on board 

the vehicle routes commands from the computer to the appropriate action sites on the 

vehicle. In addition to the drive motors, there are motors to control the camera focus and 

iris settings and the tilt angle of the head. Other computer commands arm or diaarm 

int.crrupt logic, control power ,witches and request readings of the status of various 

registers on the vehicle. Besides the television camera and range-finder sensors, several 

"cat-whisker" touch-sensors are attached to the vehicle's perimeter. These touch sensors 

enable the vehicle to know when it bumps into something. Commands from the computer 

to the vehicle and information from the vehicle to the computer are sent over two special 

radio links, one for narrow-band telemetering and one for trail!!mission of the TV video 

from t,he vehicle to the computer.• 

More detailed information about the vehicle can be found. in Appendiz A 

at the end of the preaent report. 

The initial environment of the Automaton waa real, but contrived. It has been sufficiently 

simple t,o allow current visual capabilities to be w,eful to the Automaton, and sufficiently 

complex to indicate the weaknesses of current methods and to suggest areas of further 

research. Perhaps the most important result of our vision-research effort on the 

Automaton project is an appreciation of the potential complexity of the problem of vision 

when the real world is the subject matter, and a strong notion that the first step we have 

ta.ken towards a general capability is very small indeed. 

• from {2/, page 1. 

9 



• From /SJ, page 2. 

DRIVE 
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Figure 1: AUTOMATON VEHICLE• 
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Figure 2: AUTOMATON VEHICLE IN ITS ENVIRONMENT• 

• From {5/, page 9. 
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The current Automaton is restricted by its method of locomotion to move only on nearly 

rl:::t surface~. lnit.ially its travel was limited by the length of cable connecting it and tbe 

computer. Th<' addition of the radio links allow the Automaton to travel further from the 

compul,er room. 

The first vi~nal subsystem was designed to specialize in the planar-surfaced environment 

of our laboratory and office building. The objectii in this environment are specially 

constructed r:,ctangnlar parallelepipeds and wedge:,. The wse of only the regularly spaced 

overhead rtuore~ccnt lights as well as light colored walls and Ooor allows u,, to essentially 

eliminate 3ba<lows and t.o limit the illumination to a 2·1/2 to l range in the computer 

room. 

The surfaces of the objects used are uniformly coated with red, grey, or white paint. 

Originally black wa,; used to insure nigh contrast between adjacent surfaces. However, 

the range-finder relies on reOected liglit. Red replaced black becawse it is relatively dark 

to t.he TV camera and returns enough light to the range-finder. Thus, not only are the 

objects opaq11c, but also have non-specular surfaces. Furthermore no two-dimensional 

marking'! were put on the object surfaces. The noor tile was chosen so as not to have any 

detectabk· markin~. The only two-dimensional marking purposely applied was a dark 

wall tnoldin:; 3t the noor level. The floor has about the same renectivity as the walls. 

There were verticle molding strips on one wall which were specular.• 

B. Hardware Associated with the Vehicle 

An e:i:cerpt. from {SJ describe• aome of the inter /a.ce ho.rdwo.re between the 

vehicle and the SDS computer. Much of this hardware remained 

unchanged when we aubstituted a PDP-10 computer for the SDS-940. 

Figure 3 shows a block diagram of the hardware system. The system consists of a 

stationary part interfacing with the SDS 940 computer and tile mobile vehicle which is 

remotely co!Hrolled from the fixed equipment via a full duplex radio link. (The data 

communications interface was described in an Appendix of [4j.) 

Commands to the vehicle are transmitted in digital form preceded by a module address 

referring to the module ,;,n the vehicle that is expected to a.ct. Each module is equipped 

• From /SJ, pages 19-i!O. 
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with its nwn r(•gislrr. The register holds bits speci(ying information on desired direction 

of motion. spred, rrqursted distance, and other special fonctions. When action is 

requested, the action st.art.s and continues until completed or interrupted by other control 

functions in 1.he systrm. End-of-action or other control interrupts are transmitted back to 

the ,,1.ationary equipment in coded form, where they are decoded and sent as interrupts to 

the computrr. lnt.rrrupts or a similar nature are ORed together to limit the number of 

interrupts. <;1.atus registers arc therefore provided on the vehicle so that status can be 

interrogated from the computer any time the source or the interrupt is in question. 

$pccinl r<'gist<'rs for the sensors, such as the range finder, bumpers, etc., are available and 

can be int<•rrogatc by a read operation in the same manner as reading rrom the module 

r<'gisl <'T. 

Th<• hardware for the visual system uses the ,ame interface to the computer. The power 

for the TV camera and the special transmitter for the videodata is controlled from the 

power-control register on the vehicle. The rest of the vi,ual system is quite independent. 

The TV cam<'ra consists or one control unit mounted on the platform or the vehicle and 

one camera head mounted on a pedestal in the center of the vehicle. The camera can be 

turned ::!: 180 degrees around a vertical centerline, and it can be titled +60 degrees and 

··15 degrees around a horizontal a.xi• located below and perpendicular to the optical axis or 

the camera. The camera i, equipped with a manuall:,-replaceable lens. The lens mount, 

in a mechanism wit.h two motors for control of iri• and focus. The control of all degrees 

or freedom of t.he camera and its lens system i• accomplished by stepping motors. The 

rotation or t.be camera around the vertical shalt i• under control or a servo similar to that 

us<:d for the wheels of the vehicle. The control from the computer is in the form of LEFT 

or RIGHT ,Qmmands or a given number of ,tep,. The camera has one left-rotational 

terminal swit.ch at + 180 degrees rotation and one right-rotational terminal switch at -180 

degrees rot.at.ion. \Vhen these switches clo,e, the rotation in the direction in process is 

interrupted. The switches also signal the emergency circuit, causing an interrupt signal at 

the computer. Associated with the ,haft rotation, there is also a pan distance counter. 

The content of the counter can be transmitted to the computer. The tilt of the camera is 

controlled by a stepping motor operated at a constant step rate. The motor react• to a 

TILT UP or TILT DOWN command .for a given number of steps. The tilt mechanism has 

limiting switches up and down. The limit switches stop the tilt and signal the interrupt 

circuits in the computer. The content of the tilt counter can be transmitted to the 
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comput.er. A brake mechanism locks the camera in its tilt position when power is 

remo~·e<l from t-he motor. 

Only one l<'ns is presently used. Focus is controlled by one stepping motors and iris by 

;,not.her. The rotation is limited by limit switches. The limit switches preset the counters 

at maximum focus and minimum iris as,odated with the stepping motor.i. 

The control logic ha,, an up-down counter for distance and direction.• 

C. The Computer System 

The Art.ificial Intelligence Group computer complex con.sists of the following parts: 

• PDP-IO computer and peripherals 

• PDP-15 computer and peripherals {including the robot) 

• An interprocessor buffer to connect the two computers. 

Th<'se arc int-erconnected as shown in Figure 4. 

The PDP-10 syst.em has 192K (K = 1024) words of 3~bit memory. 32K is DEC MD!O 

m<'mory. The re.st is Ampel< RGlO memory, consisting of one 32K memory with interface 

and one 128K memory interface and four modules of 32K eaeh. All memory has four 

ports. These are occupied by: 

• PDP-1: cent.ral proces!!Or 

• DF IO data channel 

• Bryant drum controller 

• DA25C interface. 

The Bryant drum is a high-speed autolift drum which has a 1.5-million-word capacity. It 

is planned that jt will be used for swapping and some system files. The drum controller 

interfaces directly into the memory rather than going through a data channel. 

• From /5/, pages !!9-S!!. 
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The DFlO data channel is used to handle 1/0 rrom two peripherals: the disk pack drives 

and the TV A/D converter. 

The interface between the disk pack drives and the DFlO data channel was built by 

Interactive Data Systems, Inc. 

The disk pack drives are manuractured by Century Data Systems and handle the 20-

surface disk packs. This means that each disk pack has a 5-million·word capacity. The 

packs themselves are manufactured by Caelu., Inc. The disk pack system is used as 

secondary storage. 

Currently, we are also using one disk pack drive as a swapping device for the time-sharing 

system. 

The TV A/D converter is an SRl-de:,igned and -built device. It handle:, data from the 

robot TV camera at a rate of one word every 1.5 microsecondl!. It is capable of processing 

either 120Xl20 or 240X240 pictures with 32 level, of gray scale. 

The DA25C is the PDP-10 side of the interproce!llor buffer. It handles data at one 36-bit 

word every 8 microseconds. We have programmed it such that the PDP-10 is always in 

cont,rol and can interrupt any transmission in order to initiate one of its own. 

The DA25D is the PDP-15 side of the interproce!llor buffer. Each PDP-10 word is split 

into two PDP-15 words (18 bits each). It also doe:, the reverse operation. It operates on 

the PDP-15 l /0 bus as a single-cycle device; however, its internal logic uses three cycles 

per word. 

The PDP-IS has 12K of core memory and an 1/0 processor. All devices are "daisy 

chained" on the 1/0 bus. These include an Adage display, paper tape, DEC tape, A/D 

convert.er, D/A converter, ARPA network IMP, and the SRI robot. 

The Adage display provides a high-speed graphics capability. It will be refreshed from the 

PDP-15 core. The display lists will be prepared in the PDP-10 and executed rrom the 

PDP-15. Capabilities include incremental mode, print mode, dotted lines, and intensity 

control.' 

A apeeial software interfaee waa,alao written for uae on. the PDP-10 

*From {9/, pages 15-16. 
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computer to allow FORTRAN {or FORTRAN-compatible MACRO) 

subroutines and /unctions to be run under the LISP opera.tina system. 

Th.is inter /ace is described in [1.S}. 
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CHA.PI'ER THREE 

Shckti'II '• Mod.til of thti World. 

A, The Robot's Wo'l'ld Model 

:\s a rrsul l of our experience with the previoll.';l robot system (i.e., the one using the 

SDS-9,JO) nnd our desire to expand the robot's experimental environment to include 

srYcral rooms witb t.heir connecting hallways, we have adopted new conventions for 

rcpres<?nt.ing the robot's model of the world. In particular, whereas the previoll.';l system 

lm<l the burden of maintaining two separate world models (i.e., a map-like grid model and 

an axiom model), t,hc new system uses a single model for all its operations (an axiom 

model): abo, in the new system conventions have been established for representing doors, 

wnll faces, rooms, objects, and the robot'• statu.,. 

The model in the new system is a collection of predicate calculll.';l statements stored as 

prenexed clauses in an indexed data structure. The storage format allows the model to be 

used without modification as the axiom set for STRIPS' planning operations (Chapter 

Seven) and for QA3.5's theorem-proving activities [14, 16]. 

Although t,he system allows any predicate calculu., statement to be included in the model, 

most of t.he roodel will consist of unit clauses (i.e., consisting of a single literal) as shown 

in Table l. Nonunit clauses typically occur in the model to represent disjunctiollll (e.g., 

boxi is eit.b~r in room K 2 or room K4) and to state general properties of the world ( e.g., 

for all location~ locl and loc2 and for all objects obl, if obl is at location Joel and locl is 

not the same location as loc2, then obl is not at location loc2). 

\Ve have defined for the model the following five classes of entities: doors, wall faces, 

rooms, objects, and the robot. For each of these classes we have defined a set of 

primitive predicates which are to be used to describe these entities in the model. Table l 

lists these primitive predicates and indicates bow they will appear in the model. All 

distances and locatiollll are given in feet and all angles are given in degrees. These 

quantities are measured with respect to a rectangular coordinate system oriented so that 

a.II wall faces are parallel to one of the X-Y axes. The NAME predicate associated with 
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each entity allows a person to use names natural to him (e.g., halldoor, leftface, K2090, 

etc.) rather than the less-intuitive system-generated names (e.g., di, f203, r4450, etc.). 

Figure 5 shows a sample environment and a portion of the corresponding world model. 

Rooms are defined as any rectangular area, and therefore, the hallway on the left is 

modeled :i.s a room. There is associated with each room a grid structure that indicates 

which portion.~ of the room's fioor area have not yet been explored by the robot. During 

route planning the grid is employed to help determine if a proposed path is known 

blocked, known dear, or unknown. 

Four wall faces are modeled in Figure 5. The F ACELOC model entry for each face 

indkates the face's location on either the X or Y coordinate depending on the face's 

orientation. There is associated with each face a grid structure to indicate which portions 

of the wall face have not yet been explored by the robot. This grid is used in searching 

wall faces for doors and signs. 

Two doors are modeled in Figure 5. The DOORLOC model entry for each door indicates 

t.he locations of the door's boundaries on either the X or Y coordinate, depending on the 

orientation of the wall in which the door lies. Any opening between adjoining rooms is 

modeled a.s a door, so that the complete model of the environment diagrammed in Figure 

5 would have a door connecting rooms Rl and R3. This door coincides with the south 

face of room R3 and will always have the status "open." 

The RADIUS and AT model entries for the object modeled in Figure 5 define a circle 

circumscribing the object. These entries simplify the route-planning routines by allowing 

each object to be considered circular in shape. Our current set of primitive predicates for 

describing objec;ts is purposely incomplete; we will add new predicates to the set as the 

netid for them arises in our experiments. 

W c do not wish to restrict the model to only statements containing primitive predicates. 

The motivation for defining such a predicate da,,s is to restrict the domain or mode! 

entries that the robot action routines have responsibility for updating. That is, it is clear 

that the action routine that moves the robot must update the robot's location in the 

model, but what else should it have to update! The model may contain many other 

entries whose validity depends on the robot's previous location (e.g., a statement 

indicating that the robot is next to some object), and the system must be able to 

determine that these statements may no longer be valid after the robot's location has 

changed. 
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\Ve have responded t.o t.his problem by assigning to the action routines (discussed in 

Chapters Four an<l Five) the responsibility for updating only those model statements 

which arc unit. clauses and contain a primitive predicate. All other statements in the 

model will bavc a..s.sociatcd with them the primitive predicate unit clauses on which their 

validity depends. When such a nonprimitive statement is fetched from the model, a test 

will be made to determine whether each or the primitive statements on which it depends is 

still in the model; if not, then the nonprimitive statement is considered invalid and is 

d,•lctcd from t.be model. This scheme ensures that new predicates can be easily added to 

t.he system and that existing action routines produce valid models when they are executed. 

B. Model-Manipulating Functions 

\Ve have design<'d and programmed a set or LISP runctions for interacting with the world 

model. These functions are used both by the experimenter (as he defines and interrogates 

the model) and by other routines in the system to modify the model. To the experimenter 

at a teletype, these functions are accessible as a set or commands. A brier description or 

t.hese commands follows. 

ASSERT 

FETCH 

This is the basic command for entering new axioms into the model. The 

user rollows the word ASSERT by either CUR or ALL to indicate 

whether the entrie are to be for the current model or are to be 

considered part of all models. The system then prompts the user for 

predicate calculUl! statements to be typed in 11Sing the QA3.5 expression 

input language. Arter each statement is entered, the system responds 

with "OK" and requets the next statement. To exit the ASSERT 

mode the Ul!er types "f." 

This is the basic command for model queries. The user follows the word 

FETCH by an atom form, and the system types out a list of all unit 

clauses in the model that match the Corm. Each term in an atom form 

is either a constant or a dollar sign. The dollar ~ign indicates an "I 

don't care" term and will match anything. The last term of an atom 

form can also be the characters "$•" to indicate an arbitrary number of 

"I don't care" term~. For example, the atom form "(AT ROBOT$•)" 

will retch the location or the robot, and the atom form "(INROOM $ 

Rl )" will fetch a list of model entries indicating each of the objects in 

room Rl. 
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DELETE 

REPLACE 

This is the basic command for removing statements rrom the model. 

The user follows the word DELETE by an atom form, and the system 

deletes all unit clauses in the model that match the form. Atom forms 

have the same syntax and semantics for the DELETE command as 

described above for the FETCH command. 

This is a hybrid command combining the operations or DELETE and 

ASSERT. The Wier follows the word REPLACE by an atom form and 

by a predicate calculW1 statement. The system rm1t deletes all unit 

daW1es in the model matching the atom form and then enters the 

statement into the model. This command is useful for operations such 

as changing the robot's position in the model, indicating in the model 

that a previously dosed door is now open, and so forth.• 

•From {10/, pages 9-lS. 
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PRIMITIVE PREDICATES FOR nu: ROBOT'S WORLll lol00£L 

PT1mit1ve ' 
Predicate 

type 
name 
!aceloc 
crid 
boundsroom 

DOORS 

type 
naw 
doorlocs 
join1:faced 
joinarooms 
doorat,e_tus 

type 
name 
crid 

OBJECTS 

type 
name 
at 

ioroom 
shape 
Tadius 

ROl!OT 

type 
na""' 
at 
theta 
tilt 
pan 
w:hiskers 
iris 
override 
range 
tvmode 
focus 

Literal Form 

type( !ace~· face 0
) 

name{ face name) 
faceloc(face number) 
grid(tace grid) 
boundsroom{face room direction) 

type( door''door'') 
name( door name) 
doorloc1(door number number) 
Joinsfaces(door face face) 
joinsrooms(door TOO'ffl room) 
dooratatus(door status) 

type( room"room") 
aame(room name) 
gr1d(room gr1dl 

type( ob.iect'' object .. ) 
name(object o•me) 
at(object number number 
inroom(obJect room) 
shape(object shape) 
radius(object number) 

type( 11 rob0t 0 "robot 0
) 

name(" robot''name) 
at( .. robot" number number) 
theta( 0 robo t" number) 
tilt( "Tobot .. number) 
pan( "robot"number) 
1''hiskers( "robot" integer) 
iris("robot 0 1nteger) 
override( "robot" integer) 
range ( 11 robot O number) 

! tvmode( ":robot" integer) 
:tocus( ''robot'' number) 

I 
Examole Literal 

type( fl face) 
name(tl leftface) 
faceloc( fl 6 .. 1) 

grid( !l gl) 
boundsroom(tl rl east) 

type(dl door) 
aame(dl halldoor) 
doorlocs(dl 3,1 6,2) 
Joinsfaces(dl fl !2) 
joiasrooms(dl rl r2) 
doorstatus(dl 0 open 11

) 

type( rl :room) 
name( rl K29090) 
gr1d(rl gl) 

type(ol object) 
name( ol boxl) 
at(ol 3.1 5.2) 
inroom( ol rl) 
shape(ol ndge) 
radius(ol 3.1) 

type(robot robot) 
nanie( robot shakey) 
at(robot 4,l 7.2) 
theta(robot 90~1) 
tilt(robot lS.2) 
pan(robot 45,3) 

•hiskers(robot S) 

iris(robot 1) 

override(robot 0) 
range(robot 30.4) 
tvmode(robot 0) 
~ocus(robot 30.7) 

Table 1: PRIMITIVE PREDICATES FOR THE ROBOT'S WORLD 

MODEL* 

*From {10/, Page 11. 23 
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CHAPTER FOUR 

The Low-Level Actions 

A. Introduction 

The low-level act.ions, or "LLAs," define the interface between major robot software 

p<tckages and the bottom, hardware-oriented level of the system. The intermediate-level 

art.ions (ILAs ). t.o be described in Chapter Five, control the operation of these LLAs. The 

LLAs. in turn, communicate with the PDP-15 computer and the robot vehicle according 

to t,l.te protocol described in Appendix G of 19]. 

In t.his section we shall describe the upper face of the LLAs, i.e., the face presented to 

hi:;her-level programs. 

Since the robot moves very slowly, we have taken great pains to permit the user to view 

the robot as behaving asynchronously to as great an extent as appropriate. Thus, the 

user must t.ake cognizance of this asynchrony by confirming the completion of "settling" 

on any robot activity before doing anything that assumes that activity to have been 

successful. This low-level software package provides the necessary interlocking in the 

following manner. Communications between the user and the robot are separated into 

two unidirectional channels: orders from the user to the robot are handled by calls on 

LLAs !i.e., the functions in this package); the current state of the robot's world is 

rcnccted in the robot's world model. Now, the functions by which the user can access 

these part.ir.ular entries in the robot's world model have special provisions to ensure that 

an activit.~· has set.tied before grant.ing access to any part of the model which that activity 

might arrcct. For example, one might move the robot to a given location by first turning 

it to foce the t.arget spot and then rolling it straight forward by the required distance. 

One could conceivably confirm the initial turn (by interrogating the proper part of the 

model) before rolling ahead. The model-access function will then delay until the turn ha:i 

settled before reporting the bearing or the robot. On the other hand, the user will not be 

delayed for completion of the roll until he interrogates the position of the robot. Thus we 

have synchronization (between the user and the robot) whenever we need it but not 

otherwise. 
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This sort or synchronization is effected in another circumstance having to do with 

interlocks between activities. In particular, each activity has a.,l!OCiated with it certain 

conflicting activities. (For example, one cannot take a TV picture while the robot's head 

is panning.) A ,et of init.iation functions automatically take cognizance of all pos,ible 

conflicts: each ensures that all potentially conflicting activities are settled before 

initiating it-sown activity. For the purpose of programming actual use of the robot, 

however, one should note that settling of an activity does not necessarily mean its 

successful completion. For example, a roll can terminate by the robot unexpectedly 

bumping into some obstacle-this will "settle" the roll, but the robot cannot be assumed 

to have att,ained its destination. 

B, Measurement a.nd Control 

Before proceeding further, we shall define the precise robot capabilities that the LLAs 

control. Shakey can move about the floor by turning bis body and by rolling straight 

forward or backward, and he can pan and tilt his head. He can take pictures and range

finder readings, and he can adjust the focus and iris states of the TV camera's lens. 

Finally. he can set some global parameter:, both for taking TV pictures and for rolling or 

turning. These t,en activities will be more fully explained below. First we shall describe 

the measurement conventions in Sha.key's environment. 

Angles are measured in degrees, and we will call the principal value of an angle that value 

between ·180' and +180'. The bearing of the robot is a horizontal angle referred to the 

positive direction of the global y-axis; thus the robot is parallel to the x-axis in the 

negative sense when its bearing is 90'. The pan angle of the robot's head is a horizontal 

angle rererred to t.he robot's bearing, and the tilt angle of the robot's head is a vertical 

angle measured.from the horizontal plane. Thus, when the robot has its pan angle at zero 

and t.he tilt angle at-45' , the range-finder and TV camera are pointed at the floor right 

before its very wheels. 

We turn now to optical values. The iris of the TV camera is set in exposure value units 

(EVsJ, which have a logarithmic relation to f·numbe~: increasing the EV number by one 

doubles the amount of light arriving at the inner regions or the TV ca~era. Focus values 

and range-finder readings are diiltances i!1 feet from the inter:,eetion of the axes about 

which the robot'• head tilts and pans. That point in turn is about 4 feet l·l/2 inches 

above the floor nod 9 inches forward of the axis about which the robot turns, when the 

robot is standing (or sitting or whatever it does) on a level flat floor. 
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Ha,·ing covered the numeric quantities in the robot's world, we have but a few other items 

to discuss. Perhaps the simplest of these to describe is a TV picture: it resides on a disk 

file in FORTRAN binary format. Now TV pictures are digitized in square arrays of 

picture clemt>nts; the size of the array is constant, but one can select two coarsenesses: 

120 or 240 pict.ure clements on a side. One can, however, alter the configuration of the 

army for the sake of special stereo optics. These two options are combined into one 

num her callt>d the tvmode, as follows: 

"tvmode: 0 means 120 X 120 nonstereo 

"tvmode" 1 means 120 X 120 stereo 

"tvmode" 2 means 240 X 240 nonstereo 

"tvmode" 3 means 240 X 240 stereo. 

To ~xplain the last two quantities of this section, we must fin,t explain the two main 

tactile sensors of the robot and how they intera.ct with the roll and turn activities. The 

tactile sensors are seven catwhiskers and a pushbar; each catwhisker can signal 

engagement with an obsta.cle, and the pushbar can signal each of two levels of. pressure: 

mere engagement and hard contact. All nine of the11e conditions are renected in a 

quantit.y called the w hiskerword; to a fin,t approximation each of these conditions has its· 

own bit in the whiskerword, whose format is shown in the following table: 

Bit No. Oct.al Code Meaning of "1" 

21 040000 Pushbar is engaged and ready to push. 

23 010000 Left front whisker is engaged. 

25 002000 Front horizontal whisker is engaged. 

2fl 001000 Right front whisker is engaged. 

28 000200 Right rear whisker is engaged. 

29 000100 Encountered immovable object and backed off. 

30 000040 Rear whisker is engaged. 

33 000004 Left rear whisker is engaged. 

35 000001 Front vertical whisker is engaged. 

The robot has a couple of motor reflexes pertinent to this discussion: it will stop moving 

whenever the pushbar becomes disengaged, and it will not move while a catwhisker is 
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engaged. llowever, these two reflexes can be overridden selectively; the corresponding 

ordera are sent to the PDP-15 by means of the override activity and the override code 

word, which has the following significance: 

Code Word Push bar Catwhisker 

0 Enabled Enabled 

l Enabled Overridden 

2 Overridden Enabled 

3 Overridden Overridden 

C. The LLA Portion of Shakey's Model 

'vVe will now enumerate and define the 17 predicates by which the robot's lowest-level 

state is represent,ed in the axiomatic world model. They are: 

Atom in Axiomatic Model 

(AT ROBOT xfeet y{eet) 

(DAT ROBOT dxreet dy{eet) 

(THETA ROBOT degreesleftofy) 

(DTHETA ROBOT dthetadegrees) 

[WHISKERS ROBOT whiskerword) 

(OVRID ROBOT overrides) 

(TILT ROBOT degreesup) 

(DTILT ROBOT ddegreesup) 

{PAN ROBOT degreesleft) 

(DPAN ROBOT ddegreesleft) 

(IRIS ROBOT evs) 

(DIRIS ROBOT devs) 

\FOCUS ROBOT feet) 

(DFOCUS ROBOT dfeet) 

(RANGE ROBOT feet) 

(TVMODE ROBOT tvmoae) 

(PICTURESTAKEN ROBOT :t:picturestaken) 
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Affected By 

ROLL 

ROLL 

TURN 

TURN 

ROLL,TURN 

OVRID 

TILT 

TILT 

PAN 

PAN 

IRIS 

IRIS 

FOCUS 

FOCUS 

RANGE 

TVMODE 

SHOOT 



Thr t.wo predicates AT and THETA give the position and bearing or the robot itselr in 

t be global coordinate system; the statistical uncertainties are given by the predicates DAT 

and DTIIETA, which are separated rrom AT and THETA to facilitate planning. The 

stale or t.he wbiskerword is updated whenever a ROLL or TURN settles, and the OVR!D 

predicate renects the state of the overrides in the robot. 

Thr TILT and PAN predicates refer t.o the direction the robot's head is pointed. DTILT 

and DPA~J give corresponding error estimates. All three angles (tilt angle, pan angle, and 

bciuling TflETA) are stored a.s their principal values. RANGE gives the value result.ing 

from t.he most recent range-finder reading. The PICTURESTAKEN predicate, which we 

will describe more fully in our discussion of the SHOOT activities, gives the approximate 

number of pictures taken to date. The meanings of the rest of the predicates should be 

clear from the previous discussion. 

D. The LLA.s 

The predicates are the means by which the robot tells the user about its state; the LLAs 

proYidc the means by which the user t.ells the robot to alter its state. One should 

understand that this clean division is largely just formal; in practice an interrogation of a 

predicate is intercepted by a (unction that ensures settling of any relevant robot activities 

before proceeding to the actual access. Also, the initiation of an action does not guarantee 

its completion; actions may terminate for a variety or reasons, such as engagement or limit 

switches or malfonctions in the telemetry link. The state or the system arter an action 

may he <let.ermined hy investigating the model. 

The following functions initiate fundamental low·level activities (whenever numeric 

piiramct.crs are used, negative numbers are permissible and mean motion in the direction 

oppo~it.e to that indicated): 

TILT degreesup tilts the robot's head upward by "degreesup" degrees. The motion 

can be prematurely terminated by a limit switch. 

PAN degreeslert pans the robot's head by "degreesleft" degree, to the left or far 

enough to activate a limit switch. 

FOCUS reetout .the TV camera'is initially focused on a plane removed by some focal 

distance from the center of the head's gimbals; this function increases that distance by 

"feetout" reet. or course the range of focal distances is limited by limit switches. 
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Ill.IS evs opens the robot's iris (on the TV camera) by "evs" EVs. Thus if "evs" bas 

t,be value I, this form will double the amount of light getting into the TV camera. There 

are limits for this activity too. 

OVRID overrides set the overrides as specified by the ''overrides" code work. 

TVMODE tvmode sets the TV mode as specified by the "tvmode" code word. 

RANGE reads the robot's range-finder; this automatically includes turning on the 

range-finder and waiting for it to warm up. 

SHOOT put.s a TV picture onto the disk file "TV.DAT." The picture is taken 

according to the current TV mode. Assuming correct operation of hardware and 

software, a subsequent examination of the PICTURESTAKEN atom (in the world model) 

will yield a positive integer giving the number of current pictures in a series (I, 2, 3, ... ) 

begun when the robot system was loaded or initialized. In the event of an unrecovered 

system malfunction (e.g., tmnsmission error), the value stored with PICTURESTAKEN 

will be the negative of the serial number of the last successfully taken picture. 

ROLL feet tells the robot to roll forward by "f~t" feet. This activity bas three 

normal ways of prematurely terminating: the robot can come into contact with an 

obstacle, engaging a catwhisker; it can lose contact with an object it is p115hing, 

disengaging the p115hbar; or it can encounter an immovable object, caWling the p11Shbar to 

come on bard. The first two conditions cause the robot to stop by reflex actions that can 

be overridden; the last causes the robot to attempt to· free itself using more complex 

eva,;ive artions in a reflex that cannot be overridden. When the robot encounters an 

immovable object, it will not only stop, but it will back away from it by some distance, 

current,ly a constant 6 inches. ( Of course, the information in the model will be correctly 

maintained.) The wbiskerword in the model is updated at the end of a ROLL or TURN; 

it contains the description of the current state.if the catwhiskers and p11Sbbar are 

returned from the robot, but it bas another bit for immovable objects-this bit showing 

the history of an event rather than showing a current state. This bit is set only when the 

wbiskerword is updated the first time after bard contact. 

TURN degreesleft tells the robot to turn to the left by "degreesleft" degrees. 

Otherwise the above description of the ROLL activity applies excepting only the way 

immovable objects are evaded. In this case, the robot turns back; currently it turns back 

to its initial beading. 
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The fnnct ions discussed so far that initiate motions have been incremental in form if not 

in c"cnc<'. llowever, even this level of robot software has a memory of the various 

:is perts of the robot's position in the axiomatic model so dutifully maintained by the 

,ct.I ling funrt.ions. Capitalizing on this circumstance, we have also provided some 

funrt.ion$ to initiate motions to a given goal (rather than by a given amount). Although 

these funct.ions are formally and conceptually outside the lowest LISP level of robot 

software. they have sufficiently simple internal structure that it is convenient to describe 

them here rat her than in the next (ILA) chapter. With one exception we expect tbeir 

meanings 1.0 he self-evident. These additional initiation functions are: 

(TILTO degreesup) 

(PANTO degreesleft) 

(FOCUSTO feet) 

(!RISTO evs) 

(ROLLTO xfeet yfeet) 

(TURNTO degreeslefttofy). 

Tb(' exception is ROLL TO: it must fir.,t turn the robot to point toward its goal, so it 

must. do (and does) more than simple calling the corresponding incremental function with 

the difference between the desired and current position. 

E. Summary 

Table 2 is a summary of Shakey's low-level activities. Figure 6 sketches how these 

activiti('s fit into the overall system control structure.• 

• Fram {11/, pages f!S-SS. 
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CHAFI'ER FIVE 

The Intermediate-Level Actiona 

The intermediate-level actiona (ILAB) are deacribed in ezcerpta from two 

reports [iO and ii}. Each e:cerpt is more-or-le1111 self contained {and thus 

some redundant material ia reprinted), but both ahould be read for a 

complete picture. The first ezcerpt discuaaea early plans for the ILAs: 

A. Introduction 

As wit.h most programming tasks, the problem or programming robot actions is simplified 

when it is done in terms of well-defined subroutines. At the lowest level it is natural to 

dcl"ine rout.ines that have a direct correspondence with low-level robot actions-routines 

for rolling, turning, panning, taking a range reading, taking a television picture, and so 

forth. However, these routines are too primitive for high-level problem solving. Here it is 

desirable to assume the existence of programs that can carry out tasks such as going to a 

specil"ied place or pushing an object from one place to another. These intermediate-level 

actions (ILAs) may possess some limited problem-solving capacity, such as the ability to 

plan rout.es and recover from certain errors, but the ILA,, are basically specialized 

subrout.ines. None of these routines has as yet been written. However, considerable 

thought has been devoted to their design, and this section describes our plans for a set of 

ILAs t.hat. are suitable for use with the STRIPS problem-solving system. 

Perhaps t.he most difficult problem that confronts the designer of !LA,, is the problem of 

dctect.ing and recovering from errors. Sometimes errors are detected automatically, as 

when an int.errupt from a touch sensor indicates the presence of an unexpected ob!tacle. 

Ot.ber times it is necessary to make explicit checks, •uch as checking to be sure that a 

door is open before moving through it. When an error is detected, the problem or 

recovery arises. This problem can be very difficult, and is one aspect that distinguishes 

work in robotry from other work in artificial intelligence. 

It is natural to think of an intermediate-level action as a composition of somewhat lower

lcvel actions, which in turn are compositions of lower-level actions. While this 
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hierarchical organization possesses many advantages (and it is in fact the organization 

thnt. we use), it is not ideally suited for error recovery. Error:; are made most rrequently 

at low levels by routines that are too primitive to cope with them. An error message may 

have to be pa.ssed up through several levels of routines before reaching one possessing 

sufl'icient knowledge of both the world and the goal to take corrective action. If any 

routine can fail in several ways, this presents the highest-level routine with a bewildering 

variety or error messages to analyze, and requires explicit coding for a large number of 

contingencies. 

To circumvent this problem, we have chosen to have the subroutines communicate 

through the model. With a few special exceptions, neither answer:; nor error messages are 

explicitly returned by subroutines. Instead, each routine uses the information it gains to 

update the model. It is the responsibility of the calling routine to check the model to be 

sure that conditions are correct before taking the next step in a sequence of actions. 

Detection of an error causes returns through the sequence or calling programs until the 

routine that is prepared to handle that kind or error is reached. In the following sections 

we describe in more detail the formal mechanism by which this is done. 

B. The Markov Algorithm Formali.zation 

1. General Considerations 

The formal structure of each ILA routine is basically that of a Markov algorithm.• Each 

routine is a sequence or statements. Each statement consists of a statement label, a 

predicate, an action, and a control label. When a routine is called, the predicates are 

evaluated in sequence until one is found that is satisfied by the current model. Then the 

rorrcsponding action is executed. The control label indicates a transfer of control, either 

to ,mother labeled statement or to the calling routine. 

Table 3 gives a specific example of an ILA coded in this form. This routine, gotoadjroom 

(room!, door, room2), is intended to move the robot from room! to room2 through the 

specified door. The fir.1t test made is a check to be sure that the robot is in room 1. If it 

is not, an error has occurred somewhere: Since this routine is not prepared to handle that 

kind or error, no action is taken, and control is returned to the calling routine. The 

subroutine return is indicated by the "R" in the control field. 

•it also bears a close resemblance to Floyd-Evans productions. 
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l'nder normal circumstances, the first two predicates will be false. The third predicate is 

always true, and the corresponding ;iction sets the value or a local variable "s" to give the 

status or the door. The runction "doorstatus" computes this irom the model, and 

evaluates to either OPEN, CLOSED, or UNKNOWN. Rather than tracing through all oi 

t.he possibilities, let us consider a normal case in which the door is open but the robot is 

neither in front or nor near it. It this case, the action taken is the last one, 

navto(nearpoint(rooml,door)). Here the Function "nearpoint" computes a goal location 

near the door. The runction "navto" is another ILA that plans a route to the goal point 

and eventually executes a series or tur!lll and rolls to get the robot to that goal. or 

course, unexpected problems may prevent the robot from reaching that goal. 

Nevertheless, whether navto succeeds or fails, when it retur!lll to gotoadjroom the next 

predicate checked will be that or statement 4. Ii navto succeeds and the robot is actually 

in rront of the door, the bumbletbru routine will be called to get the robot into room2. If 

naYto had railed and the robot is not even near the door, navto will be tried again. 

Clearly, this exposes the danger or being trapped in fruitless infinite loops. We shall 

describe some simple ways of circumventing this problem shortly. 

SUBROUTINE GarOADJROOM(ROOMl,DOOR,ROOM2) 

Label Predicate Action Control 

1 - in(rooml) R 

2 in(room2) R 

3 T setq(s,doorstatus(door)) 4 

4 infrontof(door)t,eq(s,OPEN) bWllblethru(rooml,door,room2) 2 

near(door)teq(s,OPEN) align(rooml,door,room2) 4 

near(door)teq(s,UNKNOWN) doorpic(door) 3 

eq(s,CLOSED) R 

T navto(nearpt{rooml,door)) 4 

Table 3: SUBROUTINE GOTOADJROOM (ROOMI,DOOR,ROOM2) 
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2. Predicates and Actions 

The predicates used in the ILAs have the responsibility of seeing that preconditions for an 

art.ion are satisfied. In general, the evaluation of predicates is based on information 

contained in the model. If this information is incorrect, the resulting action will usually 

be inappropriate. However, the act of taking such an action will frequently expose errors 

in the model. When the model is updated (which typically occurs after bumping into an 

object or analyzing a picture), the values of predicates can and do change. Thus, the 

rnlues of tbe predicates will depend on the way the execution of the ILA proceeds, and 

will steer the routine into (hopefully) appropriate actions when errors are encountered. 

The actions can be any executable program. The most common actions are to compute 

the values of local variables, update the model, call picture-taking routines that update 

the model, or call other IL.A5. Only the first of these causes any answers to be returned 

directly to t·be calling program. This constraint of communicating through the model 

occ:,.sionally leads to computational inefficiencies. For example, the very computation 

used by one routine to determine that it bas completed its job successfully may be 

repeated by the calling routine to be sure that the job has been done. While some of 

t.hese inefficiencies could be eliminated with modest effort, they appear to be of minor 

importance compared to the value of having a straightforward solution to the problem of 

error recovery. 

3. Loop Suppression 

\Ve ment.ioned earlier that the failure of a lower-level ILA might result in no changes in 

the model that are detected by the calling ILA. In this case, one ran become trapped in 

an infinite loop. There are a number of ways to circumvent this problem. Perhaps the 

most satisfying way would be to have a monitor program that is aware o( the complete 

state of the system, and that could determine whether or not the actions being taken are 

bringing the robot cl03e:r to the goal. 

An alternative would be to have each ILA keep a record of whether or not its actions are 

leading toward the solution of its problem. 

The simplest kind o( record for an ILA to keep is a count of the number or times it has 

r.aken each action. In many cases, if an action bas been taken once or twice before, and if 
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the predic:i.t<'s are calling for it to be taken again, then the ILA can assume that no 

progress is being made and return control to the calling program. This strategy can be 

improved by computing a limit on the number or allowed repetitions, and making this 

limit dep<>nd on the task. For example, if the action is to take the next step in a plan, the 

limit should obviously be related to the number of steps in the original plan. Both of 

t h<>s<' strat<>gics can be criticized on the grounds that ,they are indirect and possibly very 

poor m<>asurcs of the progress being made. However, they constitute a frequently 

cff<>ctive. simple heuristic, and will be used in our initial implementation or the lLAs. 

4, Status and Implementation 

As mentioned earlier, none of the lLAs has been implemented to date. However, some 15 

have b<>en sufficiently well defined to allow coding to begin. These are list.ed in Table 4 

tog<>ther wit,b the ILAs that they call. The specification of the ILAs bas also led to the 

spcrifirat.ion or a number or specialized planning and information•gathering routines. The 

planning routines include programs for planning pu,,hing sequences, tours from room to 

room. and trips within a single room. These will be developed along the lines or the 

navig:,tion routines that were one or our earliest efforts on this project. The in(ormation· 

i;at,brring routines are primarily special-purpose programs for processing television 

pict,nres. For example, PICLOC is a special-purpose routine that uses landmarks to 

update the lorat.ion or the robot, and CLEARPATH analyzes a picture to see whether or 

not the pa1,b to the goal is clear. These routines are described in Chapter Six and 

Appendix 13, 

One aspect or implementing the ILAs that has not yet been resolved concerns whether the 

ILAs should be wriuen as ordinary LISP programs, or should be kept in tabular form as 

data for an interpreter. It is quite easy to go from a representation such as that in Table 

3 t.o a LISP program realizat.ion; the basic structure is merely a COND within a PROG. 

I lowrver, the use or an interpreter would simplify the implementation of the loop 

suppressor, and would also simplify monitoring and the incorporation of diagnostic 

messages. In addition, the same program that interprets the [LAs might be used to 

interpret the plans produced by STRIPS; i( we can make these structures identical, the 

same executive program will be usable for both. Uniformity in program structure is also 

important, for the plan generalization ideas (to be discussed in Chapter Eight).* 

• From {1 OJ, page• 1!5·S2. 
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INTERMEDIATE LEVEL ACTIONS. Rotrl'IIIES MARKED BY ASTERISKS ARE VIEWED AS PRIMITIVE ROUTINES, 

ILA Routines Called I Comments 

PUSH3 

PUSll2 

PIAIIOBMOVE•, PUSll2 I Can plan and execute a series of PUSH2's 

PICUJC•, OBUJC•, IIAvro, ROLUIUMP, PUSHl Check if object being pushed slips off 

PUSlll I ROU.• 

GETTO I OOfOROOM, NAVfO 

GOTOROOM PLANTOUR•, GOTOADJROOM 

Gcrt'OADJROOM I DOORPIC•, ALIGN, NAVTO, BUMDLETIIRU 

NAvro PLANJOURNEY•, GOTOl 

OOfOl 

GOTO 

POINT 

TURN2 

TURN 1 

ROLL2 

ROLLl 

ROLlllUMP 

CLEARPATH*, PICDETECTOB•, GOTO 

PICUJC*, POINT, ROLL2 

PICTIIETA*, TURll2 

TUR!IBACK•, TURNl 

TURN* 

ROLlBACK*, ROU.l 

ROLL• 

ROLIBACK•, ROLLl 

Basic push routine; assumes clear path 

Highest level go-to routine 

Can plan and execute a series of GCJfOADJROOM's 

Tailored for going through doorways 

Can plan and execute a trip within one room 

Recovers from errors due to unknown objects 

Executes single straight-line trip 

Orients robot toward goal 

Responds to unexpected bumps 

Dasie turn routine; expects no bumps 

Responds to unexpected bumps 

Dasie roll routine that expects no bumps 

Basic roll routine that expects a terminal bump 



The eeeond ezeerpt deeeribee the ILAa a.e they were implemented: 

A. Introduction 

The lntermrdiate-Level Actions (ILAs) are the action routines associated with the STRIPS 

operators (see Chapter Seven). Here we distinguish "action routines" from "operators" 

on the following basis: operators are used for planning, and the corresponding action 

routines are invoked to actually move the robot. The ILAs are written in a language we 

call Markov because of its resemblance to Markov algorithms. There is a large body of 

nuxiliary LISP fonctions that accompanies the ILAs, but we will confine the present 

discussion to a brief description of the Markov language and a brief exposition of the 

current ILAs and the intraroom navigation algorithm. 

B. The Markov Language 

The ,cnt.ral part of the Markov language is the Markov table, specifying actions to be 

performed and the criteria for determining their sequence. The format of a Markov table 

is an ordered collection of rows of identical format. Each row starts with a label, which is 

followed by a predicate, a sequence of actions to be performed, and finally the label of 

some other line in the table. This last item (which we have been calling the "go-to") can 

opt.ionn.lly specify that execution of the table could cease, causing the calling routine's 

execution to resume in the conventional subroutine fashion. The characteristic execution 

pat.fern is a sequent.ial scan through the table's rows, testing the predicates one by one 

until a row is found whose predicate is true. Then the scan terminates and the actions (if 

any} int.hat. row are performed, and the go-to is followed; it will either indicate 

completion of the execution of the table, or it will name a line in the table at which the 

scan is t.o re~ommence. When the Markov table is first entered, the scan begins with the 

first, line in the table. Execution may be terminated in three ways: it can be completed 

explicitly. by reaching a special go-to; the sequential scan can get to the bottom of the 

table wit.bout having found a line with a true predicate; and finally, an action can be 

fruitless, which will cause a loop suppressor to terminate execution of the table. In all 

three cases, there is only one form of return from a Markov table, and the calling routine 

(or Table) is expected to test for the desired results. (This seemed much simpler than 

trying to make the individual action routines guess what its caller had in mind.) 
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The adio11s rall<'d for in an ILA may be LLAs, other ILAs, or arbitrary programs (usually 

coded in LISP). Since the Markov. interpreter is itself a LISP program, an ILA can call 

itself recursively. 

The "go-to" part of a Markov table line is interpreted after completion of the action part. 

In its simplest case, the "go-to" consists of the label of a line at which to continue the 

search for a true predicate. Ir several lines have the given label, one of the lines is 

arbitrarily chosen; if no lines have the given label, one o( the lines is arbitrarily chosen; if 

no lines have it or ir it is NIL, execution is terminated. (NIL is our conventional explicit 

return.) The other case involves "loop suppression" and will be discussed below. 

A 1vlarkov table is generally a sequence of actions that would transform an initial state 

int.o a final "goal" state via a linear sequence of intermediate states. Whether an action is 

applicable to a particular state can usually be tested by a relatively simple predicate-the 

one heading t,hc table line with the action. Since actions in the real world frequently fail 

to achieve their desired results, the Markov interpreter determines which action to execute 

by t,,st.ing t.he state predicates one by one, starting from the goal predicate ( on the top 

line) and working backward (i.e., down the table) until a true predicate is found. Markov 

operators typically follow the execution of any component action by starting again with 

the gor1I predicate. In its simplest form, each line of a Markov table would contain one of 

the stal·e predicates and the operator to be applied to. that state; its "go-to" would specify 

the first. line, which contained the goal predicate and an explicit return. Falling off the 

t>nd of a Markov table thus correspond!! either to a drastic failure of one of the component 

act.ions or to no inappropriate application of the Markov operator. Of course, persistent 

failure or a co~ponent action to achieve its desired effect, i.e., to produce a ,tate 

satisrying a predicate higher in the table, would cause indefinite looping in such a Markov 

table. To circumvent this possibility without requiring specific consideration in each 

i\forkov table, we introduced "loop suppression" into the Markov interpreter. Whenever 

the predicate or a line is found to be true, a counter is incremented and checked against a 

limit. bcrore the line's action is executed; if the counter becomes greater than the limit, 

then interpretation of the table is terminated without execution of the action. Thus, if 

the limit for a line is three (this is the current default value) then the action(s) on that 

line will be executed a maximum of three times; if the line's predicate is found true a 

fourt.h time, the table will return to the operator that invoked it. or course, one can 

speciry a limit for a table line rather than accepting the default value. There is an 
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alirrnati,·e form for the "go-to" just for this purpose: rather than being just a label, it 

rnn be a two-el,•ment list. ID this case, the fil'llt element is the label, and the second 

rlrmrnt is the loop-suppression limit for that line; it is evaluated only once, at the time or 

the first loop-suppression check for that line. 

Table 5 illustrates the Markov language by presenting the actual code for the lowest-level 

IL\ that pushes an object. Here, line 10 does some initialization; the action [i.e., the 

(SETQ XYTARG ... )] is always performed because its predicate Tis always true. Then 

line 20's prcdicat.e checks whether the pushing operation is finished by means of its 

(NEARENOUGII OB XYTARG TOL) predicate; if this is the case, then no actions (i.e., 

NIL) are pcrform<>d, and control jumps to the label CLEANUP for some post-processing 

before exit« Line 25's predicate similarly determines whether the object's position is 

known closd.,· enough to continue the pushing operation. (This may not be the case either 

inilially or as t.hc result or the object dropping off the pushbar during a push.) Line 30 

causes the table to exit (via CLEANUP) if the object is past its target. Line 40's 

prcdicat.r is t.r11c if t,he robot has just pushed the object into a wall, and finally, line 50's 

prcdicat.e is t.rue if the robot has proper contact with the object. Line JO and the lines 

starting with the label CLEANUP are representative of a more usual programming 

language. with t.he normal execution being sequential. Lines 20 through SO, however, have 

t.he r haraeterist ic execution pattern or the !LAs: a loop testing for the main goal and 

various subgoals and error conditions and recycling after any action is performed. This 

part,icular ILA is designed to be especially simple because it is intended to be embedded in 

several more layers or ILA before STRIPS becomes concerned with their robl1l!tness. Even 

STR !PS-visible ILAs are called by PLANEX (see Chapter 8) from its execution tables, so 

it is perfectly acceptable for this lowest-level pushing operator to fail as readily as it does. 

C. The Actions 

The following are brief descriptions or the present ILAs. The control relations among the 

IL:\s and bet.ween them and the rest of the system are shown in Figure 7. 

ILAs that affect the state of the world have responsibility for making corresponding 

changes to Shakey 's axiom model or the current world. Such changes are mentioned 

below wherever relevant; "$" will be used to denote unspecified or changing values in the 

model. 
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GOTHRUDR(DOOR FRO~ TORM) moves the robot from room FROMRN 

t.o room TORM via door DOOR. It assumes only that the robot is in FROMRM; it uses 

NA VTO to get to the door and BUMBLETHRU to go through it. 

BLOCK(DX RX BX) pushes box BX within room RX to a position blocking door DX. 

This routine directly replaces the axiom (UNBLOCKED DX RX) by (BLOCKED DX RX 

BX) in the model. 

UNBLOCK(DX RX BX) pushes box BX within room RX to a position in which it 

does not block door DX; it directly replaces the axiom (BLOCKED DX RX BX) by 

(UNBLOCKED DX RX). This routine prefers to push the box to the far side of the door 

(a:i viewed from the initial position of the robot), but it will also consider the other push. 

GOT02(X) moves the robot into the vicinity of X if X is a door; it directly updates 

the (NEXTTO ROBOT$) axiom. A contemplated extension of GOT02 is to permit X to 

be an object. 

PUSlll(DIST OB TOL) is the lowest-level push; as such, it maintains OB's position 

and deletes the (NEXTO OB$) and (NEXTTO $ OB) axioms from the model. It pushes 

OB forward by DIST feet (within TOL feet); it assumes that the front horizontal 

catwhisker is on when it is entered, and it exits under any of the following conditions: 

( 1) It is unnecessary to push OB forward, i.e.: 

(a) OB is within TOL of the implied goal point; or 

(b) OB is past the goal point in the current heading. 

(2) The pushhar comes on hard. 

(3) The front horizontal catwhisker is off. 

!n aoy of these cases, the robot backs up 2 feet in an attempt to free its catwhiskers for 

normal navigation. The last argument TOL is optional and is defaulted to I foot i.( not 

supplied. 

ROLL2(DIST TOL) is the lowest-level free-fioor roll; as such it deletes the (NEXTTO 

ROBOT$) axiom from the model. It moves the robot forward by DIST feet (within TOL 

feet); if it engages a front catwhisker it asserts the (JUSTBUMPED ROBOT T) axiom and 
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backs away in an attempt to free the catwhisker. TOL is an optional parameter defaulted 

to l foot ir not supplied; DIST may be negative. 

BIJMBLETHRU(FROMRM DOOR TORM) moves the robot from room 

FB01'.IRM to room TORM through door DOOR. It assumes that the robot is initially in 

FROMRM and in front of door. It heads for the corresponding position in TORM and 

uses the catwhiskers (if necessary) to help it negotiate the door. It updates the (INROOM 

ROOOT $) and (NEXTTO ROBOT$) axioms in the model, and it is the most basic door

nego!,iating routine in the system. It uses the vision routine CLEA RP ATH before entering 

:.n unknown room. 

PUSH(OBJECT GOAL TOL) is the highest-level ILA for pushing a box. Its three 

arguments are the name of an object, the goal coordinates to be pushed to, and the 

allowable tolerance. The tolerance argument may be omitted, in which case its value 

defaults to 2.0 feet. 

The only precondition for PUSH is that Shakey and the OBJECT are in the same room. 

The routine calls FINDPATH (described below) to plan a path to GOAL from the current 

object location. PUSH will fail if any of the following conditions are true: 

( 1) OBJECT is not in a pnshable location. 

(2) No path of width W [W=MAX(WIDTH(OBJECT),WIDTH(ROBOT))] 

can be found from the current position of OBJECT to GOAL. 

(3) No path can be found from the current position of the robot to the 

"pushplace" of OBJECT, i.e., Shakey cannot get behind OBJECT. 

PUSH2(0BJECT GOAL TOL) is .a straight-line push, envoked by PUSH to move 

OBJECT along successive legs of the planned path. PUSH2 attends to updating the 

positions of ROBOT and OBJECT. If the uncertainties in position exceed TOL, PICLOC 

updates the position of ROBOT or OBLOC the position of OBJECT (PICLOC and 

OBLOC are described in Chapter Six.) 

A PUSH2 is accomplished in three basic stages: 

(1) The robot navigates to the "pushplace" of OBJECT. 

(2) The robot rolls for-ward and makes contact with the object with a front 

catwhisker, by using ROLLBUMP. 
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(3) PUSH! is called, which turns on the overrides and causes the robot to 

roll forward the required distance. 

NAVTO(GOAL TOL) will maneuver the robot to within TOL feet of the point 

GOAL. Like the PUSH [LA, it uses FINDPATH to plan the journey to GOAL. NAVTO 

will fail if no path is found; if a path exists, it 11Ses POINT AND GOTO! for each leg or 

the journey. 

POINT(THETA TOL) attempts to turn the robot to within TOL dt>grees or bearing 

THETA. If necessary, the vision routine PICTHETA ( Chapter Six) will be used to 

determine the bearing or the robot. A catwhisker engaged during the turn will cause the 

robot to turn back to its original bearing and then attempt to locate the object with 

PICBUMPED (Chapter Six). 

GOTOl(GOAL TOL) moves the robot forward in a straight line t.o within TOL feet 

or GOAL. It will use ROLL2 to actually move the robot, or it will use vision under the 

following conditions: 

(l) If the robot's location is uncertain (>TOL), it will update its position 

using PICLOC. 

(2) If moving in an unknown room, it will use CLEARPATH. 

(3) If the result of CLEARPATH is BLOCKED, it will use PICDETECTOB 

(Chapter Six) to enter information about the obstacle in the model. 

(4) If the robot unexpectedly engages a catwhisker while rolling, 

PIC:BUMPED will locate the object and update the model. 

ROLLBUMP(DIST TOL OBJECT) moves the robot forward DIST feet to engage a 

rront, catwhisker on the object OBJECT. It updates the (NEXTTO ROBOT$) 

predicate{s) in the model. Ir an object is not encountered within TOL feet of DIST, 

ROLLBUMP fails. 

D. Tbe Pa.thfinding Algorithm 

FINDPATH(ROB G JOURN) is the routine to plan an intraroom path from ROB to 

G. The arguments ROB and G are each a list or X, Y coordinate pairs. JOURN is the 

type of journey to be undertaken, either ROLL or PUSH. ff JOURN is ROLL, the 
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MAl1KOV TABLE FOR THE LOWEST-LEVEL PUSHING 11,A 

(DEf'PROP PUSIII PUSlll ( •: MARKOVTABLE NIL)) 

( DEFPROP pUSl(I 
((10. T ((SE:I'Q XYTARG (XVTARG (OBPOS OB) (MLVFIND (QUOTE (TIIETA ROBOT$))) DIST))) 20,) 

(20. (NEARENOUGH OB XYTARG TOL) NIL CLEANUP) 
(25. (NOT (NEARENOUGH OD (OBPOS OB) TOL)) NIL Cl) 
(JO. (GREATERP (ABS (ANGLEDIF (DEARINGTO XYTARG (OBPOS OB)) (MLVFIND (QUOTE (THETA ROBOT$))))) 90.) 

NIL 
CLEANUP) 

(40. (MEMQ (QUOTE HC) (WIIISKERS)) 
((SE:I'Q DOSETPOS NIL) (SETPUSIIOBPOS OB (PLUS RADFRONT 0,5))) 
CLEANUP) 

( 50, (IIEMQ (QUOTE Fil) (WlltSKERS)) 
((OVRID I.) (ROLL 

20.) 

(DIFFEl!ENCE (DISTANCE XYTARG (OBPOS (QUOTE ROOOf))) 
(PLUS RADFRONT (MLVFIND (LIST (QUOTE RADIUS) OB (QUOTE$)))))) 

(OVRID O.) 
(SE:I'Q OOSETPOS NIL) 
(SE'TPUSIIOBPOS OB RADFRONT) 
(MLIJELETE (LIST (QUOTE NEXTTO) OB (QUOTE$))) 
(MLIJELETE (LIST (QUOTE lfEXTTO) (QUCYl'E $) OD))) 

(CLEANUP DOSETPOS ((SETPUSHOBPOS OB (PLUS RADFRONT 0,5))) Cl) 
(Cl (FCWON) ((ROLLBACK) (ROLL -1.)) C2) 
(C2 T ((MU>ELE'TE (QUCYl'E (NEXTTO ROBOT$)))) R)) 

(•: MARKOVTABLE TABLE)) 

(DEFPfiOP PUSlll ( DIST OD TOL) ( •: MAfiKOVTADLE PARAMETERS)) 

(OEFPROP PUSlll ((TOL I.) XVTA11G (RI\DFRONT 1.5) (DOSETPOS T)) (•; M/111KOVTADl,E LOCl\l,S)) 
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Figure 7: CONTROL STRUCTURE OF THE INTERMEDIATE LEVEL 

function returns a path along which the robot can navigate from ROB to G. If JOURN is 

PUSH, the returned value is a path by which the robot can move a box at ROB to point 

G. In this case global variabla PUSHOBNAME (name or the box} and OBRAD (radius or 

the box) are set, so that in computing a pushing path the box radill5 and the ability of the 

robot to get behind the box are taken into account. 

The returned value from FINDPATH is a list or subgoal points to be arrived at in order: 

((X1 Y 1)(X2 Y 2) ... (X
0

_1 Y 
0

_1)G). Ir a direct-line path exists from ROB to G, the value of 

FINDP A TH is just ( G ); if no path exists, the value is NIL. 
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The pathfinding algorithm is a breadth-first search or the tree or predecessors to G. At 

each node or the tree, FINDPATH tests for a direct-line path between ROB and the 

current node, say PN. If it exists, the path from PN to G is returned. Otherwise, the 

tree is grown one level deeper from PN by computing predecessors to that point. Ir no 

predecessors exist, the path from PN to G is removed from the tree, thus reducing the 

search space. 

The predecessors to node PN are defined as the intersections or the tangent lines from ON 

and ROB around the first obstructing object in the straightline path connecting them. 

Thus. each point has at most two predecessors. Figure 8 illustrates one possible 

configurat.ion that would generate the tree in Figure 9. 

l3efon a computed predecessor is added to the tree, it is tested to determine whether it is 

within the room or within the region or another obstacle. It either condition is true ( as 

for P0 in Figure 8), a shorter path (PS P4) is computed using the tangents that generated 

PO: If eit,her of t.hese points is unacceptable under the criterion just described, the entire 

search in t.hat direction is abandoned, and the next node (in this case P3) is considered. A 

predecessor that is acceptable under this criterion ia added to the tree if a straightline 

pat.h exists between it and its parent node. Otherwise, predecessors are sought recursively 

to find a path from the parent node to its computed predecessor. 

The searching in FINDPATH terminates, then, when either a path ha.s been found or 

when the search tree is reduced to NIL. Thus, the path that is chosen (assuming at least 

one exists) is the firat one found, that is, the one with the smallest num her or legs in the 

journey. This criterion was chosen over a minimum-distance criterion to reduce the 

amount of subsequent thinking and execution time for the robot.• 

• From /11/, pages 87-49. 
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Figure 9: SEARCH TREE FQR CONFIGURATION OF FIGURE g• 

• From [11/, page ,18. 
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CHAPTER SIX 

Vision Routines 

We first present an overview of the main vision routines from {11}. 

A. Introduction 

Th<' rurrP11t robot. executive program never calls for a general visual scene analysis. 

lnstPad. under appropriate circumstances various or the intermediate-level actions (ILAs) 

call specific ,·ision routines to answer certain ,pe.:ific questions. These specialized vision 

programs perform three basic tasks: locating and orienting the robot, detecting the 

presence or objects, and locating objects . 

. \ summary or t.he six vision routines currently used by the ILA.sis given below in Section 

C. PICLOC is described in Appendix B, and CLEARPATH is described brieny later. 

1\fost of 1.he ot.her routines make use or LO BLOC, which uses vision to locate accurately 

an object, whose position is only roughly known. 

The rollowing section describes the operation or this routine in some detail. 

B. Object Location 

Gis-en t.he approximate noor location or an object, LOBLOC takes a television picture or 

the object. aunlyz!'s the picture to find the exact coordinates, and enters this information 

in the robot's world model. This specialized task can be done more rapidly and with less 

chance for error by a special program than by performing a complete scene analysis and 

then extracting the desired an,wer from the resulting description. However, certain 

precondit.ions must be satisfied for LOBLOC to function properly. These are as follows: 

( l) The approximate location must be sufficiently accurate and the object 

muH be sufficiently small and unoeduded that at least two, and 

preferably three, lower corner, or the object are in view. 

(2) The object and the robot must be in the same room. 
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(3) The location of the robot with respect to the walls must be kno-..·n to 

within approximately one foot. 

The l'irst action that LOBLOC performs is to pan and tilt the television camera so that 

the nominal fioor position image is in the center of the picture. The resulting picture is 

taken at 60-line resolution to speed subsequent region analysis operations. However, 

before region analysis is begun, the program acc=es the model to compute the image of 

the wall-fioor boundary. Everything in the picture above this boundary is erased, thereby 

eliminating baseboards, door jambs, and other possible sources of confusion. 

The resulting picture is then subjected to region analysis. That is, it is partitioned into 

elementary regions, and thae regions are merged using the phagocyte and weakness 

heurist.ics [16]. The following regions are automatically deleted from the resulting region 

list: 

( 1) The region above the wall-fioor boundary. 

(2) All regioDS smaller than some threshold 8. (Currl'ntly 8 = 4 cells.) 

The next. major step is to identify the Ooor region. This is done by scoring each region. 

Thl' features or properties that enter into this score are the area A, the ratio R of 

perime!.er·squared to area, the average brightness 8, and the lowest coordinate Z of th~ 

e:,ctl'rnal contour. Letting Amax be the largest area, Rmax the largat ratio, Bmax the 

highest brightness, and Zmin the smallest coordinate, we compute the scoring function by 

+ (1 · ~) 2 
+ (1-~ )2 

+ (Z· Zmin)2 . 
Rmax Bmax 60 

The region for which D2 is minim um is declared to be the fioor. 

The next major stl'p is to inspect the n ~eighbors of the Ooor to find the ones that are 

most likely to be the faces of the object in question. Special tests are made to treat the 

simple cases where n happens to be 0, 1, or 2. In general, for each region neighboring the 
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floor we comput.e its area A and a quantity X which is a simple measure of the horizontal 

displ:zrcmrul of the region from the center of the picture. These features are combined io 

a sroring fnnC't.ion: 

and the region for which D2 is minimum is declared to be one face of the object. The 

same cri1.crion is used to select the other visible face from the neighbors of both the noor 

and t.br firs!. face. 

The major problem remaining is to identify the vertices where the corners of the object 

meet. 1.be noor. This is done by processing the common boundary between the face regions 

and the floor regioo. After simple straight-line connectiom are made between endpoints 

of any gaps, t.bis common boundary consists of a chain of points along the lower edge of 

the object. The lowest point on this chain is taken to be the central vertex, and the 

corners on either side are found by the method of iterative end-point r.ts [17]. Once these 

1.hree image points are determined, the support hypothesis is used to locate the 

corresponding points on the noor. The resulting coordinates can then be entered in the 

model under the name of a new object if the status of the room is unknown, or under the 

nnme of t.he nearest object if the status is known. 

C. ILA Vision Routines 

The following is a summary of the intermediate-level routines related to Shakey's visual 

syat.em: 

CLEARPATH (X Y) decides whether the path from (AT ROBOT$*) to (X Y) is 

clear. In analyzing pictures, it impects only the image of the path to be traversed, and it 

uses the range finder to detect large, close objects. The value returned is either CLEAR, 

UNKNOWN, or (BLOCKED XO YO), where (XO YO) roughly locates an obstacle. 

OBLOC (OB) uses the model information about the location of object OB and the 

routine LOBLOC to update (AT OB$*) and (DAT OB$•). 
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PICBUMPED (X Y) is called when a bump occurs at (X Y). tr Shakcy is in a room or 

known status, PICBUMPED calls PlCLOC; otherwise it calls l'lCDETECTOB (X Y). 

PICDETECTOB (X Y) uses LOBLOC to locate the object near (X Y). It Shakey is 

in a room or known status, and it OB is the nearest object, (AT OB$•) and (DAT OB$•) 

are updated; otherwise a new object is entered in the model. 

PICLOC uses the landmark routine (Appendix BJ to update (AT ROBOT s•), (DAT 

ROBOT s•J, (THETA ROBOT $), and (DTHETA ROBOT $). 

PICTHETA updates (THETA ROBOT$) and (DTHETA ROBOT$). Intended to be 

used before a long, straight-line journey, PICTHETA currently calls P!CLOc.• 

Additional material about Shakey'a viaion system waa reported in {10/. 

Vision Programs lor Intermediate-Level Actions 

The special-purpose vision programs basically perform only three functions: orienting and 

locating the robot, detecting the presence of objects, and locating objects. We shall 

consider each of these functions in turn; 

When the environment of the robot is represented accurately and completely in the 

model, the chiet role of vision is to provide feedback to update the robot's position and 

orientation. Angular orientation information is often needed in advance of a relatively 

long trip down a corridor, where a small angular error might be significant. The simplest 

way to obtain orientation feedback is to find the noor /wall boundary in the picture, 

project it onto the noor, and compare this result with the known wall location in the 

model; any observed angular discrepancy can be used to correct the stored value of the 

robot's orientation. 

For maneuvers such as going through a doorway, both the robot's position and orientation 

must be accurately known. This information can be obtained from a picture of a known 

• From {11/, pages 51-54. 
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point and line on Lbe floor. Such distinguished points and lines arc called landmarks, and 

include doorways, concave corners, and convex corners. The basic program for finding 

such l;;ndmarks is described in Appendix B. The program h:i.s undergone several 

rcfincmenLs and improvements, and now works with the model described in Chapter 

Three. Execution time is essentially the time required to pan, tilt, and turn on the 

camera.* Concurrently, the accuracy is limited by mechanical factors to between 5 and IO 

percent in range and 5 degrees in angle. Increased accuracy, if needed, can be obtained by 

improving the pan and tilt mechanism for the camera. 

Before t-he robot starts a straight-line journey, it may be desirable to check that the path 

is indeed dear. A simple way to do this is to find the image of the path in the picture 

and examine that trapezoidal-shaped region for changes in brightness that might indicate 

the presence of an obstructing object. This is a simple visual task, and a program 

implement.ing it has been written. In its current form tbe program uses the Roberts-cross 

opernt,or t.o dct.ect brightness changes. When we first ran the program, we were surprised 

to discover that at st,eep camera angles the texture in the tile floor can be detected and 

giYe rise to false alarms. This is an instance of a major shortcoming of special-purpose 

vision routines, namely, the failure of simple criteria to cope with the variety of 

circumstances that can arise. This particular problem can be solved by requiring a certain 

minimum run-length of gradient. However, shadows and reflections can still cause false 

alarm,, and t be only solution to some of these problems is to do more thorough scene 

analysis.•• 

•since the camera, television control un.it, and television transmitter draw a large amount of 
power from the batteries, they are normally orr. Approximately ten seconds is required from the 
time these units are turned on to the time that a picture can be taken . 

.. From /10/, pages 41-49, 
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CHAPTER SEVEN 

STRIPS 

Shakey used a. planning system ca.lied STRIPS {a.n acronym ba.sed on 

S'Tanford Research Institute Problem Solver) to cha.in together ILAs tha.t 

would accomplish specific goals. STRIPS was one of the important ea.rly 

problem-soluing systems. The original version of this program is 

described in detail in a. pa.per {18}; a. somewhat modified story appea.rs •n 

{19]. More recent hierarchical planning syatema, such a.a NOA.FI {20} a.nd 

SIPE {21], would now be more a.ppropria.te tha.n STRIPS for robot 

planning. The following e:i:cerpt ia a. aumma.ry of STRIPS tha.t a.ppea.red 

in a pa.per a.nd an SRI AI Center Technical Note {22} a.bout learning a.nd 

ezecuting pla.na. 

Description 

Decause STn!PS is basic to our discussion, let us briefiy outline its operation. The 

prirni1.ive anions available to the robot vehicle are precoded in a set of action rout.ines. 

For example. execution of the routine GOTHRU(Dl,RI,R2) causes the robot vehide 

act.ually to go through the doorway, DI, from room RI to room R2. The robot system 

keeps !,rack of where the robot vehicle is and stores its other knowledge of the world in a 

model composed of well-formed formulas (w(fs) in the predicate calculus. Thus, the 

,,-,1 em kno-ws t-hat there is a doorway DI between rooms Rl and R2 by the presence of 

the wff CONNECTSROOMS(Dl,R2,R2) in the model. 

T,c,ks are given to the system in the form of predicate calculus wffs. To direct the robot 

to go to room R2, we pose for it the goal wff INROOM(ROBOT,R2). The planning 

system, STRIPS, then attempts to find a sequence of primitive actions that would change 

the world in such a way that the goal wff is true in the correspondingly changed model. 

In order to generate a plan of actions, STRIPS needs to know about the effects of these 

actions; that is, STRIPS must have a. model of each action. The model actioll!l are called 

operators and, just as the actions change the world, the operators transform one model 
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into anot.hcr. l3y applying a sequence of operators to the initial world model, STRIPS can 

produce a sequence of models (representing hypothetical worlds) ultimately ending in a 

model in which the goal wff is true. Presumably the, execution of the sequence of actions 

corresponding to these operators would change the world to accomplisb the task. 

F:ach STRIPS operator must be described in some convenient way. We characterize each 

operator in the repertoire by three entities: an add function, a dtlete function, and a 

precondition wff. The meanings of these entities are straightforward. An operator is 

applicable to a given model only if its precondition wff is satisfied in that model. The 

effect of applying an (as5umed applicable) operator to a given model is to delete from the 

model all those clauses specified by the delete function and to add to the model all those 

clauses specified by the add function. Hence, the add and delete functiollS prescribe how 

an operator transforms one state into another; the add and delete functions are defined 

simply by lists of clauses that should be added and deleted. 

Within t.his basic framework STRIPS operates in a GPS-like manner [23J. First, it tries to 

establish t.hat a goal wrr is satisfied by a model. (STRIPS uses the QA3 resolution-based 

t.heorem prover [15] in its attempts to prove goal wffs.) If the goal wff cannot be proved, 

STRIPS selects a "relevant" operator that is likely to produce a model in which the goal 

wff is "more nearly" satisfied. In order to apply a selected operator, the precondition wff 

of that operator must of course be satisfied: This precondition becomes a new subgoal 

and the process is repeated. At some point we expeet to find that the precondition of a 

relevant operator is already satisfied in the current model. When this happens the 

operator is applied; the initial model is transformed on the basis of the add and delete 

funct.ions of the operator, and the model thus created is treated in effect as a new initial 

model of 1.he world. 

To complete our review of STRIPS we must indicate how relevant operators are selected. 

An operator is needed only if a subgoal cannot be proved from the wffa defining a model. 

In t.his case the operators are scanned to find one whose effects would allow the proof 

attempt to continue. Specifically, STRIPS searches for an operator whose add function 

specifies clauses that would allow the proof to be successfully continued (if not completed). 

\Vhen an add function is found whose clauses do in fact permit an adequate continuation 

of the proof, then the associated operator is declared relevant; moreover, the substitutions 

used in the proof continuation serve to instantiate at least partially the arguments of the 

operator. Typically, more than one relevant operator i11Stance will be found. Thus, the 
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cn•ir~ STllll'S planning process takes tbe form of a tree search so that the consequences 

of consi,kring different relevant operators can be explored. In summary, tbe "inner loop" 

of STP.IPS works as follows: 

(I) Select a ,ubgoal and try to establish that it is true in the appropriate 

model. If it i,, go to Step 4. Otherwise, 

(2) Choose as a relevant operator one whose add function specifies clauses 

1.bat allow the incomplete proof of Step I to be continued. 

( 3) The appropriately instantiated precondition wff of the selected operator 

constitutes a new subgoal. Go to Step 1. 

( ~) If the subgoal is the main goal, terminate. Otherwise, create a new 

model by applying the operator whose precondition is tbe subgoal just . 

established. Go to Step I. 

The final out.put of STRIPS, then, is a list of instantiated operators whose corresponding 

art-ions will achieve the goal. 

An Example 

An underst.anding of STRIPS is greatly aided by an elementary example. The following 

example considers the simple task of fetching a box from an adjacent room. Let us 

ouppose thnt the initial state of the world is as shown below: 

Room Rl 

ROBOI' 
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Initial Model 

Mo: INROOM(ROBOT,Rl) 

CONNECTS(Dl,Rl,R2) 

CONNECTS( D2,R2,R3) 

BOX(BOX!) 

INROOM(BOXI,R2) 

(lfx lfy lfzl[CONNECTS(x,y,z) => CONNECTS (x,z,y)] 

Go.a.I wff 

Go: (3x) [BOX(x) A INROOM(x,Rl)] 

We assume ror this example that models can be transformed by two operators GOTHRU 

and PUSHTHRU, having the descriptions given below. Each description specifies an 

optrator schema indexed by schema variables. We will call schema variables param<lers, 

and denote them by string, beginning with lower-case letter.,. A particular mem her of an 

operator schema is obtained by iDlltantiating all the parameter., in its description to 

roost.ants. It is a straightforward matter to modify a resolution theorem prover to handle 

wffs cont,aining parameter., [18], but for present purposes we need only know that the 

modifkation ensures that each parameter can be bound only to one constant; hence, the 

operator arguments (which may be parameter.,) can assume unique values. (In all of the 

rollowing we denote constants by string, beginning with capital letters and quantified 

variables by x, y, or z): 

GOTHRU(d 1r1 1r2) 

(Robot goes through Door d from Room rl into Room r2. 

Precondition wff 

INROOM(ROBOT,rl) A CONNECTS(d,r!,r2) 
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Delete List 

INROOM(ROBOT,$) 

Our convention here is to delete any clause containing 

a predicate of the form INROOM(ROBOT,$) for any value 

of$. 

Add List 

lNROOM(ROBOT,r2) 

PUSHTHRU(b 1d 1r 11r2) 

(Robot pushes Object b through Door d from Room rl 

into Room r2.) 

Precondition wrr 

INROOM(b,rl) /\ INROOM(ROBOT,rl) /\ CONNECTS(d,rl,r2) 

Delete List 

lNROOM(ROBOT,$) 

INROOM(B,$) 

Add List 

INROOM(ROBOT,r2) 

INROOM(b,r2). 

\\'hen STRIPS is given the problem it first attempts to prove the goal G0 from the initial 

n1odcl M0. This proof cannot be completed; however, were the model to contain other 

clauses. such as [NROOM(BOXl,Rl), the proof attempt could continue. STRIPS 
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determines that the operator PUSHTHRU can provide the desired clau.,c-; in particular, 

t.he partial instance PUSHTHRU(BOXI,d,rl,Rl) provides the wrr INROOM(BOXI,R!). 

The precondition G1 for this instance or PUSHTHRU is 

G 1: INROOM(BOXI ,rl) 

I\ INROOM(ROBOT,rl) 

I\ CONNECTS(d,rl,Rl). 

Thia precondition is set up as a subgoal and STRIPS tries to prove it Crom M0. 

Although no proof for G1 can be round, STRIPS determines that it rl = R2 and d = DI, 

then the proor or G1 could continue were the model to contain INROOM(ROBOT,R2). 

Again STRIPS checks operators for one whose errects could continue the proor and settles 

on the instance GOTHRU(d,rl,R2). Its precondition is the next subgoal, namely: 

Gz= INROOM(ROBOT,rl) 

I\ CONNECTS(d,rl,R2). 

STRIPS is able to prove G2 from M0, using the substitutions rl = RI and d= DI. It 

therefore applies GOTHRU(Dl,Rl.R2) to M0 to yield: 

M1: INROOM(ROBOT,R2) 

CONNECTS(Dl,R,R2) 

CONNECTS(D2,R2,R3) 

. BOX(BOXl) 

INROOM(BOXl,R2) 

(Vx Vy Vi)(CONNECTS(x,y,z) => CONNECTS(x,z,y)]. 

Now STRIPS attempts to prove the subgoal G1 from the new model M1. The proor is 

succcssfol with the instantiations rl = R2, d = DI. These substitutions yield the 

operator instance PUSHTHRU(BOX1,Dl,R2,Rl), which applied to M1 yields 
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M2: INROOM(ROBOT,RI) 

CONNECTS(Dl.RI ,RZ) 

CO NNECTS(DI ,R2,R3) 

BOX(BOXI) 

!NROOM(BOXI ,RI) 

(Vx Vy Vz) [CONNECTS(x,z,y)J. 

Next. STRIPS attempts to prove the original goal, G0, from M2. This attempt is 

S1Jccessful and the final operator sequence is 

GOTHRU(Dl,Rl,RZ) 

PUSHTHRU(BOXI ,DI ,R2,RI ). • 

• From fee}, pages 4·11 of Technical Note. 





CHAPI'ER EIGHT 

LEARNING AND EXECUTING PLANS 

Once a plan to accomplish a aoal has been constructed, the robot e:::ecutivr. 

system, called PLANEX, e:::ecutes it. If problems arise durina e:z:ecution, 

PLANEX must also decide how to modify the plan it is e:z:ecutina or 

whether to construct a new plan. Th.e Shakey system also was able to 

learn generalized versions of the plans it constructed that could be used to 

help accomplish subsequent tasks. These capabilities were described in a 

paper [ttj and aummarized in one of the Shakey technical reports {11}. 

The followina e:z:cerpt is from that report: 

A. Introduction 

The basic problem-solving system used by Shakey is STRIPS, a system that makes use of 

a combination of heuristic search and formal deductive techniques. However, STRIPS in 

its original form is limited to constructing a plan for solving a ~pecific problem. In this 

section we describe new: 

( l) Procedures for constructing "generalized" plans that are applicable to a 

large family of problems (in addition to the specific problem that 

motivated the planning process). 

(2) · Methods for storing, selecting, and monitoring the use of generalized 

plans while a task is actually being carried out. 

The recently developed methods for storing and using generalized plans allow us: 

(I) To store a generalized plan as a ~quence of, say, n parameterized 

operators. 

(2) To use as a single operator in a subsequent planning process many of 

the legal-subsequences among the 211 • l subsequences of the original 

sequence or n operators. 
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(3) To identify for monitoring purposes exactly those effects of a selected 

subsequence that are necessary for the success of the new plan. 

As a rough illustration of the use of these capabilities, suppose that we already have a 

generalized plan for closing a door and turning off a light. We are now given the task of 

just turning off some particular light. The methods to be described will extract from the 

original pl:in the appropriate subsequence of operators needed to turn off the light. 

Suppose now that the subsequence of operators, or aubplcm, for turning off the light also 

has t,he effect of leaving the robot pointing in a specified direction. If this effect is a 

legitimate side-effect-that is, if the successful execution of the plan does not require the 

robot to be pointing in a specified direction-then the methods described will identify this 

fact and the final robot orientation will not be monitored during plan execution. Hence, 

the plan execution mechanism will not reject as "unsuccessful" an execution that has 

failed only in a detail irrelevant to the task at hand. 

The processes for storing a generalized plan begin with the creation by STRIPS of a 

generalized plan, or macro operator-that is, a sequence of n operators whose arguments 

:ire parameters. During the creation of this plan, STRIPS performed proofs 

demonstrating that each operator was in fact applicable at the time it was used. We 

assume throughout this section the availability of both the STRIPS plan and certain 

information about the ~tructure of the proofs performed by STRIPS to generate the plan. 

We also assume the availability of descriptions of each operator used in the plan. An 

operator description consists of three thin1r-1: a praondition formula, which must be 

provable from a model if the operator is to be applied to that model; an add-liat, 

specifying clauses added to the model; and a delete function (represented as a list of 

literals), which inaps a set of clauses into a subset of itself that remains true after the 

operator bas been applied. 

B. Storage or a Generalized Plan 

We store a generalized plan in the the form of a triangular table* as shown in figure iO. 

The columns of the table, with the exception of column 0, are labeled with the names of 

the operators of the plan, in this example OP 1, ... ,OP 4 . For each column i, i = l, ... ,4, we 

place in the top cell the add-list·\ of operator OPi. Going down the jth column, we place 

*The late John Munson of the SRI Artificial Intelligence Center originally euggested this 
tabular format. 
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in consecut.ive cells the portion of Ai that survives the application of subsequent operators. 

This is indicated by the delete function Di, i = 2, 3, 4, that maps an add-list into the 

subset of it.self remaining true after the application of OPi. (The delete function D1 of 

OP I is nppli~d to the model in which MA CROP is applied, and not to any of the add· 

lists.) Thus, cell (2,1) contains D2'A1), which is the portion of A1 still true after OP2 is 

applied. Cell (3,l) contains D3(D2(A1)) =D 3D2(A1), which is the subsel. of A1 that 

survives the application of both OP 2 and OP 3. 

We can now interpret the content of the ith row of the table, excluding the first column. 

Since each cell in the ;th row (excluding the first) contains statements added by one of the 

first i operators and not deleted by any of the first i operators, we see that the union of 

the cells in the ith row (excluding the.first cell) specified the add-list obtained by applying 

in sequence OP 1, ... ,OP;, We denote by A1, ... ,i the add-list achieved by the first i 

operators applied in sequence. The union of the cells in the bottom row of a triangle table 

specified the add-list of the complete macro operator. 
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Let us now consider the first column or the triangle table, which we have so far ignored. 

Loosely, the statements in row i or column zero are involved with the precondition 

formula PCi+l of OPi+l' To be more specific, cell (i,O) contains clauses needed to prove 

PCi+ 1 but not contained in A1, ... ,i· We will call the set or clauses (axioms) used to prove 

a. formula the support of that rormula. The clauses in cell (i,0) are therefore the portion 

oft.he support of PCi+l that was true in the initial state. (In Figure 10, we have used the 

not.at.ion PCiA-A 1, .... i to indicate the contents of cell (i,O).) The remaining part of the 

support of PCi is supplied by applying in sequence OP 1, ...• OPi. The ith row of the table, 

then, cont:iins the complete support of the precondition or OPi+I· It is convenient to fia.g 

t-he clauses in row i that are the support of PCi+l· and hereafter speak of marked clauses; 

by construct.ion, obviously, all clauses in column zero are marked. 

C. Planning with Generalized Plans 

1, General Approach 

In t.he preceding section, we described the construction of triangle tables for storing 

generalized plans. Now let us con.,ider how a generalized plan will be used by STRIPS 

during a subsequent planning process. 

The first thing to emphasize is that the itb row of a triangle table (excluding its first cell) 

represents the add-list A1, ... ,ii an n-row table presents STRIPS with n alternative add

lists. any one of which can be used to reduce a difference encountered by STRIPS during 

its norm:il planning process. STRIPS selects a particular add-list in the usual fashion by 

test.ing the relevance of that add-list with respect to·the difference currently being 

considered. Suppose for a moment that STRIPS selects the ;th add-list. Ai,. .. ,i' i <n. 

Since this add·list is achieved by applying in sequence OP 1 , ... ,OP;, we will obviously not 

be int.erest.ed in the application of OPi+l , ... ,OP n• and will therefore not be interested in 

rstablishing any of the preconditions PC;+ l' ... ,PC
8

• Now in gener:il, some steps of a plan 

are needed only to establish preconditions for subsequent steps. If we lose interest in the 

tail of a plan-that is, in the last (n - i) operators-then we may be able to achieve some 

economies by omitting those operators among the first i whose sole purpose is to e,itablish 

preconditions for the tail. Conceptually, then, we can think of a single triangle table as 

repre,ienting a family of generalized ope~ators. Upon the selection by STRIPS of a 

relevant add-list, we must extract from this family an economical parameterized operator 

achieving the add-list. STRIPS must then be provided with a complete 

68 



dcsai pt ion-precondition wff, add-list, and delete function-of the extracted operator so 

that it can be used during the planning process. 

In th~ following paragraphs, we will explain by means of an example an algorithm for 

acrnm plishing this task of operator •::traction. 

2. The Opera.tor Extraction Algorithm 

C'onsider th~ illustrative triangle table shown in Figure 11. Each of the num hers within 

cells represents a single clause. The circled clauses are "marked" in the sense described 

earl icr: t nat is, they are used to prove the precondition of the operator whose name 

appears on t.be same row. A summary of the structure of this plan is shown below, where 

'T" refers t.o t.he initial state and "F" to the final state: 

Operator 

OP 1 

OP 2 

OP3 

OP4 

OP 5 

OP6 

OP 7 

Precondition Support 

Supplied By 

I 

l,OP 1 

l,OP 2 

l,OP 5 
l,OP 3,0P 6 

Precondition Support 

Supplied To 

OP 4 

OP 5 

OP7, F 

F 

OP 6, F 

OP7 

F 

Suppose now that STRIPS selects A1 , ... ,6 as the desired add-list and, in particular, selects 

dnuse 16 and clause 25 as the particular membe!"ll of the add-list that are relevant to 

reducing the difference of immediate interest. These clauses have been marked on the 

table with a dot. The operator extraction algorithm proceeds by examining the table to 

determine what effects of individual operatol"ll are not needed to produce clauses 16 and 

25. First, OPi is obviously not needed; we can therefore remove all circle marks from row 

0, since those marks indicate the supP,Ort of PC7. We now inspect the columns, beginning 

with column 6 and goi°ng from right to left, to find the first column with no marks of 

either kind. Column 4 is the first such column. The absence of marked clauses in column 
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4 means that the clauses added by OP 4 are not needed to reduce the difference and are 

not required to prove the precondition or any subsequent operator; hence we delete OP 4 

from the plan and unmark a.II clauses in row 3. Continuing our right-Lo-left scan of the 

columns, we note that column 3 contains no marked dauses. (Recall that we have already 

unmarked clause 13.J We therefore delete OP3 from the plan and unmark all clauses in 

row 2. Continuing the scan, we note that column 1 cont.:,ins no marked entries (we have 

already unmarked clause 11 ), and therefore delete OP 1 and the marked entries in row 0. 

Q 8 
OP

1 

0 11. 12 
13 

OP
2 

e 11. 12 
f,4, 15 .. 2 

°", 

0 @.12 15. 16 
17, 18 

19.20 
l 

o•. 

• 0 12 e 17, 18 21, 22 
19, 20 2:1 

i °"• 
5 9 12 •• 17, 18 2t. 22 e 

°"• 
• • 

6 G 18 .,.e 21, 22 2• e 
OP7 

' 17 21 ,. 28 

I i 

0 , l • • 

Figure 11: MACROP WITH MARKED CLAUSES 
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The result or the table-editing process just described is shown in Figure 12. (The question 

mark in cell (2,l) will be explained momentarily.) A summary of the structure of this 

plan is shown below: 

0 0 
OP, 

0 G 
OP

5 

e ? 8 
OP

6 

• • 
3 16 24 2S 

0 3 

TA-8973,.,14 

Figure 12: MACROP AFTER EDITING 

Precondition Support Precondition Support 

Operator Supplied Bv Supplied To 

OP2 I OP5,F 

OP5 I,OP 2 OP6 
OP6 I,OP5 F 

We have thus reduced the seven-step generalized plan we started with to a compact three

step plan that specifically produces an add-list containing the relevant clauses. 

Now that an operator achieving a desired add-list has been extracted, we must provide 

STRIPS with its description. The precondition wff is obvious; it consists of the 
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conjunct.ion of all clauses in column 0. The computation of the add-list and delete 

function of t,he new operator is a little more complicated. First, notice in rigure 11 that 

dau~es J.I. 15, and 16 are added by OP2. Clause 14 is evidently deleted by OP3 since it 

does not appear in cell (3.2). The extracted plan, however, docs not include OP3, and we 

cannot tell whether clause 14 would survive the application of OP 5 or OP6 in the 

extracted plan-hence the question mark in Figure 12. Furthermore, cell (3,1) may 

contain more clauses than shown. This example illustrates the necessity or computing a 

new add-list and delete function for the extracted operator. 

The computation or a new add-list and delete function for a macro operator is based on 

the add-lists and delete functions of the component operators. Suppose the macro 

operator of Figure 12 is applied to ,ome state S; (in which we assume that clauses 3, 7, 8, 

and 9 are true). Since STRIPS does deletion, before additions, we can write the resulting 

state Sr as: 

where we have used "+" to mean set union. Now it is not difficult to show that delete 

functions distribute over set union, that is, to show for any set A and B and any delete 

function D that 

D(A + BJ = D(A) + D(B) 

Mcnee. we can write the final state Sr as: 

Since t.bis bas the form Sr= D(S;) + A, we ,ee that the delete function of the macro 

operator is the composed function 

and that its add-list is 
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il is interesting to note that this add-list is precisely the last row or the triangle table 

rnn~t-rucl eel as described in the previous section, the plan OP 2. OP 5, OP 6. In general, we 

t'an ~ay that. the add-list of a macro operator is given by the last row of its triangle table 

rcprescntat-ion, and that its delete function is given by the composition of the component 

delete functions. 

3. Refinements 

In the previous paragraphs, we outlined an algorithm for extracting from a generalized 

plan a subsequence of operators that add particular clauses to a model. We would now 

like to describe two refinements: one needed to avoid certain inconsistencies that could 

otherwise occur, and one for achieving further economies when more than one level or 

triangle tables are involved. 

a.. Add-List Refinement 

Consider a simple generalized plan consisting of two consecutive PUSH operators, each of 

which pushes a (parameterized) object to a (parameterized) place. The triangle table for 

this plan might be all shown in Figure 13 where for simplicity we have assumed that the 

PUSH operator has no precondition and hence column O is empty. Because the clause 

AT( OBI.Pl) appears in cell (2, l ), we know that this clause wall not dele1,ed by the second 

push operator. Suppose now that STRIPS selects row 2 as an add-list. By instantiating 

OB 1 and OB2 to the same object name, and instantiating Pl and P2 to distinct locations, 

we evidently have a plan for achieving a state in which the same object is simultaneously 

at two dirferent places! The source or this embarrassment lies in the delete mechanism 

used by ST~IPS, which we now examine in some detail. 
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0 PUSH 1091, Pl} 

AT 1081, P11 PUSH (082, P21 
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0 2 

TA-89?3 .. 15 

Figure 13: GENERALIZED PLAN FOR TWO-PUSH MACROP 

The delete function of an arbit,rary STRIPS operator is specified by a delete-list consisting 

of a set of literals. Ir the operator is applied to a state S, then STRIPS deletes from S 

every clause containing a literal unifying (without regard to sign} with any member of the 

delete-list. If a potential unification involves parameters, as it often dOe!!, then the 

unification can be made.only if it does not contra.diet any.existing bindings of the 

parameters to constants. To continue our example, suppose the seeond push operator is 

applied to the Pi"'ameterized state S: 

AT(OBI, Pl) 

AT(OB2, P3}. 

The delete-list of the second push operator, we assume, contains the single literal 

AT(OB2, $),where"$" unified with anything. If there were no existing bindings of 

parameters to constants, then both clauses in S would be deleted. From figure 13, to the 

contrary, we see that AT(081, Pl) was liot deleted; hence, it must have been the case 

that 081 and 082 represented distinct objects in the unparameterized problem for which 

the plan was originally created. If in a subsequent attempt to use this plan we set OBI = 
082, then we are violating the constraint responsible for the occurrenee of AT(081, Pl) 
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iu th<' final state. Accordingly, we replace the entry in cell (2,1) of figure 13 by the new 

<'nl ry: 

(0111 ,,', 0132) :, AT(OB!,Pl) 

13:,· t.his tn<'ans we indicate t.hat row 2. and cell (2,1) in particular, produces th<' literal 

:\T(Olll. l'l) only under the condition that OB! and 082 are not instantiated to the 

.c;amc.' ron~t::inl. 

Th,· previous example illustrates how a literal can be allowed to survive the application of 

a drll't<' funct.ion only under some condition or the binding,i of its arguments. We 

introduced thi, not ion in the context of maintaining t.he validity or a triangle table, but it 

is more hroa<ll.1' applicable within the general framework or STRIPS. Although it is an 

enlargl'ment on our main theme of storing and using generalized plan.,, let us brieOy 

consider how the notion of condi!ional survival or a literal can be exploited. 

During th<' planning process, STRIPS frequently permits a delete function to delete true 

dau~es from a state description. To overcome this tendency toward excessive deletions, 

we make IIS<' of 1,he notion or conditional survival as defined by the following algorithm. 

Let L(Pl) be a literal in a parameterized state description, and suppose that the deletion 

of the clause containing this literal depends on binding parameter Pl to another 

pararu<'t<'r P2. Then: 

• If Pl or P2 bas no constant binding then replace L(Pl) by Pl ,f P2:, 

Li Pl). lln "standard" STRIPS this clause would simply be deleted.) 

• lf'P I and P2 both represent the same constant in the original problem, 

then delete the clause containing L(Pl). (This is what STRIPS does as a 

standard operation.) In tbe appropriate cell of the triangle table, place Pl 

,,', P2 :, L( Pl). (This generalizes the triangle table beyond the planning 

states used by STRIPS.) Ir Pl and P2 represent distinct constants in the 

original problem, then replace L(Pl) by Pl ,f P2 :::) L(Pl). (This is ~be 

case illustrated by our previous example.) 

\Ve should note that tbe inclusion in 'a table of such clauses as, say, Pl ,f P2 :::) L(Pl) 

leads to certain complications. Suppose, in a subsequent problem, that STRIPS uses such 

a dause in the proof of some precondition. Often, the proof will produce the unit clause 
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Pl = P2. ln this case, we consider the proof completed by assuming Pl ,f,. P2 (providing 

th~ as.~umptiou contradicts no existing bindings). However, we must record this 

:i.•su,nption b:,• placing Pl ,f,. P2 in column O o( the table being constructed; it is, after all, 

now a hypod1esis of !,he theorem. Moreover, all subsequent proofs in the new plan must 

not violate this h;l'pothesis. As a bookkeeping procedure, we can conjoin the assumption 

( viz., Pl ,f,. P2) to each new precondition that STRIPS attempts to prove; this bas the 

effect of prevcnt.ing violatiollll or our assumption. 

b. Relaxing Preconditions in Nested Ta.hies 

Consider !,he situation shown in Figures 14(a) and (b), where we have shown a macro 

operat-0r ~!OP whose ith operator is itself the ma'cro operator OP;. As always, cell (i, i) of 

MOP cont.ains the complete add-list or OPi, while the marked entries or Row (i • I) 

constit.utc t,br support or the proof of the preconditions or OPi. During the planning 

process, suppose STRIPS selects from one of the rows or MOP certain clauses it would like 

to add 1.0 thr current state of the world. Suppose further that some, but not. all, or the 

clauses in cell (i.i) of Figure 14(a) are marked. We can therefore mark in Figure 14(b) 

those clauses in A; that are needed, and exercise the operator extraction algorit.hm on 

table OP;. As we saw earlier, this will at times result in the deletion or some of the 

clause., from PCi. Suppose, then, that some or the clauses or PCi are in fact deleted by 

the operator e~traction algorithm. This raises the possibility or deleting some or the 

clauses in the support, of PCi since they now need to support only a weaker theorem. If 

the support or PC; can be weakened-that is, if some of the clauses in row (i • l) can be 

nnmarkC'd-than in general we may be able to delete more steps from MOP and/ or obtain 

weaker. more c<!SilY established, preconditiollll for MOP. 

ln order for this scheme or precondition relaxation t-0 be feasible, we need an economical 

solution to !,he following abstractly stated problem: Given that a set or clauses C 1, .... Ck 

implies a theorem T 1n ... nTm• which Ci's can be deleted from the premises if a selected 

subs<'I· of the T;'s are deleted from the theorem! Fortunately, it is possible to ~olve this 

problem by appropriately labeling literals during the refutation proof of the theorem. We 

will not elaborate here on the details or this bookkeeping procedure. In terms or the 

example of Figures 14(a) and (b) the important point is that the bookkeeping need be 

done only once, namely, when PCi is shown t-0 be a collllequence or its support. 

Thereafter, it is a straightforward matter to compute, without recourse to theorem 

proYing, the appropriate relaxation or the support or PCi given a relaxation of PCi itself. 
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Figure 14: MOP: A NESTED MACRoP• 

• From {11{, page 69. 
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The ability t,o relax preconditions leads to an obvious refinement of the operator 

ext.raction algorithm described earlier. Previously, we unmarked clauses only when a 

component operator was deleted from a macro operator, in which case the entire support 

of the precondition of that operator was unmarked. Now we can also unmark a subset or 

the support or a component operator still retained in the macro operator. Finally, we 

remark that although Figure 14 shows only two levels or tables, the procedure for relaxing 

preconditions can be implemented recursively; hence; nested tables to arbitrary depth can 

be readily processed. 

D. Monitoring the Execution ot Plana 

In this section we outline an algorithm for using triangle tables to monitor the real-world 

execution or generalized plans. An important feature or the algorithm is that it monitors 

only those effects or operators, and only those aspects or the world, rele\·ant to the 

problem solution. Additionally, the algorithm embodies a modest replanning capacity in 

the form of an ability to reinstantiate parameters or operators. 

The plan exernt.ion algorithm rests on the observation that a triangle table contains 

complete information about the internal structure or the plan it represents. More 

specifically, a t,riangle table specifies exactly what each operator accomplishes in terms or 

providing support for the preconditions or subsequent operators or the goal statement. 

EquiYalently. a triangle table also specifies the conditions that must obtain in order for a 

component operator to be applicable.• The plan execution algorithm to be described uses 

this information in a straight-forward manner. 

Important information about the internal structure of a plan is embodied in the kernds of 

a triangle table: The ;th kernel or a triangle table for an n·step plan is the largest 

rectangular subarray containing cells (n,0) and cell (i·l,i-1). In Figure 10, by way of an 

example, we have outlined the second kernel of MACROP. The importance or the ith 

kernel stems from the fact that it contains the support of the preconditions for the tail oi 

t.hc plan-that, is, the the operator sequence OPi , ... ,OP 
0

• This should be clear. since row 

j of the ;th kernel contains that portion or the support or PCj+l that must already.be 

true when OP; is executed. To continue with the example of Figure 10, cells (2,0) and 

•strictly speaking, a triangle table specifies the support ror the particular proor or a precondition 
found by STRIPS. In general. there are many possible supports for a given precondition, but we 
would not expect a plan execution algorithm to be cognizant or them. 
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U. l) rontaio thos<' axioms in PC3 that are presumably true before OP~ is executed. Ir 

an, or tL,·se axioms are false, then even perfect execution of OP,, will not result in a state 
• # 

iu whkh OP 3 is applicable. Roughly speaking, then, a reasonable plan execution 

algorithm should find the highest indexed kernel with all true entries and execute the 

rorrrsponding component operator. 

Surh an algorit,hm would reflect the heuristic that it is best to execute the "legal" 

oprrat.or lr:i.st removed from the goal. 

An important refinement of the rough execution algorithm outlined above can be obtained 

hy noting t.hat the ith kernel contains in general not only those clauses supporting proofs 

of prrromlit.ions but many additional clauses as well. These additional dauscs are 

irrelevant to !,he problem at band, and we would certainly want our execution algorithm 

to ignore t.hem. The identification or relevant clauses is easily acrom plished using the 

operator ext-rartion algorithm previously described. The final row of the table 

representing a plan to be executed contains the support of the goal formula, and the 

supporting clauses are marked as before. The operator extraction algorithm then 

produces a new operator for achieving those clauses. (We dispense with the computation 

or prccondit-ion formula, add-list, and delete function.) Typically, but not necessarily, all 

t.Lc component. operators will be retained. More importantly, only some or the table 

~n,ries will be marked, and these are the only portions or the kernels that need be 

monitored, 

The t.a.sk of rinding an efficient algorithm for finding the "highest true kernel"-that is, 

the high~s,. indexed kernel with all marked clauses true-is or some interest in itself. Our 

~lgorir hm for finding the highest true kernel involves a cell-by-cell scan of the triangle 

table. Eaclr cell examined is evaluated as either True (i.e., all the marked clauses are true 

in the current model) or False. The interest or the algorithm stems from the order in 

which cells are examined. Let us call a kernel "potentially true" at some stage in the scan 

if all e,·aluat.ed cells of the kernel are true. The scan algorithm can then be succinctly 

stated as: 

Among all unevaluated cells in the highest-indexed potentially true 

kernel, evaluate the left-most .. Break "left-most ties" arbitrarily. 

The reader can verify that, roughly speaking, this table-scanning rule results in a left-to

right. bottom-to-t.op scan of the table. However, the table io never scanned to the right of 
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any cell already evaluated as false. An equivalent statement or the algorithm is "Among 

all unevaluated cells, evaluate.the cell common to the largest number or potentially true 

kernels. Break ties arbitrarily." We conjecture that this scanning algorithm is optimal in 

the sense that it evaluates, on the average, fewer cells than any other scan guaranteed 

always to find the highest true kernel. A proof of this conjecture has not been found. 

The plan execution algorithm described above is embodied in a computer program named 

PLANEX [24!. Whe,n PLANEX is called to execute a table, it executes the component 

operator associated with the highest true kernel. Typically, but not necessarily, this will 

be OP 1• \Vhcn OP 1 completes its action, PLANEX rescans the table to find the highest 

currently true kernel. Typically, but not necessarily, this will be Kernel 2, in which case 

OP 2 is executed, and so forth, until the goal kernel is reached. We emphasize, however, 

that after each operator execution_PLANEX may either call an earlier operator (perhaps 

to rectify an error) or skip to a later operator (perhaps a stroke or luck rendered some 

operators unnecessary). Furthermore, many arguments of predicates in the table are 

parameters; PLANEX is free to instantiate these parameters in order to find a true 

instance of the predicate. Thus, PLANEX is really searching for the highest-indexed 

kernel an iast.ance of which is satisfied by the current state of the world. This ability of 

PLANEX to instantiate-and reinstantiate-arguments provides a modest replanning 

capacity. tr the turn of world events produces a situation in which a solution has the 

same form as a tail of the original plan, PLANEX will find it. If no tail of the plan is 

applicable, t.hen no kernel will be true, and PLANEX returns control to STRIPS to 

r~plan. • 

• From {llj, page• 55-19. 
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CHAPTER NINE 

Ezperi'nun.ts With. Sh.akey 

In. th.is fin.al ch.aptfl!r we illustrate the capabilities described so far by 

giving Sh.akey some specific tasks. The material reprinted below (from. 

{11]) is a description. of planned ezperirn.en.ts th.at wen later carried out 

a.n.d recorded in. a film. and videotape available from. SRI /!!SJ. 

Experiments 

In this sect.ion we shall describe some experiments now being planned that win illustrate 

several features oft.he robot system, which we call, informally, "Shakey." Specifically 

thc$e will ~how how Shakey generates a plan to perform a task, and how it then uses part 

of tbis plan later as a component of a plan for performing another task. Saving plans for 

lnu,r use might be regarded as a form of learning. The experiments also show how the 

various levels in Shakey's hierarchical control structure function to enable Shakey to 

recover grnccfully Crom several kinds of unexpected failures. 

1. Sha.key's World a.nd Model 

We must. first describe the environment in which Shakey operates and Shakey's model of 

this environment. In Figure 15, we show a floor plan of some rooms and doorways in 

whicb our experiments with Shakey will be conducted. We can place several large boxes 

nnd wedge-shaped objects in these rooms; three boxes are depicted in room RCLK of 

Figure [15]. Initially Shakey is in room RUN!. The doorways all have mnemonic names 

inclicatfog t.he rooms they connect; e.g., DMYSPDP connects RMYS and RPDP. Shakey's 

model oft.bis environment is represented by a set of formulas or axioms in the first-order 

predicate calculus. The rooms, doorways, boxes, walls, and other entities occur as terms 

in formulas that describe important properties of the environment. The axiom model 

representing the environment for th7 planned experiments is listed in Table 6. The room 

names are mnemomics for properties or the physical environment: 
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RHAL = Hallway 

RRIL = Rilla'• office 

RCLK = Room with the clock on the wall 

RRAM = Room with ramp to hallway 

RPDT = PDP·IO room 

RUNI = Unimate room 

RMYS = Mystery room, i.e., room with unknown contents. 

The meaning:, of most of the predicate symbols are obviow,. AT gives coordinate location 

informal.ion referenced to the coordinate system of Figure 15. DAT gives information 

about the probable error in this coordinate information. The RADIUS predicate is used 

to give rough size information. THETA and DTHETA give information about Sha.key's 

heading and probable heading error, respectively. The UNBLOCKED predicate tells 

which doorways are unblocked (i.e., free of obstructing objects such as boxes). The 

predicate ROOMSTATUS is w,ed to tell whether the contents of a room are known or 

unknown. The model listed in Table 6 indicates that the contents of all rooms are 

assumed to be known except for RMYS. By this we mean that Shakey knows that he will 

never encounter any new objects except perhaps in RMYS. This know ledge is used to 

guide certain picture-taking behavior, as we shall see later. The LANDMARKS predicate 

gins the locations or various landmarks such as corners and doorjambs that Shakey can 

take pictures of to update its position. The axioms at the end or the model in Table 6 

( beginning with the predicate WHISKERS) give information about the status of various 

lower-level motor and sensing activities, e.g., the status or the catwhisker switches and 

camera control .settings. (These were explained in Chapter Four.) 

Alt.ogether there are 170 axioms in the model initially, which makes this model quite large 

in comparison with those used by any previow, automatic problem·soh·ing systems. 

2. Shakey's Action Repertoire 

In order to perform the tasks described below, Shakey has available a repertoire of ILAs. 

(The operation of these ILAs is described in Chapter Five.) The problem-solving system, 

STRIPS, must be aware of the properties of the available ILA.s. Therefore each ILA is 

represented for STRIPS by an operator with specified preconditions and effects. These 

operators and their descriptions are given in Table 7 using the add and delete lists 

employed by STRIPS. 
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Figure 15: MAP OF SHAKEY'S EXPERIMENTAL ENVIRONMENT* 

• From {11 j, page 6. 
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ATlROBOT,7,~) 

~TtROBOT, 0 .. 1,0.1) 
[NROOil{ AO eat, 1WH I) 
AT(80XO,l4,32) 

tKROOMc eoxo ,RCt.1> 
AT<BOXl,25,22) 

tNROOllt80X l ,RCU) 
AT( 90:(2, 26 • 27) 

tNRCXJM(BOX.2,RCLI) 

SHAPl( eoxo ,a:>Xl 
SHAPE( 80Xl ,BOX) 
SHAPit BOX2,BOX) 
RADIUStBOX0,1.7) 

RADIUS( BOXl, l ,5) 

RADIUS(BOX2,l.5) 
DAT( 80..'t:01 0 .1) 

~TIBOXl,0.1) 

D.\T( BOX2, O ~ l) 
THETA{AODaf , .. 90) 
11TH£1'A( JI.ODOT, l) 
PUSHABLE( BOXl) 

Pl!SHAat.&( BOX.2) 
U'!ffiLOCXED(DR.I.MHAL,flKAL) 
UH'81.0CXED{DRA.XHAL,RRAM) 
UNBI..OOtEV(PCUtatL,RR[L) 
UNBLOCKED( octJ(R. IL, .RCU) 
usm.,ocxmc DRAMCL.l ,.RCU) 
UN'iWX'lED( DRA.NC't.X, Ri!AM) 

t11fB!...OCXED( OMYSRAM ,Rlr'iS) 
U~(DM'\'SRAM,RRAM) 
U1t81.DCXED(DN'YSCU, RCU) 
tnCm..ocu:n( DNYSCU ,Ril't'Sl 
UN'm:.ocu:D( OPOPC'Ll t RCU) 
mrat.ot:1tED( Dl't!Pa.X ,ii.PDP) 
mra.u:x:x£O( CN'YSPDP ,RPDPl 
u~m..ocx.ED(DtrYSPDP ,IUtYS) 
UN'BLOCXED( DUH I MYS ? RMYS) 
tnfBLOCXED<DUKIIIYS,Rt.tHt) 

BOUKDSROCll( FSRAM R&UI satmo 
BOO!mSRCQI{ FER.Ur Ri1AM rM'f) 
900!f'OSR1Xllt( tWRAJII RR.AM wtsT) 

BOUN'DSROOll(nfct.X Rct.X NORTH) 
roUMDSROCII( rsa.x JI.CU: SOOTH) 

BOUtfDSROCll(nc&.K Rct.X EAST) 

BCIJKDSROClll< f'll'CU Rct.X WEST) 
tM:IUHDSROCW(f'MKYS RMYS JfORTRl 
BCIJNDSROOM( FSVYS fUll''t'S $0(fffl) 

BCX1KOSROOM< nxYS RlfY'5 EAST} 
BOt!KDSROOM:t FWNYS RKYS WEST) 
BOlll(l)SROCII( f'NPDP RPDP l'H)Rnt) 

BCIJHDSROCII( TSl'tlP RPDP soono 
BCIJHDSR.OOMCFEPDP RPDP EA.ST) 

BOUJfOSROCll( F'WPOP RPDP W!S't) 

taOOHDSROCII( ttftnC t R.IJJft l'fORTH) 
BCIJKDSR.OOM(FSOM't RUN't satml) 
tunfCSROCll(l'EtllfI RUM'I EAST) 
BOU?(DSROOlt(.,..,.,N't Rtntl WEST) 
FAC!LOC{F!t'RAL ,0,0) 
J'AC!l,.OC( P'SHAL 35 ,$) 

fACJ:l.OC(nKAL 18.200000) 
fACELOC(f'l'KA.t. 11 .. 200000) 
FACELOC( nmu .. 49 .O) 

Table 6: AXIOM MODEL 
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TAC!:LOC(FSRlL 35.400000) 

FACEl,OC(FERIL 36,800000) 

FACEl.OC(f'WRfL 18.,99998} 

TACE.I.DCfFNRAM 35.5} 

FACtl..OCCFSRAN 24,0) 
FACEl.OC{FERAM 18.200000} 
FAC!l.OClFWR.A.M 0,0) 
FACEl,OC{F)!!~ 35,0} 

FACEt.OC{FSCL.X l.5.200000) 
FAC£LOC{F£C...X 36,&00000) 

FACE:LOCl TWCLK 18 .$99997} 
FACl:LOCtFkVYS 23.599997) 

FACEl,OCCFSMYS 7,&000000) 

FACUOC{ FDIYS 18.200000) 

FACELOC{ F'WXYS o.o, 
FAC'El.OC:{ TlfPDP 14 .799998) 

FAC£1,0C(FSPDP s.2000000> 
FACELOC{~ 36 .800000} 

TAC!l.,OC{FYPDP lEI .600000) 

FACU.OC{fl!'UN I 7 .J.999':l99) 
FAC'EJ..O(;(FSUNt 2.1999998} 

FACELOC'(n:IJHI 17 .200000) 

TACEUX'(F"IUNI 0,0) 

JOIHSROOM.S{DJWO!A.L MAM R.HAL) 
JOfNSROOICS(DRAMC:l.JC KRAM RCl,X) 
JOJHSROOMS{DC'l..XRIL RC1J( RRtL) 
JOINSROClilS(DRAKHAL RKAL RAAII) 

JOJNSMOtlS{DRAMQ.X Rel.I MAM) 
JOIKSROCltlS(DCtJtRtL RftlL RCU() 

TYPE{BOXl OBJECT) 
TYPE< BOX2 OBJECT) 
TYPE{ 00,.0 OBJECT) 

TYPE{ RWJ. R.OCII) 

TYPtl RftfL ROCN) 
TYPE( RAAN ROOM) 
TYPEt RC1J( ROQf) 

TYPI:tJOIYS ROCIO 

TY!'I:! lU'llP "°"") 
TYPE{ RUKI ROCIO 
TY'n{DR..UOW. l)OOR) 

TYPE(DR.AlfCU DOOR) 

T'Y'PE(DCLXRIL .DOOR) 
TY'PE{l*YSRAN l>OOIU 
'fYPE(DIO'SCU ~) 
TYP.E{DW\"SPDP DOOR) 
TYPE( DP'DPC'l.X DOOR) 

't'YPE:lD\lKJVYS DOOR) 
DOUKDS.RoalltFM'HALl. MAL JfORTHl 
DOUN'DSROClit( FSl,IAL AHAL sex.mo 
DOU>mSROOMfn::HAL AHAL JAST) 

DOUXDSROCN( F'W'KAL JUIAL 'SEST) 

BOO'N'DSRCXll( Tli'RlL RAtL MOR'ffl) 

DOIDi'DSJtOCtUTSRlL RftIL SOL'TH) 

DOUMDSSWCll(F"ERfL RRJt.. £UT) 

BOU!lDSROOll(nrRtL RftIL WEST) 

BOUHDSRIJOIU 11(RAM R.IWJ Notmn 

JOtNSROClilSlDMYSJWt RKYS RJWO 

JOJNSROONStDlrtSCl,X IUIYS RctJ.:J 
JOIKSROOl&S(mtYSPDP JONS RPOP) 
JOINSROCIIS(OPPPC'l.K RP,W RC:l.JC) 
JOIHSROCMS<DUKIMYS Jnni:l RJIYS) 

JOINS'.FACES(DRAMHA.t.. FNAAIII FSJlAL) 

JOI1tSTACES(Dff.AMCLK FCR.Uli Tlfa.K) 

TABLE: 6, continued 

85 



JOtNSFACES(DCt.kRIL Flle:t..l: rsRtL) 

JOt"SFAC&S(DMYSRAll 'FNV\'S FSRAM) 

JOENSFACts(OM'YSCLK rt:lrYS F'lfCLlt) 

JOt"SFACES(DM"/SPDP FEJf'IS FWPDP} 

JOUfSFActS( OPDPCLJ( fN"POP FSCl.K} 

JOJNSFAC'ESlDUNUIYS FKU"I FSMYS) 
DOORLOCS( DR.UIHAL 11 ,200000 18 .200000) 
OOOJU..OCS(OR.A:NCLK 26.799998 32.0) 
DOORLOCS(DCUtRlL 21.700000 24.799998) 
l)OOIU,.OCS( DIIYSRAll 10 ,0 15 .200000) 
DOORJ.OCS(OM'YSCLX 16.200000 20,11}9998) 
OOO,R1.CCSCDMYSRDP 9,7000000 14,799998) 
OOOIU.OC${0PDPCLK 25,799998 30,799998) 
DOOIU.OCS(DUNIIIYS 10, 199998 16 .Cl 

ROCIISTA1't.lS( RKA.L l.MOWH) 
JtOCl'5'TATL'S( llRIL lttfOWK) 

IUXIISTA'l'US( RJLUI IC-IOWH) 
~An.tS(&CLX MOW'N) 

ROCIIIS'TATUS( RWYS mncNOWH) 

ROCIISTATUS( RPOP KNOWN) 

A.oaiSTAT1'$( Rlmt DOWN) 
tAM'tlMAUS(RHAL (COOimS (4. 11.200000 35,:l O.)}l 
LAlf'D'MAUS( Utl. 

{COORDS (4. 21,700000 35,400000 -1,) 
{3, 24.799998 3:l,400000 -1.) 
Cl. 18,799991:i 49.0 4,) 

~RXS(RMJI 

(2. 36.800000 49,0 3.) 
(2. 36.800000 35,400000 2.) 
(2. 18.799998 3:l,400()00 1,))) 

(COORDS (4, 18,lZQOOQO 28.199998 O.) 
(3, 18,200000 32,0 O~) 
(1. 11.200000 3:l,5 2.) 
(4. 10.0 24.0 -1,) 
{3. 15.200000 24,0 •l,) 
(2, 0.0 35~5 4.) 
(2. 18,200000 24~0 2.) 
(2. o.o 24.0 1,))) 

JOIJISR:OCIIS(mrYSRAJt RJLUI JQIYS) 

JOINSROalS(DIIY.SCLlt RCl.X RIIYS) 

J0Il1SRCOIIS(DIIY.SPDP ftP'OP mcYS) 

JOtKSRIXlMS(l)PDPCU. RPOP &CLX) 

JOUtSROCIIS{ DUNIVYS RUM I mcYS) 

I..AKtJIIARXS( RCLK 

(COORDS (4, 24,199998 35,0 •l,) 
(3. 21,700000 35.0 •l.) 
{4, 2!1,199998 l&.2QOOOO -1.) 

{3. 30.799998 15,200000 •l.) 
(4. 18,59999'1 20~799998 0,) 
C3. 11.599997 1&.200000 o.) 
(4. 18,599991 32,0 0,) 
(3. 18,59:9997 26,799998 0,) 
(2, 18,~99997 3!!1.0 4.) 
(2. 38.900000 35.0 3.) t•. 38.800000 1•.200000 2,) 
(2. 18.!!199991' l!!i,200000 1.))) 

(COOIJ)S (4. 18.200000 9,1000000 4.) 
(l. 18.::00000 14.199998 l.) 
(4, 18.%00000 16.200000 0,) 

(3, 18.ZOOOOO 20.1ffff8 0.) 
(4. l!!i,ZOOOOO ,23,$99991' •l.) 
t3. 10.0 23,,99ff? -1.) 

TABLE 6, continued 
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I.UiDICA RXS ( RPDP 
(COORDS 

lAHDIIARKS < ma; I 
(COOROS 

WHISllRS(ROBOT, 0) 
IRIS(ROBar,l} 

OVlltIDE(ROBOT,O) 
RAMGE:(ROBOT ,JO) 

TVMODE( ROBOI' , 0) 

FOCUS(ROBOT, 30) 

PAN(ROBOT ,DJ 
TILT(ROBOT,O) 
DPA"(Rosar,J,12) 
DTILT(ROBOT,0,7) 
DIRIS(ROBOT,O) 
DFOCUS{ROBOT 1 0) 

(4. 

( 3. 
C2. 
( 2. 
(2. 
( 2. 

( 4. 

(3. 
(4. 

(3. 
( 2. 

"· 
(4. 

(3. 
( 2. 
( 2. 
(2. 

P It"T'l!RESTAXDi( ROBOT, 01 
J'lJSTBIMPEZI ( ROBOT , 11 IL) 

10.799998 7 .6000000 -1.) 

16.000000 7,6000000 -1,) 

o.o 23,599997 4.) 

18.200000 23.599997 3 .) 
18 .200000 7 • 6000000 2 .) 
0.0 7,bOOOOOO 1.))) 

30 ,799998 14,799998 -1.) 

25 ,799998 14,799998 -1.) 

18.200000 14.799998 -1.) 

18.600000 9.1000000 0,) 
36.800000 14,799998 3.) 
35.800000 8.2000000 2,))) 

16,000000 7,1999999 -1.) 

10,799998 7.1999999 -1.) 

16,0 7,1999999 3,0} 
17,200000 2,1999998 2,) 

o.o 2.1999998 1.))) 

TABLE 6, concluded 
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We shall now describe the planned experiments that will lll!e the modd of Table 6 and the 

operators shown in Table 7. The description will be in terms of the expected results of 

tht>se experiment,s. 

a. Task 1 

Start.,ng wit.h t.he configuration of Figure 15 (represented by the model in Tahle 6), 

Shakey will perform two ta.:!lks. Each of these ta.:!lks is stated in English and entered into 

the system via teletype. The first ta.:!!k is stated as "USE BOX 2 TO BLOCK DOOR 

DPDPCLK !'ROM ROOM RCLK." Thill statement is converted by the English language 

syst.em ENG ROB [26j to a goal expressed by a well-formed formula {wff) of the fil'llt•order 

predicate calculus: BLOCKED(DPDPCLK,RCLK,BOX2). The STRIPS problem-solving 

system is t,hen called to compose a sequence of opera.tors whose execution will create a 

world model in which this goal wff is true. In terms of the operators in Table 7. we can 

show that the following sequence would ,olve this problem: 

GOT02(DUNIMYS),GOTHRUDR(DUNIMYS,RUNl,RMYS), 

GOT02(DMYSCLK), 

GOTHRUDR(DMYSCLK,RMYS,RCLK), 

BLOCK(DPDPCLK,RCLK,BOX2) 

Rather than generating this specific solution, STRIPS generates a gtnerali:ed plan that 

in,olves going from an arbitrary initial room through an intermediate room, and into a 

1.hird room and then blocking a doorway in the third room. The room,, doorways, and 

blocking object in this generalized plan are represented by parametert1. The generalized 

plan is thus a subroutine whose arguments are the parameters. These arguments are 

bound t,o specific constants only when the plan is execut,ed. The value of the generalized 

,uhroutine is that it can be stored away (or "learned") and then used again in other 

sit,uat.ions perhaps a., part of a plan for a more complex ta.sk. 

88 



BLOCK( :>X .R.\, B.\) 

Precond1 t 1'.lt!S: 

rsrwoM(ROSOT,R.\) {\ INROOM(n.X,RX) 
f,. Pi:SHAB.Lt{S.X) f,. UNDLOCKD.l(DX,!lX) 
11 ( 3R'\")JOHiSROCMS{O~ ,RX ,RY) 

AT{RODOT .SI ,$2) 

AT(B.X.~l ,$2) 
UNBLOCKD.l(DX,RX) 
NC'.TTO{ROB01'.Sl) 
~TTO( BX,Sl) 

~&\"TTO ts 1. nx > 

Add List: 

•BLOCia::D(OX,R.X,B.X) 
NE:<TTO(ROBOT,BX) 

Block5 door DX trtth an abject JP;: by puahing BX to a place in roe~ flX dir•ctly in 
front of door DX, 

BLOCKED(DX ,RX,BX) l'I INROOM(.ROEOT ,RX) I\ PUSRABLE.(8X) 

Delete Li lit: 

ATfROBOT ,Sl ,S2) 
m.cx::x.Etl ( D.'X ~ RX , R:<) 

AT{B.'i.,Sl,S2) 
N&\TrO(ROOOT ,$1) 

K'EXTTO{ BX , S l ) 
MEXT'TO(Sl ,BX) 

Add LJ.lltt 

•UNBLOCKEDtDX ,RX) 
ND'M'O{ROBOT ,BX) 

Unblocks door DX by pushing object BX away !?"'Oft its plae• lD rooc RX directly tn 
front of dOor DX, 

GOTHRt.."OR( OX R.X RY) 

Precondl t ion 5: 

NC\"T'T'O(ROBOT ,D~} f,. INROOM{ROBOT ,R..'\'.} 

I\ JO !!'iSROC>il'S{ DX , RX, RY) I\ UNBLOC'Kl::O( DX , RX) 
I\ t.'NBL.OCKED{D.'\,R\"} 

Del,eot.ti List: 

AT{ROBOT ,Sl ,S2) 
l'<U1'1'0{ROOOT ~Sl} 
INROOM(ROBOl" ,Sl) 

Table 7: STRIPS OPERATORS 
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Add Li.st: 

001'02{X) 

•[NROOM:(ROOOT,RY) 
!iOTTO(RQBOT ,O.X) 

Preconditions: 

(flX) (tNROOW(ROOOT,R.'lt) /\ tNR.CX'lM(X,RX) l 
V (3RX, RY) { tNR.CX'lM( oosar ,.RX) 

I\ JOl!fSROONS(X ,RX,RY) /\ UKBLOCKED(X,RX} l 

AT(R:Otl01' ,Sl 1 $2) 

Ncrt'TO(ROBCn',Sl) 

Add L1:lt! 

Takea Shak•Y from any point ia a roe• to• locatlon next to any object or doorw.y. X, 
lo th• sa1n11 room~ CShakey "111 aavi&•t• around obstacles that mtcht be Ln the way of 
a dlr•ct path.) 

?t'Stf(OB.X 1Y) 

PNcondi tton•: 

(3RX) [llfRQOil(ROOOT ,RX) A 

IlfROC*(OB,RJt) /\ LOCL~ROOX(X, Y ,RX)] 
/\ P'USlWL!( OB) 

O.leta Lt-,t: 

AT( ROBOT I S l, S2) 
:tEXTI'O( ROBO't', S l) 
AT(OB,Sl,$2) 
:a:n"ro(OB,Sl) 
:iE.'tTro(Sl,OB) 

•AT(OB,X, Y) 

!i'D".M'O(ROBOT ,OB) 

Pu•he• obJ•ct OB froa oa, poiat in a roe• to a c0ordtnate l0<eatton (X,Y) ld the taae roem~ 
tShakey muat 1ntttat1y ~ ln the -'&#Iii r()Ol.1 a. OB ~nd (X,YJ, but •ill pueb OB around obataclee 
that mi&ht ~ ta the Wllf u! a direct path.) 

!<Avt'O(X I Y} 

Precondt t lonoi: 

t IRX) [ l?fflOOK( ROBOr , RX ) 
I\ LOCI~RtX*.CX,Y,RX)l 

TABLE 7, continued 
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Oel.ctc Ll$t: 

AT{ROBOT ,Sl ,S2) 

St:XT!"OtROBO't.Sl} 

Add List: 

•AT(ROBOT,X,Y) 

Takos Sh:d,e}" rro!!I 2ny point tn a l"OOffl to the coordinate location {X,Y) ln the sue room, 

(Shakry •ilt nav1gat(" around obstacles that ll'lli:tht be in the "Yo! 11 dirl!'ct path.) 

POHlT( DilU:CTIOtO 

Procond i t 1 ons: 

none 

Delete LJ.st: 

TK£TA( ROBOT 1 Sl) 

Add 1.1,:t: 

Turn• Sbakey so that its heading is DIRECTION. 

l'tJSHABLE(OB) /\ :!(RX) { IN~(R09C!T JRX) A l!ifROC*(OB,HJC) 
A [lNR:OOM(X,RX) V 3(RY)JOtNSROCMSlX, RX,RY) J} 

Delete 1.1st: 

AT(OOBOT,Sl,S2) 
N'EXTrO{ROBOT ,Sl) 
AT(OB,Sl 1S2) 

MEXTrO< oa, s 1 > 
lf&n'TO:Sl,OB) 

Add List: 

• NEXTI'O( OB, X ) 
NEXT'l'O(RO&OT,08) 

Pushes object 08 !rom one point in• room to a locstion ne¥t to any object or doorway X 
ln the ••me t"OOtlt, (Shakey •ill pl.lAh OB B!'Ound ob•tacles that miC,ht be in the .,..y of a 
direct psth.) 

• Note: An asteri•k(•) in front of •n add-liat clau•e tadieate• that tbis clause i• one of 
the "primary effects'' ot the operator, 

TABLE 7, concluded"* 

• *From {11/, pages lS-15. 
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The task in question elicits the following generalized plan from STRIPS: 

GOTOZf P AR!l),GOTHRUDR(PAR!l,P AR7,PAR.5,) 

GOTO(PAR1),GOTHRUDR(PAR4,PAR5,PAR2), 

BLOCK(PAR l ,PAR2,P AR3) 

This plan is stored away as the macro operator: 

MACROPI(PAR3,PAR1,PAR2,PAR4,PAR5,PAR7,PAR6) 

STRIPS creates a triangle table representation of MACROPI. This table compactly 

stores information vital to monitoring the execution or MACROPI and information 

needed to use MACROPl (or parts or it) as a component or a future plan. We show this 

triangle table representation or MACROPI in Table s• and refer the render to Chapter 

Eight for a discussion of triangle tables and their uses. 

After the creation of the triangle table representation of MACROPl, STRIPS prepares a 

version or it that will solve the given task, namely, to "Use BOX2 to block door DPDCLK 

from room RCLK." This version is obtained from MACROPI by replacing those 

parameters standing for constants in the goal wff by those constants. That is, in this 

case, we replace P ARI by DPDPCLK, P AR2 by RCLK, and P AR3 by BOX2 throughout 

the MACROPl triangle table. This instantiated table is then given to PLANEX for 

execution. 

PLAN EX is a program that supervises the execution of those ILAs corresponding to the 

operators in th'e plan. For a discussion of the operation of PLANEX, sec the last part of 

Chapter Eight. PLANEX takes as input a partially instantiated MACRO? in triangle 

table form. (This MACRO? may have some parameters remaining after tho~e occurring 

in t.he goal wff have been instantiated.) The PLANEX algorithm looks for a specific, fully 

in~t.antiated subsequence of the operators in the MACROP that can be executed in the 

present situation to achieve the goal. The ILA corresponding to the first operator is then 

executed. In the case of the task we are considering the rJ.rSt ILA to be executed is 

GOT02(DUNIMYS), which cawies the robot to go to the door named DUNIMYS. 

*Note: For all triangle tables, an asterisk (•) before a clause indicates that this clause was used to 
prove the preconditions or the operator named at the right or the row in which the clause 
appears. 
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Ta.hie 8: TRIANGLE TABLE FOR 

MACROPI(PAR3,PARI,PAR2,PAR4,PAR5,PAR7,PAR6)* 
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The PLANEX algorithm then determines that the next ILA to be executed should be 

GOTHRUDR(DUNIMYS,RUN!,RMYS). Execution of this ILA begins by calling the vision 

routfoe CLEARPATH, which takes a TV picture through the doorway to determine 

whether the path in RMYS is clear (since the contents o( RMYS are unknown). The path 

is in fact clear, so Shakey proceeds through the doorway. 

Next PLANEX calls (or the execution or GOT02(DMYSCLK). Since the content.a or 

RMYS are unknown to Shakey, GOTO calls CLEARPATH again. To illustrate bow 

Shakey can deal with unforeseen difficulties, we now place a box directly in Shakey's path 

in front or the door DMYSCLK. As Figure 15 and Table 6 show, Shakey does not know 

o( t.he existence or this box. CLEARP A TH determines that the path is blocked and notes 

the approximate location of the blocking object. Since Shakey expects that it might 

encounter unknown objects in room RMYS, GOTO next calls a vision routine called 

OBLOC. This routine calculates the size and exact location of the object, gives it a name, 

BOX3, and adds this information to the model. (it also assumes, perhaps optimistically, 

that t.he new box is pushable.) OBLOC also notes that BOX3 is blocking door 

DMYSCLK, so it adds the w(f BLOCKED(DMYSCLK,RMYS,BOX3) to the model. Since 

the conditions (or continuing the execution of GOTO(DMYSCLK) are no longer satisfied, 

rontrol returns to PLANEX. Our interest in this experiment is to show how Shakey can 

gracefully recover from such an unexpected failure of its plan. 

PLANEX, as usual, attempts to find a fully instantiated ver..,ion o( the parameterized 

MACROPI that can be executed in the present situation to achieve the goal. In this c3.5e, 

PLANEX finds another instantiation or MACROPl that works. The operators in this 

in~t:int.iat.ion are: 

GOT02(DMYSPDP),GOTHRUDR(DMYSPDP,RMYS,RPDP), 

GOT02(DPDPCLK), 

GOTHRUDR(DPDPCLK,RPDP,RCLK) 

BLOCK(DPDPCLK,RCLK,BOX2). 

Here we see one o( the advantage:, of constructing parameterized plans. To perform the 

original task, we first constructed a parameterized plan having an instance that solve!! the 

problem. Later in the task execution we find that after an unexpected difficulty, another 

instance of the snme parameterized plan can be used to achieve the goal. We expect that 

t liis method of error recovery will be quite valuable in robot problems. (If PLAN EX could 
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fincl no applicable instance of MACROPI that would achieve the goal, then STRIPS 

would l,~ asked to produce another plan and MACROP.) 

:\fter finding this new instance of MACROPl, PLANEX calls for tbc execution of the first 

operator GOT02(DMYSPDP). Shakey thus moves to door DMYSPDP. PLANEX next 

rails for going through the door, and the process continues until finally Shakey enter, 

room RCLK. Then PLANEX calls for the execution of 

HLOGK(DPDPCLK.RCLK,BOX2). Running this ILA calls for going to BOX2 and 

pushing it around BOX! and then to door DPDPCLK (a "two-leg" push). The local 

planning needed t.o accomplish this push operation is done entirely within tbc PLISH [LA 

called by BLOCK. With tbis operation complete, Shakey has accomplished the first task, 

in ~pite of the unforeseen difficulty. We also note that MACROPl bas been filed away 

and can be used as an operator in future problem solving. 

b. Task 2 

Thl' st-at.e of things in Shakey's world is now as shown in Figure 16. We now test 

Sbakey's ability to learn by giving it a task that can be ~olved by using part of 

l\lACROPI. The statement of the task given to the system, in English, is "UNBLOCK 

DOOR DYMSCLK FROM ROOM RMYS." That is, we want Shakcy to move away tbe 

object (BOX3) that it discovered to be blocking DMYSCLK. 

.-\gain, I-he English statement is converted into a predicate calculus wff: 

UNBLOCKED(DMYSCLK,RMYS). 

STRIPS now attempts to find a sequence or operators that will make the wff true, but 

now it ha.s MACROPl available in its operator repertoire (in addition l,o the operators 

corresponding to ILAs ). STR[PS first decides that it should try to apply the operator 

UNBLOCK(DMYSCLK,RMYS,BOX3). To do so, Shakey must be in room RMYS, so 

STRIPS looks for operators that will achieve INROOM(ROBOT,RMYS). 

STRIPS determines that an inotance of the GOTHRUDR operator will work, but so also 

will subsequences of MACRO Pl. One subsequence consists or the first two operators in 

MACRO Pl and t-he other consists or the first four. (For a discussion of how STRIPS 

makes selections of MACROP subsequences, see Chapter Eight.) Since an instance of a 

sequence of the first {our operators in MACROPl is both applicable in Shakey's present 
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sit ualion and achieves the condition INROOM(ROBOT,RMYS), STRIPS is quickly able to 

,rt tit' on this instan,e and produce a plan for Task 2. Let UR denote by MACROP!' the 

subs<'qncn,c of MACROPl selected by STRIPS. MACROPl' still contains free 

parameters that are left to he bound at execution time. Its dclinition in terms of the 

or,crators ,om prising it is: 

MACROPl' (PAR2,PAR4.PAR5,PAR7.PARO) 

GOT02(PAR6) 

GOTHRUDR(PAR6,PAR7,PAR5) 

GOT02(PAR4) 

GOTHRUDR(PAR5,PAR2) 

The com pkt.e generalized plan for the second ask is: 

MACROPl' (PAR2,PAR4,PAR5,PAR7,PAR6) 

UNBLOCK(PAR1,PAR2,PAR3) 

This generalized plan is given the name MACROP2 and is saved for possible later use. 

The t.riangle t.able representation of MACROP2 is shown in Table 8. 

After creating the general version of MACROP2, STRIPS prepares a version of it for 

PLANEX hy instantiating it with those constants appearing in the task d<>script.ion. 

:-,amdy, DMYSCLK is substituted for PAR! and RMYS for PAR2. It then gives this 

partially instantiated version to PLANEX to be executed. PLANEX linds that the 

following in~tantiation or the plan will achieve the goal: 

MACROPl' (RMYS,DMYSRAM,RRAM,RCLK.DRAMCLK) 

UNBLOCK(DMYSCLK,RMYS,BOX3) 

Next, PLAN EX calls for execution of MACROPl '. This execution is accomplished by 

PLANEX itself. The ability to handle "nested" triangle tables is one of the features or 

our system. PLANEX discovers that the lirst ILA to he executed in MACROPl • is 

GOTO(DRAMCLK). In a similar manner, PLANEX ultimately executes the entire string 

of ILAs in MACROPl' and then the UNBLOCK ILA to accomplish the second task, 
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\\'hen these experiments are actually conducted, it is probable that the system may decide 

to exercise another one or our error-recovery capabilities. Recall that the model contains 

information about the probable error in Shakey's location stored in the predicate DAT. 

Model-maintenance programs automatically increase the estimate or error a.rter every 

robot mot.ion. During execution or ILAs such as GOT02, this probable error is checked to 

see whether it is still less than some specific tolerable error. Whenever the error estimate 

exceeds the tolerance, a visual program called LANDMARK is called. LANDMARK takes 

a picture of some nearby reature (such as a joorjamb), calculates from this picture the 

robot."s actual lvcation, and enters this updated location into the model. It also resets the 

DAT predicate to the error estimate appropriate after having just taken a picture. 

Several reatures or the system are illustrated in these experiments. Most important or 

tbe~e are the ability to learn generalized plans and the ability to recover from various 

t.yp~s or failures. The system or ILAs is designed to be robust in the sense that each ILA 

does what. it can locally to correct any errors. When the appropriate recovery procedures 

are beyond a specific ILA's knowledge and abilities, there are several higher levels where 

recovery can occur, namely, at higher level ILAs, in PLANEX, or in STRIPS.* 

• From /11}, pages 5-1!4. 
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Appendix A 

Mechnical Development of the Automaton Vehicle 

By Vladimit' Lieslcouslcy 

The following note ft'om {Sf by Vladimit' Lieslcouslcy described the robot 

vehicle in eome detail: 

MECHANICAL DEVELOP:MENT OF THE AUTOMATON VEffiCLE 

A. General Arrangement of the Vehicle 

A\. t.hc beginning of the project, only very sketchy information was available about specific 

requirements for the vehicle. The general requirements given were that the vehicle should 

he able to maneuver on a linoleum-tiled laboratory floor, move on ramps that had up to a 

t.en perrcnt. slope, be not wider than a doorway, weigh not more than approximately 200 

lbs, move under radio-transmitted digital-computer control, and be energized by an on· 

hoard power source. It was further specified that the vehicle should be able to turn 

around it.8 own vertical centerline in either direction and be able to move both forward 

and backward. 

Acrordingly, with this prescription we began with a rectangular platform. 3 ft in length 

and 2 ft. in width, with the corners cut off at an angle. The platform was equipped with 

four wheels mounted in a diamond pattern: two 8-in diameter rubber ca.stor wheels, one 

in front. of 1.he platform and one at the back; and two 8-in diameter rubber wheels, 

coaxially mounted, one at either side of the platform. The coaxially-mounted wheels were 

to be driven independently. One of the castor wheels was mounted on a spring-loaded 

flange, which allowed that wheel to d~flect, under load, out of the plane determined by 

the other three wheels. In this way we achieved the compliance necessary to negotiate 

slopes. The platform stands about 10 inches above the floor level. The space provided 
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between the wheels accommodates the main drive motors, and for a low c~ntcr or gravity, 

tbe batteries. 

A 4-in vertical distance above the platform was reserved for proposed manipulator arms. 

A standard 19-in electronic rack, supported at three points, was located above this 

reserved space. A video camera and range finder combination was mounted atop the 

rack. 

B. Details ot the Physical Arrangement 

1. Power Supply and Drive 

One or the first decisions to be made was the selection of the form of energy to be ·used 

for drive purposes. Among those considered were hydraulic, pneumatic, and eventually, 

electric drives. Since electrical power had to be made available for the electronics, electric 

drive was ultimately selected. The choice between secondary batteries and fuel cells was 

dict.ated mainly by price and delivery figures in favor or the batteries. Two 12-volt 

batteries in series were used to establish the operational, nominal voltage at 24 V de. The 

choice between drive motors was reduced to either a straight de motor, an inverter and ac 

motor combination, or stepping motors. Complexity and control considerations of the 

digital commands ruled out the inverter/ac combination. Direct current motors, although 

electrically noisy, were attractive due to their high power density and good torque 

characteristics. Manufacturer's quotes were uniformly forbidding: six months for delivery 

and a price in excess of several tholllland dollars for each motor. The units would have 

bad st-andard cfutches, brakes, and position readout capability for feedbaek information. 

Stepping motors, although they suffer from low power density, are e,i;ccllently suited ror 

digit-al control, and they were immediately available and were low in price ( not more than 

about $200.00 each). Therefore, the decision was made to use stepping motors exclusively 

for prime movers. Not all or the motors selected were rated at 24 Vdc, but they were 

easily converted by using dropping resistors. 

In order not to lose count of the steps in_ the drive train between the motor and the drive 

wheel, the speed reduction between the motor and the wheels had to be one without 

slippage, that is, positive. The reduction was necessary to increase available torq111.• from 

the motors and to reduce the amount of translation per incremental step or the motor to 
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l/32nd or an inch measured at the periphery or the wheel. For every control pulse. the 

stepping motor executes a rapid change in its angular position. Depending on the inertia 

of the driven load and the damping or the drive trains, oscillat.ions may develop. These 

oscillations were reduced hy limiting the incremental stcpsize, i.e., the generated 

am plitudc. A cogged belt, or liming belt, arrangement was selected for the drive train. 

This was to give the necessary positive drive, w bile also introducing damping. As it 

turned out, the belt proved to be a secondary source or oscillations, since bending 

vibrat.ions were generated in the belt when the stepping motor was operated. Increasing 

the belt. t.rnsion reduced the oscillatiOilll to an acceptable level. 

2. Closing the Minor Loop Through the Motor 

The stepping motor operates in an open loop mode. Completion or any step depends on 

t.he inertial load coupled to the motor, and not unlike a synchronous motor, the stepping 

mot.or also can "(all out or phase," so to say, when it is overloaded. This condition is 

largely a (unction or the stepping rate. Therefore, closing the loop in the operation or the 

main drive motors seemed to be warranted. Fortunately, similar considerations led 

Fredrik~on [27J to synthesize, build, and describe a dosed-loop stepping motor scheme. 

!3y using his results, we were able to adhere to the ground rule of no novel detail 

dnclopment. We closed the minor loop through the motor in the following way: a disk, 

cont.:.ining firty appropriate holes 011 a circle, was mounted 011 the motor sba(t. Four light 

source and photocell pairs placed along the circle, and shi(ted by one-fourth or the hole 

pat.tern pitch, were mounted on the motor housing. This arrangement provided for 200 

po~it.ions for every revolution, which is also the step-pattern or the motor. \Ve used the 

simple schematic, described in [27] to complete the (eedback loop. In operatfon, no step 

command can be given until art.er the information from the position reed-back disk 

indicates that the previous step bas been completed. Simply, the motor cannot miss a 

step. 

3. Wheels 

The rubber wheels presented another problem: due to their finite elasticity, tra11Sient 

motioill! generated either by the vehicle itself, or by its environment, resulted in disturbing 

oscillations or the whole vehicle in pitch and roll modes with a time constant or about 2 

seconds. This amount or settling time was judged to be unacceptable because no picture 

taking with the TV camera could be initiated during that time. Since friction on the 

driving wheels had to be maintained, but elasticity minimized, a properly-sti(fened rubber 
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driving rim 011 a metal wheel proved to be an acceptable solution. Since the castor 

wheels, however, could remain relatively compliant, but required reduced friction on the 

floor, they were capped with a metallic rim and gave good results. 

The originally configured, i11depe11de11tly·suspended castor wheel desigu gave way to a 

scheme that provided easy handling of the batteries. The supply batteries are now 

contained in a subcarriage, supported at three points. At one end of the subcarriage, one 

ball-bearing is located at each of the two corners while at the other end is located the 

vehicle's previously independently-suspended castor wheel. The batteries in the 

subcarriage can be conveniently wheeled to and from a recharging station. When the 

subcarriage is wheeled back to the vehicle, the bail-bearings are received by corresponding 

ramps, which lift up the ball-bearings and lock them into proper position. The bearings 

now act as pivots around which the subcarriage swings in a vertical plane. This freedom 

of movement provides for independent suspension of one of the four wheels. The 

distribution of the load on the vehicle is such that when the subcarriage is removed, the 

rest of the vehicle is still statically stable on its remaining three wheels. 

4. TV Camera. a.nd Range Finder Mount 

Although it is possible to scan with a TV camera which is rigidly mounted on a vehicle 

that is capable of turning around its own vertical axis, it seemed expedient to provide for 

an independent panning capability. Thus, the TV-range finder combination is mounted 

on a yoke that can be rotated by a vertically-mounted stepping motor. The yoke 

accommodates a transverse, horizontal axis, around which the TV camera can be tilted. 

The t.ilt drive train incorporates a worm drive and another stepping motor. The worm 

drive is necessary to cope with the excessive tipping moments originating from a revised 

version of the range finder. When the stepping motor is not in operation, the worm drive 

provides a self.locking feature as an added bonus. in the pan mode, limit switches and 

stops are provided as well as an electromagnetic detent, acting on a 200-tooth gear. 

mount.ed on the shaft of a 200-step/revolution stepping motor. Tbe yoke was d~signed for 

these functions only. The shaft of the pan motor is coaxially mounted with the vertical 

centerline of the vehicle; that is, if equal and opposite commands are given to the driven 

wheels, the location of the pan motor shaft does not change. The TV camera is.located in 

such a fashion that the photosensitive surface of its vidicon tube is exactly at the 

intersection of the vertical pan axis and the tilt axis. Turning the vehicle about its 

vertical axis, panning the camera, and tilting it, does not affect the location of the vidicon 

surface, only its direction. 
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ll also seemed expedient to attach the range finder directly to the TV c:i.mera. In this 

way. the di~tan,c or an object, viewed by the optical centerline or the TV camera, from 

the range-rinder can be measured. 

A separate arrangement or the TV camera and the range finder was similarly logical: 

distan,<'·mapping of the surroundings could be accomplished while the TV camera could 

"digest" and recognize a particular scene. However, the kinematic complexit.y of this 

arrangement seemed prohibitive when compared to the possible advantages. 

Stepping motors were mounted onto the TV camera lens housing for computer controlled 

adjust.meat of the focus and the iris. Since these motors operate in the open loop mode, 

step count may be lost. Therefore, separate limit switches for both focus and iris 

funct.ions and at both ends of their range are provided. VVhenever the limit switches are 

actuat,<'d, t.he counters are reset accordingly. This is also the scheme utilized in the pan 

and tilt. modes. 

5. Tactile Sensors 

Ta,t.ilc sensors are mounted at the front and back and on both sides of the vehicle to 

provide protection against damage to the vehicle and to its surroundings and to provide 

t.ouch information. These sensors were selected from commercially available 

microswitches, and are actuated by a flexible coil spring approximately ti inches long. 

Pinno wire whiskers or extensions may be added to the end of the coil springs to provide 

longer reach. The guiding principle has been to sense the presence of a solid object within 

the braking distance of the vehicle when it is traveling at top speed. Addit.ional 

appropriately placed sensors protect the TV camera against collision in the translational 

and the rotational modes. The actuation of any sensor will inhibit the corresponding 

action, w bile override is also made available. 

As further protection against collisions, heavy rubber bum perstrips are mounted on all 

prot.rucling edges of the vehicle. If the performance capacity of the main drive motors 

permits, t.hese bumpers will be used to move objects around the environmental room.• 

• From {SJ, pages ,10-45, 
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Appendix B 

Some Current Techniques For Scene Analysis 

For completeness, we reprint below an SRI AI Center Technical Note by 

Richard Duda {28} that describes some of the vision routines used by 

Sha.key. 

I. Introduction 

Some Current Techniques for Scene Ana.lyeie 

by 

Richa.rd 0. Duda. 

The purpose or the visual system is to provide the automato11 with important i11formatio11 

about its e11vironment, information about the location a11d ide11tity of walls, doorways, 

and ,·arious objects of i11terest. By addi11g 11ew i11formatio11 to the model, the visual 

system gives the automato11 a more complete and accurate represe11tation of its world. 

The role or visio11 is not indepe11dent of the state of the model. lf the automaton has 

entered a previously unexplored area, the visual sce11e must be analyzed to add 

information about the new part of the e11viro11me11t to the model. 111 this situat.io11, the 

model can provide so little assistance that it i, ofter not referenced at all. On the other 

hand, if t,he automaton is in a thoroughly known area, the role of vision changes to 011e of 

providing visual feedback to correct small errors and verify that nothing unexpected has 

happened. fn this situatio11, the model plays a much more importa11t role in assisting nod 

actually guiding the analysis. 

U11til recently our atte11tion has bee11 directed primarily at the general sce11e-a11alysis 

problem. Every picture was viewed as a totally new scene exposing a completely unknow11 

area. More rece11tly we have addre!l!Cd the problem of using a complete, prespecified map 

of the floor area to update the automaton'• positio11 a11d help in tasks such as going 

through a doorway. Another use of this kind of visual feedback would be the monitoring 

of objects being pushed. 
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ln trying to solve these problems, we have tended to take one or the other or two extreme 

approaches. Either we tried to develop general methods that can cope with any possible 

situation in the automaton's world, or we tried to exploit rather special facts that allow 

an cr!icient special-purpose solution. The first approach involves the more int<'resting 

problems in artificial intelligence, but it provides more capabilities than are needed in 

many situations, and provides them at the cost of relatively long computation times. The 

second approach provides fast and erfective solutions when certain ( usually implicit) 

preconditions are satisfied, though it can fail badly if these conditions are not met. 

li:ventually, of course, some combination of these two approaches will be needed, since the 

automaton actually operates in a partially known world, rather than one that is 

completely unknown or completely known. However, we have decided to concentrate on 

these two extreme situations before addresi,ing the intermediate case. The remainder or 

this note describes the current status of our work in these areas.• 

n. Region Ana.lysis 

A. The Merging Procedure 

Our work in general scene analysis is based on dividing the picture into regions 

representing walls, noors, faces of objects, etc. The basic approach has been described in 

detail elsewhere [16], and only a brief summary will be given here. The procedure begins 

by partitioning the digitized image into elementary regions of constant brightness. This 

usually produces many° small, irregularly shaped regions that are rragments or more 

meaningful regions. Two heuristics are used to merge these smaller regions together. 

Both of these heuristics operate on the hMis of fairly local information, the difrerence in 

brightness along the common boundary between two neighboring regions. The heuristics 

are not infallible; they can merge regions that should have been kept distinct, and they 

can fail to merge regions that should been merged. However, they reduce the picture to a 

small number of large regions corresponding to major parts of the picture, toget.her with a 

larger number of very small regions that can usually be ignored. 

The erfect of applying these heuristics is best described through the use of examples. 

Figure B-1 shows television monitor views or three typical corridor scenes. Figure B-2 

*Our e3rlier work in scene analysis is described in [7J. Additional information on more recent 
work is contained in [SJ, [lo!, [29[, and j30J. 
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shows the results or applying the merging heuristics to digitized versions or th<'se pictur!'s. 

The boundaries or the regions in these pictures are directed contours, and ean b<' trar<'d 

using the correspond<'nces &hown in Table B-1. Generally speaking. important regions can 

be separated rrom unimportant regions purely on the ha.sis of size. Figure 0-2:i, for 

example, contains four large, important regions. Three or them are directly m<':iningful 

{the door, the wall to the right, and the baseboard), and the fourth is the union of two 

important regions (the floor and the wall to the left). An inspection of Figure U-2b shows 

similar results. Figure B-2c shows the result of applying the technique to a complicated 

scene: while some useful information can be obtained, the resolution available seYerely 

limirs the usefulness of the results. 

Our only complete scene-analysis program is oriented toward identifying boxes and 

weclg<'s, objects with triangular or rectangular faces, in a simple room environment [16]. 

For t-his task, we begin by fitting the boundaries of the major regions by straight lines. 

R<'gions are identified as being part of the fioor, walls, baseboards, and faces of objects by. 

surh properties as shape. brightness, and position in the picture. Objects are identified by 

grouping neighboring faces satisfying some of the simpler criteria used by Guzman [31 ]. 

lat.he process, certain errors caused by incorrect merging are detected and corrected. We 

have yet to complete a similar analysis program for the conditions encountered in corridor 

scenes. However, we have investigated the problem of obtaining a scene description that 

is internally consistent; the next ,ection describes the analysis approach for this problem. 

B. A Procedure for Scene Analy11i11 

Ir we assume temporarily that the merging heuristics have succeeded in the sense that all 

of the large .regions are meaningful areas, then the only basic problem remaining is the 

proper identification of each region. Examination of the corridor pictures indicates the 

need to be able to identify a number of different region types, including the following: 
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(I) Floor (8) Sign• 

(2) Wall (9) Window 

(3) Door (10) Clock 

(4) Door jamb ( 11 ) Doorknob 

(5) Object face (12) Thermostat 

(6) Baseboard (13) Power outlet 

(7) Baseboard renection (14) Automaton. 

Each of t.hese regions has certain properties which tend to characterize it uniquely. For 

example. the noor region is usually large, bright, and near the bottom of the picture. 

llowc,·cr, most regions can be identified with greater conridence if the nature of their 

neighbors is considered as well. Thus, the presence of a baseboard or baseboard renection 

at the top of a region almost guarantees that the region is the noor; conversely, the 

presence of wall area immediately above a region guarantees that it can not. be a 

baseboard reflection. If regio!lll are identiried without regard to how that choice affects 

t lw overall scene description, the chance for error is increased. Moreover, the resulting 

descript,ion can be nonsensical. 

l\lany, though by no means all, of the relatiollll between types of regions relate to 

neighboring regions. Table B-2 indicates those types of regions that can and cannot be 

legal neighbors. We can easily add to this further restrictioM, such as the fact that the 

baseboard must have the wall as a neighbor along its top edge. These are some of the 

important known facts about the general nature of the automaton's environment. The 

problem is to use facts such as these to aid in the analysis of the scene. 

One approa<?h to solving this problem is to use these facts as constraints to eliminat,e 

impossible choices. Suppose that each significantly large region in the picture is 

tcnt.atively classified on the basis of the attributes of that region alone. Suppose farther 

t.hat a score is computed for ea.ch region that measures the degree to which it resembles 

each region type.*" For any selection of names for regions, we can define the score for the 

resulting description as the sum of the individual scores. Then, we can analyze the scene 

*By "sign" we mean a dark vertical bar.on the wall used, as illustrated in Figure B-lc, to identify 
an office . 

.. This scor~ might be interpreted as the logarithm oC the probability that the given region is oC 
the indicated type. 
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. FLOOR + + + + + + 
WALL + + + + + + + + + + + + + 
OOOR + + + + + + + + 
OOOR JAMB + + + + + + + 
OBJECT FACl! + + + + + + + + + + + + + 
8ASEBOARO + + + + + + + + + 
BASEBOARD + + + + + REFLECTION 

SIGN + + + 
WINDOW + + + 
CLOCK + I 
DOORKNOB i + + + + 
TJo!E RM OST AT + + 
POWER CUTI.IT + + + + 
AUTOMATON + + + + + + + + + 

TA•ll::1!111·25 

Table 2: REGIONS THAT ARE LEGAL NEIGHBORS 
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by trying to find highest scoring legal selection of region names. \Vith no loss in 

):;'enerality nnd some gain in convenience, we can work with the losses incurred by selecting 

other than the highest scoring choice. In terms or losses, we want the legal description 

h,wing t,hc smallest overall loss. 

This problem is basically a tree-searching problem. The start node of the tree 

corresponds to the first region selected for naming. The branches emanating from that 

node correspond to the possible choices or names for that region. A path through the tree 

corresponds to a unique labeling of the picture. Thus, if there are N possible region 

names and R regions, there are potentially NR possible paths through the tree. Each path 

passes t.hrough R+l nodes from the start node to the terminal node. Every terminal node 

has a loss value, which is the sum of the losses incurred for the choices along the path to 

that node. A goal node is a terminal node corresponding to a complete, legal scene 

description. We seek the goal node with the smallest overall lo ... 

This is a standard problem in tree searching, and optimum search procedures are known. 

Assume that some choices have been made for some of the regions so that we have a 

partially expanded tree. Using the Hart-Nilsson-Raphael terminology [32], some of the 

t.erminal nodes of this tree are open nodes, candidates for further expansion. Ea.ch open 

node has an associated loss g, the sum of the losse5 from the start node to that node. If 

we a..~sume that there is no reason to believe that zero-loss choices cannot be made from 

that node 011, then the optimal search strategy is to expand that open node having the 

minimum g. 

To expand a node, we must select a region not previously considered and examine the 

possible choice for that region, ruling out any choices that are not legal. Different 

st.rat,egies can be used for selecting the next region. It ,eems advantageous to ask it to be 

a neighbor of the regions ,elected previow,ly, since this maximizes the chance of detecting 

illegalities. In general, we will have several neighbors for candidate successors. Of these, 

it seems reasonable to ,elect the one having the highMt ,core, under the assumption that 

the first choice name ror this region i, most likely to be correct. 

After a region has been selected, it i, nece!!llary to examine the choices one can make for 

its name to see which ones are legal. , If we limit ourselvM to pairwise relations between 

neighboring regions, we need merely compare each choice with previously made choices 011 
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the path to this point and test each for legality.• The node expanded is removed from the 

list of open nodes, the resulting new nodes are added, and the process is repeated until the 

algorithm selects a goal node for further expansion. This is our final result, a legal scene 

description having the minimum loss. 

C. Examples 

The following examples serve to illustrate the action of this scene-analy,is procedure. 

Consider firot the simple scene shown in Figure 8-3. For simplicity, we assume that there 

are only five t.ypes of allowed regious-floor, wall, door, baseboard, and sign. Consider 

Region J. On the basis of its brightnee, size, vertical right boundary, and possession o( a 

hole, it should receive a high score as wall, and lower scores a.i floor, door, sign, and 

baseboard, Region 2 might, perhaps, score highest as a door, and so on. Thus, the 

following table o( scores, although purely imaginary, is not ullJ'easonable. Missing entries 

correspond to scores too low to be seriously considered. 

~ 
Base-

Rel?ion Floor Wall Door boa.rd Sien 

l 5 ' 6 2 

2 7 1 5 

3 3 3 5 l 

*Wh~n an illegality is found. that choice is deleted. One can argue that rew relations are so 
strong as to be absolutely illegal. and an alternative approach would be to introduce various 
additional losses for the dirrereot observed relations. 
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The fol lowing tn.ble gives equivalent information in terms or the losses associated with 

each choice. 

·~ 

1 

Base- Max 
Ree:1on Floor Wall Door board Si.-n Score 

l l 0 4 I 6 

2 0 6 I 2 7 

3 2 2 0 i 4 5 

I 
! 
! 

Let us use our t.ree-searching algorithm to obtain the minimum-loss, legal description of 

this scene. Initially the successor function is uncomtrained by neighbor restrictions, and 

selects Region 2 merely because it has the highest score. At this point, all of the choices 

for Region 2 are legal, and the tree ha., three open nodes; the numbers shown next to each 

node gh-t- the loss accumulated in reaching that part or the tree. 

Baseboard 

The search algorithm requires that the open node having the least loss be expanded next, 

which corresponds to tentatively calling Region 2 a door. The successor function finds 

only one neighbor to choose from, Region 1, and comiders its alternatives: wall, floor, 

and door. None of these choices is a legal neighbor surrounding Region l, and hence all 

are rejected. Thus, this open node has no successors. 
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Figure 3: A SIMPLE SCENE 
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Baseboard Door 

Wall 

Returning to the choices for open nodes, Region 2 is tentatively called a sign. The 

successor funct.ion again selects Region 1, and this time finds one legal successor, the 

wall.• The loss associated with this choice is 0, and the overall loss is 2. The list of open 

nodes st.ii I contains two memben. 

The search algorithm selects the open node with loM 2, and the successor function has 

only Region 3 to select from. All of the choice, for Region 3 are all legal with respect to 

*Note that our successor function will always produee a tree with R+ l levels. At any level, the 
same region will always be selected by the succe11sor function. The actual suecl!!ll!O,.., however, 
will be limited by the legality requirement. 
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calling Region 2 a sign and Region l a wall. The lea.st loS3 results from calling Region 3 a 

door, a.nd the scene analysis is completed. 

Door 
2 

Wall 

A somewhat more realistic example involving 10 regions and H region types is illustrat<"d 

in Figure B-4. Table B-3 give5 the hypothetical score5. Based on these scores a.lone, ha.Ir 

or the r<"gions would be incorr~tly identified. Figure B-6 shows the tree produced by the 

search algorithm. The development or this tree is too complicated to dacribe in detail. It 

should be noted, however, that considerable backtracking occurred because a low-scoring 

third choice was needed for Region 8, the doorknob. Whether or not this can be 

circumvented without causing other problems is not known. 

D. Remarks 

To date. this procedure ha.sonly been used on some hypothetical examples. We have 

modified a general tree-searching program to adapt it to some special characteristics or 

this problem. However, we have not started the important task or writing programs to 

measure characteristics ot regiou.s and to use these characteristics to produce recognition 

score. 

In addition, we have not implemented any legality conditions beyond the simple conditions 

given in Table B-2. 
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Figure 4: A MORE COMPLICATED SCENE 
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REGION 
TYPE 

1 2 3 • 5 6 7 B 9 ,o 
FLOOR , 11 2 

WALL I , 3 5 5 • 
DOOR I 3 6 6 3 

DOOR JAMB 6 

OBJECT FACE 6 

BASEBOARD 5 9 3 

BASEBOARD 
7 5 REFLECTION ' 

SIGN , 6 

WINDOW 1 2 B 

CLOCK I , 
DOORKNOB 2 

THERMOSTAT 
I 6 

POWER OUTLET 3 4 

AUTOMATON 

T A•8259-29 

Table 3: HYPOTHETICAL REGION SCORES 
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This npproac h to scene analysis has several potential advantages. It is not necessary to 

ich•ntify every region correctly at the outset to obtain a correct analysi~. provided that the 

"syntactic" rul<'s arc sufficiently complete. By providing a limit on t,hc allowable loss, a 

part.in! scene drscription can be obtained that may be useful even though incomplete. 

Perhaps most. important, the operations of merging, feature extraction, classir.cation, an<l 

analysis arc dcnrly separated, allowing fairly independent modification an<l improvement. 

In particular, the general knowledge about the environment can be expressed explicitly as 

rules for legal scenes, and if the environment is changed it is possible to confine the 

program cbanges to modifying these rules. 

One of the major problems with this approach is the lack of an obvious way to detect 

erroneous regions, regions that are fragments of or combinations of meaningful regions. 

We are currently working on this problem, since progress toward its solution is needed 

hefore im plcmentation of this system can be begun. Another problem is that it is not 

clear how specific information contained in the model can be used to guide the analysis. 

This problem of working in a world that is neither completely known nor completely 

unknown is one of the major unsolved problems in visual scene analysis. 

m. Landmark Identitica.tion 

\Vhen the environment is completely known, the visual system can provide feedback to 

updnt.e the automaton's position and orientation. The x-y location of the automaton and 

its orientation e can be determined uniquely from a picture of a known point and line 

lying in t.he noor. • Such distinguished points and lines serve as landmarks for the 

automaton. This section describes our present program that uses concave corners, convex 

corners, and doorways as landmarks to update position and orientation. 

A flowchart outlining the basic operations or this program is shown in Figure 8-6. The 

program begins by selecting a landmark from the model that should he visible from the 

nutomaton's present position; if more than one candidate exists, one is selected on the 

basis of range and the amount of panning or the camera required.• The camera is then 

panned and tilted the amount needed to bring the landmark into the center of the field of 

'If no landmark is in view, a suitable message is returned together with a suggested vantage point 
from which a landmark can be seen. This is one of several "error" returns lhat can be obtained 
from the program. The program can also be asked to select a specific landmark, or a landmark 
di!fer~nt from the ones previously selected. 
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view, and a picture is taken. Th~ baseboard-tracking routine described previously [8] is 

ust'd t.o rind the segments or baseboard in the picture and to fit them with long straight 

lines. 

Exactly what happens next depend.!! on the landmark type. For a door, the long line 

nearest the center of the picture is selected, and the true image of the landmark is 

assumed t.o be the endpoint of the baseboard segment on that line and nearest the center 

of the picture. An additional check is made to see that the gap from that point to the 

next segment is long enough to be a passageway. A convex corner viewed from an angle 

such that. only one side is visible is treated as if it were a door. Otherwise, the 

intersect.ion of long lines nearest the center of the picture is assumed to be the true image 

of the landmark, and a check is made to see that the baseboard segments near this point 

have the right geometrical configuration. The location of the landmark in the picture 

gives the inrormation needed to compute correctiom for the automaton's position and 

oriental ion. 

The operat.ion of this program is illustrated in Figure B-7. In this experiment, the 

automat.on was approximately 7.5 feet away rrom a wall along which there were four 

landmarks. both sides of a doorway, a convex corner, and a concave corner. The pictures 

in Figurt' B-7. show how closely the panning and tilting brought the landmarks to the 

center of t.he pict.ures. For scenes as clear as these, the program operates very reliably. 

Presently, we can use this routine to locate the robot with an accuracy or between S 

percent and IO percent or the range, and to l'ix its orientation to within 5 degrees. Since 

the errors are random, the accuracy can be improved further by sighting a second 

landmark. Furt.her increases in accuracy, ir needed, will have to be obtained by 

improving i·he t.ilt and pan mechanism for the camera.• 

' 
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Figul"e 6: BASIC FLOWCHART FOR LANDMARK PROGRAM 
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