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Lebedev MA, Nicolelis MAL. Brain-Machine Interfaces: From Basic Science to
Neuroprostheses and Neurorehabilitation. Physiol Rev 97: 767–837, 2017. Pub-
lished March 8, 2017; doi:10.1152/physrev.00027.2016.—Brain-machine inter-
faces (BMIs) combine methods, approaches, and concepts derived from neurophysiology,
computer science, and engineering in an effort to establish real-time bidirectional links

between living brains and artificial actuators. Although theoretical propositions and some proof of
concept experiments on directly linking the brains with machines date back to the early 1960s, BMI
research only took off in earnest at the end of the 1990s, when this approach became intimately
linked to new neurophysiological methods for sampling large-scale brain activity. The classic goals
of BMIs are 1) to unveil and utilize principles of operation and plastic properties of the distributed
and dynamic circuits of the brain and 2) to create new therapies to restore mobility and sensations
to severely disabled patients. Over the past decade, a wide range of BMI applications have
emerged, which considerably expanded these original goals. BMI studies have shown neural control
over the movements of robotic and virtual actuators that enact both upper and lower limb
functions. Furthermore, BMIs have also incorporated ways to deliver sensory feedback, generated
from external actuators, back to the brain. BMI research has been at the forefront of many
neurophysiological discoveries, including the demonstration that, through continuous use, artificial
tools can be assimilated by the primate brain’s body schema. Work on BMIs has also led to the
introduction of novel neurorehabilitation strategies. As a result of these efforts, long-term contin-
uous BMI use has been recently implicated with the induction of partial neurological recovery in
spinal cord injury patients.
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I. INTRODUCTION

A. From a Single Neuron to Neural
Ensembles

The daunting task of unraveling the physiological mecha-
nisms that account for the operation of the human brain, a
highly complex and self-adaptive biological system, formed
by �100 billion interconnected neurons (37), has become

the true holy grail of neuroscience since the first images of
brain circuits were produced, more than 100 years ago, by
the skillful hands of Santiago Ramon y Cajal (256, 658). By
the time Cajal’s histological approach was complemented
by its electrophysiological counterpart, Sir Edgar Adrian’s
metal microelectrode approach to record the electrical
pulses produced by individual neurons (2), the neuron doc-
trine (732) had become established as the fundamental the-
ory in the emergent field of brain research. This doctrine
purports that individual neurons work as the functional
unit of the brain through processing and transmission of
electrophysiological signals.

Despite the undeniable success of the neuron doctrine, since
the origins of modern neuroscience, researchers entertained
physiological models of brain function in which popula-
tions of neurons performed the fundamental job of gener-
ating functions and behaviors. Indeed, the Italian anato-
mist, Camillo Golgi, who shared the 1906 Nobel Prize in
Medicine and Physiology with Ramon y Cajal, was the first
to introduce the term neural network, as a way to describe
the underlying “functional module” of brain operation pro-
posed in his reticular theory (308). According to Golgi’s
view, brain tissue should work pretty much like the heart
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myocardium, forming a syncytium, or a continuous net-
work of fused or tightly connected neurons (308). Cajal’s
histological demonstration of the existence of synaptic
clefts between neurons in most of the brain debunked Gol-
gi’s view from an anatomical point of view and, as a con-
sequence, the reticular theory was abandoned and the term
network fell out of favor with most neuroscientists. Ironi-
cally, many decades later, clusters of neurons tightly linked
via gap junctions (155) were identified in some key struc-
tures of the mammalian brain, including the inferior olive
(506), hippocampus (443), and neocortex (486, 747). Be-
cause of the abundant existence of tight junctions, these
clusters exchange information through electrotonic cou-
pling. As such, they clearly typify the type of networks
envisioned by Golgi.

During the century of intense work that followed the pio-
neering discoveries of Ramon y Cajal and Golgi, many
other histological, electrophysiological, and imaging methods
have been incorporated in the technical arsenal employed by
neuroscientists to probe brain function at different levels of
spatial and temporal resolution (FIGURE 1,A–C ). For most of
this continuous procession of new technological develop-
ments, the neuron doctrine continued to flourish. As a result,
for the vast majority of the neuroscientific community, the
single neuron remained the central focus of systems neurosci-
ence for most of the 20th century (583).

Yet, since the late 1940s, a neural network-based view of
brain function began to reemerge. Inspired by the pioneer-
ing work of Thomas Young on color coding in the early
19th century (881) and that of Charles Sherrington on spi-
nal reflexes at the beginning of the 20th (733), theoreticians,
such as Donald Hebb (352), and neurophysiologists, such
as John Lilly (499), proposed that the true functional unit of
complex brains, such as ours and those of other mammals,
is represented, according to Hebb’s own terms, by “. . . a
diffuse structure comprising cells in the cortex and dien-
cephalon, capable of acting briefly as a closed system, de-
livering facilitation to other such systems (352).”

Even though Hebb’s masterpiece work, The Organization
of Behavior (352), published in 1949, launched the modern
era of neural population coding in systems neuroscience,
few took notice at the time of its publication. By then,
neurophysiologists were primarily engaged in characteriz-
ing the physiological properties of individual neurons, ei-
ther using the classical Adrian’s approach of extracellular
single neuron recording (2, 372) or a new methodological
breakthrough of that time: intracellular single neuron re-
cordings using sharp glass electrodes (92, 503, 781). Cer-
tainly, the multiple technological challenges involved in de-
veloping techniques for recording simultaneously from
large populations of individual brain cells, even in anesthe-
tized animals, let alone awake preparations, kept most ex-
perimentalists away from trying to test experimentally the
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FIGURE 1. Temporal and spatial resolution for different tech-
niques to study the brain and interact with its circuitry. A: techniques
for recording and visualizing. B: electrode techniques for recording
and stimulation. C: techniques for stimulation and making lesions.
(Adapted with permission from Sejnowski TJ, Churchland PS,
Movshon JA. Putting big data to good use in neuroscience. Nature
Neurosci 17: 1440–1441, 2014. Reprinted by permission from
Macmillan Publishers Ltd.)
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ideas about neural populations introduced by Hebb. Thus,
if one combines these notorious and, at the time, insur-
mountable technical difficulties, with the stupendous suc-
cess and widespread acceptance of Cajal’s neuron doctrine,
amplified significantly in the 1960s and 1970s by the enor-
mous impact of the Hubel and Wiesel’s characterization of
single neuron physiological properties in the visual cortex,
it is no surprise that a neural population view of brain
function had to wait for four long decades before it could
begin receiving serious experimental attention by neuro-
physiologists.

Among the experimental studies that rekindled the interest
in neural populations in neurophysiology during the 1980s
was the pioneering work of Apostolos Georgopoulos on
directional coding in the primate motor cortex (292, 295,
299) and John O’Keefe’s discovery of place neurons in the
rat hippocampus (600). Georgopoulos’ findings that indi-
vidual neurons in the primate primary motor cortex are
broadly tuned to the direction of arm movement (294, 295,
423, 710) and that populations of such neurons, rather than
an individual M1 neuron, have to be pooled together to
compute the direction in which a monkey is about to move
its arm (292, 299) brought to the forefront the much ne-
glected, if not forgotten, Hebbian’s view of the neural pop-
ulation basis of brain function. By the mid-1990s, the in-
troduction of new electrophysiological methods for chronic
multielectrode recordings in freely behaving animals trig-
gered a new phase of neural ensemble physiology (581, 582,
584, 857, 858). In this experimental approach, arrays or
bundles of microelectrodes, originally made of fine insu-
lated metal filaments, were chronically implanted across
multiple cortical and subcortical structures of the brain of
rodents and primates and yielded viable single and multi-
unit activity for long periods of time, which today can reach
several years for the same animal (711) (FIGURE 2). By the
early 1990s, this new approach was yielding simultaneous
recordings of �12–24 neurons in freely behaving rats.
These recordings lasted for several weeks or even months
(578, 579, 584). By mid-1995 the yield increased to �50
simultaneously recorded neurons, with the added capability
that individual neurons could be recorded in up to five
different subcortical and cortical structures that defined a
given neural pathway (i.e., the rat trigeminal somatosen-
sory system) (578). By 1999–2000, this recording bench-
mark reached 100 neurons, and such simultaneous record-
ings could be obtained in both awake rats and monkeys
(580–582). At that time the modern concept of BMIs was
proposed by John Chapin’s and Miguel Nicolelis’ laborato-
ries working together (124, 575, 852).

B. Emergence of BMIs

The modern era of BMIs emerged precisely at the time the
methods for chronic multi-electrode recordings were con-
solidated in rodents and started to make their transition to

primates, first to New World monkeys (582, 852) and then
to rhesus monkeys (114, 463, 580). Around that time, the
term BMI was introduced for the first time in the systems
neuroscience literature (575). The main goal of these studies
was to investigate physiological properties, including the
ability of neural ensembles in the sensorimotor cortex to
encode information and express plastic adaptations while
freely behaving animals learned new motor tasks (460).
However, with the publication of a series of original stud-
ies, conducted in rats and monkeys in the early 2000s, it
soon became apparent that BMIs could also serve as the
foundation of a new generation of neuroprosthetic devices
aimed at restoring mobility to patients severely paralyzed
due to trauma to the nervous systems, notably spinal cord
injuries (SCIs) or neurodegenerative diseases. FIGURE 3
shows the original schematic description of this idea, pro-
posed in the early 2000s, as an envisioned direct link be-
tween a human brain and a robotic arm. FIGURES 4 AND 5
illustrate how the original BMI control scheme was adapted
to become the experimental paradigm employed with rhe-
sus monkeys. For the most part, until today, most labora-
tories around the world that work with upper limb BMIs
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FIGURE 2. Multichannel, wireless recordings in rhesus monkeys.
A: movable 10 � 10 microwire arrays. B: photographs showing
implant connectors in two monkeys (left and middle) and wireless
module (right). C: layered schematic of the 3-D printed modular
headcap. D: headcap wireless assembly. [Adapted from Schwarz et
al. (711).]
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continue to employ the elements depicted in FIGURES 3–5,
which were originally published about 17 years ago (124,
852). Indeed, most researchers working in the field would
consider FIGURE 3 as the standard or operational definition
of a BMI, which can be described as a reciprocal link be-
tween an animal or human brain and an artificial actuator,
such as a virtual or robotic arm or leg, which allows the

subject to utilize its own volitional electrical brain activity
to control the movements of such an actuator, while receiv-
ing continuous feedback information from it.

As we will see throughout this review, many aspects of this
standard definition have been expanded significantly over
the past two decades. For example, as illustrated in FIGURE
5A, large variety of brain signals, ranging from single units
(114, 124, 466, 583, 852), to local field potentials (LFPs)
(264, 670, 750), electrocorticography (ECoG) (483, 484,
697, 759, 837, 839, 856), electroencephalography (EEG)
(7, 71, 141, 169, 358, 412, 627, 865), all the way to mag-
netic resonance imaging (MRI) signals (666, 745, 755, 847,
879), have been utilized as the source of voluntary motor
activity needed to control an artificial actuator. By the same
token, BMIs have been now designed to control a large
variety of actuators, including computer cursors (114, 283,
463, 692, 725, 794, 864), digital communication systems
(10, 71, 101, 247, 545, 559, 672), robotic limbs (114, 152,
360, 463, 795, 817), robotic exoskeletons (156, 456, 467,
836), avatar bodies (151, 377, 435, 598, 657, 835), drones
(426, 457), and wheelchairs (169, 511, 553, 656, 890).
BMIs have also been coupled with a variety of traditional
medical devices (522). For instance, recently a BMI core
was used to allow patients to control stimulators that acti-
vate their own muscles through functional electrical stimu-
lation (FES) (83, 633) (FIGURE 6).

To extract the type of information needed to control such a
vast list of actuators, a multitude of mathematical and com-
putational approaches have been proposed as potential
real-time decoders of voluntary motor activity generated by
the brains of animals and human subjects (49, 449, 490).

FIGURE 3. Schematics of a cortical brain-ma-
chine interface. Intracranial recordings are em-
ployed to sample the extracellular activity of sev-
eral hundred neurons in multiple cortical areas
that are involved in motor control of arm and
movements. The combined activity of cortical neu-
ronal ensembles is processed, in real time, by a
series of decoders that extract motor parameters
from the brain signals. The outputs of these de-
coders are used to control the movements of a
robot arm that allows human patients to perform
arm movements. [From Nicolelis (575).]

FIGURE 4. A brain-machine interface for enabling arm move-
ments and with multiple feedback loops. A rhesus monkey is con-
trolling a robotic arm that reaches and grasps objects. The robotic
arm contains touch and position whose signals are processes and
converts to microstimulation pulses delivered to the sensory areas
in the brain. Neuronal ensemble activity is recorded in multiple brain
areas and decoded to generate commands that control the robotic
arm. [From Lebedev and Nicolelis (466), with permission from
Elsevier.]

LEBEDEV AND NICOLELIS

770 Physiol Rev • VOL 97 • APRIL 2017 • www.prv.org
Downloaded from www.physiology.org/journal/physrev by ${individualUser.givenNames} ${individualUser.surname} (098.121.211.016) on February 19, 2018.

Copyright © 2017 American Physiological Society. All rights reserved.



Moreover, a variety of signals and strategies for delivering
sensory feedback to subjects operating a BMI have been
proposed, including visual feedback through computer
screens (114, 377, 692), tactile and proprioceptive cues via
haptic displays (128, 597), and even direct intracortical
microstimulation (ICMS) applied to the primary somato-
sensory cortex (S1) (262, 597, 598).

To give an idea of how energized the field has become, even
BMIs that involve the collaboration of multiple animal
brains have been demonstrated in rat and monkeys (614,
616, 657). Notwithstanding these countless innovations,
FIGURES 3 AND 4 still are useful to describe the basic ele-
ments that constitute a BMI. These include the use of sen-
sors (e.g., multielectrode arrays) to sample large-scale brain
activity; multi-channel electronics that amplify, filter, and

digitize these signals; a computational engine responsible
for real-time extraction of motor commands from the raw
brain activity; an artificial actuator that performs motor
tasks; and a stream of feedback signals delivered to the
subject’s brain.

Merely 17 years after the modern age of BMI research was
launched, the tremendous impact of this paradigm in neu-
roscience can be measured by a variety of metrics. For ex-
ample, a bibliographic search in Google Scholar using the
terms brain-machine interface and a closely related expres-
sion, brain-computer interface, yields more than 40,000
publications during the past decade alone. Meanwhile, sev-
eral of the key experimental and clinical papers in the field
have surpassed 1,000 citations. Several prominent books
have been published on different aspects of BMIs (61, 106,
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3, monkey placed the cursor over the target then produced a gripping force. C: recordings of motor
parameters (blue lines) and their decoding (red lines). From top to bottom: example traces of hand velocity (Vx,
Vy) and gripping force (GF). [Adapted from Carmena et al. (114).]

BRAIN-MACHINE INTERFACES

771Physiol Rev • VOL 97 • APRIL 2017 • www.prv.org
Downloaded from www.physiology.org/journal/physrev by ${individualUser.givenNames} ${individualUser.surname} (098.121.211.016) on February 19, 2018.

Copyright © 2017 American Physiological Society. All rights reserved.



210, 577, 586, 660, 862). During the same period, an esti-
mated $800 million United States dollars have been in-
vested in BMI research worldwide.

Since the introduction of experimental BMIs in the late
1990s, many applications have emerged for healthy sub-
jects, outside the domains of basic and clinical research.
BMIs for computer gaming (6, 9, 257, 342, 489, 493, 531,
532, 775, 874), EEG-based that detect drowsiness in drivers
(137, 286, 501, 504, 636, 685, 810), and even BMIs for
education (371, 526) are just a few examples of this parallel
line of BMI development outside biomedical research. As a
result, many started to consider BMIs as a method to aug-
ment human neural and physiological functions, such as
cognitive abilities (242, 518, 519, 539, 888) and motor
performance (148). Despite being very interesting subjects
for debate, none of these latter areas of BMI application will
be covered here.

In this review, we start with a brief history of BMIs, fol-
lowed by a description of major classes of BMIs. Next, we
spell out the major components for building a BMI: sensors
to record large-scale brain activity, decoding algorithms for

extracting behavioral variables from brain signals, the
means to deliver sensory feedback to the brain, and external
actuators controlled through BMIs. Finally, we will discuss
BMI applications to restore mobility and, eventually trigger
partial neurological recovery in severely paralyzed patients.

II. HISTORY OF BMI RESEARCH

A. Early Studies

As mentioned in the introduction, the history of BMIs is
intimately related to the effort of developing new electro-
physiological methods to record the extracellular electrical
activity of large neuronal populations using multi-electrode
configurations. Such an essential component of modern
BMI architecture was pioneered in the 1950s, by John Cun-
ningham Lilly, then a principal investigator at the National
Institutes of Health. In his experiments, Lilly was able to
implant 25–610 electrodes, either on the pial surface of the
cortex or intracortically, in adult rhesus monkeys (498)
(FIGURE 7). In addition to recording field potentials (25
channels at a time) with these electrodes while animals ex-
hibited a variety of behaviors and states (arm movements,
sleep, etc.), Lilly also applied electrical current through
those electrodes and elicited movements in both anesthe-
tized and awake monkeys (496). He observed that motor
responses could be evoked from many cortical sites, includ-
ing M1 and S1. Lilly concluded that there was no clear-cut
separation between cortical regions presumed to be motor
alone or sensory alone. He suggested that these areas be
named sensorimotor instead (497).

The next intermediary step in the development of the BMI
concept can be traced back to the introduction of “EEG
biofeedback” or “neurofeedback,” which became very
popular in the 1960s and 1970s, in a variety of experimen-
tal settings (179, 258, 405, 407, 622, 749, 764, 777, 843,
867). In these studies, subjects were provided with an indi-
cator of their own neural activity, for example, auditory or
visual feedback derived from EEG recordings, which as-
sisted them with self-regulating those neural signals. David
Nowlis and Joe Kamiya (405, 595, 596) recorded EEGs in
animals and human subjects, and converted them into
sound. Aided by this type of neurofeedback, subjects gained
some level of volitional control over their own EEG activity.
Maurice Sterman and his colleagues converted EEGs of ep-
ileptic patients into lights and tones, and achieved seizure
reduction with this type of neurofeedback training (763–
766).

According to Daniel Dennett (193), the first experiment in
which human subjects sent brain-derived signals to com-
mand an external device was described in 1963 by Grey
Walter in a talk to the Osler Society at Oxford University.
Since Walter himself did not publish this presentation, Den-
nett’s anecdote may not be completely accurate or verified.
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Published literature, however, confirms that Walter and his
colleagues implanted multiple electrodes (up to 1,000) in
the cortex of neurological patients and used these implants
for monitoring cortical field potentials over a period of
several months (831). In the experiments described by Den-
nett, Walter recorded motor cortex readiness potentials
preceding movements, also called Bereitschaftspotentials,
while his patients periodically pressed a button to advance
slides in a slide projector. The button presses were self-
paced. The readiness potentials led the movement by ap-
proximately half a second and were sufficiently strong to be
detected by Walter’s recording equipment. Next, Walter
succeeded in creating a direct link between each patient’s
motor cortex and the projector. In this experimental condi-
tion that we would now call brain control, the button was
electrically disconnected from the projector and the slides
were advanced by motor cortical readiness potentials. It
came as a surprise to the patients that the projector re-
sponded to their will even before they physically initiated
the movement. Although Walter’s experiments can be con-
sidered as the first proof of concept of the possibility of
building BMIs, he never published these results or inter-
preted them in the context of BMIs, even though in his
earlier career in the 1950s, he conducted research on robots
with artificial brains (829, 830).

By the end of the 1960s, researchers at the NIH Labora-
tory of Neural Control started to experiment with the
possibility of utilizing recordings from cortical neurons
to control artificial actuators (270). They were also in-
terested in using direct connections between brains and
external devices to restore hearing to the deaf, walking to
the paralyzed, and vision to the blind (701). This NIH-
led research was conducted with some universities and
medical schools participating as subcontractors. Karl
Frank, the NIH laboratory head, proclaimed, “We will
be engaged in the development of principles and tech-
niques by which information from the nervous system

can be used to control external devices such as prosthetic
devices, communications equipment, teleoperators . . . and ul-
timately perhaps even computers” (269).

In their initial study, the NIH team implanted five micro-
electrodes in the primary motor cortex (M1) of rhesus mon-
keys and then recorded action potentials generated by 3–8
M1 neurons, while animals performed a motor task that
required them to flex and extend their wrists (374). Since
the eventual goal was to convert these neuronal signals into
the movements of an external device, the researchers
probed whether wrist movements could be predicted from
the recorded activity of small neuronal populations. They
utilized multiple linear regression as a prediction algorithm.
The algorithm took neuronal rates as inputs and returned
movement kinematics as the output. A decade of this re-
search eventually resulted in the demonstration of a real-
time neural control (702): a rhesus monkey with 12 micro-
electrodes implanted in M1 for 37 mo learned to move a
cursor on an LED display using its own neural activity as a
direct source of motor commands.

During the late 1960s, Eberhard Fetz and his colleagues
conducted experiments in which they utilized the electrical
activity of single neurons recorded in monkey M1 as a
source of neurofeedback (254). Using this apparatus, mon-
keys learned to self-regulate their own single-neuron activ-
ity. Typically, one neuron was tested at a time. The neuro-
nal electrical firing rate was converted into either auditory
(a click for each spike) or visual (deflections of an arrow
meter placed in front of the animal) feedback. Monkeys
learned to volitionally modulate the activity of each indi-
vidual M1 neuron to reach a particular level of firing re-
quired to obtain a reward (FIGURE 8). While Fetz empha-
sized the neurofeedback aspect of such operant condition-
ing experiments, Brindley and Craggs (89, 168) employed
epidural recordings of motor cortical field potentials in the
frequency band 80 to 250 Hz in baboons to test the possi-

A B

FIGURE 7. Multichannel implant of John
Lilly. A: parts of the electrode implant: the
lower end of a spear-shaped hardened
steel tool that was used for starting bone
holes (a, a’); the lower part of the mandrel
(b, b’) with a sleeve on the cylindrical lower
end (b’); sleeves (c, c’); electrode (d, d’);
and sleeve guide (e). B: an X-ray of a mon-
key skull showing 20 implanted sleeves and
one inserted electrode. [Adapted from Lilly
(498). Reprinted with permission from
AAAS.]
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bility of creating a motor neuroprosthesis that recognized
specific movements produced with the arms or legs. More-
over, Craggs (167) used baboons with complete spinal cord
transections at the midthoracic level as a model of human
paraplegia, while he recorded motor commands directly
from the cortical representation of the foot disconnected
from its spinal cord projection area.

At the same time these laboratories experimented with ex-
traction of motor signals from the brain and/or using them
to generate neurofeedback, another line of research focused
on ways to deliver information to the brain using electrical
stimulation, either applied to peripheral nerves (153, 354)
or to the central nervous system (90, 91, 495). This work
led to early attempts to build sensory BMIs that strived to
restore normal perception to patients suffering with neuro-
logical conditions that induced significant sensory deficits.
From these pioneering studies, the work on cochlear im-
plants (FIGURE 9) eventually reached the most spectacular
results (198, 218, 219, 367, 510, 743, 855). In parallel,
some progress was achieved in the development of visual
cortical prostheses pioneered by the groups led by Brindley
(88, 90, 91) and Dobelle (200–203). These researchers ap-
plied electrical current to the visual cortex of blind patients
through grids of surface electrodes. Using this apparatus,
blind subjects could perceive light spots, phosphens, and

learned to recognize simple visual objects composed of sev-
eral phosphens.

Also in the 1960s, Bach-y-Rita and his colleagues started to
develop visual substitution systems for the blind, based on
tactile stimulation of the skin on the patient’s back (39, 40).
This technique became known as vision substitution by tac-
tile image projection. The apparatus employed, called a
haptic display, consisted of 400 solenoid stimulators ar-
ranged in a 20 by 20 array. The tactile stimulation was
applied to the surface of the patient’s back and attempted to
reproduce, through the sense of touch, visual images cap-
tured by a video camera (FIGURE 10). After being trained for
10 h, blind patients learned to recognize objects and their
positional relationship in a room, as well as landmarks,
such as the room’s door frame (40).

B. Explosive Development in the Late 1990s

Despite the initial push observed in the 1960s and 1970s,
research on direct links between brain and machines expe-
rienced a decline during the next 20 years. Clearly, the lack
of major technological breakthroughs in the area of multi-
channel neuronal recordings during that period prevented
the field from taking off and fulfilling the auspicious poten-
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tial envisioned by the early proponents of this research pro-
gram.

Around the mid-1990s, however, the required technologi-
cal innovation materialized with the introduction of a new
multi-electrode design that allowed bundles or planar ar-
rays to be built using flexible and insulated metal filaments,
known as microwires (108, 578, 584, 585). John K. Cha-
pin, one of the pioneers of microwire implants, discovered
that if a blunt tip was left exposed in an otherwise insulated
metal microwire, made of stainless steel, individual single-
units could be recorded for many weeks or even months
from the forepaw representation area of M1 and S1 of
freely moving rats (125, 734). A few years later, Miguel
Nicolelis and Chapin chronically implanted multiple bun-
dles and/or arrays of Teflon-coated stainless steel mi-
crowires in the ventral posterior medial nucleus (VPM) of
the thalamus of adult rats and recorded the simultaneous
electrical signals produced by up to 24 of these thalamic
neurons in awake and freely moving rats (579, 584). A year
later, the same authors reported simultaneous multi-site
recordings, obtained from chronic implants that included
not only VPM, but also multiple key subcortical structures
that define the rat trigeminal system, such as S1, different
thalamic and brain stem nuclei and even the trigeminal
ganglion of the same subjects (578). Using this new ap-

proach, these researchers recorded the extracellular activity
of up to 48 neurons distributed across multiple subcortical
and cortical relays of the rat trigeminal somatosensory sys-
tem, in awake, freely behaving rats. These experiments
marked the first time simultaneous neuronal population
activity, originating from multiple processing levels of a
mammalian sensory system, was measured in the same an-
imal subject. Three years later the same technique was val-
idated in primates, allowing the Nicolelis Lab at Duke Uni-
versity to record from multiple cortical areas in awake owl
monkeys (582).

Since the recording properties of chronic microwire im-
plants lasted for several months in both rats and owl mon-
keys, Chapin and Nicolelis found this technique suitable for
testing the concept of linking the brains of rats and monkeys
to artificial actuators and investigating whether these ani-
mals could learn to control external devices using only their
brain electrical activity. In 1999, Chapin and Nicolelis pub-
lished their first BMI study where rats learned to use the
combined extracellular activity of up to 46 neurons to con-
trol the uni-dimensional movements of a lever that deliv-
ered water, collected from a water dropper, to the animal’s
mouth (124). Initially, rats were trained to press a bar to
generate the lever movements. As rats learned this task, a
principal component analysis algorithm, implemented us-
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Speech Processor
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Implanted Receiver/
Stimulator

External
Transmitter

FIGURE 9. Diagram of a cochlear im-
plant. (Reprinted with permission from
MED-EL Medical Electronics GmbH, Inns-
bruck, Austria.)
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ing analog electronics, was employed to transform the com-
bined cortical activity of the recorded neuronal popula-
tion into a continuous motor control signal that moved
the lever. To the total surprise of Chapin and Nicolelis,
not only did the rats learn to operate the lever efficiently
to drink their daily water allotment, but, in a few trials,
the animals would simply stop moving their forepaws
and still successfully use their brain activity alone to
move the lever and receive their water reward. A year
later, the Nicolelis laboratory demonstrated that owl
monkeys could utilize the simultaneously recorded elec-
trical activity of close to 100 cortical neurons, distributed
across multiple frontal and parietal cortical fields, to con-
trol the two- and three-dimensional movements of a mul-
tiple degree of freedom robot arm (852). This study also
introduced a new analytical method and graphic repre-
sentation, the neuronal dropping curve (NDC), which
would become a standard representation to depict the
neurophysiological results of BMI studies (FIGURE 11)
(114, 283, 377, 462, 465, 562, 690, 692). In 2000, in a
review paper commissioned by Nature, Nicolelis dubbed
the paradigm Chapin and he had implemented as a brain-
machine interface or BMI, the first time the now tradi-
tional term was used to refer to real-time links between
living brains and artificial devices (575).

Curiously, also in 1999, without knowledge of the work
carried out by Chapin and Nicolelis in animals, a group led
by Niels Birbaumer at the University of Tubingen in Ger-
many pioneered their version of a direct link between a
brain and a computer in locked-in patients (71). Birbaumer
chose to name this paradigm brain-computer interface
(BCI), a term that had been introduced in the literature by
Jacques Vidal in 1973 (823). Birbaumer’s BCI allowed
locked-in patients to communicate with the external world
using slow cortical potentials recorded via a noninvasive
technique, EEG recordings, to control computer software
for spelling. Using this system, locked-in patients became
capable of writing messages on the computer.

Overall, the original papers by Chapin, Nicolelis, and
Birbaumer mark the beginning of the modern age of re-
search on BMIs. In the case of intracranial BMIs, the focus
of this review, advances in multi-electrode recording meth-
ods, combined with the introduction of faster digital com-
puters running new computational algorithms for extract-
ing motor signals from brain-derived signals, triggered a
phase of very fast growth in the field. Thus, following the
original demonstrations in rats and New World monkeys,
the next important milestone of the field was the translation
of the BMI paradigm to rhesus monkeys, the conventional
experimental animal model for exploring neurophysiology
of advanced motor behaviors and cognition. In a quick
succession, three different groups published their results in
this primate species (114, 725, 794). In a span of 12 mo, the
BMI paradigm in rhesus monkeys incorporated the use of a
series of novel actuators, such as a computer cursor (725,
794), and a robot arm capable of producing both arm
reaching movements and hand grasping (114). With this
latter addition, the Nicolelis laboratory demonstrated that
the same pool of recorded cortical neurons could be em-
ployed to simultaneously extract hand gripping force and
arm position and velocity from multiple frontal and parietal
cortical areas in awake rhesus monkeys (114, 463).

In 2004, the Nicolelis laboratory also reported the first
demonstration that ensembles of subcortical neurons, re-
corded intraoperatively with microwire bundles, could be
employed to extract hand movements in awake and con-
scious human subjects (620). These recordings were ob-
tained during a neurosurgical procedure in which Parkinso-
nian patients received a deep brain stimulator. During a
brief intraoperative period of 10–15 min, up to 50 neurons
located in the subthalamic nucleus and thalamic motor nu-
clei were recorded while these patients played a one-dimen-
sional video game by exerting a gripping force with one
hand. This study revealed that the same computational al-
gorithm, multi-linear regression, employed by Wessberg et
al. (852) and Carmena et al. (114) in owl and rhesus mon-
keys, respectively, could be used to extract hand movement
patterns from human subcortical signals.

FIGURE 10. Vision substitution system developed by Paul Bach-y-
Rita and his colleagues. The system included a digitally sampled
television camera, control electronics, and a 400-point matrix array
of tactile stimulators mounted on a dental chair. The tactile stimu-
lation projected images to the back of blind subjects. [From Bach-y-
Rita et al. (40).Reprinted by permission from Macmillan Publishers
Ltd.]
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A couple of years later, in 2006, the group led by John
Donoghue reported the operation of a BMI in one patient
chronically implanted with a different multichannel record-
ing technology approved for human trials (362). Their im-
plant, named the Utah probe, was a 10 � 10 array of sili-
con-etched rigid needles (111, 537, 593). The Utah probes
were inserted in the cortex ballistically using a pneumatic
gun (680), the method adopted for this implant to avoid the
“bed of nails effect,” where a slowly inserted dense elec-
trode array produces cortical dimpling and trauma (76,
111, 668). A total of two patients were implanted with this
device in 2006 (362), one of whom experienced implant
malfunctions for the first 6 mo followed by 2 mo of record-
ings. Both patients used a BMI to control two-dimensional
movements of a computer cursor.

As discussed below, recordings with Utah array suffer from
biocompatibility issues (220, 251, 679), which in our opin-
ion should preclude them for further use in human subjects.
Shortly after implantation, this probe can produce a signif-
icant tissue lesion and, hence, become encapsulated by glia
and protein deposits, as a result of the local inflammatory
reaction. Usually, this process renders the Utah probe un-
usable for single-unit recordings after a few weeks/months
(134). Groups that rely on this probe usually resort to the
utilization of a threshold-crossing method to detect useful
neuronal activity (134, 803), a maneuver that discards well-
established neuronal recording quality criteria (580) and
increases the likelihood of recording noise instead of neu-
ronal spikes, by mistakenly recording mechanical, electrical
and EMG artifacts as if they represented valid neural activ-

ity. As such, this recording technology cannot be considered
as the final solution for clinical BMI applications, even
though currently this method is commonly used in human
trials. Practical solutions will clearly require better record-
ing reliability, stability, and longevity standards to become
accepted by patients and clinicians.

To achieve better biocompatibility of a brain implant, in
1989, Philip Kennedy implanted an ALS patient with a
neurotrophic electrode loaded with nerve growth factors
that induced growth of nerve fibers into the electrode tip
(418, 420, 422). The study reported that the patient learned
to produce on/off neural control signals that were detected
by the electrode. While the same group continues this re-
search until now (98, 327), neurotrophic electrodes were
not adopted by other groups and their effectiveness remains
difficult to evaluate.

In addition to a few more clinical demonstrations of
BMIs that controlled computer cursors (3, 731), upper
limb robotic prostheses (152, 360) or an FES system for
the hand (83) using either populations of M1 or other
cortical neurons, several innovations were incorporated
to the traditional BMI approach over the past several
years. In 2009, the Nicolelis laboratory published the
first BMI approach to decode kinematics of bipedal walk-
ing in rhesus monkeys (261) (FIGURE 12). Two years
later, in 2011, the same laboratory implemented, for the
first time, a method for multi-channel ICMS as a tool to
deliver direct tactile feedback to the subject’s somatosen-
sory cortex in a BMI setup (598)(FIGURE 13). This new
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FIGURE 11. Neuron-dropping curves (NDCs).
In this study, owl monkeys performed one-di-
mensional movements with a joystick. Joystick
position was decoded from the activity of cortical
neuronal populations using a linear algorithm.
Decoding accuracy was measured as coefficient
of determination, R2. NDCs plot R2 as a function
of neuronal ensemble size. They were con-
structed by calculating R2 for the entire neuro-
nal population, then removing one neuron from
the population and calculating R2 again, and so
on until only one neuron was left. Extrapolated
NDCs for even larger populations were con-
structed using a hyperbolic function. A and B:
NDCs (thick lines) and hyperbolic extrapolations
(thin lines) for all neurons in monkeys 1 and 2,
respectively. C and D: NDCs calculated sepa-
rately for each recorded cortical area in mon-
keys 1 and 2, respectively. [From Wessberg et
al. (852).]
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paradigm was named a brain-machine-brain interface
(BMBI). In those experiments, rhesus monkeys per-
formed an active tactile discrimination task using a BMBI
that both generated motor commands and delivered ar-
tificial tactile feedback directly to the animal’s brain. To
perform the exploration task, monkeys had to control the
movements of a virtual hand, using their motor cortical
activity alone, to scan the surfaces of up to three visually

identical virtual objects shown on a computer screen. The
position of the virtual objects changed with every new
trial. As the virtual hand touched each virtual object,
temporally patterned ICMS was applied to the animal’s
primary somatosensory cortex to mimic the virtual tex-
tures. To receive a juice reward, the monkey had to find
an object associated with a particular virtual texture, and
hold the virtual hand over that object. After a few weeks
of training, two monkeys learned to perform this task at
levels similar to those attained when the control signal to
the virtual arm came from the joystick that the animals
moved with their own biological hands.

In parallel with these developments, considerable efforts
have been made by many laboratories to design better
real-time decoding algorithms. Krishna Shenoy and his
colleagues (692) reported a “high-performance BMI”
that relied on the strategy of flashing potential targets in
a rapid succession on a computer screen. They recorded
from small neuronal populations in dorsal premotor cor-
tex and found that the firing of these neurons reflected the
target location. Target locations could be decoded from
these neuronal firing modulations using recording inter-
vals as short as 250 ms, which allowed the BMI to reach
an information transfer rate of 6.5 bits/s. The authors
argued that the observed neuronal responses represented
the monkeys’ motor preparatory activity for arm reach-
ing movements rather than merely visual responses to the
targets, and therefore could be useful for controlling a
motor BMI that automatically directs the cursor to the
target once its location is determined. The same group
developed an improved algorithm for continuous cursor
control (307). The improvement was achieved using the
“recalibrated feedback intention-trained Kalman filter”
that was trained using both the cursor position in screen
coordinates and an estimate of intended velocity based
on the relative location of the cursor and target.

Moving in the same direction, our laboratory achieved con-
siderable improvement of real-time decoding by employing
an unscented Kalman filter that used position, velocity, and
speed as state variables and incorporated nonlinear rela-
tionships between the neuronal rates and these variables
(491). More recently, Jose Carmena and his colleagues
(728, 729) reported an improved temporal resolution for an
adaptive decoder that modeled spikes as a point process.
Overall, these efforts resulted in a large variety of BMI
decoding algorithms from which designers can choose de-
pending on the requirements for their experimental or fu-
ture clinical implementations.

While the research on intracranial BMIs has been con-
ducted mostly in animals for many decades and only
recently has started to expand into clinical trials in hu-
man patients, noninvasive BMIs, pioneered by Jacques
Vidal in the early 1970s (823, 824) and introduced to
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FIGURE 12. Decoding kinematics of bipedal walking from corti-
cal ensemble activity. A: diagram of the experimental setup, con-
sisting of a treadmill, video tracking system, neural recording
system (Plexon, USA) and a computer for real-time decoding of
neural activity. B: video frames depicting step cycles of two mon-
keys. C: tracking (blue line) and decoding (red line) of ankle posi-
tion at different treadmill speeds. [Adapted from Fitzsimmons et
al. (261).]
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clinical practice by Niels Birbaumer (71), have under-
gone a considerable expansion (14, 74, 246, 358, 815,
863). BMIs for humans are often referred to as BCIs,
including both invasive and noninvasive systems. It is
worth noting that the first publication on a human con-
trolling a robot with EEG activity dates back to 1988
(85). In this report, subjects issued start and stop com-
mands to a robot by closing and opening their eyes, the
well-known procedure to activate and deactivate alpha
waves (60, 587). Recently, a motor imagery-based BCI
was used by the Walk Again Project, an international
nonprofit research consortium, to allow complete para-
plegic patients to use EEG to control the start and stop
sessions of bipedal walking of a lower limb robotic exo-
skeleton (737). Overall, BCI research yielded many prac-
tical applications, such as BCIs that use EEG signals to
control computer cursors (240, 864, 865), computer-as-
sisted spellers (102, 245, 247, 421, 545, 832), wheel-
chairs (121, 411, 511, 553, 811, 833), and exoskeletons
that restore bipedal walking (156, 836).

III. BMI CLASSIFICATION

A. Classification by Function

Several BMI classification schemes have been proposed
heretofore. One scheme classifies BMIs according to the
physiological function they are intended to emulate. Here,
BMI systems are commonly categorized as follows: 1) mo-
tor, 2) sensory, 3) sensorimotor (or bidirectional), and 4)
cognitive. The recent introduction by our laboratory of
BMIs that incorporate multiple brains of different subjects
(614, 616, 657) adds one more BMI class, which we named
Brainet (657).

Motor BMIs reproduce motor functions, such as upper
(114, 152, 817, 852) and lower limb (261) movements or
whole body navigation (656, 873). Sensory BMIs aim at
reproducing sensations, while sensorimotor BMIs combine
the motor and sensory components in a single application
(57, 597, 598). Cognitive BMIs (19) enable higher-order
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FIGURE 13. Brain-machine-brain interface. A: dia-
gram of experimental setup. Monkey was seated in
front of a computer screen showing an avatar arm an
multiple targets. Motor commands were decoded
from motor cortex activity. Artificial tactile feedback
was produced by intracortical microstimulation ap-
plied to primary somatosensory cortex. B: cortical
location of microelectrode implants. C: microelec-
trodes used for microstimulation (accented in red).
D: avatar arm position for a representative trial. The
monkey first placed the avatar hand over the unre-
warded artificial texture (UAT), then ultimately se-
lected rewarded artificial texture (RAT). Vertical gray
bars correspond to the periods of microstimulation;
insets indicate stimulation frequency. E: raster dis-
play of motor cortex discharges for the same trial;
spikes were not detected during microstimulation de-
livery because of the stimulation-induced artifacts.
Only the periods void of microstimulation were used
for neural decoding. [Adapted from O’Doherty et al.
(598).]
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brain functions, such as memory (62), attention (279, 512),
and decision-making (343, 564). Finally, Brainets involve
the implementation of shared BMIs requiring the participa-
tion of multiple subjects since these systems require the
combination of electrical activity of multiple brains simul-
taneously to operate properly (657). Although seemingly
straightforward, this classification scheme follows the tra-
ditional labeling of brain areas as motor, sensory, or higher
order (associative), a simplified description, which is funda-
mentally wrong in most cases. There is mounting evidence
against such a parcellation scheme of brain functions and in
favor of a more distributed mode of information processing
in the primate cortex (96, 253, 497, 583, 675). Thus sen-
sory and motor signals are typically multiplexed by cortical
neurons, including the areas considered to be purely motor
or purely sensory (470). Indeed, even the primary motor
and somatosensory cortical areas have been shown to con-
currently process both motor and somatosensory informa-
tion (229, 277, 497, 500, 647), and also represent visual
signals (738), reward amount (529), and even cognitive
processes, such as mental rotation (297, 300) and encoding
serial order of stimuli (115).

Based on our own BMI work, we have argued for more than
a decade that highly distributed neuronal ensembles repre-
sent the true physiological unit of the nervous system (583),
a proposition that is supported by an extensive literature
(107, 109, 253, 302, 339, 477, 648, 686, 687). In a distrib-
uted neural circuitry, there are no exclusive functional spe-
cializations at the level of individual neurons. Rather, single
neurons multiplex several functions, and the best decoding
can be achieved by sampling large numbers of neurons from
multiple brain areas, simultaneously. We have proposed,
therefore, that as the BMI field advances, this new theoret-
ical view of brain function will lead to almost universal
acceptance of a distributed principle of neuronal activity
sampling in BMI applications. Since our first BMI studies
(852), we have consistently demonstrated that large-scale
neuronal recordings from multiple cortical areas are imper-
ative for building BMIs that are versatile, robust, efficient,
and clinically relevant (466, 575, 583). Another step in this
direction was made when the BMBI paradigm was intro-
duced (598). In a BMBI, motor and sensory streams of
information are handled simultaneously to facilitate senso-
rimotor processing. In the same context, the concept of
Brainets takes multitasking BMI designs to the next level by
combining multiple brains into a higher order computa-
tional entity (614, 616, 657).

B. Classification by the Level of Invasiveness

Since the inception of modern-era BMIs, two major ap-
proaches have dominated the field: intracranial or invasive
(124, 852) and noninvasive (71) systems. Accordingly, it is
common to classify BMIs by their level of invasiveness. This
division is important for a variety of reasons, the major one

being a safety concern. Invasive BMIs require a neurosur-
gery procedure that involves opening the scalp and skull
and penetrating the brain tissue, albeit only for a few milli-
meters, for systems relying on cortical signals. These proce-
dures carry a risk of tissue damage and/or infection, partic-
ularly if the implant is not fully contained within the body
and has external parts, like wires connected to extracranial
recording hardware, as was the case in recent clinical trials
in humans (83, 152, 360, 362). Noninvasive BMIs, on the
other hand, do not carry such risks and can be implemented
rather easily. For example, in the case of EEG recordings,
the electrodes are simply placed on the scalp surface (588)
through an easy and safe procedure, particularly if dry sen-
sors (136, 266, 287, 329, 785) are used.

Since patient safety is of paramount importance, noninva-
sive BMIs are currently the default choice for clinical appli-
cations. Yet, their recording quality is insufficient in many
cases, causing EEG-based BMIs to be rather slow systems.
Indeed, EEGs represent attenuated and filtered brain activ-
ity, which combines synchronous electrical signals, pro-
duced by many millions of neurons. Since these signals have
to travel through bone and skin prior to reaching the scalp
sensors, EEG signals lack fine spatial resolution and do not
provide the kind of precise task-related neuronal signals
that can be obtained from intracranial recordings (466).
Similar limitations characterize all noninvasive recording
methods that measure neuronal signals at a distance from
their source.

In contrast, in invasive BMIs, recording sensors are brought
close to the very source of generation of neural activity: the
single neurons that code information through trains of ac-
tion potentials (157, 318, 487). Current intracranial BMIs
usually employ extracellular recording methods that allow
one to sample and discriminate action potentials generated
by hundreds of individual cortical neurons (466, 583, 711,
767). The more microelectrodes are implanted; the more
neurons can be sampled simultaneously. Moreover, the
same microelectrodes can also record local field potentials
(LFPs), which represent combined potentials of large (on
the order of tens of thousands) neuronal populations (192,
289, 373, 398, 571). Additionally, the same implanted mi-
croelectrodes that are used for recordings can also be used
for the delivery of electrical microstimulation that, depend-
ing on the stimulated area, can influence sensory, motor or
cognitive processing (41, 45, 48, 146, 704, 705, 719, 770).

An intermediary approach, known as electrocorticography
(ECoG) can be considered as a semi-invasive method since it
requires a craniotomy but does not involve sensors pene-
trating the nervous tissue. ECoGs are recorded with a grid
of electrodes placed on the brain’s surface; dura mater may
be left intact (i.e., epidural ECoG) or open to allow closer
contact between the electrodes and the cortex (subdural
ECoG) (24, 94, 357, 530, 665, 696, 828). ECoG recordings
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have better spatial and temporal resolution than EEG, but
they cannot be used to reliably detect single-neuron spikes.
Chronic ECoG recordings can last many years in animals
(105, 123, 131, 508, 682) and humans (845, 870). Overall,
ECoG has many advantages compared with EEG, and it is
not as invasive as penetrating implants. Still, it remains
controversial whether or not ECoG-based BMIs can rival
single units in terms of BMI performance and accuracy. A
variety of intracranial and invasive approaches are re-
viewed below in the section on neural recording methods.

C. Classification by the Origin of Neural
Signal

Since the late 1990s when the modern BMI concept and
design was introduced, the majority of BMIs have utilized
neural signals recorded from cortical areas of animals or
human subjects (71, 114, 124, 152, 362, 377, 794, 852,
864). Such an abundance of cortical BMIs is not surprising
because the cortex is the largest and most advanced brain
structure, which is also the easiest to access with the record-
ing sensors. Among cortical areas utilized in BMIs, M1 is
the most commonly implanted area (114, 725, 852) because
neuronal discharges in M1 are clearly correlated with dif-
ferent movement parameters (227, 294, 554). Additionally,
recordings from premotor cortex are employed in BMIs as a
source of motor commands to control ongoing movements
(114) and preparatory signals that reflect motor planning
before movements have started (692).

Our laboratory has long advocated recording simultane-
ously from multiple cortical areas as an efficient way to
increase both the amount of information processed by a
BMI and its performance and versatility (114, 377, 466,
583). We have routinely recorded from four to eight frontal
and parietal cortical areas in rhesus monkeys to operate a
variety of BMIs and observed that any of those cortical
areas provide useful information. The best BMI perfor-
mance was usually achieved when neuronal signals from
multiple frontal and parietal cortical areas were combined.

Lately, interest has increased to BMI systems that utilize
subcortical recordings. These systems, in principle, could
capture neural processing in cortico-subcortical loops (11)
related to motor control (188, 189, 677), sensory process-
ing (44, 396, 397, 447, 528), motivation (706–709), and
skill learning (72, 212, 356, 689). It is noteworthy that
subcortical recordings from the ventrolateral thalamus
(VL) were utilized in the pioneering BMI study by Chapin et
al. in 1999 (124) where VL neurons contributed to the BMI
control of lever movements. Additionally, Patil et al. (620)
relied on subcortical recordings from the subthalamic nu-
cleus (STN) and ventral intermediate/ventral oralis poste-
rior motor thalamus (Vim/Vop) to demonstrate, for the first
time, that human patients could utilize real-time algorithms
previously tested in monkeys to generate one-dimensional

movements of a computer cursor (336). More recently, Ko-
ralek et al. (442) employed cortical and striatal recordings
in awake, behaving rats to construct a BMI for abstract skill
learning. In these experiments, rats learned to control the
pitch of an auditory stimulus through a BMI. This learning
was accompanied by increases in neuronal firing in the stria-
tum. Additionally, stronger correlations developed between
the cortical and striatal neurons. These findings further sup-
ported the claim, made in early BMI studies (114, 124,
463), that brain plasticity, in this case, corticostriatal plas-
ticity, plays a major role in learning to control a BMI. This
is an important conclusion for the development of BMIs,
since it means that severely disabled patients may be able to
learn novel motor skills, through BMI training.

In the future, subcortical BMIs could contribute to treat-
ment of neural conditions caused by disorders of subcorti-
cal processing, such as Parkinson’s disease. As a step in this
direction, we analyzed pathological signs in neuronal pop-
ulations in Vim/Vop and STN recorded in Parkinsonian
patients (336), while they controlled a computer cursor by
opening and closing their hands. Their task was to point to
screen targets with the cursor. Vim/Vop and STN neuronal
populations responded to target onset, and hand move-
ments, as well as being correlated with hand tremor. BMI
decoders extracted movement kinematics from the STN
population activity even when those populations exhibited
tremor-related oscillations. These findings indicate that, in
the future, BMIs based on subcortical recordings could be
used for monitoring signs of neurological diseases, evaluat-
ing medical treatments and even delivering real-time reha-
bilitation therapies, via implanted devices, without the need
for continuous supervision.

D. Classification by BMI Design

Development during the last two decades resulted in several
well-established BMI designs. Two broad classes of BMIs
are represented by the so-called independent (endogenous)
and dependent (exogenous) systems. Although this termi-
nology is usually applied to noninvasive BMIs (i.e., BCIs), it
is also applicable to intracranial BMIs. In an independent
BMI, subjects self-initiate actions, for example, by imagin-
ing movements (604, 631, 651, 698) or even assisting them-
selves with overt movements of the limbs (114, 307, 463,
852). Such imagery and self-generated movements are con-
trolled voluntarily by the subjects and, in principle, could be
performed independently from any external stimuli (al-
though some external stimuli are usually involved).

Dependent BMIs, as the name suggests, critically depend on
the presence of an external stimulus and the triggered neural
responses to this stimulus (246, 473, 717, 832). For exam-
ple, a P300 EEG- or ECoG-based BCI monitors cortical
responses to computer screen events and detects a stronger
response to the stimulus attended by the subject (101, 209,
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257, 545, 635, 805). A very similar design, mentioned
above, was implemented in an intracranial BMI that evalu-
ated premotor cortex responses to visual targets that rap-
idly flashed on the screen (692). The improvement in per-
formance was achieved because the decoder received the
information at the time of stimuli presentation and started
to analyze neuronal data precisely after this event. Such
utilization of the timing of external events is characteristic
of all dependent BMIs. For example, BMIs that incorporate
instructed delay tasks rely on a precise sequence of computer-
generated task events for decoding (564, 731). While such
supervised operation speeds up the decoding and makes it
more reliable, dependent BMIs can operate only for a given
set of rules, a property that clearly limits the user’s auton-
omy in choosing motor outputs.

In addition to independent and dependent BMIs, the term
passive BMI (or passive BCI) has been recently introduced
to describe a system that performs useful decoding of neural
signals without considerable mental efforts of the subjects
(885, 887). Passive BMIs could, for example, improve hu-
man interactions with a technical system by monitoring and
decoding neural signals representing cognitive and emo-
tional states, while making appropriate adjustments to the
technical system.

Another criterion to classify BMIs is whether a subject per-
forms overt movements while performing a motor task us-
ing the BMI. Early BMI demonstrations relied on overt
movements to train the decoder and to operate a BMI (114,
261, 463, 852), whereas the next generation of BMIs ex-
cluded overt movements from both training and operation
phases (377, 794). The goal of this latter modification was
to mimic more properly the conditions of paralyzed patients
who cannot produce overt movements. Withholding overt
movements during BMI control dramatically changes neu-
ronal ensemble activity patterns (463, 583), including a
transient increase in correlation between cortical neurons,
which tends to subside with further training (377).

Overall, having a monkey control a BMI without moving its
own limbs is a much more difficult task for the animal
compared with the BMI control assisted by overt behav-
iors. Some recent studies still allow monkeys to assist
themselves in the BMI operation by producing overt limb
movements (239, 307, 761). While these reports down-
play the significance of this component (307), it is possi-
ble that the presence of overt movements contributed to
the improvement in BMI decoding. We suggest that overt
behaviors should be better monitored in BMI studies and
compared with the changes in BMI performance.

In this context, we should also mention that the require-
ment to withhold limb movements, while producing actua-
tor movements only through a BMI, defines a particular
motor task by itself; one that resembles the well-known

instructed delay task, where cortical neuronal firing modu-
lations (143, 171, 535, 846, 859), and even spinal cord
interneurons (653), change their activity in the absence of
overt limb movements. Similar no-go requirements can be
found in BMI task designs. For example, Ganguly et al.
(284) attached monkeys’ arms to a KINARM apparatus
and required the animals to maintain constant arm position
on each trial, while moving a screen cursor using a BMI; any
arm movements cancelled the trial. These experimental set-
tings are virtually identical to a classical instructed delay
task, with the exception that in the instructed delay task, the
arm eventually moves to the target, whereas in the BMI
task, arm movements were not required. Such a require-
ment to pay attention to the arm position is different from
other studies where animals were not encouraged to pay
attention to the arm position, which was irrelevant for the
BMI performance (114, 377, 463). This difference is impor-
tant because the results of such experiments are often inter-
preted in terms of incorporating an external effector into
the brain’s own representation of the subject’s body (466).
To validate such an interpretation, it matters whether the
subject refocused attention to a new effector or continued to
attend to the arm position and possibly used it as a reference
for a BMI-controlled cursor.

In the early days of the field, the number of neurons
needed for accurate BMI performance control used to be
a controversial issue. During the early 2000s, research
groups led by Donoghue (723, 725) and Schwartz (794)
suggested that recording from just a few cortical neurons
simultaneously could be sufficient for achieving good
BMI control. In contrast, our laboratory has always ar-
gued that large neuronal ensembles are required to
achieve optimal BMI performance (114, 261, 377, 466,
468, 583, 852). We reasoned that single neurons repre-
sent behavioral parameters of interest only partially and
in a noisy way, and that combining contributions from
many neurons both increases the information content
and improves the signal to noise ratio of decoding. Ad-
ditionally, it is easier to select neurons with the properties
needed for decoding when there is a sufficiently large
neuronal sample from which to select. As time passed,
this dispute was resolved in favor of the large neuronal
samples. Even the former proponents of small ensembles
have now switched their approaches to embrace large
neuronal samples as the only viable approach for clini-
cally-relevant BMI applications (152, 360, 362).

IV. REPRESENTATION OF INFORMATION
BY NEURONS AND THEIR
ENSEMBLES

A. Tuning of Single Neurons

For the past six decades, an extraordinarily large neuro-
physiological literature has accumulated around the subject
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of how ethologically meaningful information is encoded by
individual neurons and neuronal ensembles (106, 142, 237,
293, 401, 578, 583, 671). Despite these extensive observa-
tions, we are still far from understanding the physiological
mechanisms guiding the dynamical operation of neural cir-
cuits in mammals. This fundamental lack of knowledge,
however, has not precluded BMI research from adopting an
empirical approach, where parameters of interest are ex-
tracted from neuronal signals. Any decoding approach is
always based on the existence of some degree of correlation
between neural activity and those parameters of interest,
but rarely on an unequivocal establishment of a causal re-
lationship or a clear knowledge of the neural mechanisms
involved. Yet, as we previously argued (466, 583), empiri-
cal approaches employed in BMI research could help us to
uncover fundamental neurophysiological principles gov-
erning the operation of brain circuits.

The existence of a correlation between neuronal firing rate
and a given behavioral variable is classically referred to as
neuronal tuning. When one says that a neuron is tuned to a
behaviorally relevant parameter, this simply means that the
neuronal rate is correlated with that parameter, and this
correlation is consistent. In this context, two key physiolog-
ical properties of neuronal circuits have accounted for the
feasibility of creating functional BMIs which can generate
consistent motor outputs. First, BMIs have benefited from
one of the early discoveries of neural ensemble physiology:
that the trial-to-trial variability in firing rates of single neu-
rons, which is often described as neuronal noise, can be
significantly compensated by recording simultaneously
from ensembles of neurons (253, 292, 462, 467, 583). In
other words, combining contributions from many neurons
reduces the uncorrelated noise produced by individual neu-
rons while leaving intact the consistent component of firing
modulations, best represented by the entire neuronal pop-
ulation. The second physiological property that proved to
be indispensable for the proper operation of BMIs is the
occurrence of neuronal plasticity, i.e., the ability of neurons
to continuously adapt their tuning when exposed to novel
task contingencies and external world statistics (see below).

The relevant literature on neuronal tuning starts with the
work of Edward Evarts who pioneered the investigation of
the physiological properties of single M1 neurons in the
mid-1960s (233, 235, 236). By using sharp-tip electrodes,
Evarts sequentially recorded extracellular electrical activity
of single M1 neurons, while his monkeys remained awake
and performed a variety of motor tasks (227, 228, 230–
232, 234, 238). These now classical experiments revealed
that M1 neurons were tuned to parameters such as muscle
force and joint torque. For example, an M1 neuron would
increase its firing rate when the monkey pulled a lever and
decrease firing when the monkey pushed it. As such, M1
neuronal firing modulations coded the next push or pull
movements performed in a task trial. Combining neuronal

firing rates from many trials of each kind allowed Evarts to
describe an average response curve, which was named
perievent time histogram (PETH).

Evarts’ original findings triggered a major push in systems
neurophysiology, resulting in the widespread use of his
technique for single-unit recording to characterize the
tuning properties of individual neurons in various areas
of the rhesus monkey’s brain. In the case of the motor
cortex, the next breakthrough was produced by the sem-
inal discovery of Apostolos Georgopoulos and his col-
leagues that M1 neurons exhibit broad tuning to the
direction of arm movement (295, 299, 423, 710). To
reach this conclusion, the Georgopoulos laboratory mea-
sured the firing discharge patterns of individual M1 neu-
rons, while their monkeys performed arm reaching move-
ments that started at an initial, central location and
ended on peripheral targets (FIGURE 14). Analysis of
these center-out movements revealed that the single neu-
ron’s firing rate peaked for a particular movement direc-
tion, called preferred direction, and decreased gradually
when the direction deflected from the preferred one.
Georgopoulos graphically represented the relationship
between neuronal rate and movement angle as the direc-
tional tuning curve (290, 710). He also proposed a cosine
fit, where the neuronal rate was proportional to the co-
sine of the angular deviation from the preferred direc-
tion.

Further exploration conducted by many groups into the
activities of cortical neurons during motor behaviors re-
vealed many additional characteristics of neuronal tuning,
such as representation of sensory signals (464, 505, 565),
sensorimotor transformations (194, 297, 298, 400, 401,
860), simultaneous encoding of the motor goal and the
direction of spatial attention (471), representation of mul-
tiple motor plans (143), and even encoding of cognitive
variables by M1 neurons (291).

With the accumulation of these findings, it became progres-
sively clear that the next step toward the understanding of
brain encoding would require sampling the activity of pop-
ulations of neurons recorded simultaneously, instead of re-
cording one neuron at a time. In the case of BMIs, this step
was imperative because single neurons or small neuronal
samples (10–30 neurons) could not sustain BMI opera-
tional accuracy and stability.

B. Neuronal Ensemble Physiology

At present, it has become conventional for BMI studies to
report that decoding of behavioral parameters from neuro-
nal activity improves with an increase in neuronal sample
(114, 261, 377, 463, 466, 468, 583, 852). The relationship
between the sample size and decoding accuracy is depicted
by a NDC (FIGURE 11), an analysis introduced by our lab-
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oratory in 2000 (852). Following this original publication,
this analysis quickly became a standard in the literature on
neural decoding (50, 78, 283, 552, 564).

Based on a decade of BMI studies in our laboratory, we
have proposed a series of principles of neural ensemble
physiology, derived primarily from the analyses of NDCs
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(583, 586) (TABLE 1). Several of these principles can be
immediately derived from the typical NDC, which shows a
rapid rise in decoding accuracy for small neuronal samples
followed by a slower rise for larger populations. Accord-
ingly, the single-neuron insufficiency principle states that
individual neurons carry low amounts of information. Con-
versely, the neuronal mass principle states that a given neu-
ronal ensemble should reach a certain size, in terms of num-
ber of neuronal elements, for decoding accuracy to stabilize.
At this point, decoding performance does not change sub-
stantially when a few neurons are added or removed. This
stabilization of decoding accuracy should not be confused
with saturation. Further improvement of decoding is possi-
ble, but a substantial increase in neuronal sample is needed
to achieve an appreciable effect. The level of information
grows as a function of the logarithm of the neuronal sample
size. FIGURE 15 shows NDCs for several cortical areas and
a variety of BMI experiments conducted in rhesus monkeys.
It follows from the analysis of these NDCs that typically
each cortical area contains some level of useful information,
regarding the decoding of a given motor parameter. Ac-
cordingly, the distributed-coding principle postulates that
information is represented by the cortex in a distributed

way. This means that, for a given behavioral parameter,
neurons distributed within multiple cortical areas partici-
pate in the representation and processing of that parameter.
As an illustration, a study that employed multielectrode
recordings from dorsal premotor cortex (PMd) and ventral
premotor cortex (PMv) (68) showed that both areas repre-
sented the kinematics of arm reaching and characteristics of
hand grasping, the conclusion that favored the distributed-
coding principle and rejected a dual-channel hypothesis
that attributed the representation of reaching to PMd and
the representation of grasping to PMv (673).

Next, the neuronal multitasking principle proposes that an
individual neuron can simultaneously represent multiple
behavioral parameters, for example, arm kinematics and
gripping force exerted by the hand (114). Consistent with
this statement, a recent review by Fusi et al. (280) confirmed
that neuronal responses often represent combinations of
behavioral parameters. Fusi et al. (280) suggested that such
high-dimensional representation is computationally advan-
tageous compared with a population of highly specialized
neurons because it allows the nervous system to generate a
huge number of potential responses from the inputs to the

Table 1. Principles of neural ensemble physiology

Principle Explanation

Distributed coding Representation of any behavioral parameter is distributed across many brain areas
Single neuron insufficiency Single neurons are limited in encoding a given parameter
Multi-tasking A single neuron is informative of several behavioral parameters
Mass effect principle A certain number of neurons in a population is needed for their information

capacity to stabilize at a sufficiently high value
Degeneracy principle The same behavior can be produced by different neuronal assemblies
Plasticity Neural ensemble function is critically dependent on the ability to plastically adapt to

new behavioral tasks
Conservation of firing Overall firing rates of an ensemble stays constant
Context principle Sensory responses of neural ensemble changes according to the context of the

stimulus

[From Nicolelis and Lebedev (583).]
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neuronal population. Indeed, our neural degeneracy princi-
ple supports the hypothesis of Fusi et al. by proposing that
a given neuronal ensemble can generate many behavioral
outputs and, conversely, that a given behavioral output can
be encoded by a variety of neural ensembles. According to
our view, such a principle, which is similar to degeneracy
observed in the genetic code (221, 853), improves the ro-
bustness and flexibility of neural encoding (480).

An additional clarification of the relationship between neu-
ronal ensemble physiological patterns and associated be-
haviors is provided by the conservation of firing principle.
This principle explains that, due to the metabolic constraint
created by a fixed brain energy budget, the overall discharge
rate of a neuronal population should always remain con-
stant. Thus, if some cells increase their firing rate to encode
a motor parameter, others should reduce their activity pro-
portionally, to allow the energy consumption to remain
around a set limit. This principle is closely related to the free
energy principle which states that the brain minimizes its
free energy when exchanging information with the environ-
ment (273–275, 806).

Within the constraints of the conservation of firing princi-
ple, the context principle states that information represen-
tations by neural ensembles depend on behavioral context.
Neuronal response to an event would be different depend-
ing on the set of circumstances that surround the event, for
instance, whether the animal is awake or anesthetized when
the same sensory stimulus is delivered. Differences in neu-
ronal firing patterns produced under these two different
conditions, according to our view, reflect the brain’s ability
to contextualize information (527). Finally, the plasticity
principle states that neuronal populations modify their
properties when an organism adapts to novel conditions or
learns new behavioral tasks, including BMI tasks.

Our findings from BMI studies are consistent with these
neural ensemble principles. From more than a decade of
BMI research, we have learned that the best and most op-
timal way to extract a motor parameter from brain signals
is to rely on concurrent recordings of the activity of large
populations of neurons, distributed across multiple cortical
areas. Clearly, this sample should include a large popula-
tion of neurons located in M1, the cortical area from which
most reliable kinematic and dynamic information can be
obtained. Yet, surprisingly, many nonprimary frontal and
parietal areas can contribute meaningfully to a BMI that
continuously controls movements of an external actuator
(3, 114, 852). On the basis of these findings, it is fair to say
that BMI research has contributed decisively to consolidate
a new view of cortical processing, one that departs from the
classical dogma, proposed by the neuron doctrine, where a
single neuron is considered the true functional unit of the
brain, to one in which distributed neuronal populations

assume that key physiological role. Put in other words, BMI
research truly vindicated the Hebbian view of the brain.

Among multiple contributions to a better understanding of
cortical ensemble physiology (583), BMI research has led to
several demonstrations of new types of cortical plasticity.
Indeed, since the early BMI studies, it became clear that it
was only through cortical plastic adaptations that subjects
could learn to control a BMI and improve their overall
motor performance over time (114, 283, 377, 794). Even-
tually, this cortical plasticity led to the assimilation or in-
corporation of external actuators, such as robotic arms and
legs, as if they were true extensions of the subject’s body
representation that is known to exist in the brain (466,
583). BMI-associated cortical plasticity is manifested by
changes in directional tuning patterns of individual neurons
(114, 283, 463), alterations in temporal patterns of neuro-
nal discharges (884), and a transient increase in the corre-
lation between neurons within and between multiple fron-
tal and parietal cortical areas (114, 377, 583). All these
physiological adaptations mean that neuronal space in the
cortex becomes devoted to representing a variety of prop-
erties associated with the artificial actuators employed by a
BMI.

V. MULTICHANNEL RECORDING
TECHNOLOGY

A. Microwire Recording Cubes

Developing methodology for reliable recordings from large
populations of brain neurons is essential for further ad-
vances in our understanding of neuronal ensemble physiol-
ogy and for the development of more practical BMI appli-
cations (466, 581, 583, 711). So far, the major achieve-
ments in this field have been associated with multielectrode
implant methods.

We start by discussing the technology employed by our
laboratory for the past 25 years because it has produced the
highest neuronal yield and postimplant longevity reported
in the literature so far (711). Thus, in our hands, a typical
multielectrode implant was originally defined, in the mid-
1990s, by a two-dimensional grid composed of small-diam-
eter (12–50 �m) Teflon or isonel-insulated metal mi-
crowires (452, 581, 711). This technology evolved over
nearly three decades of research, through experiments in
rats, mice, monkeys, and human subjects. Optimal param-
eters were then obtained empirically over years of experi-
mentation. Our latest configuration of this technology is
defined by so-called volumetric, movable implants, named
recording cubes, introduced by our laboratory over the past
3 years (FIGURE 2) (711). A recording cube is built by first
constructing a grid of polyimide guiding tubes. The grid has
a 10 � 10 arrangement with 1 mm spacing between the
adjacent tubes. This spacing is optimal for monkey record-
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ings; denser grids can be harmful to cortical tissue. The
guiding tubes are contained in a three-dimensional printed
plastic case that also holds an array of miniature screws
utilized to move the microelectrodes. Each guiding tube
accommodates 3–10 microelectrodes. These microelec-
trodes can have different lengths, which allow their place-
ment at different depths in both cortical and subcortical
areas. For that reason, these cubes allow us to obtain volu-
metric recordings from whatever cortical/subcortical struc-
ture is sampled.

During penetration into the brain, the microwires con-
tained inside each tube move as a single set. This set
includes the longest, leading microelectrode that pene-
trates the brain first. The leading microelectrode has a
conical tip, whereas the other microwires in the set have
either conical or cut angle tips. This configuration of the
tip shape allows each microwire set to penetrate through
the monkey pia. Each recording cube is compact (surface
area of 0.22 mm2 per recording channel) and light (11.6
g). Since a 10 � 10 tube grid can contain up to 10 mi-
crowires per tube, each recording cube provides a total of
1,000 potential recording sensors. We typically record
1–2 individual neurons per microwire, which provides a
potential sample of 1,000 –2,000 neurons per recording
cube implanted. Since we usually implant 4 – 8 such re-
cording cubes in a single monkey, the potential neuronal
sample that could be recorded in each monkey ranges
between 4,000 and 16,000 neurons.

Although in the past we experimented with a variety of
microelectrode materials, for example, tungsten for the
shafts and gold-plated tips (478), we currently use only
polyimide insulated stainless steel microelectrodes, 30–50
�m in diameter for recordings in monkeys, because they
were found to have the best longevity and quality of record-
ings. For recordings in rats, tungsten microwires are useful
because they allow recordings for up to 6 mo and do not
induce any significant neuronal death or tissue inflamma-
tion, although recording quality deteriorates with time due
to glial encapsulation of the microelectrodes (271).

The quality of the implantation surgery is a key factor in
defining the recording array performance and its long-term
reliability (607). In our laboratory, primate surgery is con-
ducted in strict sterile conditions under general anesthesia.
The animal is placed in a stereotaxic apparatus, and
craniotomies are made over the areas of interest. Dura ma-
ter is removed inside the craniotomy, and the guiding tubes
are placed in light contact with the pia mater. The recording
cube is then fixed to the skull with dental cement; stainless
steel and ceramic bone screws serve as anchors. The implant
is then encased in a three-dimensional printed protective
cap, which can also house the components of our wireless
recording system (FIGURE 2).

Microelectrode penetrations are performed 1–2 wk after
the surgery under ketamine anesthesia. Generally, it takes
1–2 wk to insert 500-1,500 microelectrodes in each animal.
The penetrations are performed slowly and over multiple
days to minimize tissue damage. Importantly, during each
penetration, only a small number of microelectrodes are
moved to avoid dimpling of the cortex and a bed of nails
effect, where an electrode array cannot penetrate because
the pressure is evenly distributed among many electrodes.
Depending on the recording cube design, rotation of one
miniature screw brings in motion the microelectrodes lo-
cated in 1–4 guiding tubes. Electrophysiological recordings
are conducted simultaneously with each penetration to con-
firm that the microelectrodes gradually move through the
cortical layers as the miniature screws are rotated. We usu-
ally penetrate the cortex with the microelectrodes spaced no
closer than 2 mm, and perform penetrations with other
microelectrode subsets on a different day. Once the micro-
electrodes are placed in their designated locations, they are
never moved afterwards. Several months later, the guiding
tubes are encapsulated by connective tissue, and eventually
the spaces of the craniotomies may get ossified.

We usually place recording cubes over both hemispheres,
including areas such as the primary motor (M1), primary
somatosensory (S1), dorsal premotor (PMd), supplemen-
tary motor (SMA), and posterior parietal (PP) cortical ar-
eas. With this approach to cortical recordings, we have
routinely recorded from 300-1,700 neurons in a single an-
imal per day; good recording quality and high neuronal
yield typically have continued for several years (FIGURE 16).
Indeed, at the time of this writing, two of our monkeys
completed more than 7 yr of cortical recordings after the
original implantation surgery. The same microelectrodes
can be used for both electrophysiological recordings and
electrical microstimulation for many months (597–599).
Viable recordings with implanted microwire arrays for 7 yr
were also reported by the Rizzolatti laboratory (453).

We recently designed multielectrode implants suitable for
chronic implantation into subcortical structures in rhesus
monkeys, such as the neostriatum, thalamus, and the hip-
pocampus. In this design, subsets of 10–30 microwires
form bundles, staggered at 1–1.5 mm, which are inserted
through individual guiding tubes. Each guiding tube is in-
serted into the brain at a depth of 5–15 mm (depending on
the target structure). The microelectrode bundle is passed
through the length of the guiding tube, and then travels an
additional 5–10 mm to cover the area of interest.

B. Utah Array

While multielectrode implants employing individually mov-
able microwire bundles can be placed at a wide range of
cortical and subcortical depths, several laboratories have
used an array constructed of 100 rigid microelectrodes in a
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fixed arrangement, known as the Utah array or Utah probe
(111). The array is micromachined from silicon. Each sili-
con needle is �1.5 mm long. The needles’ shafts are coated
with polyimide, whereas their sharpened tips are coated
with platinum. The spacing between neighboring needles is
0.4 mm. Insulated gold wires make electrical contacts to the
back sides of the needles.

Originally, attempts at slowly lowering the Utah array
into cortical tissue failed because such a dense array pro-
duced cortical dimpling, due to the bed of nails effect,
resulting in an incomplete penetration of some of the
individual needles (111). To overcome this problem, the
inventors of this device adopted an impact insertion pro-
cedure whereby the array is pushed into the cortex at a
high speed, though a pneumatic gun (680, 681). An ex-
amination of the long-term recording performance of the
Utah probe in the cat cortex showed that, 6 mo after the
implantation, 40% of the needles could not record neu-
ronal activity, most likely because of fibrous encapsula-
tion (679). Indeed, extensive fibrous tissue was detected
on the explanted probes.

Currently, the Utah array is the only microelectrode im-
plant approved by the United States Food and Drug Admin-
istration (FDA) for human use. The array has been em-
ployed in several clinical studies that involved examination
of epileptic patients (594, 808, 850) and BMI operation (3,
83, 152, 360, 361). Yet, instead of sampling single-unit
activity, most of these studies employed recordings of mul-
tiunit activity defined as electrical signals that crossed a
certain voltage threshold. The degree of contamination of
this signal by electrical and mechanical artifacts was not
reported, and the possibility of electrical cross-talk between
the channels was not analyzed. In defense of the poor qual-
ity of recordings (single-unit recordings are considered a
gold standard in the field), an argument was put forward
that simple threshold-crossing is sufficient for BMI control
(134). While this practical consideration could be valid for
some implementations, the threshold-crossing method is
prone to confusing noise and artifacts with real neuronal
activity. That can easily lead to the undesirable outcome
that artifacts contaminate the signal used for decoding and
controlling artificial actuators. These are very real possibil-
ities that could occur in clinical studies of BMIs, particularly
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FIGURE 16. Number of neurons recorded by microwire implants over time. The graph shows the average
number of units sampled per 32-channel connector. Data from eight monkeys are presented. Sample
waveforms are shown for one of the monkeys (monkey M), for different dates after the implantation surgery.
[From Schwarz et al. (711).]
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in those in which human subjects, who suffer from quadri-
plegia, can still move their heads. Artifacts generated by
head muscle contractions or overall head movement could
be accepted by a threshold-crossing method as representing
valid neuronal signals. Supporting this possible scenario, a
curious example of controlling a BMI by EMG artifacts
sampled by an EEG cap was recently reported (160).

Several biocompatibility issues have been reported for Utah
arrays. The available data on human cortical tissue re-
sponses to Utah arrays indicate that these implants cause
tissue reactions, such as microhemorrhaging, microglia ac-
tivation, and long-term inflammation with the level of se-
verity depending on the tissue damage during the implan-
tation (251). Some of these unwanted effects could be
caused by micro-movements between the brain and the nee-
dles. In addition to these biocompatibility issues, the Utah
probe is suitable for recordings only from flat cortical sur-
faces, not from the sulci. For the flat cortical surfaces, re-
cordings cannot be obtained from sites located deeper than
1.5 mm. Because of these shortcomings, the Utah probe
cannot be considered as the final solution for human im-
plants despite its current use in clinical trials. There is a
growing consensus in the literature that research should
continue into developing better recording technologies suit-
able for humans (251, 271, 391, 624, 646).

C. Improving Multielectrode Implants

While microwire arrays currently represent the most prac-
tical solution for large-scale, multi-area recordings from
both cortical and subcortical structures, there is ongoing
research into new technologies. One direction of this re-
search is aimed at minimizing the micro-movements be-
tween the implant and the brain that could result in tissue
damage and inflammation. One solution is to have the im-
plant float with the brain instead of being anchored to the
skull. In the design, pioneered by Gualtierotti and Bailey in
1968 (325), a lightweight implant is tethered by a flexible
cable. Several implementations of this idea have been devel-
oped (563, 574, 758).

Another solution to decrease the motion between brain tis-
sue and microelectrodes is offered by polymer-based micro-
electrodes that are more flexible than microwires and exert
less strain on the brain tissue (4, 344, 451, 788). Such flex-
ible arrays require specialized insertion techniques that tem-
porarily stiffen the microelectrode shafts with biodegrad-
able materials (344, 441) or polymers (754, 789), which are
then dissolved in the tissue. Promising results were recently
obtained using a sinusoidal probe anchored to a three-di-
mensional spheroid tip to minimize the movements between
the probe and the brain (754). The other type of flexible
electrodes contains magnetic materials (214, 383). These
electrodes are inserted using an external magnetic field.

Several microelectrode designs have explored the possibility
of placing recording points along an electrode shaft to in-
crease neuronal yield and achieve recordings from a volume
of the nervous tissue. This design is exemplified by the
NeuroNexus array, also known as the Michigan Probe (23,
567, 822, 844). This is an array composed of silicon-based
planar electrodes with multiple recording sites. The number
of electrodes per shank and the number of shanks can be
configured. The array can be used for recordings from local
populations of neurons and for recordings from different
cortical and hippocampal layers simultaneously (174, 548).
Recordings with these arrays remain good during the early
recording days, after which the recording quality usually
deteriorates (409, 695).

Tetrodes represent a popular solution to improve the qual-
ity of single-unit isolation. A tetrode is composed of four
twisted microwires with blunt tips (389, 664, 857). The
microwires have differing lengths, which allows sampling
neuronal potentials in a small three-dimensional space sur-
rounding the microwire tips. Each neuronal waveform sam-
pled by a tetrode yields a different amplitude for each mi-
crowire, due to the differences in distance from the neuron
to each of the four microelectrode tips. This simple geomet-
rical arrangement allows better sorting of single units based
on the extra spatial sampling dimensions added to the pro-
cess. Recently, tetrode designs have been applied to multi-
area recordings in primates, where a microdrive advanced
up to six guiding tubes containing tetrodes to several brain
areas in awake rhesus monkeys, including primary motor
cortex, prefrontal cortex, neostriatum, and hippocampus
(693).

Ongoing research on new materials could further improve
both microelectrode recording properties and biocompati-
bility. Keefer et al. (416) reported that coating of tungsten
and stainless steel electrodes with carbon nanotubes im-
proved the recordings by decreasing the microelectrode im-
pedance and enhancing charge transfer. Suyatin et al. (779)
developed an electrode based on gallium phosphide nano-
wires with the sensor composed of a deposited metal film.
Overall, nanomaterials are a promising research area be-
cause they can provide better biocompatibility (66, 433,
446), spatial resolution (215, 799), and electrical properties
(32, 118). Using pure carbon nanotube probes is another
promising step in this development (880).

D. Neurotrophic Electrode

Neurotrophic electrodes were developed by Philip Kennedy
in the late 1980s to early 1990s (418, 420, 422) as an
endeavor to produce a long-lasting solution for the record-
ings of brain activity in paralyzed and locked-in patients to
aid the communication of these patients with the external
world. The idea was to make these electrodes biocompat-
ible using neurotrophic factors that evoke growth of neu-

BRAIN-MACHINE INTERFACES

789Physiol Rev • VOL 97 • APRIL 2017 • www.prv.org
Downloaded from www.physiology.org/journal/physrev by ${individualUser.givenNames} ${individualUser.surname} (098.121.211.016) on February 19, 2018.

Copyright © 2017 American Physiological Society. All rights reserved.



rites into the recording tip. The electrode was made of a
hollow glass cone that contained three or four golden, Tef-
lon-insulated wires glued to the cone walls. The cone was
inserted in the cortex at a 45° angle to the surface. Histo-
logical analysis of rat (418) and monkey (420) implants
showed that neurites grew into the cone and became my-
elinated. The tissue inside the cone contained axons, axo-
dendritic synapses, blood vessels, and oligodendrocytes,
whereas no microglial cells were detected. Bipolar record-
ings were conducted from pairs of wires. Kennedy and his
colleagues reported that the cone electrode remained func-
tional during the entire implantation period, which was 15
mo in the monkey (420, 422), 16 mo in the rat (418), and
longer than 4 yr in humans (47).

Several BMIs were implemented with this implant. A pa-
tient suffering from brain stem stroke received the implant
in an unspecified cortical area and was able to control a
computer cursor with the recorded signals (419). The re-
cordings continued for more than 17 mo. The patient had
residual facial movements and eye movements with nystag-
mus. Correlation of the recorded signals with mouth, face,
and eye movements were noticed over the 4 mo following
the implantation. The patient stopped making these move-
ments afterwards and learned to control the X direction of
a computer cursor. The cursor moved to the right when
the recorded signal increased, but did not move when the
signal decreased. After the cursor reached the right edge
of the screen, it returned to the leftmost position and
shifted downward (i.e., a carriage return). With this sim-
ple control, the patient improved in two tasks: 1) moving
the cursor to a screen icon and staying on it for 2 s to
produce synthetic speech using phrases such as “Hello,
my name is JR,” “I feel uncomfortable,” “I feel too
cold,” “I feel too warm,” “Please help me,” and “I am in
pain”; and 2) using a screen keyboard to spell phrases
that are printed on the screen or vocalized by a speech
synthesizer. The patient reached a spelling rate of three
letters per minute. Kennedy and his colleagues claimed
the patient could dissociate neural activity from the facial
EMG activity when controlling the cursor. It was also
implied that the recorded signal was not contaminated by
the EMGs and other artifacts.

In the next study, a neurotrophic electrode was placed in a
speech-related area of the left precentral gyrus of a
locked-in patient (327). The patient was paralyzed, with the
motor output limited to the ability to produce slow vertical
eye movements. The recorded potentials were transmitted
using a wireless link to a speech synthesizer. The neuronal
rates were converted into formants that represented small
sets of continuous sounds (1-s long vowels “uh”, “iy”, “a”,
or “oo”) using a Kalman filter. The sound served as audi-
tory feedback. Aided with this feedback, the patient
achieved a success rate of up to 70% on a three-vowel task.

Notwithstanding the significance of these results, the exact
nature of electrical potentials recorded by the neurotrophic
electrode remains unclear. From the information provided
in these human studies, it is difficult to tell whether the
signal contained neuronal spikes or field potentials picked
by the microwires. To date, no other group reported using
these or similar recording methods.

E. Neural Dust

Neural dust is a recording method that utilizes small (10–
100 �m) sensors (“dust”) that detect extracellular neuronal
potentials and communicate them via an ultrasonic link to
an interrogator placed under the skull (720). Each sensor
contains a set of electrodes for recording neuronal activity,
metal-oxide-semiconductor (CMOS) circuitry that ampli-
fies the signal, and a piezoelectric transducer that converts
electrical potentials into ultrasound. The interrogator uses
ultrasound to both power the dust particles and examine
their state. The interrogator also communicates with the
extracranial components of the system.

While the main advantage of neural dust is the absence of
microelectrode shafts that could be traumatic to the ner-
vous tissue, the methodology has not been developed yet for
injecting these particles into the brain. Additionally, funda-
mental concerns remain regarding effects of implantation,
signal quality, separation of multichannel signals, and re-
cordings longevity. There have been no recordings yet of
cortical potentials using these devices, only recordings of
large compound nerve potentials and EMGs (721). There-
fore, the viability of this new method for cortical and sub-
cortical recordings still needs to be demonstrated.

F. Endovascular Electrodes

Using brain blood vessels as entry points for brain recording
probes is an attractive possibility because this method could
allow placing the recording sensors close to neurons with-
out breaking the blood-brain barrier, by inserting thin elec-
trodes in capillaries (507).

Endovascular stent electrodes have been used in cardiology
for several decades. For example, Mirowski et al. (546)
developed in 1980 an endovascular defibrillator for moni-
toring cardiac electrical activity and delivering defibrillating
discharges when ventricular fibrillation was detected. Since
that time, several modifications of such an endovascular
cardiac electrode have been proposed (699, 700).

The same electrode insertion methods have been used for
endovascular recordings of neural activity (84, 350, 712,
797). For example, Boniface and Antoun (80) recorded
EEG activity using a Teflon-coated endovascular guide wire
that was inserted in the middle cerebral artery in human
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epileptic patients undergoing preoperative carotid artery
assessment.

Recently Oxley et al. (613) conducted multichannel record-
ings with an array of stent electrodes, called stentrodes,
which they implanted into the superficial cortical veins
overlying the sheep motor cortex. Blood vessels as thin as
1.7 mm in diameter were implanted with the stentrodes,
yielding brain signals that were comparable to epidural
ECoG recordings. Recordings in freely moving animals
continued for 190 days. The authors proposed that such
their endovascular system could be used to detect seizures in
epileptic patients, operate BMIs, and deliver electrical stim-
ulation.

Nanoscale electronics is a promising method for recordings
from brain capillaries (507). Masayuki Nakao, Rodolfo
Llinas, and their colleagues developed nanotechnology
probes composed of insulated Wollaston platinum wires,
0.6 �m in diameter (507, 842). The feasibility of these re-
cordings was demonstrated in the frog spinal cord. The
sensors were introduced to the bloodstream through a poly-
imide tube, 90–300 �m in diameter. The wires “sailed”
within a blood vessel until they straightened and could be
used for recordings.

G. Optical Recordings

Optical imaging is based on voltage-sensitive (322, 323,
621, 793) and calcium-sensitive (320, 748, 771) fluorescent
dyes, and genetically encoded calcium indicators (516, 523,
892) whose signals are monitored using video recordings. A
particularly powerful method, two-photon excitation laser
scanning microscopy, allows minimally invasive, three-di-
mensional sampling with submicrometer resolution (353,
591, 782). Although these techniques require filling neu-
rons with a dye, hardly a practical procedure for human
clinical applications, several optical imaging-based BMIs
have been already demonstrated.

Clancy et al. (145) conducted experiments in mice with
genetically encoded calcium indicator gCaMP6f in layers 2
and 3 in M1 or S1. Recordings were conducted using two
photon imaging. Head-fixed mice were trained to control
the pitch of a sound by modulating activity of �20 optically
recorded neurons. It took the animals 8 days to learn to
control sound generation with this BMI.

Ziv et al. (896) performed calcium imaging in freely behav-
ing mice whose hippocampal tissue was virally infected and
coexpressed GCaMP3 and CaMKII in the same neurons. A
miniature (1.9 g) integrated fluorescence microscope (304)
was employed for two photon imaging. While the mice
explored their environment, place fields of thousands of
hippocampal neurons were tracked over several weeks.
Next, Bayesian decoding was employed to reconstruct the

animal location within the environment from the optical
recordings. The decoder was trained on the recording data
collected on one day, and tested on the data the same day or
different days. The decoding accuracy was the highest for
the same day, but declined modestly for the different days.
The authors explained these results by the dynamical
changes in the hippocampal place fields.

H. Electrocorticographic Grids

ECoG grids, containing several tens to several hundred elec-
trodes, allow minimally invasively recordings of multichan-
nel field potentials from large cortical territories (172, 357,
483, 544).

A recent trend in this approach was to miniaturize the elec-
trodes and increase their density (79, 542, 825, 838, 895),
leading to improvements in spatial resolution of the record-
ings. The efficiency of recordings with high-density ECoG
can be improved using electronics embedded in the grids.
For example, Viventi et al. (825) developed ECoG grids
with embedded flexible nano-membrane transistors that
performed amplification and multiplexing. This technology
reduced the number of connecting wires while increasing
the number of recording channels to several thousands.

Fu et al. (278) developed flexible mesh electronics with
micrometer components and bending properties matching
those of neural tissue. The mesh consisted of 16 electrodes
and could be injected in the mouse brain using a syringe.
The implant yielded stable recordings of LFPs and single-
unit activity for 8 mo. The same probe was used for long-
term electrical stimulation.

I. Amplification, Processing, and
Transmission of Neuronal Activity

A modern neuronal recording system typically includes sev-
eral signal processing components. The preamplifier is usu-
ally placed near the subject’s head and is often called the
headstage. It performs an initial amplification (typically
with the gain from 1 to 20) and decreases the output im-
pedance. This preamplification is needed to reduce the noise
added at the next signal transmission stage. Depending on
the system, the headstage output remains analog (601) or is
digitized (135, 340, 711). The headstage may also perform
signal multiplexing for the reduction of the number of ca-
bles in a tethered system. The headstage is connected, via a
tethered or wireless link, to an external processing unit that
performs further amplification and/or filtering. Next, the
neural signals are digitized if they were not digitized by the
headstage. The digitized signals are then sent to a computer
for further processing, including neural decoding for run-
ning BMI tasks.

While tethered systems were used in early BMIs (114, 124,
725, 794, 852) and are employed in human clinical trials (3,
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83, 360), the increasing numbers of simultaneously sampled
neural channels, the need to study BMIs while animals freely
behave and the eventual goal of making BMIs fully implant-
able have prompted the development of wireless technologies.
FIGURE 2 shows our recently developed wireless BMI, which
has a 512–1024 channel capacity (711). This system includes
four modules: 1) digitizing headstages housed in a monkey
headcap, 2) wireless transceivers also housed in the headcap,
3) a wireless-to-wired bridge for bidirectional signal transfer,
and 4) client software. Each headstage samples 32 channels,
and each transceiver module connects to 4 headstages for a
total of 128 channels handled by one transceiver. Up to four
transceivers have been demonstrated to work simultaneously
in rhesus monkeys. Recently, we found a solution to add 4
more transceivers for a total of 1024 channels. The bidirec-
tional wireless link serves to transmit neural information to the
external units and to set the headstage/transceiver parameters
by the operator. Spike sorting operations are performed by the
transceiver, which reduces the amount of neural information
transmitted wirelessly. The headstage and transceiver are
powered by a lithium-ion cell, which is housed in the headcap
and operates for 30 h continuously. This wireless, multichan-
nel recording system is connected to a BMI suite. The system
has been already used in a variety of BMI tasks, ranging from
BMI control of a cart by a monkey housed in its home cage
(711), to a monkey performing BMI whole-body navigation
tasks while seated in a motorized wheelchair (656). Several
multichannel, wireless recording systems have been developed
by other groups, as well (81, 119, 135, 340, 429, 550, 557,
602, 783).

VI. DECODING OF BRAIN SIGNALS

A. Principles of Neural Decoding

Modern real-time BMI computational algorithms, or de-
coders, are employed for transforming neuronal activity
into signals suitable for direct communication of the sub-
ject’s brain with artificial actuators. Such decoders can em-
ploy a large variety of statistical and machine-learning
methods. BMI decoding algorithms belong to the class of
multiple-input and multiple-output (MIMO) models (432),
where multiple inputs are provided by the neural recording
channels and multiple outputs correspond to the behavioral
variables controlled by the BMI and/or signals for commu-
nication with the external world.

A decoder applies a transform algorithm to neuronal inputs to
calculate the output variables. In many cases, the transform
algorithm has many independent parameters that need to be
mapped to a much smaller list of output variables. Setting the
values of these parameters is called decoder training. There are
different methods to train a decoder. The most traditional one
requires sampling an initial segment of input data from which
correlations between neuronal signals and behavioral vari-
ables of interest are determined. The decoder performance is

evaluated using the comparison of the actual behavioral pa-
rameters and the values derived by the decoder from the neu-
ronal signals. After the decoder reaches high performance for
the training segment, the BMI mode of operation can begin
(851). At this point, the parameters needed to control an ex-
ternal device are derived solely by real-time decoding of the
incoming neural activity.

The original BMI experiment performed by Carmena et al.
(114) (FIGURE 5) can be used as an example of the tradi-
tional training paradigm to create a BMI decoder. The ex-
periment started with monkeys using one hand to operate a
joystick linked to a robotic arm. The joystick movements
were translated into the reaching movements performed by
the robot. Additionally, monkeys activated the robot grip-
per by squeezing the joystick handle. This hand-control
phase lasted for �15 min. Neuronal recordings obtained
during this period provided the training data for a linear
decoding algorithm, called the Wiener filter (see below),
which represented the robotic arm kinematics and the grip-
ping force as weighted sums of the neuronal discharge rates.
Once the Wiener filter was trained, the operation was
switched to BMI control, where the joystick was either elec-
tronically disconnected from the robot or in some experi-
ments physically removed from the setup. At this point, the
monkeys used the Wiener filter’s outputs to directly control
the robotic arm’s reaching and grasping movements. This
type of BMI operation was called brain control.

The shift from the training phase to brain control is often
accompanied by changes in the patterns of overt movements
produced by monkeys (114, 124, 463). Often, animals tend to
diminish or eliminate their arm movements when operating a
BMI in brain-control mode. Furthermore, the animals’ cortical
neuronal firing patterns change significantly during the transi-
tion from the training period to brain-control mode. These
physiological changes are manifested as increases in correla-
tion between cortical neurons, within and between cortical
areas, (114, 583), and alterations in the directional tuning of
individual neurons (283, 463). If these changes occur, the de-
coder performance may deteriorate because it was trained un-
der different behavioral conditions. To mitigate this problem,
several strategies have been designed to adapt to these new
behavioral and physiological conditions (114, 180, 283, 492,
609, 794). For example, the initial training period can be elim-
inated and the adaptation could begin from arbitrary decoder
settings and continue throughout the experiment (283). Addi-
tionally, the initial training can be conducted without any
overt movements, using only passive observations by the sub-
ject (377, 800, 827) and/or their mental imagery of move-
ments (360, 362).

As mentioned above, after the original introduction of lin-
ear models for neural decoding in BMIs (374, 852), many
other decoding algorithms have been proposed over the
past decade. Indeed, describing a new BMI real-time com-
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putational decoding strategy is the theme of a growing lit-
erature in the field. Below we provide a brief summary of
the main BMI decoders reported in the literature.

B. Linear Decoders

Linear decoders compute the output variables as weighted
sums of the recorded neuronal rates (114, 794, 851, 852).
Humphrey, Schmidt, and Thompson first proposed this
idea in 1970 (374). They successfully demonstrated that
movement parameters can be reconstructed from the re-
cordings of the firing rates of multiple neurons using mul-
tiple linear regression. Schmidt and his colleagues then ran
this linear decoding in real time (702, 703). Georgopoulos
was a notable proponent of the theory that such weighted
summation constitutes a fundamental mechanism by which
cortical neuronal populations represent motor variables
(295, 297, 299). Georgopoulos’ theory expressed the con-
tribution of each neuron to population encoding as a vector
that pointed to the so-called preferred direction of that neu-
ron (294, 710). The preferred direction was defined as the
direction for which the neuronal firing rate was maximal.
Next, the individual-neuron unit vectors, multiplied by the
discharge rate of the corresponding neuron, were summed
to form a population vector. The population vector turned
out to be an excellent method to continuously extract the
direction of arm movement from the activity of a popula-
tion of M1 neurons.

Since its introduction, the population vector approach to
neural decoding has been very influential even though its
original description was not based on simultaneous record-
ings from many neurons. Instead, Georgopoulos and his
colleagues (295, 299) employed traditional single-electrode
neurophysiology to record from a single neuron or, rarely, a
few neurons at a time. Artificial neuronal populations were
assembled from sequentially recorded neurons on different
days, and population vectors were calculated for those pop-
ulations. Although Georgopoulos later employed a seven-
electrode apparatus for his motor cortical recordings (36,
173, 570), he did not record neuronal samples large enough
to enable real-time decoding of arm movements using the
population vector.

In the classical Georgopoulos paradigm, the neuronal pre-
ferred directions were derived from a behavioral paradigm
called a center-out task. In this task, monkeys were required
to perform arm reaching movements from an initial, central
location, to a set of peripheral locations arranged in two-
(294) or three-dimensional (299) space. Once the preferred
directions were determined, the motor task could remain
the same, or a more sophisticated task could be introduced.
For example, Georgopoulos et al. (297) employed a cogni-
tive task where monkeys had to perform a 90-degree mental
rotation from the location of a visual stimulus to the motor
target instructed by that stimulus. The population vector

proved to be informative of the representation of mental
rotation by M1 neurons even though the neuronal preferred
directions were derived from a simpler, center-out task.

This early work on population-vector decoding contained
an estimation of how many neurons would be needed to
decrease noise in the extraction of arm kinematics from M1
ensembles (295). The decoding noise was expressed as the
variability of the calculated population vector direction for
different realizations of single-trial ensemble firings. This
parameter was then plotted against the population size. The
curve showed an initial rapid decrease in variability as the
population size increased, and then followed a much slower
rate of decrease after the population reached the size of 150
neurons. The slow decrease continued until all 475 neurons
recorded in that study were included in the population.
These estimations are consistent with our analysis of neu-
ronal dropping curves constructed for simultaneously re-
corded populations of cortical neurons (467, 583).

Notwithstanding the elegance and theoretical importance
of the population vector approach, this decoding method is
suboptimal because the weights given to different neurons
are chosen intuitively and without any provision for mini-
mizing decoding errors. Additionally, the approach where
the algorithm parameters are derived from one task (center-
out task) and then applied to a different motor task (e.g.,
mental rotation) may result in additional errors because
neuronal tuning properties could be different in the new
task. Such a change in neuronal tuning is consistent with the
context principle discussed above: under different condi-
tions, cortical neurons tend to exhibit different activity pat-
terns.

Another decoding algorithm, the Wiener filter, has been
successfully employed in various BMI studies to extract
limb kinematics and other behavioral variables from neu-
ronal population activity (114, 283, 284, 432, 468, 656,
852). The Wiener filter is an optimal linear decoder set to
minimize mean-square error (347, 485, 854). In a typical
implementation, the Wiener filter output for time t is com-
puted as a weighted sum of neuronal rates sampled at sev-
eral time points, called taps or lags, preceding t. Ten taps
with 100 ms spacing is a typical setting in monkey BMI
experiments (114, 463). The filter weights are computed by
applying matrix transformations to the training data that
include the recordings of neuronal rates and behavioral
variables of interest.

The total number of Wiener filter weights depends on the
population size and the number of taps. For neuronal pop-
ulation of size N and number of taps T, the number of
weights is equal to N multiplied by T. The number of
weights, or free parameters, is referred to as the dimension-
ality of the decoder. An excessive number of weights may be
harmful for decoding accuracy because of the problem
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known in many disciplines as overfitting (38, 338, 345) or
the curse of dimensionality (821). An overfitted decoder
may start fitting data to noise. Such fitting may appear to
work perfectly for the training period, but the decoder
would then fail when applied to a different data segment.
To reduce overfitting, BMI decoding algorithms incorpo-
rate such methods as regularization and dimensionality re-
duction (432).

Over the past 17 years, our laboratory has employed mul-
tiple Wiener filters, running in parallel, for generating mul-
tiple BMI outputs. For example, Carmena et al. (114) im-
plemented two Wiener filters that generated x and y com-
ponents of the robot velocity, and a third filter that
generated the robot’s gripping force (FIGURE 5). The same
approach was subsequently used to extract kinematics of
lower limb motion during bipedal locomotion (261), de-
code arm EMGs from cortical ensemble activity (694), de-
code cortical representation of time intervals (468), and
control whole-body navigation by monkeys seated in a mo-
torized wheelchair (656). Overall, this is a powerful and
easily tractable decoding method.

C. Kalman Filter

The Kalman filter (403, 404) is another popular algorithm
for BMI decoding (432, 491, 620, 724, 869) that was pre-
viously employed in numerous engineering applications
(319). Like the Wiener filter, the Kalman filter takes multi-
channel neuronal signals as inputs and returns predictions
of behavioral variables as its output. The filter models neu-
ronal inputs as observations and the behavioral variables as
state variables. The state variables may include, for exam-
ple, the position and velocity of the arm.

The Kalman filter updates states in discrete time steps (usu-
ally 50–100 ms). Each update consists of two calculations.
The first calculation, called predict step, provides an esti-
mate of the next state from the previous state based on a
state transition model, also called a movement model in
BMI applications. For a robotic arm movement, for exam-
ple, the next state can be estimated based on the previous
position and velocity. The second calculation, called update
step, performs an adjustment of this estimated state using
the observed neuronal rates. This calculation employs an
observation model, or neuronal tuning model, that repre-
sents neuronal rates as a function of state variables. The
directional tuning curve is an example of such an observa-
tion model as it describes neuronal firing rates as a function
of movement direction. During the update step, the obser-
vation model converts the estimation of state into an esti-
mation of expected neuronal rates. Then, the estimated neu-
ronal rates are compared with the actual recorded neuronal
rates, and the state is adjusted to accommodate this differ-
ence. This final computation of the state forms the filter
output.

While several groups have reported that the Kalman filter
outperforms other linear decoders (724, 869), there is also a
report of a very similar performance of these methods for a
different dataset (432). Thus, currently, there is no general
recommendation on which algorithm should be chosen for
BMI decoding. Instead, choices should be made after con-
crete conditions and requirements are examined.

A few years ago, our laboratory introduced an improve-
ment to the Kalman-based BMI decoder, based on the un-
scented Kalman filter (UKF) (491). This algorithm was de-
signed for handling nonlinear observation and state transi-
tion models (392). The UKF is relevant for neural decoding
because there are nonlinearities in the relationship between
neuronal rates and limb kinematics, such as the one relating
neuronal tuning to speed in addition to velocity (492, 554).
In our implementation, an nth order UKF included two
novel features: 1) a nonlinear model of neural tuning which
incorporated absolute values of velocity and radius, and 2)
an addition of n-1 recent states to the state variables. This
new decoder outperformed the classical Kalman filter and
the Wiener filter when applied to the data from a center-out
task and a target tracking task. Moreover, the UKF outper-
formed the other decoders when used for real-time BMI
control of movements of a computer cursor. Following this
study, we have used the UKF in a number of BMI studies,
including a BMI for controlling one avatar arm (598) or
two avatar arms simultaneously (377).

D. Point-Process Models

Point-process models of neuronal spiking activity employ a
likelihood function to describe the probability of a neuron
to produce a spike. The likelihood function depends on
such parameters as the neuronal spiking history, activity of
the other neurons in the population, external stimuli, and
behaviors (144, 809). An analog of the Kalman filter can be
formulated using a point-process model of the observation
state (97, 222, 490). Indeed, both the Kalman filter and
point-process decoders utilize the concept of state to de-
scribe both the decoded variables and neural activity. State
transitions are described by statistical models (450).

Although computationally demanding, point-process de-
coders in certain cases offer better temporal resolution com-
pared with neural decoders that decrease the resolution by
down sampling the neuronal activity into bins (with a typ-
ical bin width of 50–100 ms) (461, 728–730, 807, 816,
872).

E. Artificial Neural Networks

Artificial neural networks (ANNs) were introduced as de-
coders in the early BMI studies of the late 1990s (124, 852).
Since then many ANNs have been used in both invasive and
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noninvasive BMIs, including a multilayer perceptron (22,
161, 369, 428, 431, 691), adaptive logic network (444,
445), tree-based neural network (380), and learning-vector-
quantization (402, 460, 632).

Krishna Shenoy and his colleagues (776) have introduced a
decoding method based on a dynamical ANN, called recur-
rent neural network (RNN). In this algorithm, neuronal
activity is considered as a function of its history in addition
to being related to motor parameters. In Shenoy’s study, the
RNN continuously decoded the kinematics of center-out
arm reaching movements from monkey M1 activity. This
decoding scheme outperformed the velocity Kalman filter in
the same task.

F. Adaptive Decoders

Adaptive decoders make adjustments that improve BMI
performance while the subject continuously operates a
BMI. While the decoder adapts, changes occur in the brain
itself owing to neuronal plasticity.

The first adaptive decoder introduced in BMI literature was
a coadaptive algorithm implemented to improve real-time
conversion of the activity of monkey M1 neurons into the
three-dimensional center-out movements of a cursor (794).
The cursor position was generated by a population-vector
decoder. The coadaptive algorithm adjusted the population
vector weights after each trial to bring the BMI-generated
trajectories closer to the ideal trajectories connecting the
cursor’s initial position to the target. Following that study,
many adapting algorithms have been developed.

Li et al. (492) developed a Bayesian regression self-training
algorithm that updated the settings of a UKF. That BMI
utilized neuronal ensemble recordings from multiple corti-
cal areas in rhesus monkeys to control two-dimensional
cursor movements. The adaptive algorithm monitored the
decoder output and periodically updated the UKF neuronal
tuning model based on the detected changes. The updates
were performed using Bayesian linear regression. The on-
line performance of this algorithm was tested in 11 experi-
mental sessions that spanned 29 days. The initial parame-
ters of the decoder were trained on the first day of record-
ings, and the evolution of these parameters was performed
by the adapting algorithm without any retraining sessions.
The adaptive decoder secured stable BMI performance,
whereas the performance deteriorated if the unchanged ini-
tial decoder was used. Dangi et al. (181) used a similar
two-dimensional reaching task as a test bed for developing
a general framework for selecting parameters to adapt and
the adaptation timescale. They also developed tools that
evaluated convergence properties of adaptive algorithms.

Several studies introduced supervised learning algorithms
that used the information about target location to adap-

tively improve BMI performance. Kowalski et al. (448) em-
ployed a naive adaptive BMI for this purpose. The system
jointly analyzed neuronal patterns and user intent of reach-
ing to the target. Shanechi and Carmena (728) used a sim-
ilar idea of analyzing the user intent. They developed an
adaptive optimal feedback-controlled point process de-
coder that derived subjects’ intentions from the relative po-
sition of the cursor and target. This adaptive scheme im-
proved the performance even when the decoder’s initial
parameters were set to arbitrary numbers. Along similar
lines, Suminski et al. (774) developed a kinetic decoder that
continuously adapted joint torques based on the discrep-
ancy between the target location and hand position. The
updates were performed using gradient descent.

Justin Sanchez and his colleagues (197) employed reinforce-
ment learning as a BMI adapting algorithm. In this ap-
proach, actions that maximized the reward were selected
through trial and error. Trial outcome (i.e., presence or
absence of reward) served as a scalar signal that was utilized
for parameter updates at the end of each trial. Two studies
from this group (520, 640) showed that actor-critic rein-
forcement learning could quickly recover decoding accu-
racy when neural inputs were lost or shuffled. Moreover,
the same group showed that the reinforcement signal for
such learning could be derived from the recordings in nu-
cleus accumbens (520).

G. Discrete Classifiers

Discrete classifiers convert neuronal activity into discrete
choices. These decoders are commonly used in noninvasive
BMIs, where subjects generate a limited number of outputs,
often just two (333, 569, 639). Discrete classifiers have been
used in some intracranial BMIs, as well (343, 692), includ-
ing systems that combined both discrete and continuous
decoders (261, 816).

The mathematical algorithms for discrete classification in-
clude linear discriminant analysis (LDA) (259, 288, 629),
support vector machine (56, 288, 780), ANNs (359), mul-
tilayer perceptron (43, 75), hidden Markov models (603,
655), k nearest neighbors classifier (177), and nonlinear
Bayesian classifiers (191).

VII. MOTOR CONTROL WITH
INTRACRANIAL BMIs

A. Theories of Motor Control as a
Foundation for Motor BMIs

Motor BMIs extract motor commands from a sample of
neuronal activity and send this control information to ex-
ternal devices that execute the movements imagined by the
operator. At the basic science level, these systems are in-
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tended to investigate the physiological properties of motor
circuits, theories on neuronal encoding, and the impact of
learning and plasticity on neuronal ensembles. From a clin-
ical point of view, BMIs primarily aim to restore crucial
motor behaviors, such as arm movements or locomotion, to
patients suffering from devastating levels of body paralysis,
as a result of brain trauma or degenerative neurological
diseases.

The design of existing motor BMIs, in many ways, matches
current theories of the motor system layout and operation.
The first design issue is where in the brain to record neural
activity that would be converted into motor commands to
an external device. This issue is closely related to the assess-
ment of functional roles of different brain areas and the
types of neural processing they perform. Since the motor
system in primates is defined by a highly interconnected
network of cortical, subcortical, and spinal structures, in
general, there are many brain areas that could provide in-
puts for motor BMIs. Classically, the motor system is de-
scribed as being formed by a hierarchy, in which cortical
motor areas are presumed to handle advanced or higher
order functions, for example, dexterous hand movements.
Meanwhile, lower-order subcortical areas are presumed to
manage less complex, automated motor acts. In this motor
hierarchy, the spinal cord has been traditionally believed to
handle low-order functions, such as reflexes (733) and cen-
tral pattern generators (CPGs) (328). Reflexes are auto-
mated, and often unconscious motor responses to sensory
stimuli. In contrast, voluntary movements are prepared and
executed under cortical control. They may be related to
external stimuli, but may also originate in the mind rather
than being caused by sensory inputs. While there are merits
to the classification of motor activities into less advanced,
automated responses and more advanced, voluntary ac-
tions (65), our work has repeatedly shown that there is a
constant flow of information between cortical, subcortical,
and spinal structures during the execution of motor behav-
iors (576, 578, 617, 894). In this distributed view of the
motor system, there is no clear-cut separation between
high-order and low-order processing. In support of our
view, practically any motor task involves a mixture of vol-
untary and reflex activities (158).

Several theories of motor control have influenced the design
and experimentation with BMI. For instance, the concept of
body schema, a quite important concept for modern BMI
research as we discuss below, was originally proposed by
Head and Holmes one century ago (351). According to
Head and Holmes’ original formulation, the brain creates
an internal model of the body, the body schema, which
governs motor activities and perceptions. The body schema
is constantly updated by streams of sensory information.
With the emergence of BMI research, the concept of body
schema was not only investigated but acquired a complete
new angle; one in which artificial prosthetic limbs, con-

trolled directly by the patient’s own brain activity during
the utilization of a BMI, are believed to be assimilated into
the body schema as extensions of the subject’s biological
body, through the process of plasticity triggered by BMI
long-term usage (466).

Modern theories of motor control are rooted in the ideas of
Head and Holmes and, as such, have become the subject of
investigation by BMI research. The internal model theory
(310, 415, 459, 866) describes the motor system as being
defined by two components: the controlled object (e.g., a
body part or the entire body) and the controller. The con-
troller uses an internal model to program future motor
states. When the object movement is executed, the control-
ler compares the expected state with the actual sensory
feedback from the controlled object. If a discrepancy be-
tween the expected and actual state is detected, the control-
ler issues a correction command. It has been suggested that
to be efficient, BMIs should perform similar forward plan-
ning based on an internal model (175, 309).

Another popular motor control theory, Feldman’s equilib-
rium point theory (249, 250) suggests a possible neural
mechanism to implement the controller. In this theory,
higher-order motor centers manage the position of an equi-
librium point for the limb, and the limb is brought to the
equilibrium point by a spinal servo mechanism. BMIs with
a similar separation between the higher-order and low-or-
der controls have been proposed. In this design, called
shared-control BMI, high-order motor commands are ex-
tracted from cortical activity, whereas the low-order execu-
tion is delegated to a robotic controller, which handles the
“equilibrium point” using Feldman’s terminology (427,
634).

Optimal feedback control is yet another popular motor
control theory (263, 801, 802). This theory describes an
optimal strategy for using multiple biomechanical degrees
of freedom to achieve the goal of a motor action. The strat-
egy is based on stochastic optimal feedback control that
corrects deviations in the degrees of freedom that define
task goals, while allowing variability in task-irrelevant di-
mensions. The theory explains such phenomena as motor
variability, error corrections, and motor synergies. Several
BMI decoders that implement optimal feedback control
have been proposed (59, 729, 730). These BMIs estimate
the performance error by comparing the current location of
an actuator with the planned trajectory estimated from the
neuronal signals. A correction is then issued in the appro-
priate dimensions.

B. BMI Control of Virtual and Robotic Limbs

Motor BMIs that enable upper limb functionality, for ex-
ample, a BMI for arm reaching and grasping (114) (FIGURE
5), have received particular attention because of the obvious

LEBEDEV AND NICOLELIS

796 Physiol Rev • VOL 97 • APRIL 2017 • www.prv.org
Downloaded from www.physiology.org/journal/physrev by ${individualUser.givenNames} ${individualUser.surname} (098.121.211.016) on February 19, 2018.

Copyright © 2017 American Physiological Society. All rights reserved.



key importance of arm movements in our daily life. The first
BMI of this type operated in an open-loop mode, i.e., with-
out any sensory feedback from the BMI-controlled actuator
(852). In that experiment, while New World monkeys ma-
nipulated a joystick, their cortical activity was decoded and
converted into the movements of a robotic arm using an
Internet protocol. The monkeys did not see the robot, which
was located in a different state many hundreds of miles
from the animal. All subsequent BMI demonstrations uti-
lized a robotic arm operated in a closed-loop mode (114,
463, 794, 817), where monkeys received visual feedback of
the robotic arm movements and could correct their perfor-
mance errors.

The main components of a motor BMI that controls a ro-
botic arm are featured in the system developed in our lab-
oratory in 2003 (114) (FIGURE 5). Here, rhesus monkeys
learned to control reaching and grasping movements per-
formed by a robotic arm by using only the combined elec-
trical activity of cortical ensembles recorded with multi-
electrode arrays, built from flexible Teflon-coated mi-
crowires chronically implanted in multiple cortical areas,
including M1, S1, PMd, supplementary motor area (SMA),
and posterior parietal cortex (PPC). These cortical areas
were chosen because they belong to the frontal-parietal cor-
tical circuitry that controls goal-directed arm and hand
movements (20, 399, 470).

Two monkeys initially executed a motor task, placing a
computer cursor to the center of a moving circle that served
as a target, manually (FIGURE 5B). To do this, monkeys
grasped a joystick and shifted it in different directions; the
joystick position was translated into the cursor position on
the screen. Later stages of this behavioral task also required
that the monkeys apply gripping force to the joystick han-
dle, at the end of the reaching movement, so that they could
imitate grasping the virtual target. Next, monkeys learned
to control the reach and grasp movements of the robotic
arm equipped with a gripper. Since the joystick was con-
nected to the robot arm, when the monkey moved the joy-
stick and applied hand gripping force to it, the robot arm
and gripper reproduced these movements. The visual feed-
back of the robot movements was delivered to the computer
screen, where the robot position was represented by a cir-
cular cursor and the gripping force was represented by the
cursor diameter. The virtual targets that the robot had to
reach and grab were represented by circles of varying diam-
eters. To win a fruit juice reward, monkeys had to move the
robot, place its gripper over the virtual target, and then
produce the correct level of gripping force, to match the
cursor diameter with the diameter of the target.

While monkeys practiced these reach and grasp task, the
firing rates of �100 cortical neurons, distributed across the
cortical areas mentioned above, were fed into multiple Wie-
ner filter algorithms so that multiple parameters could be

generated continuously to control the reach and grasp
movements of the robotic arm. In brain-control mode, the
joystick was electrically disconnected from the robot and
the outputs of the Wiener filters defined the robot move-
ments. The monkeys continued to manipulate the joystick
with their hands although it was disconnected from the
system. After the monkeys perfected this brain control as-
sisted by the joystick movements, the joystick was removed
from the setup. At this stage, to receive its fruit juice reward,
the monkey could no longer rely on the well-trained joystick
task. Instead, they had to learn to control the robot with
their own cortical activity without assisting themselves with
arm movements. The performance errors were initially
high, but then decreased as the monkeys practiced in the
brain control without hand movements. Learning to con-
trol this BMI was accompanied by a transient increase in
correlation between the simultaneously recorded cortical
neurons (114, 583), within and between cortical areas, and
by changes in neuronal tuning to the robot arm movements
(463).

Several other groups developed BMIs for arm reaching, as
well. Schwartz and his colleagues have explored the possi-
bility of performing BMI control over reaching in three
dimensions (3D). In one study, they trained monkeys to
wear stereoscopic goggles that displayed 3D movements of
a cursor (794). In the beginning of each trial, the cursor was
positioned in the center of this virtual reality display. A
spherical target then appeared at a random 3D location,
and the monkeys acquired it with the cursor to receive a
reward. During the manual control mode, monkeys waved
their hands in the air to move the cursor. The hand move-
ments were monitored by a video tracking system. During
the brain control mode, the cursor was moved by cortical
activity processed by a decoding algorithm. Initially, the
researchers attempted to train a population vector decoder
using the manual performance data, and then use that de-
coder for brain control. However, after realizing that this
control was not sufficiently accurate, they sought an adap-
tive algorithm that would improve the performance. Their
adaptive decoder, called coadaptive movement prediction
algorithm, adjusted the decoder parameters so that the tra-
jectories generated by the BMI were brought closer to the
ideal linear trajectories connecting the initial central posi-
tion and the target.

Building on these results, the Schwartz laboratory devel-
oped a BMI for monkey self-feeding (817). For this purpose,
they used a robotic arm equipped with a gripper that picked
a piece of food and brought it to the monkey’s mouth. These
experimental settings resembled the previous study of Leb-
edev and Wise where a robotic manipulator brought food
to monkeys (471). In Schwartz’s study, the robot was con-
trolled by a linear decoder that transformed cortical neuro-
nal population activity into the velocity of the robot’s end
point. The gripper’s opening and closing was commanded
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by cortical activity, as well. The authors reported a curious
type of learning during these BMI operations: monkeys
learned to start opening the gripper before it reached the
target. They could do this without risking dropping a piece
of food because marshmallows that stuck to the gripper
were used as rewards. Although the monkeys possibly fo-
cused less on controlling the feeder because of the sticky
rewards, this observation illustrates that BMI control, like
normal motor control, can undergo adaptation.

Following these demonstrations of unimanual BMI control,
the Nicolelis laboratory took the next logical step in this
research by demonstrating a BMI that controlled two arti-
ficial arms simultaneously (377). In that study, rhesus mon-
keys viewed two virtual arms on a computer screen, and
commanded their reaching movements using a cortical BMI
that utilized the extracellular activity of �400 neurons sam-
pled in multiple areas of both hemispheres, including M1,
S1, PMd, and SMA. Cortical ensemble activity was con-
verted into bimanual movements using a UKF that treated
the kinematic parameters of both arms as parts of the same
state model. The decoder was trained either using a joystick
task where monkeys moved the virtual arms with two joy-
sticks or through a passive observation task that required
monkeys to watch the virtual arms move on the screen.
Eventually, the monkeys were able to control the virtual
arms by their cortical activity without moving their own
arms. This learning was accompanied by widespread corti-
cal plasticity that manifested itself by an increase in cortical
responses to the observation of virtual arm movements and
by changes in pairwise correlations between neurons.

John Donoghue’s group at Brown conducted several BMI
studies in implanted humans. In these studies, paralyzed
patients were implanted with the Utah array in the M1. The
patients learned BMI control of a screen cursor (361) or a
robotic arm (361). One of the patients learned to grasp a
coffee bottle with a robotic hand and, somewhat slowly
(more than 1 min per trial), bring it to her mouth. The
slowness of operation was possibly related to a deteriorated
quality of neuronal recordings. The study did not document
the number of neurons performing the control. Instead, it
reported that neuronal electrical signals were picked up by
96 recording channels. A simple threshold crossing proce-
dure was used to detect multiunit activity. The decoding
was performed using a Kalman filter that was initially
trained to predict robot hand displacements as the patients
observed the movements of the robotic arm and imagined
themselves controlling those movements. The Kalman filter
decoder was iteratively adjusted during the phase of BMI
control. To ease the learning, the patient’s performance was
corrected by computer commands that brought the robot
arm closer to the optimal trajectory. This procedure, called
“error attenuation” consisted of decreasing the robot
movement commands orthogonal to the trajectory connect-
ing the robot to the target. The contribution from the error

attenuation routine was gradually decreased and eventually
removed. The robot hand state was controlled using an
LDA classifier that, similarly to the velocity decoder, was
trained using observations of the robot movements com-
bined with motor imagery. The drinking task was further
assisted by a preprogrammed sequence of actions. First, the
LDA classifier commanded an automated impedance-con-
trolled grasping and lifting the bottle. Second, the same
classifier stopped the movements of the robot arm and pr-
onated the robot wrist to point the bottle toward the pa-
tient. Third, the robot wrist was brought to its initial posi-
tion and arm movements allowed, and fourth, the bottle
lowered to the table and released. Such a mode of opera-
tion, where control functions are distributed between a BMI
operator and the robotic controller, is referred to in the
literature as shared control (223, 379, 427).

While the experiments of Donoghue and his colleagues have
demonstrated that patients with upper-limb paralysis can
employ their cortical activity, recorded from the arm and
hand representations in MI, to control the reaching and
grasping movements performed by a robotic arm, several
key questions remain regarding the nature of this control.
The videos from their experiments show that the subjects
could move their heads. In some of the trials, they clearly
tracked the robot displacement with head movements. Arm
movements accompanying the grasp command to the robot
are also noticeable in the videos. These observations suggest
that cortical neuronal activity related to head movements,
which, in these patients, likely expanded beyond the origi-
nal head representation before the trauma or disease, could
have been involved in controlling the robot arm, in addition
to the newly created cortical representation of the robot.

Overall, the role of assistive overt behaviors in BMI control,
i.e., movements of body parts and the eyes that could be
used to generate neural inputs for a BMI, is often neglected
or downplayed in the literature. Certainly, this topic will
require more scrutiny in the future. Historically, neuro-
physiological experiments strived for maximal control of
unwanted overt behaviors. For example, neurophysiolo-
gists have developed an instructed delay task where an an-
imal is not allowed to produce any motor output while pre-
paring a movement (860). However, even if an instructed-
delay task is well-learned, and no overt movement occurs,
motor preparation still causes activation of spinal circuits
involved in low-level motor control (653). Therefore, even a
very clean BMI experiment, where the subject does not
move the limbs or eyes, may involve activation of both
higher-order brain areas that drive the BMI, and low-order
subcortical and spinal regions. This is not a problem for
practical BMI implementations, but rather an issue that
needs to be better understood. For practical BMIs, even the
presence of overt behaviors can be useful because they could
improve the subject’s performance. Indeed, BMIs that mix
several brain-derived signals with the signals representing

LEBEDEV AND NICOLELIS

798 Physiol Rev • VOL 97 • APRIL 2017 • www.prv.org
Downloaded from www.physiology.org/journal/physrev by ${individualUser.givenNames} ${individualUser.surname} (098.121.211.016) on February 19, 2018.

Copyright © 2017 American Physiological Society. All rights reserved.



overt behaviors, for example, eye movements or EMGs, are
called hybrid BMIs (337, 387, 476, 626, 833).

In their clinical trials, Schwartz and his colleagues further
improved the accuracy BMI control exerted by a paralyzed
human. They recorded from close to 200 neurons in an
individual with tetraplegia implanted with multielectrode
arrays in the motor cortex (152). As predicted in the early
2000s by our lab (114, 852), the increase in the number of
simultaneously recorded neurons led to an improvement in
the BMI performance. The subject gained control of an
anthropomorphic robotic arm that performed skillful and
coordinated reaching and grasping movements, like reach-
ing to a knob and then turning it clockwise or counterclock-
wise. Like in Donoghue’s experiments, many of these ex-
periments utilized assisted BMI control, where the subjects’
errors were corrected by the controller to facilitate learning.
The subjects were eventually able to operate without that
assistance.

Altogether, these clinical studies demonstrated the feasibil-
ity of implementing cortically controlled BMIs to reproduce
upper limb movements. They also exposed a number of
issues that preclude immediate translation of these systems
into the clinical arena (466). One issue is the requirement
for practical neural prostheses to be fully implantable.
Wired implants are suitable for animal experiments and
short-term clinical trials, but not for devices aimed at serv-
ing as long-term clinical solutions. In a practical clinical
system, implanted electrodes and preamplifiers should be
fully contained under the scalp while wireless technology is
used to transfer large-scale recorded neural signals. Further-
more, implant biocompatibility remains a problematic is-
sue. The utilization of the Utah probe, in both monkeys and
human subjects, has repeatedly shown that the quality of
neural recordings tends to deteriorate with time due to elec-
trode encapsulation and neuronal tissue loss, likely as a
result of the tissue injury caused by the electrodes. Finally,
there are many challenges for real-time decoding algo-
rithms, which currently are limited to small sets of motor
behaviors.

C. BMI for Walking

During the last two decades of explosive BMI development,
research focused mostly on controlling neuroprosthetic de-
vices that mimic upper limb functions. Yet, tens of millions
of people worldwide suffer from paralysis of the lower
limbs as a result of trauma to the spinal cord or neurode-
generative diseases that affect the peripheral nervous sys-
tem. Additionally, there are millions of lower limb ampu-
tees and patients who suffer from neurological disorders
that affect gait, such as Parkinson’s disease.

A cortically driven BMI for decoding of bipedal walking
was first developed by our laboratory (261) (FIGURE 12). In

these experiments, two macaque monkeys were trained to
walk bipedally on a treadmill while holding a bar with their
hands to assist balance. Next, the monkeys were implanted
with multielectrode arrays placed in the regions of M1 and
S1 representing the lower limbs. The neuronal ensemble
recordings conducted with these implants showed that,
while monkeys walked on the treadmill, cortical neuronal
discharges were correlated with the stepping movements.
Owing to these correlations, the Nicolelis lab researchers
could extract multiple lower limb kinematic parameters
from the cortical recordings. Multiple Wiener filters were
used for that purpose, which extracted 3D position of the
hip, knee, and ankle joints, as well as the EMGs of leg
muscles. The decoding reconstructed movement patterns of
both forward and backward walking.

In a second series of experiments, using a custom-designed
internet connection, the Nicolelis group transmitted the
output of their BMI to a humanoid robot built by Gordon
Cheng and Mitsuo Kawato at The Advanced Telecommu-
nications Research (ATR) Institute in Kyoto, Japan (133).
The humanoid robot received continuous signals from the
BMI through an optimized internet link that minimized the
transmission delay. An image of the walking robot was
projected to the screen mounted in front of the monkey.
Initially, the robot was suspended over a treadmill. In later
experiments, monkey cortical activity was employed to in-
duce controlled bipedal walking of the same robot on the
floor (414).

After this study, decoding of kinematics of monkey quadru-
pedal walking from cortical activity was demonstrated by
other groups, again with good precision (267, 268, 711).
Additionally, leg EMGs during standing and squatting were
extracted from monkey M1 activity (889).

For the case of quadrupedal locomotion, Capogrosso et al.
(112) recently reported a “brain-spine interface” that alle-
viated gait deficits in rhesus macaques with unilateral spinal
cord injuries. They implanted rhesus monkeys with multi-
electrode arrays placed in the leg area of M1, contralateral
to the subsequent SCI site. Electrical stimulation was ap-
plied epidurally to dorsal roots to produce extensions and
flexions of the leg weakened by the SCI. Monkeys learned to
volitionally control the paralyzed leg using the interface
that converted cortical neuronal activity into the spinal
stimulation patterns. The authors argued that, because they
recorded in M1 representation of the affected leg, the ex-
tracted motor commands represented intentions to move
that leg. A careful examination of their methodology, how-
ever, raises several pivotal concerns. First, they employed a
decoder training procedure that relied on the presence of
overt movements in the affected leg that exhibited “residual
hip or knee oscillations.” Clearly, this could be related to
the mechanical perturbations caused by the movements of
the intact limbs, rather than voluntary attempts to execute
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steps with the paralyzed leg. Second, the neuronal modula-
tions in the M1 ipsilateral to the lesion could represent the
movements of the intact limbs that could move normally.
Such representation could occur as the result of cortical
plasticity following the SCI and maintained by cortico-cor-
tical connections (393). Thus factors different from the
monkey’s true intention to move the paralyzed leg could
underlie the cortical modulations that triggered electrical
stimulation of the dorsal roots and evoked the artificial
steps.

In addition to assisting disabled people to regain the ability
to walk, BMIs can be employed as a rehabilitation method
(205). This latter approach, which has employed mainly
noninvasive BMIs, will be discussed below.

D. BMI for Whole Body Navigation

Currently, the wheelchair is the main assistive device that
enables navigation to people suffering from paralysis. Our
laboratory also pioneered an intracranial BMI for wheel-
chair control (656). In this study, two rhesus monkeys were
trained to control a robotic wheelchair, while being seated
on top of it, by the activity of their cortical neuronal ensem-
bles. Monkeys were chronically implanted with microelec-
trode arrays in multiple areas of both hemispheres. Neuro-
nal ensemble activity in these areas was recorded using our
wireless recording system (711). Wiener filters were used as
decoders. Each experimental session started with a decoder
training session, where the robotic wheelchair was driven
by the computer; monkeys remained passive observers of
these movements. During this passive navigation, two Wie-
ner filters were trained to extract wheelchair kinematics
from cortical activity. Such decoding was possible because
cortical neurons were tuned to the wheelchair movements.
One Wiener filter extracted translational velocity of the
wheelchair (movements forward and backwards), whereas
the other extracted rotational velocity (leftward and right-
ward rotations).

Following the training session, the mode of operation was
switched to brain control, where the monkeys’ cortical ac-
tivity was now mapped into the wheelchair’s translation
and rotation velocities. The behavioral task consisted of
driving the wheelchair toward a food dispenser that deliv-
ered grapes as a reward. As the monkeys trained, their abil-
ity to navigate the wheelchair with cortical signals im-
proved. Additionally, performance on the wheelchair navi-
gation task resulted in the emergence of a representation of
the distance to reward location, a tuning property that re-
sembled hippocampal place cells, in the primary motor and
somatosensory cortical areas. This representation was to-
tally unrelated to the settings of the decoder.

While our BMI converted M1 and S1 activity directly into
whole body navigation commands, without the need for

any intermediary overt behaviors, an alternative approach
to enable such navigation is to have monkeys steer a mo-
torized wheelchair with a joystick. Recently, it has been
shown that monkeys can perform such steering to navigate
a complex maze (226). Moreover, one study has shown a
transition from joystick control to BMI control of a wheel-
chair (494). In that study, neuronal ensemble activity was
recorded using cortical arrays implanted in the arm repre-
sentation of M1. Monkeys were initially trained to steer the
wheelchair with a joystick. While they did so, a decoder was
trained to classify the joystick steering commands based on
M1 activity. Next, the mode of operation was switched to
brain control, where the steering command was derived
from cortical activity. Finally, the authors demonstrated
that, like in our study, the decoder could be trained without
the joystick movements. Curiously, activity patterns of
some M1 neurons changed dramatically after the mode of
operation was switched from joystick control to brain con-
trol. Using the joystick in the context of BMI control of
whole body navigation somewhat resembles the previous
implementations of BMIs for arm reaching (114, 377).
However, an important difference is that subjects have to
learn a spatial transformation from the arm to the joystick
movements (757).

Overall, these studies have demonstrated that intracranial
BMIs could drive a prosthetic device that enabled whole
body mobility. Such a device could be used to restore mo-
bility to severely paralyzed patients in the future.

E. BMIs That Utilize FES

FES of peripheral nerves is a promising approach to restore
motor functions to paralyzed subjects. FES-based BMIs aim
to use the subject’s own brain activity to control the delivery
of electrical stimulation to his/her own muscles that would
then move their limbs. Over the past decade and a half,
some progress has been reported with such BMIs.

The initial evidence of the feasibility of BMIs that mimic
muscle activity was provided by the demonstrations that
EMGs of arm (558, 642, 694) and leg (261) muscles could
be extracted from the activity of cortical neuronal popula-
tions. Additionally, studies in healthy human subjects
showed that a multichannel FES could produce near-nor-
mal hand movement patterns (390, 713).

The first demonstration of a BMI with FES output was done
by Pfurtscheller and colleagues who aided a tetraplegic pa-
tient with a FES device attached to his forearm (630, 633).
The FES was controlled by bursts of cortical beta activity
(18–25 Hz) recorded by EEG electrodes placed over the
patient’s sensorimotor cortex while he tried to imagine
moving his foot. After some practice, the subject learned to
grasp objects using this device.
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Several demonstrations of BMI-controlled FES have been
accomplished in monkey studies. Eberhard Fetz’ group tem-
porarily paralyzed monkeys’ hands with an anesthetic
blockade (556) and then employed the firing rate of neurons
located in the primary motor cortex (M1) to control an FES
device that evoked wrist torques. Visual feedback of the
torque was provided by a screen cursor. Monkeys success-
fully learned to control this BMI. Moreover, M1 neurons,
which were initially poorly associated with hand move-
ments in a manual task, later on developed task-related
modulations during the BMI control.

Lee Miller and colleagues also demonstrated brain control
with an FES device (225, 641). Their FES system was con-
trolled by populations of �100 motor cortical neurons re-
corded with chronically implanted microelectrode arrays in
the monkey M1. Hand paralysis in these animals was in-
duced by an anesthetic block of the median and ulnar nerves
at the elbow level. After the voluntary motor control of the
hand was extinguished, the researchers activated forearm
muscles with FES driven by the M1 signals. Monkeys were
able to perform object grasping with this neural prosthesis.

Bouton et al. (83) demonstrated a BMI with FES in a para-
lyzed human with an intracranial multielectrode implant.
The study subject suffered from a C5/C6 complete, non-
spastic quadriplegia, resulting from a diving accident. A
Utah array was implanted in the hand area of M1, which
allowed recordings from up to 50 single units simultane-
ously. The recordings continued for 350 days, and 33 units
were isolated by the end of the study. During the training
session, the subject attempted to produce six wrist and hand
movements. These movements were impaired by the paral-
ysis but could be evoked by FES. The FES was delivered
using a 130-electrode array of surface electrodes embedded
in a sleeve that was wrapped around the forearm. Neuronal
population activity was converted into FES patterns using
multiple simultaneous neural decoders based on a nonlinear
kernel method with a non-smooth support vector machine.
During the brain control mode of operation, the subject was
required to generate hand movement that matched the cue
shown on a computer screen. Following training, he man-
aged to perform up to 70% of trials correctly.

Notwithstanding the success of these demonstrations, using
FES to restore movements meets a number of difficulties,
such as muscle fatigue (224, 305, 796) and difficulties in
achieving good accuracy of evoked movements without
sensory feedback of force and position (25, 385, 818).

F. Neuronal Plasticity in Motor BMIs

Subjects usually experience difficulties when they are first
introduced to brain-control mode of BMI operation. Yet,
over time, they improve their performance with continuous
practice. Such improvements have similar mechanisms as

learning of new motor skills (1, 69, 212, 213, 356, 439,
460, 547, 726). As such, many authors have proposed that
neuronal plasticity is essential for BMIs to work properly in
both animal and human subjects (114, 170, 195, 204, 324,
463, 466, 583, 612). As a matter of fact, some authors have
gone as far as to implicate cortical plasticity triggered by
BMI operations as the key mechanism through which sub-
jects could assimilate prosthetic limbs or even other actua-
tors, such as virtual limbs, as extensions of the subject’s
body schema created by the brain (466, 586, 738).

In general, BMI control of an artificial actuator has much in
common with the neurophysiological mechanisms involved
in learning to use and become proficient in tool handling,
operations known to evoke brain plasticity (67, 195, 378,
524, 525). This likeness can be easily verified by reviewing
the experiments conducted by Atsushi Iriki’s laboratory. In
their fundamental experiments on primate tool usage, Iriki
et al. (378) trained macaque monkeys to reach toward dis-
tant objects, which could not be accomplished by using
their arms alone, by utilizing an external tool: a rake. Before
monkeys could use the rake, the researchers measured the
receptive fields of multimodal neurons in the posterior pa-
rietal cortex. Prior to the use of the artificial tool, these
parietal cortical neurons exhibited both tactile and visual
receptive fields (RFs) related to the animal’s hand: while the
tactile RF was located on the hand skin, the visual RF was
circumscribed to the visual space that closely surrounds the
hand, the so-called peri-personal space. After the monkeys
practiced and became proficient in the task of retrieving
grapes with the rake, Iriki et al. observed that the visual RFs
of the parietal neurons expanded to include the entire length
of the rake, in addition to the peri-personal space around
the animal’s hand. The Iriki laboratory interpreted these
results as a suggestion that these cortical adaptations rep-
resented modifications of the animal’s body schema that
resulted in the incorporation of the rake as an extension of
the animal’s arm, as seen from the brain’s own point of view
(586).

Long-term operation of BMIs that control the movements
of artificial actuators, robotic or even virtual arms, leads to
similar brain remapping of the receptive fields of cortical
neurons located in multiple motor and somatosensory ar-
eas, as described by Iriki in their experiments with tool
usage. Several studies from our laboratory reported neuro-
nal plasticity during learning to operate BMIs, starting with
the study by Carmena et al. (114) that showed changes in
neuronal tuning curves accompanied by changes in correla-
tion between neurons as monkeys learned to operate a BMI
that enacted reaching and grasping movements. Changes in
neuronal tuning were further investigated by Lebedev et al.
(463), and Zacksenhouse et al. (884) reported stronger cor-
tical firing modulations during learning of BMI tasks, which
decreased after monkeys learned. Transient increases in
correlations between neurons, associated with learning a
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bimanual BMI task, were confirmed by our laboratory
(377). Overall, these studies showed that, after the mode of
operation is switched to brain control, neuronal activity
patterns markedly changed, both at the level of individual
neurons and their populations. Changes in neuronal tuning
were observed even when monkeys continued to perform
arm movements during brain control. In this case, neuronal
tuning to movements of their own arms weakened, and the
neurons started to represent the BMI-controlled actuator
instead (463). Moreover, neuronal tuning to the actuator
remained even when monkeys stopped moving their own
arms (114, 377, 463). At the population level, switching to
brain control was associated with increased synchrony be-
tween the neurons and, consequently, with many neurons
having very similar preferred directions (114, 377, 583,
598).

Evaluation of changes in neuronal tuning during BMI op-
erations has several caveats. The main factor that should be
considered in such an analysis is that, during brain control,
neuronal tuning properties no longer depend on the brain
circuitry alone, but also essentially depend on the decoder
settings. Indeed, the decoder uses a transfer function or an
algorithm to translate the activity pattern of each neuron
into a contribution to actuator movements. In the case a
Wiener filter is used for decoding, the contribution of a
neuron to a given degree of freedom is defined by the weight
assigned to that neuron. For example, if a neuron is set to
have rightward tuning, the decoder translates the discharge
rate of that neuron into increments of the x-coordinate of
the actuator, while no contribution is made to the y-coor-
dinate. This decoder-assigned tuning may be different from
the true neurophysiological properties of the neuron. Say,
the neuron has switched to representing the y-coordinate
and now matches the user’s intention to change the actua-
tor’s y-coordinate and/or responds to the visual of the y-co-
ordinate. Despite this new representation, the neuron will
still contribute to the x-coordinate only because of the orig-
inal decoder settings. In another scenario, the neuron fires at
random and does not represent any intention or feedback,
but still has a directionally tuned contribution established
by the decoder.

The interpretation of neuronal tuning during BMI control is
further complicated by the ensemble properties of the neu-
rons contributing to the decoding. Consider a Wiener filter
(for simplicity with just one tap) applied to a population of
randomly firing neurons. An assessment of directional
properties of each neuron in the population would show
cosine tuning with a preferred direction defined by the
Weiner filter weights assigned to the x and y dimensions. In
this example, neuronal tuning during BMI control does not
necessarily match any neuronal representation of the user
motor intention and/or sensory feedback from the actuator;
the tuning only corresponds to the decoder settings. The
next level of complexity to the analysis of tuning properties

of a neuron during BMI control is brought by interferences
from the other neurons. The BMI output is produced by
many neurons, not just by the neuron whose tuning is being
assessed. Therefore, when the firing of one neuron is com-
pared with the BMI output, for example, cursor trajectory,
this is effectively a comparison of activity of one neuron
with a variable composed from the activity of many other
neurons. Consequently, the tuning assessment critically de-
pends on the relative contribution of different neurons.
Two extreme cases can be considered: 1) the neuron in
question has a very strong contribution to the decoder out-
put whereas the contribution of the other neurons is rela-
tively small, and 2) the neuron’s contribution is very small
and the decoder output is dominated by the other neurons.
In the first case, the neuron’s tuning will mostly represent
the decoder settings for the reasons explained above. In the
second case, the neuron’s tuning will reflect the relationship
of that neuron’s firing to the actuator position generated by
the other neurons, irrespective of the decoder weights as-
signed to that neuron. Furthermore, correlated firing be-
tween neurons may have strong effects on the BMI output
and consequently on the tuning of individual neurons. For
example, if activity of a weakly contributing neuron is cor-
related with the activity of strongly contributing neurons,
the tuning properties of the former will be very similar to
those of the latter. Overall, although characterizing neuro-
nal patterns during BMI control using tuning curves is help-
ful to reveal some basic features (114, 317, 463, 598), in-
terpretation of such tuning characteristics is not trivial.

The pitfalls of neuronal tuning analysis for BMIs can be
illustrated by the study of Ganguly and Carmena (283) that
attempted to characterize the formation of new “cortical
maps” as the result of learning to control a BMI. In that
study, monkeys performed a two-dimensional center-out
task using a BMI based on the recordings from small (�15
neurons) M1 ensembles. The small-ensemble activity was
translated into cursor position using a Wiener filter with 10
taps. The study claimed that if the decoder is trained on day
one and fixed afterwards, M1 neurons would plastically
adapt to improve BMI performance and form a “cortical
map.” The authors argued that the same M1 ensemble
could simultaneously hold several “cortical maps” corre-
sponding to different decoder. The “cortical map” was de-
fined as a set of directional tuning curves, one per neuron. A
close examination of this analysis reveals that neuronal tun-
ing was determined differently from how it was set by the
decoding algorithm. The 10-tap Wiener filter (100 ms bin
width) effectively assigned 10 tuning curves for each neu-
ron, one per tap. Yet, the authors chose to compute one
tuning curve per neuron, which was derived either from a
relatively short time window (200 ms) or a long one (2 s).
The tuning curves were normalized to change from �1 to 1,
which made it impossible to compare tuning strength in
different neurons. Factors like the relationship of these tun-
ing curves to the fixed decoder settings, relative contribu-
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tion of different neurons to BMI output, and neuronal cor-
relations were not considered. As training on the BMI task
continued for 9–19 days, the tuning curves changed during
the initial training days and later stabilized, which was in-
terpreted as the formation of a “cortical map.” These
changes were paralleled by a clear evolution of cursor
movements, which started as highly convoluted trajectories
resembling random walk, but changed to almost straight
center-out trajectories during the late training days. This
meant that the early and late tuning curves were generated
from very different cursor movements, which by itself can
explain the differences that appear as changes in neuronal
tuning. For example, the 2-s time window most definitely
contained movements in very different directions during the
early days, and represented a more uniform sample during
the late days, an analysis that is guaranteed to generate
different looking tuning curves. Therefore, the seemingly
paradoxical result that neuronal tuning curves changed for
a fixed decoder that presumably would have kept them very
stable, most likely reflected changes in cursor movement
patterns rather than any meaningful characteristics of neu-
ronal representation of the external actuator. Given these
considerations, that study’s conclusion regarding the emer-
gence of a “stable cortical map” appears questionable. A
more plausible conclusion is that both BMI output and the
underlying neuronal patterns changed during learning.
More data would be needed to evaluate if there was any
change in the cortical representation of the actuator move-
ments resulting from learning to control the BMI. Specifi-
cally, answers to the following questions would be needed:
1) how the neuronal tuning curves are affected by the de-
coder settings; 2) what other factors affect the tuning be-
sides the decoder settings; and 3) how the tuning character-
istics could be compared for datasets with very different
actuator trajectories.

In the above examples, the major difficulty in evaluating
neuronal tuning during BMI control is related to a some-
what circular approach: the actuator position is first gener-
ated from neuronal activity using a mathematical algo-
rithm, and then an attempt is made to determine the rela-
tionship between the neuronal patterns and actuator
movements once again, and to extract the features in this
relationship that are not explainable merely by the decoder
settings. This difficulty can be avoided if neuronal tuning is
assessed based on parameter that is not generated by the
decoder and can be manipulated independently of the de-
coder settings. Such an analysis was conducted in our study
of a BMI for bimanual movements (377). In that study, we
evaluated neuronal tuning to target position, the parameter
that unrelated to the decoder settings. Monkeys controlled
2D movements of two virtual hands using a BMI; a separate
target was designated for each hand. Since the target posi-
tions were not included in the decoder variables, neuronal
tuning to the targets could not be a consequence of the
decoder settings. A k-nearest neighbor (k-NN) classifier

UKF decoder was used to extract the screen locations of
targets from cortical ensemble activity on each behavioral
trial, and the percentage of correct classifications was used
as a measure of representation strength. The locations of the
targets for both virtual hands were clearly represented by
the cortical neuronal ensemble. These representations per-
sisted during brain-control trials and passive observation
trials. The passive observation trajectories did not change
day to day. Therefore, we used them to assess long-term
changes in the neuronal responses to the virtual hands. This
analysis was valid because passive observation trials did not
involve BMI control. The analysis was conducted offline by
applying a UKF decoder to the neuronal recordings and
using decoding accuracy as a measure of tuning strength.
We found a clear improvement in decoding accuracy across
the training days.

Several studies evoked learning (and related plasticity) by
altering BMI decoder settings and observing behavioral and
neural adaptions to such manipulations. Thus Chase et al.
(127) examined a BMI that generated 2D cursor position
from monkey M1 activity using a linear decoder (127).
Next, they applied a rotational transformation to the con-
tribution to the BMI output from a subset of neurons. Al-
though this manipulation initially resulted in curved cursor
trajectories, their monkeys adapted to the new condition
and straightened the trajectories. The analysis of neuronal
responses showed that the entire neuronal population con-
tributed to that adaptation, not only the neuronal subset
with perturbed BMI outputs. Using a similar manipulation,
Ganguly and Carmena (283) perturbed BMI output by ran-
domly shuffling neuronal inputs to a fixed Wiener filter.
Their monkeys successfully adapted to that perturbation.

Sadtler et al. (684) devised a method that made adaptation
to BMI control particularly difficult. They applied a factor
analysis to extract correlated neuronal responses and rep-
resent them as an intrinsic manifold, a subspace in a multi-
dimensional space of population firing rates. The authors
found that monkeys successfully learned to control the BMI
with the inputs taken from the manifold, but learned with
great difficulty if the inputs came from the outside of the
manifold. In other words, monkeys adapted to a new de-
coder if it did not require them to alter the original structure
of neuronal correlations. Although this study seems to sug-
gest an existence of strong synergies between the neurons in
an ensemble, there is also an alternative explanation. The
study utilized a threshold crossing method for detecting
multiunit spikes, a method prone to inclusion of noise into
the spike data. The noise most likely ended up outside the
intrinsic manifold, so in the outside-of-manifold task mon-
keys were asked to control the BMI with noise, obviously a
task impossible to learn.

In addition to brain plasticity induced by learning to oper-
ate motor BMIs, plasticity occurs after training with sen-
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sory BMIs (see the sections below on sensory and bidirec-
tional BMIs). Studies conducted in our laboratory (341,
798) enabled rats to perceive infrared light using a BMI that
converted the signals from the head-mounted infrared sen-
sors into ICMS of the rat primary somatosensory cortex
(S1). Learning to use this BMI resulted in the emergence of
a representation of infrared light in S1. Moreover, this new
representation coexisted with S1 representation of the rat
whiskers.

Notwithstanding the progress in studies on BMI-induced
neuronal plasticity, this research is still at the initial stage.
Much more work will be needed to further clarify our un-
derstanding of this phenomenon. Yet, if one would have to
choose one consensual view in this field, it is the assumption
that without the occurrence of some level of cortical plas-
ticity, BMIs would not be able to operate as successfully as
they do. In other words, after a decade and a half of intense
work, BMIs certainly owe their prominence in systems neu-
roscience to the exuberant propensity of the adult mamma-
lian cortex to adapt itself to new task contingencies, partic-
ularly when exposed to rich feedback signals.

VIII. NONINVASIVE BMIs

A. EEG-Based BMIs

EEG-based systems are the most popular noninvasive
BMIs, which have been thoroughly studied in humans, in
both healthy subjects and patients. While approaches to
EEG decoding are somewhat different from those used for
extracting motor commands from streams of neuronal
spikes, the general principles of neuronal ensemble physiol-
ogy (583, 586) still apply to these applications. For exam-
ple, decoding accuracy improves when more EEG channels
are added (141).

Although EEG signals are prone to be contaminated with
many sources of noise, including facial EMG, electrooculo-
gram (EOG), and all sorts of movement artifacts, and de-
spite the fact that EEG recordings do not yield detailed
motor information compared with intracranial single-unit
recordings, EEG-based BMIs have been successfully imple-
mented in both normal and disabled human subjects to
enact motor commands and provide communication chan-
nels. In particular, these EEG-based BMIs have been ex-
tremely useful in allowing “locked in” patients, those suf-
fering from a complete level of body paralysis, as a result of
a neurodegenerative disorder such as amyotrophic lateral
sclerosis (or Lou Gehrig’s disease), to regain the ability to
communicate with the external world, using EEG based
spelling devices (71–73, 129, 184, 358, 364, 455, 481, 573,
606, 635, 718, 740, 742).

The BMI classification into independent (endogenous) or
dependent (exogenous) systems (see sect. III) is particularly

distinct for EEG-based systems. In independent BMIs, sub-
jects perform volitional mental tasks, for example, motor
imagery, that evoke changes in their EEG rhythms (3, 5, 17,
27–29, 31, 51, 77, 408, 560, 611, 632, 654, 811, 813, 826).
The EEG bands typically employed in such BMIs are slow
cortical potentials, mu (8–12 Hz), beta (18–30 Hz) and
gamma (30–70 Hz) waves (14, 74, 815, 863). The majority
of EEG-based BMIs translate EEG activity into discrete
choices (17, 110, 159, 355, 370, 667, 669, 722, 840), but
continuous control is also possible with independent EEG-
based BMIs (211, 864, 893).

Dependent EEG-based BMIs utilize computer screens or
LED displays as sources of visual stimuli that evoke EEG
responses. Users modulate these responses to produce a
BMI output (10, 42, 70, 74, 101, 117, 521). Classification
algorithms identify cortical responses to screen stimuli to
which participants attend (overtly or covertly). For exam-
ple, a decoder based on visual evoked potentials (VEPs)
(162, 196, 216) exploits the fact that VEPs are stronger in
the visual areas when subjects attend to the stimulus and/or
look at it (147, 216, 555, 566). The P300 component of the
response to a visual stimulus, also called P3 (206, 637), has
been particularly popular in BMI designs (10, 15, 16, 34,
54, 209, 243, 246, 257, 285, 363, 406, 521, 538, 545, 590,
717, 735, 736, 787, 832) because of its high sensitivity to
subjects’ reaction to the stimulus in “oddball” paradigms,
where a person is required to detect a target within a train of
irrelevant stimuli (12, 206–208, 778). Auditory-based (58,
332, 410, 440, 455, 643) and tactile-based (95, 514, 814)
P300 interfaces have been implemented, as well. Another
popular BMI design is the one that utilizes VEPs generated
by rapidly occurring stimuli (up to 60 Hz) (8, 42, 117, 122,
186, 187, 386, 395, 473, 481, 502, 515, 868, 891). Such
VEPs are called steady-state visual evoked potentials
(SSVEPs). In a typical SSVEP-based BMI, multiple flicker-
ing objects are shown on the screen; the flicker frequency is
unique for each object. Subjects look at a specific object to
issue a BMI command.

Hybrid schemes for EEG-based BMIs have also been devel-
oped (561, 626). Such BMIs combine several decoding prin-
ciples, for example, motor imagery combined with SSVEPs
(13, 100) or steady-state somatosensory evoked potentials
(7), functional near-infrared spectroscopy (fNIRS) with
asynchronous sensorimotor rhythms, P300 with SSVEP
(154), and eye position with EEG decoding (337, 387, 833).
Such hybrid BMIs are more versatile and accurate com-
pared with BMIs that use only one control mode.

Overall, EEG-based BMIs have successfully achieved many
significant milestones. These include spelling devices (10,
71, 101, 117, 132, 438, 559, 608, 619, 672, 876, 882),
speech generators (190, 326, 549), BMIs for control of a
humanoid robot (55, 103, 120, 138, 301), telepresence sys-
tems (130, 223, 804), BMI-controlled wheelchairs (121,
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169, 281, 411, 511, 663, 833), operation of a hand orthosis
under BMI control (434, 436, 534, 610, 628), and BMI-
controlled leg exoskeletons (156, 205, 282, 425, 456, 768,
812).

Notwithstanding these successes, it has been noted that
many publications on EEG-based BCIs do not contain in-
formation on how EEG artifacts were handled (244). This is
a serious problem because artifacts not only contaminate
EEG recordings, but they could serve as a source of control
signal for a BCI. Curiously, users can easily utilize their
facial EMGs, produced by clenching the teeth and recorded
with regular EEG electrodes placed on the scalp, to control
a robotic arm. In fact, this EMG control outperforms EEG
control in the same settings (160).

While EMG artifacts can be partially filtered out from EEG
recordings by removing high-frequency signals (46, 311),
mechanical artifacts strongly affect the EEG low-frequency
range (331). Low-frequency mechanical artifacts can jeop-
ardize the performance of BCIs that are based on slow cor-
tical potentials. For example, José Contreras-Vidal and his
colleagues employed linear regression decoders to recon-
struct three-dimensional hand kinematics (86) and leg kine-
matics during treadmill walking (652) from slow cortical
potentials. No artifact removal was performed, which
opens a possibility that mechanical artifacts could influence
the reconstruction. Strong objections to these results were
expressed by Castermans et al. (116) who showed that
EEGs recorded during treadmill walking were contami-
nated by the harmonics of the stepping frequency. In addi-
tion to questioning the reconstruction of movements from a
low-delta EEG band, this study found that mechanical ar-
tifacts covered a wide range of EEG frequencies, so artifact
removal by frequency filtering appeared to be unreliable.
Yet another study (33) claimed that the employment of
linear regression methods to reconstruct movements from
cortical slow potentials was statistically invalid, since simi-
lar reconstructions could be obtain from both real and ran-
dom EEG data.

B. Magnetoencephalography-Based BMIs

In addition to electrical fields emitted by the brain, nonin-
vasively recorded brain magnetic fields have also provided
signals for BMIs (104, 413, 458, 541). Magnetoencepha-
lography (MEG) detects weak magnetic fields produced by
the electrical currents generated mainly by cortical neurons
(149, 150, 334). Brain magnetic fields are very weak, on the
order of picoTesla, or 10 million times less than the Earth’s
magnetic field. To detect these tiny signals, one needs to
employ very sensitive magnetometers. Historically, the cop-
per induction coil was the first magnetometer (150), later
replaced by superconducting quantum interference devices
(SQUIDs) (149). Recently, atomic magnetometry was intro-
duced based on a spin-exchange-relaxation-free (SERF)

magnetometer that is more sensitive than SQUID (871).
MEG has better temporal and spatial resolution compared
with EEG, but they can be used only in magnetically
shielded facilities.

Salmelin and Hari (688) reported suppression of the mu-
rhythm, recorded with MEG, by thumb movements. Geor-
gopoulos and his colleagues (296) employed a 248-sensor
MEG to reconstruct arm movements from MEG recordings
using a linear decoder. The first real-time MEG-based BMI
was developed by Lal et al. (458); the system applied a
binary classifier to MEG mu-rhythm. Mellinger et al. (541)
used a similar design of a MEG-based BMI to classify mu
and beta rhythms. MEG-based BMIs have been imple-
mented in tetraplegic (413) and stroke (104) patients.

C. fNIRS-Based BMIs

fNIRS applies light in the near-infrared range (600-1,000
nm) through the skull to detect changes in oxyhemoglobin
and deoxyhemoglobin concentrations in the brain blood
flow (252, 388). fNIRS-based BMIs have been gaining pop-
ularity recently (366, 533, 568, 744). fNIRS measures cor-
tical metabolic activity with a spatial resolution of �1 cm
and temporal resolution on the order of 100 ms. However,
the delay between neural activity and blood oxygenation
changes is several seconds.

The first fNIRS-based BMI was demonstrated by Coyle et
al. in 2004 (166). That BMI extracted brain signals related
to motor imagery when patients were asked to squeeze a
ball. For this purpose, a single optode was placed over the
motor cortex representation of the patient’s hand (EEG
coordinate C3). Increases in oxyhemoglobin and decreases
in deoxyhemoglobin were detected when subjects imagined
the contralateral hand movements. The neurofeedback gen-
erated by the patient’s motor imagery was provided by a
variable-diameter circle shown on the screen. The BMI had
75% accuracy in recognizing the patient’s imagined move-
ments. Approximately 5 s were required to register the
change in the hemodynamic response.

Sitaram et al. (746) employed multiple optodes (four illu-
minators and four detectors for each hemisphere) placed
over the motor cortex. The subjects performed finger tap-
ping with the left hand or right hand, or imagined these
movements. Support vector machine (SVM) and Hidden
Markov Model (HMM) algorithms allowed this BMI to
achieve greater than 80% accuracy in decoding which fin-
ger, right or left, was moving.

A number of studies employed fNIRs to recognize prefron-
tal cortex activity related to performing mental arithmetic
(52, 53, 375, 649, 650). Additionally, fNIRs of prefrontal
cortex activity was employed to decode subjective prefer-
ence (517), music imagery (241, 649, 650), and emotional
states (786).
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As mentioned above, fNIRS can be used in combination
with other neural recording methods to create hybrid BMIs.
For example, hybrid EEG-fNIRS BMIs have improved the
speed of fNIR thanks to the EEG’s superior temporal reso-
lution. In addition, this hybrid method has allowed the
generation of a larger repertoire of commands because dif-
ferent types of brain-related signals are employed in the
discrimination performed by this BMI. For example, Fazli
et al. (248) recorded cortical sensorimotor rhythms simul-
taneously with EEG and fNIRs methods, which resulted in
better classification of motor imagery. Khan et al. (424)
positioned the fNIRS sensors over the prefrontal cortex,
whereas the EEG electrodes were placed over the motor
cortex. This BMI processed 1) brain activity generated by
mental arithmetic, which was detected from prefrontal re-
cordings, and 2) motor commands generated by hand tap-
ping, which were extracted from motor cortical activity.

Interestingly, NIRS methods can detect not only slow re-
sponses related to hemodynamics but also fast responses
(with a millisecond temporal resolution) related to the scat-
tering of light by neuronal membranes (315, 762, 861). This
signal is weak, however, and has not been used for single-
trial detection of neural activity.

D. Functional MRI

Functional MRI (fMRI) is another method for measuring
brain hemodynamic responses (165, 276, 509, 772). fMRI-
based BMIs derive their control signals from blood oxygen
level dependent (BOLD) activity measured with an MRI
scanner (744, 745, 847). fMRI has a relatively low temporal
resolution (1–2 s), and the lag between neuronal activity
and BOLD response is on the order of 3–6 s. The main
advantage of fMRI-based systems is their spatial resolution
that allows monitoring the entire activity of the brain.
fMRI-based BMIs typically use slices with 5 mm thickness;
each slice is represented by a 64 � 64 image with 3- to
4-mm voxels.

fMRI-based BMIs usually utilize visual feedback to display
to subjects their own brain activity. For this purpose, vari-
ous displays have been used, including functional brain
maps (877), scrolling graphs of BOLD activity (139, 848),
and virtual reality (745). The great advantage of fMRI is the
ability to target a localized area as the source of a BMI
signal. Weiskopf et al. (848) and Caria et al. (113) utilized
imaging of the anterior cingulated cortex to develop a BMI
for self-regulation of emotional processing. Additionally,
BMIs have been developed for self-regulation of activity in
the supplementary motor area (SMA) and Broca area (745).

Several studies have employed fMRI-based BMIs to control
computer cursors, avatars, and robotic arms. In the study of
Yoo et al. (879), subjects were asked to perform several
mental tasks (sequential number subtraction, covert speech,

and imagery of right or left hand clenching) to generate
BOLD activity that drove a cursor through a two-dimen-
sional maze. Yukiashu Kamitani and colleagues extracted
fMRI representation of individual finger movements and
drove a robotic hand with those signals, as reported in
Scientific American (365). In Lee et al. (472), vertical and
horizontal movements of a robotic arm were generated
from fMRI signals. Cohen et al. (151) demonstrated control
of a whole body human avatar in virtual reality by an fMRI-
based BMI driven by motor imagery. Although control of
prosthetic limbs from an fMRI scanner is not applicable to
everyday use, such systems can be useful as rehabilitation
tools. Additionally, fMRI-based BMIs can be potentially
used as clinical devices for treating neurological conditions,
such as stroke (185, 877), chronic pain (140), emotional
disorders (113), and psychiatric disorders (430).

IX. BMIs WITH ARTIFICIAL SENSATIONS

A. Restoration of Sensations

Sensory BMIs enable the flow of information from the ex-
ternal world to be delivered back to the subject’s brain (57,
199, 466, 469, 583, 678). These systems strive to repair
damage to sensory neural circuitry. In principle, sensory
BMIs could interfere with different levels of neural sensory
processing, from peripheral receptors to the spinal cord,
brain stem nuclei, thalamus, cortical sensory areas, and cer-
ebellum.

For the development of efficient sensory BMIs, it is impor-
tant to understand that sensory processing does not depend
only on a unidirectional flow of information from the pe-
ripheral receptors or sensory organs to hierarchically higher
processing stages. Top-down modulatory signals (e.g., de-
scribing influences to the lower-order areas from the higher-
order brain regions) are vital for sensory processing in
awake subjects (303, 306, 454, 464, 617, 739). Such mod-
ulatory signals are essential during the execution of volun-
tary movements (126, 572, 714–716, 756, 760) and active
sensory exploration of the environment (176, 314, 454,
615, 617).

Sensory impairments can take many forms, from a complete
loss of sensation caused by destruction of peripheral recep-
tors and nerves to impairments of certain aspects of sensory
processing that occur when cortical or subcortical areas are
damaged. For example, following extensive lesions to the
primary visual cortex, patients (163, 769, 849) and mon-
keys (164) do not perceive visual stimuli, but may retain an
ability to utilize visual information. This phenomenon,
called blindsight, is mediated by subcortical visual struc-
tures like the superior colliculus. Additionally, damage to
cortical areas of the so-called ventral visual stream produces
deficits of visual object recognition, whereas damage to the
dorsal stream areas impairs spatial visual processing and
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visually guided movements (312, 313, 346). While such
peculiar sensory disabilities could likely be treated with
BMIs in the future, current implementations of sensory
BMIs deal mostly with cases of damage to peripheral sen-
sory receptors, sensory nerves, or spinal tracts. In these
cases, there is a loss of normal sensation, but higher-order
sensory areas remain intact and could still process sensory
information if it is delivered to them using a BMI. Accord-
ingly, sensory BMIs attempt to mitigate the devastating ef-
fects of peripheral lesions by linking these intact brain areas
to artificial sensors.

We will focus on sensory BMIs that enable artificial tactile
sensations. In such BMIs, electrical stimulation is usually
used to reactivate sensory responses (260, 598, 676, 784).
Additionally, several papers have recently employed opto-
genetic methods to induce somatosensory sensations (536,
875). Stimulation can be applied to somatosensory cortex
(368, 598, 676, 784), thalamus (182, 321, 479, 605), and
peripheral sensory nerves (183, 662, 683, 791).

Tactile sensations evoked by electrical stimulation of the
surface of the postcentral cortex without eliciting move-
ments were first described in 1909 by Harvey Cushing
(178); they were later extensively studied by Wilder Penfield
(623). Penfield’s patients most often reported sensations of
numbness or tingling, rarely pain. The modern era in this
research started with the experiments of Ranulfo Romo et
al. (676) who employed small currents injected through a
microelectrode, the method called ICMS, to evoke tactile
sensations in monkeys. Romo’s monkeys started with learn-
ing a sensory discrimination task where they compared two
vibrotactile stimuli applied to their hands one after another.
The animal reported, by pressing a button with an opposite
hand, which of the two vibrations had a higher frequency.
Next, the first stimulus in the sequence remained vibrotac-
tile, whereas the second one was an ICMS train applied to
S1. The task was again to compare the frequencies at which
the stimuli were presented. Surprisingly, monkeys began to
successfully compare the vibrotactile and ICMS patterns
with very little practice. This result suggested that sensa-
tions resembling skin vibration could be evoked artificially
with ICMS of S1. Romo et al. (676) penetrated S1, with a
microelectrode placed at a new location every day; they did
not implant those microelectrodes. With this method, they
could not study long-term changes in the ICMS-induced
artificial sensations.

A long-term study of ICMS effects with implanted micro-
electrodes was conducted by our laboratory (260) (FIGURE
17). The experiments were conducted in owl monkeys
chronically implanted with cortical microelectrode arrays.
The experimental task consisted of having animals reach
and open one of two doors. Animals were searching for a
piece of food that was hidden behind one of the doors. In
each trial, the location of the food was cued by an ICMS

train. Progressively, more complex ICMS patterns were em-
ployed as the animals learned novel tasks. Monkeys were
first required to simply detect the presence of ICMS. Next,
they had to discriminate temporal patterns of ICMS, and
finally they discriminated spatiotemporal ICMS patterns
delivered through multiple electrodes. Although it took sev-
eral weeks for monkeys to learn the initial, simple task, their
ability to interpret new ICMS patterns clearly improved
after several months of training with ICMS. After this initial
learning phase, animals could acquire a new and more dif-
ficult task in just a few days. This result indicated that ICMS
progressively generated a new sense, some sort of artificial
touch sensation, that monkeys could readily utilize. In fact,
it seems that some degree of generalization was achieved by
these monkeys after a few months of training, which al-
lowed them to learn new tasks that involved ICMS faster
than when they were naive in terms of experiencing ICMS.
We also conducted a study in rhesus monkeys where ICMS
of the S1 instructed the animals about the direction of joy-
stick movement they had to produce in a trial (597). Like
the owl monkey experiment, rhesus monkeys learned that
task after several days of training.

Talbot et al. (784) asked if sensations from different skin
locations could be evoked using ICMS. They applied ICMS
through different microelectrodes of the arrays implanted
in the hand representation of S1. Monkeys reported with
eye movements where on the hand they felt the stimulus.
Predictably, these experiments confirmed the well-known
S1 somatotopic organization (394). Additionally, it was
determined that monkeys could discriminate ICMS inten-
sity and match it to the pressure applied to the hand using a
mechanical probe. Virtually the same experiment was re-
cently conducted in a tetraplegic patient implanted with a
Utah array in S1 (262). The patient correctly matched cor-
tical stimulation sites to different hand locations. Stimula-
tion applied through ECoG grids has been shown to evoke
somatosensory sensations, as well (589, 638). This stimu-
lation method evoked sensations of tingling, numbness, and
temperature. Electrical stimulation of both the precentral
and postcentral locations was effective in producing these
sensory effects.

Several studies explored peripheral nerve stimulation as a
method to provide humans with artificial tactile sensations.
One study (791) employed peripheral nerve cuff electrodes
implanted in two patients with arm amputation for more
than 1 yr. Patterned electrical stimulation of the nerves
produced touch perceptions in the phantom hands that the
patients described as being natural (tapping, pressure, mov-
ing touch, and vibration); the sensations changed with mod-
ifications in the stimulation pattern. These artificial sensa-
tions improved the subjects’ performance with a prosthetic
hand. In the other study (183), phantom hand sensations
were evoked in amputees using electrical stimulation of the
median or ulnar nerve delivered through a 96-channel Utah
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arrays, which remained implanted for 30 days. The same
stimulation approach was utilized to reproduce sensations
from a hand prosthesis that performed grasping tasks (662).

Several somatosensory BMIs have been demonstrated in
rats, taking advantage of the exquisite tactile skills of these
animals. A study of John Chapin’s laboratory (790) re-
ported a BMI that guided rat navigation through three-
dimensional structures. Steering cues were provided by
ICMS of S1, whereas locomotion was reinforced by ICMS
applied to the medial forebrain bundle, a structure known
to be part of the brain’s reward system. A human operator
used this BMI to steer rats over complex terrains. Venka-
traman and Carmena (820) developed an active sensing
paradigm based on ICMS of rat S1. ICMS was delivered
when a whisker crossed a spatial location designated as a
target. Rats were rewarded for localizing the invisible target
and crossing it several times with the whisker.

Using rats as an experimental model, Thompson et al. (798)
showed that ICMS of S1 could be used to substitute or
augment the animal’s natural vision. Their BMI allowed
rats to use the S1 cortex to perceive, or “touch,” otherwise
invisible infrared light. Light from infrared (IR) sources was
detected by head-mounted sensors and converted into
ICMS applied to the rats’ S1 representation of their facial
whiskers. Initially, rats took 4 wk to learn to use a BMI with
a single infrared detector to find reward ports that emitted
infrared light. An upgrade to this system included four IR
sensors that provided a panoramic infrared vision (341).
Using this system, a new group of rats took only 3 days on
average to find the same infrared sources. After rats learned
to utilize this BMI, electrophysiological recordings revealed
that S1 neurons developed multimodal receptive fields that
represented both somatosensory responses from the facial
whiskers and infrared light generated in the animal’s sur-
roundings. These results showed that, even in adult ani-
mals, primary cortical areas can incorporate new sensory
representations, leading to the emergence of multiple and
overlapping sensory maps simultaneously sustained by the
same neuronal populations.

Sensory substitution through haptic stimulation of the sub-
ject’s body is an alternative to using the neurostimulation
approach, which is particularly relevant to neurorehabilita-
tion. A study by the Walk Again consortium (737) used
haptic stimulation to restore the sensation of autonomous
walking to paraplegic patients. For this purpose, a new

paradigm was developed for reproducing lower limb so-
matosensory feedback in paraplegics by substituting sensa-
tions generated by a haptic display placed on patients’ fore-
arms for the normal sensation generated by walking legs.
Initially, leg movements were simulated by making an ava-
tar of the patients move in an immersive virtual reality
environment. Patients used goggles to observe their avatars
moving on different ground surfaces while a haptic display
was used to deliver a wave of tactile stimulation to the skin
of their forearms. The use of this haptic display induced
patients to experience the perception of walking on various
surfaces: grass, a paved street, or beach sand. Moreover,
patients perceived leg movements during the swing phase of
the avatar legs and experienced the perception of their feet
rolling on the floor, despite the fact that their legs were
completely paralyzed. These results showed that virtual re-
ality training combined with haptic stimulation resulted in
the assimilation of the virtual lower limbs in the body rep-
resentation present in the patients’ brains. These findings
suggest that, in the future, the addition of rich haptic feed-
back to rehabilitation devices will be essential to restore
realistic perceptual experience in paralyzed patients.

In addition to electrical stimulation, optogenetic stimula-
tion has been steadily gaining popularity (875), so it is plau-
sible that this method will be used in sensory BMIs in the
future. Another stimulation method employs ultrasound
(475, 674). Recently, implantable microcoils have been de-
veloped for magnetic stimulation (474).

B. Brain-Machine-Brain Interface

Brain-machine-brain interfaces (BMBIs), also called bidi-
rectional BMIs, perform both the extraction of motor com-
mand signals from raw brain activity and the delivery of
sensory feedback to the brain (57, 255, 469, 583) or periph-
eral nerves (543). This approach was pioneered by our lab-
oratory (597, 598) (FIGURE 13). In our experiments, rhesus
monkeys were chronically implanted with microelectrode
arrays in M1 and S1. M1 implants were used for the extrac-
tion of motor commands, and ICMS was delivered through
S1 implants. The motor loop of this BMBI controlled move-
ments of an avatar arm shown on a computer screen placed
in front of the animals. Monkeys used this avatar arm to
actively explore a set of virtual objects (2 or 3 gray circles)
rendered in the virtual space they searched. The objects
were visually identical but differed in terms of their artificial

FIGURE 17. Long-term experiments in owl monkeys on reaching movements cued by intracortical microstimulation of somatosensory cortex
(S1). A: diagram of the experimental task. After a barrier was lifted, monkeys reached toward one of two doors; a food pellet was behind one
of them. B: location of cortical implants. S1 implant was used to deliver microstimulation. C: microstimulation parameters. D–F: stimulation
patterns. The first task (E) required reaching to the right if a sequence of microstimulation pulses was delivered. If no stimulation was applied,
monkeys reached to the left. In the second task (G), the rule was reversed: monkeys reached leftward in response to microstimulation. The third
task (D) employed two different temporal patterns of microstimulation. The fourth task (F) used spatiotemporal patterns of microstimulation
produced using four pairs of implanted microwires. [Adapted from O’Doherty et al. (597).]
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texture. Monkeys had to assess the objects’ texture by using
the BMBI to scan their avatar hands over the surface of the
virtual objects. When a monkey’s avatar hand came into
virtual contact with the surface of a given object, a pattern
of ICMS was delivered to the hand representation of the
animal’s S1. Monkeys had to identify a specific virtual tex-
ture using this BMBI and then hold the avatar hand over it
to obtain a fruit juice reward. The implementation of this
BMBI had a caveat: since ICMS evoked electrical artifacts
that occluded the neuronal spikes, recordings and stimula-
tion could not be conducted simultaneously. This issue was
solved by switching from recording to stimulating every 50
ms. Although this approach resulted in a loss of some neu-
ronal data, the BMBI still performed well because several
hundred neurons were recorded simultaneously. A similar
BMBI was reported by Richard Andersen’s group (437). In
that system, ICMS was applied to S1, whereas BMI control
commands were extracted from PPC.

Several recent studies have implemented bidirectional inter-
faces with peripheral nerves. Davis et al. (183) demon-
strated real-time control of a robotic finger by amputees
using multielectrode recordings from the median or ulnar
nerves. The decoding was performed by a Kalman filter.
The same electrodes were used to deliver sensory feedback
using electrical stimulation. The other study (662) reported
a myoelectric interface that amputees could control using
surface EMGs to produce grasping movements using a ro-
botic hand. Grasp force feedback, produced by robotic sen-
sors, was delivered using intrafascicular stimulation of the
median and ulnar nerves; stimulation intensity was propor-
tional to the sensor signal. This bidirectional setup enabled
the subjects to maintain three force levels without looking
at the robotic hand.

In addition to BMBIs that provide sensory feedback from an
external actuator, several recent demonstrations of closed-
loop activity-dependent stimulation can be described as
BMBIs. In these systems, neuronal activity is recorded from
a brain area and then converted into a pattern of electrical
stimulation delivered to the same or a different area. Such
feedback loops may serve different purposes. Andrew Jack-
son and his colleagues at Eberhard Fetz’s laboratory em-
ployed a neural implant to form and strengthen an artificial
connection between two sites in the motor cortex of freely
behaving monkeys (381, 382). The implant triggered elec-
trical stimulation in one cortical location with neuronal
discharges recorded from a different site. Several days of
operation of this implant produced a stable cortical reorga-
nization that was evident from the changes in wrist move-
ments evoked by electrical stimulation applied to each site.
Wrist movements evoked from the implant’s recording site
started to resemble those evoked from the stimulation site,
which indicated that a Hebbian potentiation of synaptic
connections occurred for the artificial connection. The au-

thors suggested that this approach could be used for neu-
rorehabilitation in the future.

Lucas and Fetz (513) employed EMG-triggered cortical
stimulation to induce a similar targeted reorganization of
cortical motor output. They observed that the stimulated
cortical site became associated with the activity of the re-
corded muscle, even though that particular muscle was not
represented by neurons in that cortical location previously
(513). Yet another study by the Fetz laboratory (592) dem-
onstrated that spinal stimulation, triggered from cortical
spikes, could modify the strength of corticospinal connec-
tions in a manner consistent with spike-timing-dependent
plasticity.

Several studies have shown that closed-loop stimulation
systems can lead to partial recovery of function in neuro-
logical conditions resulting from injury or disease. Guggen-
mos et al. (330) employed a functional bridge connecting
motor and somatosensory areas of the rodent brain to pro-
mote recovery of motor skills after traumatic brain injury.
McPherson et al. (540) used EMG-triggered spinal stimula-
tion to facilitate recovery after spinal cord injury in rats.
Overall, these studies showed that BMBIs could be used to
plastically modify neural connectivity and promote func-
tional recovery. Our laboratory developed a closed-loop
stimulation system for epilepsy control (618). In that study,
rats were treated with pentylenetetrazole to provoke epilep-
tic seizures. The system detected the seizure episodes in
cortical LFPs, and applied electrical stimulation to rat spi-
nal cord to suppress the seizures. This approach reduced the
frequency of seizure episodes by 44%. In the future, a sim-
ilar approach may prove useful for the treatment for drug-
resistant epilepsy.

A stimulation system has been suggested as a potential pros-
thetic system for improving memory (62, 63). In these stud-
ies, a multiple-input, multiple-output model reproduced the
associations between CA3 and CA1 regions of the rat hip-
pocampus. Neuronal ensemble recordings were conducted
in CA3 and CA1 of rats performing a delayed-nonmatch-
to-sample memory task. A nonlinear MIMO was trained to
predict CA1 activity based on CA3 patterns. The predicted
patterns of activity were then delivered to CA1, using elec-
trical stimulation through the same electrodes that recorded
neuronal spikes. The stimulation improved task perfor-
mance in normal rats and restored performance in rats with
a pharmacological block of hippocampal synaptic trans-
mission. The authors suggested that this approach could be
used to restore long-term memory function in patients with
damage to hippocampus and its interconnected structures.

X. COGNITIVE BMIs

Cognitive BMIs or cognitive neural prostheses deal with
brain activity related to higher-order functions, as opposed
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to more simple motor and sensory functions (625, 792).
Although the distinction between higher-order and lower-
order functions is not clear cut, by convention BMIs are
called cognitive if they work in the domains of cognitive
states (348, 886), executive functions (349), decision mak-
ing (21, 335, 343), memory (62, 63), attention (35, 417),
and language (98, 99, 327, 482, 834, 839).

Several intracranial cognitive BMIs have been developed,
mostly dealing with decoding of different aspects of motor
decisions during the periods of immobility preceding move-
ment onsets. For example, Hasegawa et al. (343) decoded
go versus no-go decisions, and the prepared saccade direc-
tion from the activity of monkey superior colliculus neurons
(343). Musallam et al. (564) decoded the representation of
expected rewards and motor decision from the neural ac-
tivity recorded in the cortical parietal reach region. In that
study monkeys were engaged in an instructed-delay task
where they prepared an arm movement, but withheld it for
several seconds. In the beginning of each behavioral trial,
the monkey was shown a cue that indicated what kind of
reward would be given. A Bayesian algorithm was applied
to decode expected reward and target location simultane-
ously.

In our laboratory, a BMI approach was employed to extract
decisions involved in reprogramming a motor goal (376).
Monkeys performed a center-out task, where they moved a
cursor towards screen targets using a joystick. Neuronal
ensemble activity was recorded from M1 and S1 arm rep-
resentations. Monkeys started the trials by placing the cur-
sor at the screen center. Next, a target appeared at an off-
center location. In some trials, that initial target appeared
for 50–250 ms, and then it was replaced by a new target at
a different screen location. We found that both the emer-
gence of the decision to move to the initial target and the
new decision to cancel that motor plan and move to a new
target could be decoded from population M1 activity. Tar-
get locations were decoded using an LDA classifier. This
analysis showed that M1 activity initially represented the
first target, then simultaneously represented both targets,
and eventually shifted to represent the new target only.
Based on these findings, we proposed that such decoding of
covert motor planning could improve motor BMIs by
equipping them with the capacity to detect motor decisions
early and inhibiting them if the user decides to cancel a
prepared action or chooses a different one.

In the other study, we decoded representation of time from
M1 and PMd activity in the absence of over behavior (468).
Monkeys were trained to perform self-timed button presses,
where they touched a button with their hands, maintained
contact for 3–4 s, and then released the button. We found that,
while monkeys self-timed the required interval and did not
produce any movements, their M1 neurons exhibited ramp-
ing activity patterns. We then employed a Wiener filter to

decode the representation of temporal intervals from these
M1 patterns. Such decoding of action timing could be useful
for developing BMIs that enact typical motor behaviors
where movements are intermingled with periods of immo-
bility.

Motor imagery, widely used in noninvasive BMI (5, 28,
272, 551, 773, 840), can be considered a cognitive compo-
nent of a BMI. Richard Anderson’s group recently decoded
motor-imagery from the intracranial PPC recordings in a
tetraplegic human (3). PPC is engaged in higher-order as-
pects of motor behaviors (18). In the tetraplegic subject,
motor imagery clearly activated different PPC neurons, de-
pending on the specific action being imagined (e.g., imagin-
ing hand movement to the mouth or ear, imagining shoul-
der rotation, etc.). Additionally, PPC neurons responded to
the imagery of movement goal, movement trajectory, and
the type of movement. All these variables were successfully
decoded from the activity of PPC neuronal populations.
Moreover, the subject learned to control a robotic arm by
imagining movements.

As intracranial recording methods become more routine
in clinical studies, we will probably see a rapid development
in BMIs related to human cognitive processes. Advances in
this new domain will likely contribute to the emergence of
new clinical applications for BMIs, as well as the incorpo-
ration of fundamental knowledge about the neurophysio-
logical involved in higher brain functions.

XI. BRAIN-TO-BRAIN INTERFACES AND
BRAINETS

The growth of BMI research gave rise to a large variety of
spin off experimental paradigms. In one of the variations of
the classical BMI approach (FIGURE 18), multiple animal
(or human) brains can be connected to each other to estab-
lish a direct brain-to-brain communication linkage, called
brain-to-brain interface (BTBI) (616). In the other varia-
tion, several individual brains collaborate on a common
motor task by establishing a network of brains, or a Brainet
(614, 657) (FIGURE 19).

By definition, BTBIs allow multiple animals to exchange
information using a protocol that incorporates both neural
recording and stimulation. The pioneering BTBI was imple-
mented in rats (616). In that study, the first animal per-
formed the role of information encoder, and the second
animal was the decoder of a simple binary message. The
binary message represented the encoder rat performing a
two-choice behavioral task (active tactile discrimination
or responses to a visual stimulus). The encoder rat’s neu-
ronal firing rates, recorded from either the S1 or M1,
depending on whether the rat performed a tactile dis-
crimination or a visuomotor task, underwent a sigmoid
transform and then were converted into patterns of ICMS
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applied to S1 or M1 of the decoder rat. This latter animal
could be located next to or far apart from the encoder.
On average, the decoder reproduced the behavioral
choices of the encoder rat in about 70% of the trials.
During operation of the BTBI, the encoder rat received an
additional reinforcement. Pais-Vieira and colleagues no-
ticed that following an error by the decoder rat, the en-
coder rat adapted both its behavior and cortical activity
to generate cleaner neuronal signals to be broadcast to its
partner. Invariably, the decoder rat performed better af-
ter this encoder’s adaption.

In the next study by Pais-Vieira et al. (614), several rat
brains were connected to a network of brains - named a
Brainet - that performed several elementary computations,
like discrimination of ICMS patterns by several rats simul-
taneously to improve overall discrimination accuracy, or
retaining information in their collective memory by trans-
ferring it from rat to rat (614). ICMS served as an input to
such a Brainet, while the output was derived from cortical
activity of the participating animals. Essentially, the Brainet
acted as an organic computer that processed input data
through a network of living brains.

These initial publications were followed by a number of
studies by different groups unified by a common theme of
connecting of the brains of different organisms. Yoo et al.
(878) connected the brain of a human to the spinal cord of
a rat. The human operated an SSVEP-based BMI to gener-
ate “go” commands to an anesthetized rat. The command
was executed by applying transcranial focused ultrasound
to the rat motor cortex, causing the movement of the ani-

mal’s tail (878). In another study BTBI connected two dif-
ferent species (488). The human attempted to make the
cockroach walk along an S-shape track, and succeeded in
20% of cases. In the other study (727), the premotor cortex
of one monkey was linked to the spinal cord of a second,
anesthetized primate. The second monkey’s hand was at-
tached to a joystick. The first monkey generated motor
intention commands while looking at a computer screen
that showed a cursor and a target of movement. This inten-
tion command was extracted from premotor cortex activity
and translated into a stimulation pattern applied to the
spinal cord of the second monkey, causing the joystick
movement, which in turn moved the cursor on the first
monkey’s screen. A proof of concept study (265) showed
that gene expression can be controlled by brain signals. In
that study, a human operating an EEG-based BMI optoge-
netically controlled the expression of designer cells. The
designer cells were either in culture or in subcutaneous im-
plants in mice.

Several BTBIs have been demonstrated in humans. Grau
et al. (316) had one human subject, the emitter, operate a
motor-imagery EEG-based BMI. The binary output of
that BMI was delivered to the brain of the second subject,
the receiver, using TMS pulses applied to the visual cor-
tex. Depending on whether the transmitted signal was
“1” or “0,” a robot placed the TMS coil over the area
where stimulation induced or did not induce a conscious
perception of phosphenes. Information transfer rates of 3
and 2 bits per minute were achieved for the BMI perfor-
mance and message transmission, respectively. Rao et al.
(661) employed a very similar BTBI design, with the dif-
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FIGURE 18. Brain to brain interface. Two rats participated in the experiment, the encoder rat and decoder
rat. The flow of information between the animals is shown by arrows. The encoder rat responded to a visual
stimulus provided by an LED by pressing one of two levers. Activity of an M1 neuronal population activity was
recorded while the encoder performed the task. This activity underwent a sigmoid transform to generate a
microstimulation pattern, which was delivered to the somatosensory cortex of the decoder rat. The decoder
animal had to select the same lever. The encoder rat received an additional reward if the decoder rat
performed correctly. [From Pais-Vieira et al. (616).]
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ference that TMS was applied to the motor cortex of the
second subject. Accordingly, the second subject re-
sponded with a TMS-induced hand movement that pro-
duced a touchpad press.

While the studies reviewed above emphasized direct com-
munication between different brains, our laboratory re-
cently demonstrated several Brainets that emphasized coop-
eration of multiple subjects to achieve a common motor
goal of a typical upper limb BMI (657). In that study, two or
three monkeys shared control of the movements of an ava-
tar arm using their combined cortical activity. Three Brainet
designs were tested. The first design, called shared-control
Brainet, merged the outputs of two monkey brains. Cortical
activity of each monkey was processed by a separate de-
coder. The decoder outputs were then averaged to set the
coordinates of the avatar arm. Performance improvement
was achieved because the averaging of contributions from

both monkeys enhanced the signal and suppressed the
noise. In the second design, called partitioned control
Brainet, two monkeys performed together again, but they
had different tasks. The first monkey generated neural
control commands to move the avatar arm in the hori-
zontal dimension, while the other monkey controlled the
vertical dimension. In that Brainet, performance im-
proved because each monkey made fewer errors in the
simple, one-dimensional task. In the third Brainet design,
named a triad Brainet, three monkeys cooperatively con-
trolled three-dimensional movements of an avatar arm.
Yet, each monkey performed a two-dimensional task,
and all animals were unaware that the cooperative task
was three-dimensional in nature. That design modeled a
“super-brain” that, by combining the brain activity of
three individual brains into a single computing system,
handles a higher-order task while individual brains have
lower-order contributions.

X

Y
Z

decoder

decoder

decoder

Controls XY

Controls YZ

Controls XZ

SHARED CONTROL TASK

50% 50%

Visual
feedback

Visual
feedback

Movements
decoded from

brain 2

Movements
decoded from

brain 1

Monkey M
410-501 neurons

Monkey O
156-229 neurons

PARTITIONED CONTROL TASK

X position Y position

Visual
feedback

Visual
feedback

Y position
decoded from

brain 2

X position
decoded from

brain 1

Monkey M
410-501 neurons

Monkey C
196-214 neurons

PARTITIONED CONTROL TASK

share X
control

share Z
control

Monkey M
410-501 neurons

Monkey C
196-214 neurons

Monkey K
140-156 neurons

share Y
control

X

Y

Z

Z

X

Y

A B

C D

FIGURE 19. Monkey brainet. A: diagram of the experimental setup. Up to three monkeys were seated in
monkey chairs in separate rooms. Each monkey faced a computer screen that displayed a virtual avatar arm.
The behavioral task consisted of reaching screen targets with the avatar arm. The avatar arm was controlled
jointly by several monkeys. B: shared control task, where each of two participating monkeys contributed 50%
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Somewhat similar cooperative systems have been devel-
oped using EEG-based controls by several humans. These
include a BMI for spacecraft navigation controlled by
two users (644), BMIs for group decision making (217,
645, 883), and a cooperative BMI for movement plan-
ning (841).

XII. BMI AS A POTENTIAL
NEUROREHABILITATION THERAPY

Since the late 1990s, when BMI research began in earnest,
the field has focused primarily on achieving two major
goals: 1) to establish a new paradigm to investigate the
dynamic physiological properties of distributed neural cir-
cuits in behaving animals, and 2) to explore the possibility
of creating new assisted technologies, aimed at restoring
upper, lower, or full body mobility in severely paralyzed
patients. For the past decade, the focus on developing clin-
ical applications based on BMIs has increased markedly, as
noted throughout this review. Yet, no one had anticipated
that this paradigm could provide benefits beyond the com-
monly stated goal of assisting patients in regaining mobility
through the employment of a new generation of brain-con-
trolled prosthetic or orthotic devices. Thanks to recent clin-
ical studies, however, a third potential future application of
this paradigm has been introduced: the use of BMIs as a
neurorehabilitation tool (26, 27, 82, 204, 205, 737, 741,
751, 752, 819).

To date, noninvasive BMIs have been used as neuroreha-
bilitation tools primarily in clinical studies focused on
stroke victims. The main assumption motivating these stud-
ies has been that practice with a BMI that mimics move-
ments of a paralyzed limb could facilitate brain plasticity

and contribute to some level of motor recovery. For exam-
ple, stroke patients can learn to operate an MEG-based BMI
by modulating their � rhythm recorded in the hemisphere
ipsilateral to the lesion (104). In this study, the BMI opened
and closed an orthosis that was attached to the paralyzed
hand. This learning did not cause noticeable clinical im-
provements. However, long-term BMI training combined
with physical therapy resulted in clear motor recovery (93,
659). As shown by the analysis of motor evoked potentials
(MEPs), the recovery was related to enhanced neuronal ac-
tivity in the hemisphere ipsilateral to the stroke site (87).
Similar results were demonstrated by a study that combined
a BMI-controlled robot with robot-assisted physical ther-
apy (27, 30). Combining BMI training with virtual reality
resulted in clinical improvements as well (64). Additionally,
a combination of BMI control with transcranial direct cur-
rent stimulation (tDCS) showed positive clinical results
(753).

Much less research has been conducted on the effectiveness
of BMI training in patients with SCI. In the first long-term
study of this kind, Donati et al. (205) conducted BMI train-
ing of eight chronic paraplegic patients in a multi-stage
rehabilitation paradigm, aimed at restoring bipedal loco-
motion through robotic lower limb orthoses. The core of
this paradigm was based on the utilization of an EEG-based
BMI that allowed patients to control multiple actuators,
ranging from avatar bodies to two types of robotic walkers:
a commercially available gait robotic system (Lokomat)
(384) and a custom-designed lower limb exoskeleton. In
addition to the traditional visual feedback, this BMI was
also coupled with a haptic display system that delivered
continuous streams of tactile information to the skin of the
patients’ forearm. These artificial tactile/proprioceptive sig-
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nals were generated either when the avatar body walked on
a virtual surface, or when the patients walked with the help
of the robotic devices. In the latter case, pressure sensors
applied to the plantar surface of the robotic feet were re-
sponsible for generating signals depicting the feet’s contact
with the ground during bipedal walking. Closing the con-
trol loop with this haptic display led patients to experience
vivid lower limb phantom sensations, which included the
illusion of experiencing leg movements even when they
were operating the avatar body while remaining immobile

themselves. Moreover, using the information delivered by
the haptic display applied to the skin surface of their fore-
arms, six out of eight patients could discriminate between
three different types of surface in which the avatar body
walked (e.g., sand, grass, and asphalt).

Despite being completely paraplegic, immobile from the
level of the spinal cord lesion down, lesions ranging from
(T4-T11), since the day of their spinal cord lesions (3–13
years earlier), and lacking any somatic sensation below the

FIGURE 21. Lower limb motor recovery. A: details of the EMG recording procedure in SCI patients. A1: raw
EMG for the right gluteus maximus muscle for patient P1 is shown at the top of the topmost graph. The lower
part of this graph depicts the envelope of the raw EMG, after the signal was rectified and low pass filtered at
3 Hz. Gray shaded areas represent periods where the patient was instructed to move the right leg, while the
blue shaded areas indicate periods of left leg movement. Red areas indicate periods where patients were
instructed to relax both legs. A2: all trials over one session were averaged (mean � SD envelopes are shown)
and plotted as a function of instruction type (gray envelope � contract right leg; blue � contract left leg; red �
relax both legs). A3: below the averaged EMG record, light green bars indicate instances in which the voluntary
muscle contraction (right leg) was significantly different (t-test, P � 0.01) than the baseline (periods where
she/he was instructed to relax both legs). Dark green bars depict periods in which there was a significant
difference (P � 0.01) between muscle contraction in the right versus the left leg. B: EMG envelops and t-tests
for all recording sessions, involving four muscles, for all eight patients: left and right gluteus maximus (GMx)
and rectus femoris proximal (RFP) muscles. Color convention and figure organization follows the one of A. Data
were collected after 7 mo of training for all patients and for all but patients P2 and P8 after 12 mo. [From
Donati et al. (205).]
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level of the lesion, after a 12 mo period of training with this
BMI paradigm, all patients exhibited a very significant par-
tial neurological recovery, which was characterized by the
following: 1) an average expansion of 5 dermatomes, in
pinprick, nociceptive sensation, in the zone of partial pres-
ervation,1 (below the level of the lesion) (FIGURE 20, A AND B);
2) an average 1–2 dermatome expansion in fine touch (FIG-
URE 20A); 3) significant improvement in proprioception
and vibration perception below the level of the lesion;
4) recuperation of voluntary control of multiple muscles
below the level of the SCI lesion, as measured by EMG

recordings and direct force measurements. In some cases,
patients regained the ability to produce multi-joint leg
movements (FIGURE 21, A AND B); 5) marked improvement
in the walking index; 6) an improvement in thoracic lumbar
control (FIGURE 22B); and 7) restoration of peristaltic and
bowel movements, bladder control, and improvement car-
diovascular function (FIGURE 22C).

Because of this substantial neurological recovery, 50% of
the eight patients were upgraded from a complete paraple-
gia (ASIA A n � 7, ASIA B n � 1) to a partial paraplegia
classification (ASIA C) at the end of 12 mo of training with
this BMI-based protocol (FIGURE 22A). Longitudinal anal-
ysis of EEG recordings obtained from these patients during
the 12-mo training period reveled that this partial sensory,
motor, and visceral recovery was paralleled by an expan-

1The area of the body, measured in dermatomes and myotomes,
below the level of the spinal cord lesion, in patients classified as
having a clinically complete lesion, that remained partially inner-
vated.

FIGURE 22. Clinical and functional improvements. A: patients with ASIA classification improvements: four
patients changed ASIA classification over the course of the neuro-rehabilitation training, three moved from
ASIA A to C and one moved from ASIA B to C. ASIA A is characterized by absence of both motor and sensory
functions in the lowest sacral area; ASIA B by the presence of sensory functions below the neurological level
of injury, including sacral segments S4–S5 and no motor function is preserved more than three levels below
the motor level on either side of the body; ASIA C by the presence of voluntary anal sphincter contraction, or
sacral sensory sparing with sparing of motor function more than three levels below the motor level, majority
of key muscles have muscle grade less than 319. B: thoracic-lumbar control scale evaluates quantitatively
motor skill of the thoracolumbar region. Score ranges between 0 and 65. It has 10 items that consider supine,
prone, sitting, and standing postures. In the present study, the last item (orthostatic position) was scored 0
due to the limitations of the pathology. C: correlation between average time spent in a standing position in
orthostatic or gait training (mean � SE, values are average hours per month) and mean frequency for bowel
function (values calculated per month and z-scored per patient). [From Donati et al. (205).]
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sion of the representation of lower limbs in their primary
sensorimotor cortex. Based on these results, Donati et al.
(205) proposed that a combination of cortical and spinal
cord plasticity, triggered by chronic use of a BMI that pro-
vided rich visuo-tactile feedback, may have rekindled re-
maining axons that survived the original spinal cord injury.

Overall, the study by Donati et al. (205) raises the concrete
possibility that the future goals of BMI research may in-
clude the possibility of creating therapeutic procedures
aimed at inducing some degree of neurological recovery in
patients suffering from incomplete SCIs. As such, BMIs may
become a true neurorehabilitation paradigm for these pa-
tients, instead of a mere assistive technology.

XIII. CONCLUSION

After a decade and a half of intense development, BMI
research is currently witnessing a very rapid growth to-
wards a broad range of potential clinical applications. This
trend was originally driven by the expectation that BMIs
may provide fundamental assistive tools for people who
suffer from motor and/or sensory deficits. Recently, this
expectation has been upgraded to reflect the possibility that
BMIs may also become a new neurorehabilitation therapy
that takes advantage of the phenomenon of brain plasticity
to induce partial neurological recovery in severely disabled
patients.
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