
The Block Cipher Rijndael

Joan Daemen1 and Vincent Rijmen?2

1 Proton World Int’l
Zweefvliegtuigstraat 10
B-1130 Brussel, Belgium

Daemen.J@protonworld.com
2 Katholieke Universiteit Leuven, Dept. Electrical Engineering–ESAT

Kardinaal Mercierlaan 94, B–3001 Heverlee, Belgium
vincent.rijmen@esat.kuleuven.ac.be

Abstract. In this paper we present the block cipher Rijndael, which
is one of the fifteen candidate algorithms for the Advanced Encryption
Standard (AES). We show that the cipher can be implemented very
efficiently on Smart Cards.

1 Introduction

The US National Institute of Standards and Technology (NIST) issued a call for
an Advanced Encryption Standard (AES) to replace the current Data Encryption
Standard (DES). The AES call asks for a 128-bit block cipher whith a variable
key length. (At least key lengths of 128, 192 and 256 bits are to be supported.)
The cipher should be efficient on a Pentium platform, 8-bit processors and in
hardware. Rijndael is one of the fifteen submissions that have been accepted as
a candidate algorithm.

We describe the block cipher in Section 2 and discuss its Smart Card imple-
mentation in Section 3. We give some performance figures in Section 4 and we
conclude in Section 5.

2 Description of Rijndael

Rijndael is an iterated block cipher with a variable block length and a variable
key length. The block length and the key length can be independently specified to
128, 192 or 256 bits. Like Square [2] and BKSQ [4], Rijndael has been designed
following the wide trail strategy [1,7]. This design strategy provides resistance
against linear and differential cryptanalysis. In the strategy, the round transfor-
mation is divided into different components, each with its own functionality. In
this section we explain the cipher structure and the component transformations.
For implementation aspects, we refer to Section 3.
? F.W.O. postdoctoral researcher, sponsored by the Fund for Scientific Research –

Flanders (Belgium).

J.-J. Quisquater and B. Schneier (Eds.): CARDIS 2000, LNCS 1820, pp. 277–284, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

278 J. Daemen and V. Rijmen

2.1 The State, the Cipher Key, and the Number of Rounds

We define the state of the block cipher as the intermediate result of the encryp-
tion process. The state is initialised with the plaintext, in the order a0,0, a1,0,
a2,0, a3,0, a0,1, a1,1, The round transformations are built from component
transformations that operate on the state. Finally, at the end of the cipher ope-
ration, the ciphertext is read from the state by taking the state bytes in the
same order.

The state can be pictured as a rectangular array of bytes. This array has four
rows, the number of columns is denoted by Nb and is equal to the block length
divided by 32. The cipher key is similarly pictured as a rectangular array with
four rows. The number of columns of the cipher key is denoted by Nk and is equal
to the key length divided by 32. This is illustrated in Figure 1. Sometimes the
Cipher Key is pictured as a linear array of four-byte words. The words consist
of the four bytes that are in the corresponding column.

a3,0

a2,0

a1,0

a0,0

a3,1

a2,1

a1,1

a0,1

a3,2

a2,2

a1,2

a0,2

a3,3

a2,3

a1,3

a0,3

a3,4

a2,4

a1,4

a0,4

a3,5

a2,5

a1,5

a0,5

k3,0

k2,0

k1,0

k0,0

k3,1

k2,1

k1,1

k0,1

k3,2

k2,2

k1,2

k0,2

k3,3

k2,3

k1,3

k0,3

Fig. 1. Example of state layout (with Nb = 6) and cipher key layout (with Nk = 4).

The number of rounds is denoted by Nr and depends on the values Nb and
Nk. It is given in Table 1.

Table 1. Number of Rounds (Nr) as a function of the block and key length.

Nb

4 6 8
4 10 12 14

Nk 6 12 12 14
8 14 14 14

2.2 The Round Transformation

The round transformation is composed of four different component transforma-
tions. In pseudo C notation we have:

The Block Cipher Rijndael 279

Round(State,RoundKey) {
ByteSub(State);
ShiftRow(State);
MixColumn(State);
AddRoundKey(State,RoundKey);
}

The final round of the cipher is slightly different. It is defined by:

FinalRound(State,RoundKey) {
ByteSub(State);
ShiftRow(State);
AddRoundKey(State,RoundKey);
}

It can be seen that in the final round the MixColumn step has been removed.
The component transformations are specified in the following subsections.

The ByteSub Transformation. The ByteSub transformation is a non-linear
byte substitution, operating on each of the state bytes independently. The sub-
stitution table (or S-box) is invertible and is constructed by the composition of
two transformations:

1. First, taking the multiplicative inverse in GF(28) [6], the zero element is
mapped onto itself.

2. Then, applying an affine transformation (over GF(2)).

The application of the described S-box to all bytes of the state is denoted by
ByteSub(State).

The ShiftRow Transformation. In ShiftRow, the last three rows of the state
are shifted cyclically over different offsets. Row 1 is shifted over C1 bytes, row 2
over C2 bytes and row 3 over C3 bytes. The shift offsets C1, C2 and C3 depend
on the block length Nb. The different values are specified in Table2.

Table 2. Shift offsets for different block lengths.

Nb C1 C2 C3

4 1 2 3
6 1 2 3
8 1 3 4

The operation of shifting the last three rows of the state over the specified
offsets is denoted by ShiftRow(State).

280 J. Daemen and V. Rijmen

The MixColumn Transformation. In MixColumn, the columns of the state are
considered as polynomials over GF(28), and multiplied modulo x4 + 1 with a
fixed polynomial c(x), given by c(x) = 3x3 +x2 +x+2. This can also be written
as a matrix multiplication. Let b(x) = c(x) ⊗ a(x), then




b0
b1
b2
b3


 =




2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2


 ×




a0
a1
a2
a3


 .

The application of this operation on all four columns of the state is denoted by
MixColumn(State).

The Round Key Addition. In this operation, a round key is applied to the
state by a simple bitwise EXOR. The round key is derived from the cipher key
by means of the key schedule. The round key length is equal to the block length
Nb. The transformation that consists of EXORing a round key to the state is
denoted by AddRoundKey(State,RoundKey).

2.3 Key Schedule

The round keys are derived from the cipher key by means of the key schedule.
This consists of two components: the key expansion and the round key selection.
The basic principles are the following.

– The total number of round key bits is equal to the block length multiplied
by the number of rounds plus 1. (e.g., for a block length of 128 bits and 10
rounds, 1408 round key bits are needed).

– The cipher key is expanded into an expanded key.
– Round keys are taken from this expanded key in the following way: the first

round key consists of the first Nb words, the second one of the following Nb

words, and so on.

Key Expansion. The expanded key is a linear array of four-byte words and
is denoted by W [Nb(Nr + 1)]. The first Nk words contain the cipher key. All
other words are defined recursively in terms of words with smaller indices. The
key schedule depends on the value of Nk: there is a version for Nk ≤ 6, and a
version for Nk > 6. For Nk ≤ 6, we have:

KeyExpansion(CipherKey,W) {
for(i = 0; i < Nk; i++) W [i] = CipherKey[i];
for(j = Nk; j < Nb(Nr + 1); j+= Nk) {

W [j] = W [j − Nk] ⊕ SubByte(Rotl(W [j − 1])) ⊕ Rcon[j/Nk];
for(i = 1; i < Nk && i + j < Nb(Nr + 1); i++)

W [i + j] = W [i + j − Nk] ⊕ W [i + j − 1];
}

}

The Block Cipher Rijndael 281

When the cipher key words are used, every following word W [i] is equal to
the EXOR of the previous word W [i − 1] and the word Nk positions earlier
W [i − Nk]. For words in positions that are a multiple of Nk, a transformation is
applied to W [i − 1] prior to the EXOR and a round constant is EXORed. This
transformation consists of a cyclic shift of the bytes in a word, denoted with
Rotl, followed by SubByte, the application of a table lookup to all four bytes of
the word.

The key expansion for Nk > 6 is very similar, but uses an extra application
of SubByte. It is described in detail in [3].

The round constants are independent of N − k and defined by: Rcon[i] =
(RC[i], 0, 0, 0), with RC[0] = 1, RC[i] = 2 · RC[i − 1] (multiplication in the field
GF(28)).

Round Key Selection. Round key i is given by the round key buffer words
W [Nbi] to W [Nb(i + 1)]. The key schedule can be implemented without explicit
use of the array W . For implementations where RAM is scarce, the round keys
can be computed just-in-time using a buffer of Nk words.

2.4 The Cipher

The cipher Rijndael consists of

– an initial round key addition,
– Nr − 1 rounds,
– a final round.

In pseudo C code, this gives:

Rijndael(State,CipherKey) {
KeyExpansion(CipherKey,ExpandedKey);
AddRoundKey(State,ExpandedKey);
for(i = 1; i < Nr; i++) Round(State,ExpandedKey + Nbi);
FinalRound(State,ExpandedKey + NbNr);
}

The Key Expansion can be done on beforehand and Rijndael can be specified in
terms of this expanded key.

Rijndael(State,ExpandedKey) {
AddRoundKey(State,ExpandedKey);
For(i = 1; i < Nr; i++) Round(State,ExpandedKey + Nbi);
FinalRound(State,ExpandedKey + NbNr);
}

3 Implementation Aspects

The Rijndael cipher is suited to be implemented efficiently on a wide range of
processors and in dedicated hardware. We will concentrate on 8-bit processors,
typical for Smart Cards.

282 J. Daemen and V. Rijmen

3.1 Implementation on Eight-Bit Processors

Rijndael can be programmed by simply implementing the different component
transformations. This is straightforward for RowShift and for the round key ad-
dition. The implementation of ByteSub requires a table of 256 bytes. The round
key addition, ByteSub and RowShift can be efficiently combined and executed
serially per state byte. Indexing overhead is minimised by explicitly coding the
operation for every state byte. The transformation MixColumn requires matrix
multiplication in the field GF(28). The choice for the coefficients of the polyno-
mial c(x) (cf. Section 2.2 has been influenced by implementation considerations.
We define the 256-byte table X2 as follows: X2[i] = i · 2, whith multiplication
in the Galois Field. Thus, X2 implements the multiplication with two. We can
now implement the matrix multiplication very efficiently. Indeed, the matrix has
only entries 1, 2 and 3. Multiplication with 3 can be done by multiplying with 2
and then adding the argument. We illustrate it for one column:

p = a[0] ⊕ a[1] ⊕ a[2] ⊕ a[3]; /* a is a byte array */
q = X2[a[0] ⊕ a[1]]; a[0] = a[0] ⊕ q ⊕ p;
q = X2[a[1] ⊕ a[2]]; a[1] = a[1] ⊕ q ⊕ p;
q = X2[a[2] ⊕ a[3]]; a[2] = a[2] ⊕ q ⊕ p;
q = X2[a[3] ⊕ a[0]]; a[3] = a[3] ⊕ q ⊕ p;

Instead of using the table X2, the multiplication with two can be implemented
with a shift and a conditional exor. In a straightforward implementation, the
execution time of this operation will depend on the input value. This may allow
an attacker to mount a timing attack [5]. The timing attack can be countered
by inserting additional NOP-operations to make the execution time of both
branches equal to one another, but this will probably introduce weaknesses with
respect to a power analysis attack. The use of a table effectively counters these
types of attacks.

Obviously, implementing the key expansion in a single shot operation is likely
to occupy too much RAM in a Smart Card. Moreover, in most applications,
such as debit cards or electronic purses, the amount of data to be enciphered,
deciphered or that is subject to a MAC is typically only one or two blocks
per session. Hence, not much performance can be gained by expanding the key
only once for multiple applications of the block cipher. The key expansion can be
implemented in a cyclic buffer of 4Nb bytes. The round key is updated in between
rounds. All operations in this key update can be efficiently implemented on byte
level. If the cipher key length is equal to the block length or an integer multiple
of it, the implementation is straightforward. If this is not the case, an additional
buffer pointer is required.

3.2 The Inverse Cipher

The round transformation of Rijndael is not a Feistel network. An advantage of
a Feistel cipher is that the inverse cipher is almost the same as the cipher. Since
the round transformation of a Feistel cipher is an involution, only the order of

The Block Cipher Rijndael 283

the round keys has to be inverted. For Rijndael, this is not the case. In princi-
ple, the decryption has to be done by applying the inverses of the component
transformations in inverse order.

However, the round transformation and the cipher structure have been desi-
gned to alleviate this problem partially. By using some algebraic properties we
can derive an equivalent representation for the inverse cipher, that has the same
structure as the cipher. This means that a round of the inverse cipher looks the
same as a round of the cipher, except that ByteSub, MixColumn and ShiftRow
have been replaced by their inverses. The round keys in this representation are
different from the round keys used in the encryption mode.

The elements in the matrix corresponding to the inverse operation of Mix-
column, have other values than 1, 2 and 3. Therefore, the multiplication cannot
be done with the same efficiency. If we use only the table X2, the performance
of the cipher drops with about 50%. The performance loss can be alleviated by
using additional tables to define multiplications with other field elements.

4 Performance

Rijndael has been implemented in assembler on two different types of micro-
processors that are representative for Smart Cards in use today. In these im-
plementation the round keys are computed in between the rounds of the cipher
(just-in-time calculation of the round keys) and therefore the key schedule is
repeated for every cipher execution. This means that there is no extra time
required for key set-up or a key change. There is also no time required for algo-
rithm set-up. Only the forward operation of the cipher has been implemented,
backwards operation is expected to be slower by a factor of 1.5 to 2, as explained
in Section 3.2.

4.1 Intel 8051 Processor

Rijndael has been implemented on the Intel 8051 microprocessor, using 8051
Development tools of Keil Elektronik: µVision IDE for Windows and dScope
Debugger/Simulator for Windows. Execution time for several code sizes is given
in Table 3 (1 cycle = 12 oscillator periods).

Table 3. Execution time and code size for Rijndael in Intel 8051 assembler.

(Key, block length) Number of cycles Code size (bytes)
4065 768

(128,128) 3744 826
3168 1016

(192,128) 4512 1125
(256,128) 5221 1041

284 J. Daemen and V. Rijmen

4.2 Motorola 68HC08 Processor

Rijndael has been implemented on the Motorola 68HC08 microprocessor using
the 68HC08 development tools by P&E Microcomputer Systems, Woburn, MA
USA, the IASM08 68HC08 Integrated Assembler and SIML8 68HC08 simulator.
Execution time, code size and required RAM for a number of implementations
are given in Table 4 (1 cycle = 1oscillator period). No optimization of code length
has been attempted for this processor.

Table 4. Execution time and code size for Rijndael in Motorola 68HC08 Assembler.

(Key, block length) Number of cycles Required RAM (bytes) Code size (bytes)
(128,128) 8390 36 919
(192,128) 10780 44 1170
(256,128) 12490 52 1135

5 Conclusions

Rijndael is a very fast block cipher. It can be implemented very efficiently on a
Smart Card with a small amount of code, using a small amount of RAM and
taking a small number of cycles. Some ROM/performance trade-off is possible.
It is easy to make the implementation of the cipher resistant to timing attacks.
The variable block length allows the construction of a collision-resistant hash
function with Rijndael as compression function.

The most important disadvantage is the fact that the inverse cipher is dif-
ferent from the cipher. The inverse cipher is typically 1.5 to 2 times slower on
Smart Card (or takes more ROM).

References

1. J. Daemen, “Cipher and hash function design strategies based on linear and diffe-
rential cryptanalysis,” Doctoral Dissertation, March 1995, K.U.Leuven.

2. J. Daemen, L.R. Knudsen and V. Rijmen, “The block cipher Square,” Fast Software
Encryption, LNCS 1267, E. Biham, Ed., Springer-Verlag, 1997, pp. 149–165. Also
available as http://www.esat.kuleuven.ac.be/∼rijmen/square/fse.ps.gz.

3. J. Daemen and V. Rijmen, “The Rijndael block cipher,” presented at the First
Advanced Encryption Standard Conference, Ventura (California), 1998, available
from URL http://www.nist.gov/aes.

4. J. Daemen and V. Rijmen, “The block cipher BKSQ,” this volume.
5. P.C. Kocher, “Timing attacks on implementations of Diffie-Hellman, RSA, DSS

and other systems,” Advances in Cryptology, Proceedings Crypto’96, LNCS 1109,
N. Koblitz, Ed., Springer-Verlag, 1996, pp. 104–113.

6. R. Lidl and H. Niederreiter, Introduction to finite fields and their applications, Cam-
bridge University Press, 1986.

7. V. Rijmen, “Cryptanalysis and design of iterated block ciphers,” Doctoral Disser-
tation, October 1997, K.U.Leuven.

	Introduction
	Description of Rijndael
	The State, the Cipher Key, and the Number of Rounds
	The Round Transformation
	Key Schedule
	The Cipher

	Implementation Aspects
	Implementation on Eight-Bit Processors
	The Inverse Cipher

	Performance
	Intel 8051 Processor
	Motorola 68HC08 Processor

	Conclusions

