水 晶 の 彈 性 定 數 の 溫 度 係 數＊曾員古賀逸策曾員高木 昇

$$
\begin{equation*}
f=\frac{1}{2 a} \sqrt{\frac{c}{\rho}}, \quad c=c_{66} \sin ^{2} \theta+c_{44} \cos ^{3} \theta+c_{14} \sin 2 \theta \tag{1}
\end{equation*}
$$

 る井に皆及して階いったが，本椐はその方法及結果を報告せんとす

$$
\begin{equation*}
2 \frac{1}{f} \frac{\partial f}{\partial T}=\frac{1}{c} \frac{\partial c}{\partial T}-\frac{1}{\rho} \frac{\partial \rho}{\partial T}-2-\frac{1}{a} \frac{\partial a}{\partial T} \tag{2}
\end{equation*}
$$

であるか，湖妇 ρ 及任意の方向（方向餘弦 l, m, n ）へとつた長

$$
\begin{align*}
& -\frac{1}{\rho} \frac{\partial \rho}{\partial T}=\frac{1}{x} \frac{\partial x}{\partial T}+\frac{1}{y} \frac{\partial y}{\partial T}+\frac{1}{z} \frac{\partial z}{\partial T} \cdots(\tag{3}\\
& \frac{1}{a} \frac{\partial a}{\partial T}=r^{2} \frac{1}{x} \frac{\partial x}{\partial T}+m^{2} \frac{1}{y} \frac{\partial y}{\partial T}+n^{2} \frac{1}{z} \frac{\partial z}{\partial T} \tag{4}
\end{align*}
$$

$$
\left.\begin{array}{l}
\frac{1}{x} \frac{\partial x}{\partial T}=\frac{1}{y} \frac{\partial y}{\partial T}=13.7 \times 10^{-8} \rho \mathrm{C} \tag{5}\\
\frac{1}{z} \frac{\partial z}{\partial T}=7.5 \times 10^{-6} \rho \mathrm{C}
\end{array}\right\}
$$

（G．W．C．Kaye \＆T．H．Laby：Physical and Chemical Con－ stants，p．56）であるから．絬局（2）式は次の権になる。

$$
\begin{equation*}
2 \frac{1}{f} \frac{\partial f}{\partial T}=\frac{1}{c} \frac{\partial c}{\partial T}+\left(7.5+12.4 \times \cos ^{2} \theta\right) \times 10^{-6} \tag{6}
\end{equation*}
$$

而して $\theta=140^{\circ}$ 附近（板面の x 赖との䫝則は 0.5^{\prime} 以队）及 $\theta=80^{\circ}$
 ける周波数の溫冿保数を入念に测定した結果，第一表及符二泡に

示す作を得た。Y－cut 振䣦子の溫昨係數は板の厚さが娍少するに従ひ次婉に排加して表記の値に落付く。又 $\theta=140^{\circ}$ 附近に於け偲度俰教は特に約 $47.5^{\circ} \mathrm{C}$ に於ける值をとつたが，これし策に滑与 る詳緙のつ收情は他日の間題としたい。

要に角第二園を見ると $\beta=9^{\circ} \pm 6^{\prime}$ 如ち $\theta=137^{\circ} 59^{\prime}$ 及十月號速報 により $\theta=54^{\circ} 45^{\prime}$ で何えし も周波數め㴓度係數は算で，$\theta=90^{\circ}$ に於 ては $103 \times 10^{-6} 9 \mathrm{C}$ であるから，これ符を（6）式に代入すれば，

$0=\left(\frac{1}{c} \frac{\hat{\partial} c}{\partial T}\right)_{1370^{\circ} 9}+\left(7.5+12.4 \times \cos ^{2} 137^{\circ} 59^{\prime}\right) \times 10^{-6}$ （7）
$0=\left(\frac{1}{c} \frac{\partial c}{\partial T}\right)_{54^{\circ} 45^{\prime}}+\left(7.5+12.4 \times \cos ^{2} 54^{3} 45^{\prime}\right) \times 10^{-8}$

$$
\begin{equation*}
2 \times 103 \times 10^{-11}=\left(\frac{1}{c} \cdot \frac{\partial c}{\partial T}\right)_{900}+7.5 \times 10^{-0} \tag{9}
\end{equation*}
$$

扮 $\left.\begin{array}{rl}\quad c_{66} & =\frac{1}{2}\left(c_{11}-c_{12}\right)=\frac{1}{2}(85.45-7.26) \times 10^{10} \text { dynes } / \mathrm{cm}^{2} \\ c_{44} & =57.09 \times 10^{10} \text { dynes } / \mathrm{cm}^{2} \\ c_{14} & =-16.87 \times 10^{20} \text { dynes } / \mathrm{cm}^{2}\end{array}\right\}$
を用ふれば，先づ（9）（1）（10）式から

$$
\left.\begin{array}{rl}
\left(\frac{1}{c} \frac{\partial c_{c}}{\partial T}\right)_{90}=\frac{1}{c_{68}} \frac{\partial c_{66}}{\partial T} & =+199 \times 10^{-6} \\
\frac{\partial}{\partial T} & =+77.8 \times 10^{-6} \tag{12}
\end{array}\right\} \ldots \text { Typo: }+77.8 \times 10^{6} . \text { (11) }
$$

又 $\frac{\partial c}{\partial T}=\sin ^{2} \theta \frac{\partial c_{\text {an }}}{\partial T}+\cos ^{2} \theta \frac{\partial c_{44}}{\partial T}+\sin 2 \theta \frac{\partial c_{14}}{\partial T} .$.
である事は皿婨であるから，これしと（7）（8）（10）（11）式とから

$$
\begin{equation*}
\frac{\partial c_{44}}{\partial T}=-113.5 \times 10^{6}, \quad-\frac{1}{c_{44}} \frac{\partial c_{44}}{\partial T}=-199 \times 10^{-6} \ldots \tag{13}
\end{equation*}
$$

$\frac{\partial c_{14}}{\partial T}=-18.5 \times 10^{6}, \frac{1}{c_{14}} \frac{\partial c_{14}}{\partial T}=+110 \times 10^{-6} \ldots \ldots$.

笨三風の曲線は（1）（6）（11）（13）（14）式から計算した結果を表しためので，曲線の附近に點任して居る小图は，十月跋で報告 した算測值であるが，兩者か如何によく一致して居るかは一見し て明である。
向 $c_{10}=\frac{1}{2}\left(c_{11}-c_{1}\right)$ に於ける c_{11} の㯰度俰数は，X－cut 振動子の諰定係數を测定すれば決定状來る。さ5すると c_{12} の㴓度係
 （炤和入年十一月三十日受付）

[^0]Attached to Reference 8 to clarify the name and volume of the Journal in which this report was published Page $1 / 2$

著 者 索 引

Attached to Reference 8 to clarify the name and volume of the Journal in which this report was published
Page $2 / 2$

官 氯 學 會 雜 誌

```
鹳五三卷鹈一二年
昭 租 人 年 + = 月
```


[^0]: ＊Temperature Coefficients of Elastic Constants of Quarth By Lasac KOGA，Menber and Noboru TAKAGI，Member．（Tokyo Univeraity of Enginearing．）

