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I. Introduction 

We have been investigating a picture processing 
problem originally arising from a problem in electron 
microscopy, but having applications in a wide range of  
fields, both within and outside biology. In particular, 
we have discovered a new set of  algorithms for the re- 
construction of three-dimensional objects f rom a set of  
transmission photographs taken through a translucent 
object at a few angles. As will be seen, the problem is re- 
ducible to the two-dimensional one of reconstructing a 
given planar section of the object. Such algorithms are of  
great importance in biology, for they allow us to dis- 
cover the structure of  macromolecules and macro-  
molecular assemblies, such as r ibosomes [3]. 

With Rosenfeld [21, p. 147] we define "a  picture as 
being a real-valued, nonnegative function of two real 
variables; the value of this function at a point will be 
called the gray level of the picture at the point ."  We de- 
fine a projection as an ordered set of  values, each value 
being the integral or sum of the gray levels along one of 
a set of  parallel rays, which are bands of finite width 
drawn across the picture at a known angle. Our problem 
is to reconstruct a picture from a finite subset of  its pro- 
jections taken at distinct angles. 

We attempted solution for digital pictures only. A 
digital picture is one which is defined by specifying an 
n X n matrix of  gray levels. An element of  the matrix will 
be called a picture element. A digital picture is said to 
be quantized if each element can take on only finitely 
many  values. Rosenfeld [22, Ch. 3] discusses digitization 
(sampling) and quantization and gives justifications for 
them. In general, a ray is now a subset of  picture ele- 
ments. Each picture element contributes to one and only 
one of the rays of  a given projection. A simple example 
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of  a projection is found in the ordered set of row sums 
( r l ,  . . . ,  r , , ) ,  where 

r i =  ~ p i . ~ ' ,  i =  1 , . . . , n ,  (1) 
j=l 

and m,~" is the gray level of  picture element (i, j ) ,  i.e. the 
element in the ith row and j th  column. The n rays of  a 
projection at an arbitrary angle are defined below. 

For  such pictures, a projection can be considered to 
be a set of  n linear equations in the n 2 unknowns {re.J}. 
I f  we take m distinct projections, we have m n  simultane- 
ous linear equations in n 2 unknowns.  I f  m < n, there 
will generally be more than  one solution, i.e. more  than 
one picture with exactly the same projections. I f  one is 
satisfied with solutions accurate to a given number  of  
digits, then all of the projections may be multiplied by 
an appropr ia te  constant so that  the gray levels become 
integers. All of  our algorithms, although somewhat  
generalizable, were implemented in integers. In particu- 
lar, we shall assume that  the admissible gray levels are 
0, 1, . . . ,  l --  1 (a quantized picture).  

I f  we were to treat  each of the rays as a linear equa- 
tion in the n 2 unknowns re.j, and if we have m projec- 
tions, each with n rays, then the matrix of  these equa- 
tions would be an m n  × n 2 matrix, requiring m n  3 loca- 
tions in storage. I f  n = 1000 and m = 100, this would 
require 1011 locations, which is far from reasonable. Even 
in the case o f n  = 100, m = 10, t h e n u m b e r  of  loca- 
tions needed is on the order of  107 , which is still too 
large for the core memory  of most  present-day com- 
puters. Thus direct t reatment  of  the simultaneous linear 
equations, applying techniques which are usual in linear 
programming (manipulation of the matrix of  coef- 
ficients), does not appear  to be feasible to implement.  
An entirely different approach seems to be warranted. 
Our three algorithms require storage proport ional  to n ~ 
only. 

As an indication of the success of  our approach,  the 
reader is referred to Figures 5 (g) and 5 (h). Figure 5 (h) 
is a 49 × 49 digitized picture (2,401 unknowns) ,  and 
Figure 5 (g) indicates the result of  our reconstruction 
using eight projections (488 linear equations, some 
linearly dependent on others).  The next three sections 
give the details of  the three algorithms which have been 
used to obtain the reconstructions of  Figure 5. Further  
details and discussion are given in an internal publica- 
tion [14], which is available upon request. For  a sum- 
mary  of our results and applications of  our techniques, 
see Sections 5 and 6. 

2.  T h e  F ir s t  A l g o r i t h m  

Since we will be dealing with n × n digitized pictures, 
it will usually be convenient to define the rays of  a given 
projection as subsets of  exactly n of  the picture elements 
oi.j. Let 0 be the angle associated with a given projec- 
tion, --90 ° < 0 __< 90 °. We draw a line at angle 0 to the 

Fig. 1. Example of the sorting of the picture elements for Algorithm 
1 with 0 = tan-X (½) for a 4 X 4 picture. The picture elements are 
labeled according to their distance from the line through element 
(1,1) at angle 0 from the horizontal. 
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horizontal  through the position of the first matrix ele- 
ment  and calculate the distance of each point (i, j )  f rom 
this line (Figure 1). Points above the line, in case 0 is 
negative, are considered to be at a negative distance. The 
picture elements are then sorted according to these dis- 
tances, and blocked into n groups of n. The kth group is 
defined as ray k of  the projection at angle 0 (Figure 2). 

Algorithm 1 begins with an initially blank n X n 
matrix (pi,j = 0). Each ray of the first projection is con- 
sidered in turn. Bits (equal to 1 gray level unit each) are 
randomly added to the picture elements of the ray until 
their sum is correct. Next we scan the rays of  the second 
projection. The sum of the picture elements of  a given 
ray may be too high or too low, in which case bits are 
either subtracted or added at random from its picture 
elements. (Bits are not added to or subtracted from pic- 
ture elements whose gray level is already l -- 1 or 0, 
respectively, but otherwise each picture element is 
equally likely to have a bit added to it.) When all the 
rays of  a projection are done, the total number  of  bits in 
the matrix is restored to the proper  number.  The third 
etc., projections are treated similarly. 
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Fig. 2. The four rays of  the projection at angle 0 = tan -~ (½) for a 
4 X 4 picture, as in Figure 1. The values of  the rays (sums of  gray 
levels along the rays) are indicated on the left. 
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An unfortunate consequence of  our first algorithm is 
that whenever a new projection is satisfied, the previous 
ones may be disturbed. The algorithm seems to work 
because the changes introduced into the picture are un- 
biased random noise, from the point of  view of  the old 
projections. The noise seems to disappear when we take 
the average picture of  many independent individual re- 
constructions. So that no projection has more noise than 
any other, we consider them in random order for each 
individual reconstruction. 

In summary, Algorithm I creates random individual 
reconstructions by satisfying (in a random order) each 
of  the given projections. The average of  several indi- 
vidual reconstructions was found to be a reasonably 
smooth  picture more or less satisfying all the projections. 

3. The Second Algorithm 

Our second algorithm satisfies all o f  the projections 
exactly in each individual reconstruction. We have only 
implemented this up to four projections, so that the 

first algorithm still had to be retained. We have re- 
stricted our FORTRAN implementation to four particular 
projections: ( 1 ) v e r t i c a l  (90°); ( 2 ) h o r i z o n t a l  (0°); 
(3) 45 ° diagonal; and (4) - 45 ° diagonal. For the diago- 
nal projections a ray is redefined as a set o f  picture ele- 
ments on a line parallel to a principal diagonal o f  the 
matrix. Thus the diagonal projections have 2n - I rays 
each, and each ray consists o f  1 to n picture elements. 
The rays for the horizontal  and vertical projections are 
just the rows and co lumns  of  the matrix, so that they 
have n rays each with n picture elements in each ray, as 
in Algorithm 1. 

The rays o f  the vertical projection are satisfied by 
adding bits at random, as was the first projection in 
Algorithm 1. Then we have 

¢~ = Z~ p~,~ (2) 
i 

where cj is the value o f  thej th  ray o f  the vertical projec- 
tion. 

Suppose rl,  . . . ,  ri-1 (the horizontal  row sums, eq. 
(1) ) ,  are already satisfied, and i < n. If the reconstruc- 
t ion so far is such that 

r, < ~]  p,,j, (3) 
J 

then we randomly select a j, 1 < j  < n, and add 1 to 
p~,j. But this causes an error in the vertical co lumn sum: 

~ ]  p,,y = cj + 1. (4) 

To restore the first projection, we randomly select u > i 
(u < n) and subtract 1 from pu.j. The first projection is 
restored and the first i -- 1 rays of  the second projection 
are left undisturbed. We repeat the process until ray i is 
satisfied, and then move  on to i + 1. The case 

r~ > ~]  p~,j (5) 
J 

is analogous.  
Since 

~ m,i = ~ c: = ~ ri (6) 
*,3 j i 

is fixed and was already correct after we satisfied the 
first projection, when rl ,  . . . ,  rn_~ are satisfied, r~ will 
be automatically satisfied. 

What if a picture element we have selected for sub- 
traction of  a bit is already 0? We do not  al low a nega- 
tive gray level. Similarly, we may want to add to a pic- 
ture element whose value is already the maximum, l -- 1. 
In such cases we make at most  f(n) independent ran- 
dom attempts of  the kind described above, where f ( n )  
is a monotonical ly  increasing function of  n. It is possible 
that even after f ( n )  attempts we cannot  satisfy this ray 
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of the second projection. For  instance, if the original 
matrix was 

(with only two gray levels allowed, l - 1 = 1 ), then the 
first projection may have provided us with 

and there is no way of manipulat ing the second and third 
rows to satisfy the second projection. In such cases we 
try to satisfy the second projection in reverse order, i.e. 
starting with its last ray. We call this flipping, since our 
p rogram flips the matrix rather than reverse the indices. 
We may have to flip the matrix several times. In prac- 
tice we never found any need to flip at this stage of the 
algorithm. Note  also that  one flip will allow precise 
reconstruction of the matrix of  the example above. 

We found situations where the method of flipping 
will not  provide us with a solution. Such examples had 
to be artificially created and we never came across one 
in practice, but the algorithm must check for this pos- 
sibility. 

With projections {ei} and {rd satisfied, we now wish 
to satisfy the 45 ° diagonal 

d k =  ~ re,j, k =  1 , . . . , 2 n -  1. (7) 
i+ j=k+l  

Suppose that  dl ,  . . . ,  dk_a are already satisfied and that  
k < 2n - 2. I f  the reconstruction so far is such that  

dk< ~2 p,,~, (8) 
i+j~k+a 

then we randomly select a picture element (i, j )  on ray 
k = i + j - 1, and add 1 to m,j.  But this disturbs both 
cj and r~. To counteract  this we randomly select a u and 
a v such that  i < u < n , j  < v _< n, and subtract 1 f rom 
both m,, and p,.~. This restores ci and r~ but disturbs 
c, and r~. But by adding 1 to p . . . .  the first two projec- 
tions are again satisfied (Figure 3(a) ) .  We repeat  this 
process until dk is satisfied. (If  inequality (8) is re- 
versed, the process is analogous.)  We then move on to 
dk+~, etc., until all of  d~, . . . ,  d2n_3 are satisfied. This 
implies that  d2,_2 and d2n_~ will be automatically satis- 
fied. A mathematical  p roof  can be found in [14, Appen. 
II]. 

Rays of the --45 ° diagonal should have values 

e k =  Y2 pi,~, k =  1 , . . . , 2 n -  1. (9) 
j ~ i ~ n - - k  

To satisfy ek without disturbing {ci}, {rl}, and {dk}, we 
use essentially the same technique, but now it is some- 
what more complicated to restore previous projections. 
I f  

ek < ~ m,J (10) 
j - - i~n - - k  

we randomly select a u and a v such that  i < u < n, 
1 < v < j ,  u - t - j - -  v <  n, a n d i - t -  v - -  u >  1. W e a d d  
1 to re.i, p~+i . . . .  , ou,i+~-~, and subtract 1 f rom p~,,j, 
m, , ,  pu+i-,,i+~-~. These six picture elements form a 
hexagonal  cycle which will not disturb the three previous 
projections (Figure 3 (b) ) .  

In this fashion we satisfy e l , . . . ,  e2n-5 • In [14, Appen. 
II] we proved that  e2n-4, . . . ,  e2n-x are automatically 
satisfied. We found that  in all examples we tried, flipping 
handles problems caused by the bounds on the gray 
levels with three or four projections as well as with two 
projections. 

The techniques described above for simultaneously 
satisfying a number  of  projections can be extended to 
any number  of  projections, provided only that all but 
one of them are taken at angles whose tangents are ra- 
tional numbers.  The details of  this extension of Al- 
gori thm 2 are discussed in [14, Appen. III[. Figure 4 
shows a suitable polygon, which preserves eight pro- 
jections while changing the ninth. 

4. The Third Algorithm 

As will be discussed below, the average of an increas- 
ing number  of  individual reconstructions f rom Al- 
gorithms 1 and 2 causes the entropylike fianction 

S = - - ~ p i , i l n p , , ,  (11) 
i=1  j = l  

to approximate  a certain value asymptotically from be- 
low. (The sign in eq. (11 ) is the one usually used by in- 
format ion theorists. For  a discussion of the nature of  
the sign of this function, see Brillouin [4, p. 161]. The 
sense in which the m, i  are proport ional  to probabilities 
in a probabil i ty distribution is discussed in [14, Appen. 
I].) This value is nearly (but not qu i t e ) t he  maximal  
value for S. It  is shown in [14, Appen. II] that  all solu- 
tions for four projections obtained by Algori thm 2 are 
accessible to one another  by repeated applications of  the 
following simple t ransformation.  

A double hexagonal transformation of a matrix is a 
change in the values of  its elements brought  about  in the 
following way. Take a ray of  the fourth special projec- 
tion (a --45 ° diagonal) .  Choose two different points on 
it such that  it is possible to draw from each a hexagon of 
the type described in the last section and Figure 3 (b). 
F rom each draw such a hexagon with u = i -t- 1 and 
v = j - 1. Add 1 to one of the points, subtract 1 f rom 
the other. Make  appropriate  changes on both hexagons 
to restore the first three projections. Clearly, the fourth 
projection will also remain undisturbed. (In getting 
f rom one solution to another  we may on the way en- 
counter picture elements outside the range 0 to l -- 1.) 

We at tempted to make use of  double hexagonal  
t ransformations to directly maximize the function S. 

Consider ray k of  the fourth projection at --45 °. 
Consider the small hexagonal cycle (i, j ) ,  (i + 1, j ) ,  
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Fig. 3(a). The method of satisfying the third projection in Algo- 
rithm 2. 

/ 

(i, j) / 

0,, Jr" 

j =  k + l  

_(i, v) 

~, ,  v) 

Fig. 3(b). The method of satisfying the fourth projection in Al- 
gorithm 2. 

j - i = n - k  

(u + j - v, +(u + j -  v, v) 
i + v - u )  

\ 

( i + 2 , j - -  1), ( i + 2 , j - - 2 ) ,  ( i +  1 , j - -  2), ( i , j - -  1), 
where (i, j )  is a picture element of  ray k. We define the 
entropy of  the cycle as 

sld = -- ~ m',i '  In m',J' (12) 
s m a l l  hexagon 

where the ( i ' , j ' )  are the coordinates listed above. 
Let ( i , j )  and (u, v) be two points on a ray at which 

it is possible to perform a double hexagonal transforma- 
tion. I f  

I / 

sld + s=,~ > sld + s,,, (13) 

where the primes denote the cycle entropies after the 
p's have been changed, then the total value of S for the 
picture will increase. 

In our implementation of  Algorithm 3, we scanned 
each picture element (i, j )  of each ray of  the - 4 5  ° diag- 
onal in turn, tested if its cycle entropy increased on add- 
ing or subtracting 1, and if so, then tried to find the next 
picture element (u, v) of  the ray such that with the com- 
plementary operation on it inequality (13) was satis- 
fied. If  there was none such, scanning just continued. 
After all the rays had been scanned, we calculated S. 
(We only allowed transformations which kept the gray 
levels in the permitted range. ) 

In practice we discovered that during successive 
iterations of  Algorithm 3 the value of  S converged to a 
value far below the maximum. In order to get away from 
such a local maximum, we added some random noise to 
the picture, restored the four projections by passing the 
picture back to Algorithm 2, and then tried Algorithm 3 
again. The noise decreased S, but then it generally 
climbed above the previous local maximum. When it 
did not, we tried the same operations on the (stored) 
previous maximum, but with twice as much noise. If  S 
improved, the noise for the next attempt was cut in half. 

We shall compare the success of  this direct search 
algorithm with the others in Section 5. 

Fig. 4. A method of satisfying the ninth projection in Algorithm 2. 
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9th projection 

. . . .  4 -  - ° , • • 
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5. Implementation, Examples, Evaluation 

All three algorithms have been implemented in 
FORTRAN, which was chosen because it does not have 
any obvious disadvantages over other high level lan- 
guages. Also in its favor was the high level of  support at 
the computing center where most of  the work was car- 
ried out (as well as at most other installations) and the 
fact that it is the best known language among scientists, 
who are potential users of  the program. (See Section 6 on 
applications. ) 

The algorithms have been tested on a large number 
of  examples. Here we report  on one of the least trivial 
ones, a picture of a little girl, Judy (Figure 5). For  lack 
of other equipment, Judy's photograph was digitized 
by hand (using a simple densitometer) into a 49 × 49 
matrix using 16 gray levels. (See Figure 5 (h) for the 
original digitized version of the photograph.)  A human 
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Fig. 5. Pictures o f  Judy. 
(a) Average o f  20 independent  recon- 

structions with two projections (0 °, 90 °) us- 
ing Algori thm 2. 

(b) Picture with maximum entropy sat- 
isfying two projections (0 °, 90°). 

(c) Reconstruct ion with four projec- 
tions (0 °, 90 °, =k45 °) using Algori thm 3. 

(d) Average o f  20 independent  recon- 
structions with four projections using Algo- 
ri thm 2. 

(e) Individual reconstruction with eight 
projections using Algori thm 1 ( ~ 2 2  °, =k68 °) 
and Algori thm 2 (0 °, 90 °, =1:45°). 

(f) Average of  four independent  recon- 
structions with eight projections using Al- 
gori thms 1 and 2. 

(g) Average o f  20 reconstructions with 
eight projections. 

(h) Original picture of  Judy. 
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face has been chosen, since it has a fairly complicated 
structure, which is, however, familiar to us all, and so it 
should be relatively easy to evaluate the success of our 
reconstruction. Because of the large number of white 
and dark patches on Judy's picture, some of them quite 
small, we felt that a successful reconstruction of this 
picture would demonstrate the validity of our algorithms. 

Let us observe the most successful reconstruction 
(Figure 5 (g)). Before objecting to its imperfections, the 
reader should note that Judy's picture has 49 X 49 = 
2,401 points in it and the gray level had to be deter- 
mined at each of these points from nothing but eight 
projections. Thus we had the problem of finding the 
value of 2,401 unknowns from 488 linear equations, 
some of which were linearly dependent on the others. 
It would be absolutely unreasonable to demand the re- 
construction of the exact gray level at each point. Look- 
ing at the picture from a more structural point of view, 
we consider our reconstruction extremely successful. 
For instance, we have identified 19 regions of brightness 
in the original (some very small) and every one of these 
can clearly be detected in the reconstruction, although 
some of them are joined together. 

Figures 5 (e), 5 (f), and 5 (g) give a visual indication 
of how our method of averaging multiple individual re- 
constructions is working out in practice. The average of 
a large number of pictures is both smoother and nearer 
to the (smooth) original. Note in particular the great 
improvement by taking the average of only four indi- 
vidual reconstructions. 

This basic aspect of our program is even better dem- 
onstrated by Figures 6 and 7. Figure 6 shows the root 
mean square distance between the original picture and 
reconstructions. The root mean square distance be- 
tween pictures {mj} and {t,~.J} is defined to be 

I (l/n2) ~L~i=l ~ p~,j)211/2 5 =  _ _  _ _  ( p ~ , ~ -  ( 1 4 )  
j = l  

and is considered to be a reasonable measure of the dif- 
ference between two pictures (Rosenfeld [22]). We see 
that, for any number of projections, there is a point after 
which making extra individual reconstructions does not 
give a significant improvement in approximating the 
original. At this point the computation should be termi- 
nated. However, this criterion cannot be used in practice, 
since we do not know what the original picture is and so 

Fig. 6. Distance ~ of reconstructions from the original picture of 
Judy, versus the number of reconstructions averaged, for two, four, 
and eight projections. 
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Fig. 7. Value of the normalized entropy function in reconstructions 
of Judy's picture, versus the number of reconstructions averaged. 

~ ~ ~ M  iMUM S FOR 

GO Ri2THM 3 

I t t I 
4 8 12 16 20 

NO. AVERAGED 

7 6 5  Communications December 1971 
of Volume 14 
the ACM Number 12 



we have no way of calculating the root mean square 
distance. However, by comparing Figures 6 and 7, we see 
that the root mean square distance from the original 
and the normalized entropy level out at about the same 
point. The normalized entropy H is defined by 

H = S / M  (15) 

where 

M = - ( i ~  j 0,. ,)In E(I/n2) ~ 0,.j]; (16) 

i.e. M is the maximum possible value of S for the given 
total density. Thus 0 < H < 1. The relation of H and S 
to the traditional notion of entropy of a picture is not 
entirely straightforward. A discussion is given in [14, 
Appen. I]. 

The value of H can easily be calculated from the 
reconstruction (and this is done in our program). Thus 
we obtain a good heuristic guide as to when we have 
reached the point of diminishing returns. 

In Figure 7, the line marked "maximum for 2" shows 
the maximum normalized entropy which a picture can 
have if it satisfies the horizontal and vertical projections 
of Judy. (This value is calculated according to standard 
techniques, see, e.g. Brillouin [4].) We see that the aver- 
age of the pictures produced by Algorithm 2 using these 
projections very nearly approaches this maximum value. 
The average of 20 reconstructions (Figure 5(a)) is 
hardly distinguishable from the picture with the maxi- 
mum normalized entropy (Figure 5 (b)). 

Using only four projections, we get a reasonable re- 
construction of Judy's picture (Figure 5(d)). In par- 
ticular, the average of 20 reconstructions compares 
very favorably with the picture produced by Algorithm 3 
using the same amount of computer time (Figure 5 (c)). 
In spite of the fact that Algorithm 3 directly optimizes 
the function S, Algorithm 2 produced a picture with a 
higher value (Figure 7). Also, the picture of Judy pro- 
duced by Algorithm 2 is nearer to the original (Figure 
6). Possibly one could improve the speed of Algorithm 3 
by using some more sophisticated direct search self- 
optimization technique (see, e.g. Schmitt [25]), but we 
have not yet succeeded in doing so. 

All in all, our experience with Judy's picture fitted 
our initial intuition as to what our Algorithms 1 and 2 
would do. The average picture we produced seemed to 
tend to the picture which maximizes the value of the S 
function for those projections, and (with four or more 
projections) they were good reconstructions of the 
original. 

A rather important property of the graphs in Figures 
6 and 7 is that they are to a large extent independent of 

the random numbers generated during the execution of 
our algorithm. For example in Judy's picture, the nor- 
malized entropy of individual reconstructions had the 
following ranges. 

Minimum Maximum 

2 projections 0.9857 0.9866 
4 projections 0.9714 0. 9741 
8 projections 0. 9687 0.9714 

When we consider that any picture which satisfies 
eight projections also satisfies two, this may appear to 
be an odd result. The reasons for it are discussed in [14, 
Appen. I]. 

This stability of the graphs is a strong argument in 
favor of our algorithm, since it shows that even though 
we have used a Monte Carolo technique our final result 
does not depend much on the actual outcome of the 
random choices. 

As far as the cost of applying our algorithms is con- 
cerned, to obtain the final reconstruction (average of 
20) of Judy with eight projections took approximately 
5 minutes of central processor time on the CDC 6400, 
which costs approximately 850. Our timing here did not 
include an overhead, which comes from sorting the 
array elements into rays of a projection for Algorithm 1. 
Since this can be time-consuming, it is important to do 
it once and for all, and permanently store the results for 
later runs. 

Another property of our method is that it is capable 
of handling experimental errors in the measurement of 
the projections. First of all, it eliminates noise auto- 
matically (this is in the basic nature of our algorithm). 
Secondly, inconsistent measurements will result in some 
dirt in the corners only, since our technique satisfies 
all but the last few linearly dependent rays of the pro- 
jections in Algorithm 2, and all of them (at different 
times) in Algorithm 1. Thus we shall get a picture which 
is just about as good as it is possible to get with the 
available information. 

Based on the algorithms described in this paper, 
we have since found some considerably faster iterative 
techniques for reconstructing pictures from their pro- 
jections (Gordon, Bender, and Herman [13]). However, 
those techniques have the disadvantage that the recon- 
structed picture will not satisfy the projections exactly, 
although they can be approximated arbitrarily closely 
by iterating long enough. 

Our algorithms have the ability to reconstruct an 
object adequately from relatively few projections. This 
is important, because taking too many photographs of 
an object with an electron microscope can decompose it. 
Our algorithms can be used to ascertain the structure of 
completely asymmetric objects, such as ribosomes (Ben- 
der, et al. [3]). Many fewer photographs are needed for 
a reasonable reconstruction of ribosomes, than the 30 
which DeRosier and Klug [9] claim is needed by the 
Fourier method. (See also Crowther, et al. [7, 8].) 

Since our algorithms make no assumptions about 
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the object, other than that it is stable, they are less 
biased than the parametric approach of Hookes, Ran- 
dall, and Hopkins [16], which presumes that the object 
belongs to a particular subset of all pictures. 

Our other results (Gordon, Bender, and Herman 
[13]) suggest that a narrow range of angles (within 
± 30 °) will also give an adequate reconstruction, so that 
the object need not be rotatable a full 360 °. This is a 
practical advantage, since most electron microscopes 
allow limited tilting of the stage. 

Some entirely new methods, using techniques of 
communication theory, are being developed at present. 
A preliminary report can be found in Gaarder and 
Herman [11]. 

6. Applications 

Our algorithms are directly applicable to the prob- 
lem of finding the three-dimensional density in space of 
an object being viewed with an electron microscope. 
Since tile object can be rotated around a single axis, 
each plane through the object, perpendicular to the 
axis, becomes an unknown picture. Its projections are 
taken photographically, using electrons which pass 
through the object, perpendicular to the axis, and thus 
across the plane. (The number of electrons arriving at a 
point on the photographic plate, and therefore the dark- 
ness of the plate at the point, depends on the total 
density of matter within the object along the correspond- 
ing ray.) Each plane may be reconstructed in turn, and 
the results stacked to give the three-dimensional recon- 
struction. The separation of the planes should be no 
greater than the resolution of the microscope. 

Each "plane" is thus a layer of small thickness. If 
the volume of space corresponding to picture element 
( i , j )  transmits a fraction Ti,i of an impinging beam of 
electrons, then the fraction of the beam left after it has 
passed along a given ray through the whole specimen is 

T = I I  T,,i (17) 
( i , j )  E r a y  

(assuming Beer's law holds). We define the value of the 
ray, R, and the optical densities or gray levels m,j by 

--nR ~ I n T =  ~ l n T ~ , j  ~ - - n ~ o i . ~  (18) 
r a y  r a y  

o r  

Ti.j = e -~pi'; (19) 

where n > 0 is a scale factor. The electron density of 
the object at ( i , j )  is then 

E,.~ = K(1 -- T,.j) = r(1 -- e -""''j) (20) 

where r is a constant. R is, in general, a nonlinear, 
monotonic function of the optical density of the film at 
the appropriate point (Schroeder [26]). 

Related uses of our algorithms might be in the search 
for hidden chambers in the pyramids using cosmic rays 

(Alvarez, et al. [1]), and the reconstruction of large, 
visually opaque three-dimensional objects from a few 
X-ray photographs. Because of the relatively few ex- 
posures necessary, our algorithms may be preferable to 
X-ray holography (Redman, et al. I18]) and tomography 
(Weinbren [27]) for human patients. 

If  the constraint of nonnegative gray levels is lifted, 
Algorithms 1 and 2 may also be used for objects con- 
taining embedded emittors. Such a case could arise in 
autoradiography using a collimating beam detector 
(Robinson and Jaffe [20]). 

In situations where the transmitting of pictures is 
very expensive, for example, from Mars to Earth, our 
algorithms could be used for reducing this cost. This is 
because, if m projections of n rays each are adequate to 
describe the main features of an n × n picture (and as we 
have seen, usually m << n), we need to transmit only mn 
numbers instead of n 2. If  we assume that ray sums re- 
quire the same average number of bits to transmit as 
the picture elements (this introduces a maximum of 
half-gray level average noise in the picture), then the 
transmission cost is reduced in the ratio of n to m. This 
can easily be as high as 10, 20, or even more. This pic- 
ture compression technique (Rosenfeld [21]) compares 
favorably with many others. (See, e.g. Roberts [19] for 
an interesting coding technique which reduces the num- 
ber of bits to be transmitted by half.) It must be pointed 
out, however, that our decoding (reconstruction) is 
more expensive than in the other techniques. For this 
reason it would only be used when transmission costs are 
high enough to justify the computing cost in decoding. 

Similarly, if storage costs are high, our algorithm 
could be applied to retrieve a picture compressed for 
storage purposes by taking its projections. 

Chemical equilibrium problems for complex mix- 
tures (White, Johnson, and Dantzig [28], Passy and 
Wilde [17]) involve maximizing a function very similar 
to our S, under linear constraints. Our algorithms may 
be generalizable to solve such problems. In any case, 
we have added to the repertoire of Monte Carlo meth- 
ods for solving simultaneous linear equations (Ham- 
mersley and Handscomb [15], Gordon [12]). 

Algorithm 3 maximizes eq. (l I) in integers. This is 
apparently the first method for optimizing expressions 
of such form in integers over linear constraints (Ba- 
linski [2], cf. Saaty [23, 24]). 

Chang [5] and Chang and Shelton [6] discuss the 
importance of reconstruction of binary patterns in the 
context of pattern recognition. If  l = 2, our algorithms 
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can be considered to be alternative solutions to the 
problem of finding a binary pattern which satisfies 
certain projections. If  we do not restrict l, our algorithms 
provide a solution to a generalized version of their 
problem. 

To conclude on a less serious note, we wish to point 
out that the image reconstruction problem, as we have 
approached it, is a generalization of the magic square 
problem (see, e.g. Dudeney [10]). Algorithm 2 may be 
altered for solving magic squares by putting in the addi- 
tional constraint that all gray levels must be distinct. 
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