
An ASIC Implementation of the AES SBoxes�

Johannes Wolkerstorfer1, Elisabeth Oswald1, and Mario Lamberger2

1 Institute for Applied Information Processing and Communications,
Graz University of Technology, Inffeldgasse 16a, A-8010 Graz, Austria

Johannes.Wolkerstorfer@iaik.at, http://www.iaik.at
2 Department of Mathematics

Graz University of Technology, Steyrergasse 30, A-8010 Graz, Austria

Abstract. This article presents a hardware implementation of the S-
Boxes from the Advanced Encryption Standard (AES). The SBoxes sub-
stitute an 8-bit input for an 8-bit output and are based on arithmetic
operations in the finite field GF (28). We show that a calculation of this
function and its inverse can be done efficiently with combinational logic.
This approach has advantages over a straight-forward implementation
using read-only memories for table lookups. Most of the functionality
is used for both encryption and decryption. The resulting circuit of-
fers low transistor count, has low die-size, is convenient for pipelining,
and can be realized easily within a semi-custom design methodology like
a standard-cell design. Our standard cell implementation on a 0.6 µm
CMOS process requires an area of only 0.108 mm2 and has delay below
15 ns which equals a maximum clock frequency of 70 MHz. These results
were achieved without applying any speed optimization techniques like
pipelining.

Keywords: Advanced Encryption Standard (AES), finite field arith-
metic, inversion, Application Specific Integrated Circuit (ASIC), stan-
dard-cell design, Very Large Scale Integration (VLSI), scalability, pipelin-
ing.

1 Introduction

The Advanced Encryption Standard (AES) is a symmetric encryption algorithm.
It will become a FIPS standard in Fall 2001 [1]. AES will replace the DES-
algorithm in the coming years since it offers higher levels of security. AES sup-
ports key lengths of 128, 192, and 256 bits. It operates on 128-bit data blocks.
The major building blocks of the AES algorithm are the non-linear SBoxes
(SubByte-operation) and the MixColumn-operation. Both are based on finite
field arithmetic and have an inverse function which is used for decryption.
� The work described originates from the European Commission funded Project Secure

Terminal IC (SETIC) established under contract IST-2000-25167 resp. Crypto Mod-
ule with USB Interface (USB CRYPT) established under contract IST-2000-25169
in the Information Society Technologies (IST) Program.

B. Preneel (Ed.): CT-RSA 2002, LNCS 2271, pp. 67–78, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

68 Johannes Wolkerstorfer, Elisabeth Oswald, and Mario Lamberger

AESROUND () {
SubByte(State);
ShiftRow(State);
MixColumn(State);
AddRoundKey(State, RoundKey);

}
Fig. 1. Round function of the AES-algorithm

The AES-algorithm’s operations are performed on a two-dimensional array of
bytes called the State. The State consists of four columns and four rows of bytes.
For both encryption and decryption, the AES-algorithm uses a round function
that is composed of four different transformations which modify the State (see
Fig. 1). First, the SubByte-function substitutes all bytes of the State using a
lookup-table called SBox. SBox-table entries are calculated by inversion in the
finite field GF(28) followed by a short final transformation. Second, the rows of
the State are shifted by different offsets (ShiftRow-function). The MixColumn-
function scrambles the columns of the State by multiplying a finite field constant.
An addition of the State with the Roundkey – which is derived from the input
key – concludes the round function which is executed ten times when 128-bit
keys are used. The RoundKey is calculated by operations which are similar to
those of the round function and require the SBox functionality too.

The efficiency of an AES hardware implementation in terms of die-size,
throughput, and power consumption is mainly determined by the implementa-
tion of the MixColumn-operation and the SBoxes. The remaining operations are
trivial: ShiftRow is a simple cyclic shift, and AddRoundKey is a XOR-operation
of the State and the RoundKey. Up to 20 instances of AES-SBoxes are used
to realize hardware for the AES round function. The exact number of SBoxes
depends on the architecture’s degree of parallelism and is determined by through-
put requirements and the desired clock frequency. In case that the AES-module
should also decrypt data, it has to be taken into account that the SBoxes used
for decryption have a different functionality. The number of SBoxes and their
style of implementation has important influence on the size and the speed of an
AES hardware. For this reason, V. Rijmen (one of the AES inventors) suggests
in [4] an alternative method for the computation of the AES-SBox. It consists es-
sentially of a replacement of the SBox lookup-table by an efficient combinational
logic for the computation of the inverse elements in GF(28). Therefore, another
representation of the finite field GF(28) is used. This representation leads to an
efficient implementation of the finite field arithmetic and was investigated in con-
nection with the implementation of error correcting codes in C. Paar [7], Soljanin
et al. [5], and Mastrovito [6]. In contrast to V. Rijmen’s original proposal which
additionally suggests the optimal normal basis representation of finite field ele-
ments (for a definition see [3]) we use the polynomial representation of finite field
elements. The benefit of our method is that we have a far more flexible hardware
architecture (in comparison to the possible architectures with a straightforward
SBox implementation) without the necessity to do complex conversions from one

An ASIC Implementation of the AES SBoxes 69

representation (of finite field elements) to another. The main advantages of our
architecture are:

– lower transistor count and die-size than a ROM-based approach,
– a short critical path to achieve a high operational frequency,
– easier implementation within a semi-custom design methodology since all

computations can be done with standard-cells,
– flexibility for speed optimization: pipelining techniques can trade throughput

for latency.
– suitability for a full-custom implementation: a few leaf-cells using an appro-

priate logic-style could increase speed or decrease power consumption.

The remainder of this article provides the mathematical background of the
finite field arithmetic and the computation of the AES SBoxes in Sect. 2. The
building blocks of an SBox and the according formulas are given in Sect. 3.
Section 4 presents the implementation.

2 Mathematical Background

This article uses the same notation and conventions as the AES specification [1].
All notations and mathematical operations required for the SBox-operation are
presented in a condensed form.

Bytes. The basic data unit of AES are Bytes a = {a7, a6, a5, a4, a3, a2, a1, a0}
each holding eight bits. A Byte can be interpreted as an element of the Galois-
Field GF(28) in polynomial representation:

a(x) =
7∑

i=0

aix
i = a7x

7 + a6x
6 + a5x

5 + a4x
4 + a3x

3 + a2x
2 + a1x+ a0.

The coefficients ai of a polynomial a(x) are bits. Bytes can be written in different
notations. For example, the binary value {01100011} is {63} in hexadecimal
notation and represents the polynomial x6 + x5 + x+ 1.

Addition. The addition of two Bytes representing polynomials a(x), b(x) ∈
GF (28) is achieved by adding their corresponding coefficients modulo 2 which
is a XOR-operation usually denoted with ⊕.

a(x)⊕ b(x) =
7∑

i=0

aix
i ⊕

7∑

i=0

bix
i =

7∑

i=0

(ai ⊕ bi)xi (1)

The additive inverse of a Byte is the Byte itself: −b(x) = b(x) and therefore
subtraction is identical with addition: a(x)− b(x) = a(x) + b(x).

70 Johannes Wolkerstorfer, Elisabeth Oswald, and Mario Lamberger

Multiplication. The multiplication of a(x), b(x) ∈ GF (28) – denoted with
a(x) ⊗ b(x) – requires an irreducible polynomial of degree 8. For the AES-
algorithm it is defined as

m(x) = x8 + x4 + x3 + x+ 1 = 1{00011011} (bin) = 1{1b} (hex).

The multiplication q(x) = a(x) · b(x) in GF(28) is done by multiplying the
polynomials a(x)b(x) which yields a polynomial p(x) with degree less than 15.
This step is followed by a modular reduction step q(x) = p(x) mod m(x) to
ensure that the result is an element of GF(28).

A convenient method to multiply in the finite field GF(28) is to generate
eight partial products: Pi(x) = a(x) ·xi and to add those partial products where
the according bit bi of the multiplier b(x) is 1: q(x) =

∑7
i=0 Pibi. The partial

products can be calculated efficiently by iterating a multiplication by x: Pi(x) =
Pi−1(x) ·x mod m(x), P0(x) = a(x). A multiplication by x is termed xtimes and
is given by

q(x) = xtimes(a) = a(x)x mod m(x) (2)
q0 = a7, q1 = a0 ⊕ a7, q2 = a1, q3 = a2 ⊕ a7

q4 = a3 ⊕ a7, q5 = a4, q6 = a5, q7 = a6.

Xtimes can be implemented by a shift left operation of the input Byte a and a
conditional addition of the irreducible polynomial m(x) if the most significant
bit (a7) of a is set. This ensures a Byte as result.

Inversion. The multiplicative inverse a−1 of an element a ∈ GF (28) has the
property that ∀a ∈ GF (28) \ {0} : a ⊗ a−1 = {1}. Calculating the inverse of a
Byte is even more costly than multiplying Bytes. A widely used algorithm for
inversion is the extended Euclidean algorithm described in [2]. Unfortunately,
this algorithm is not suitable for a hardware implementation.

2.1 GF(28) as an Extension of GF(24)

Usually, the field GF(28) is seen as a field extension of GF(2) and therefore
its elements can be represented as Bytes. An isomorphic – but for hardware
implementations far better suited – representation is to see the field GF(28) as
a quadratic extension of the field GF(24). In this case, an element a ∈ GF(28)
is represented as a linear polynomial with coefficients in GF(24),

a ∼= ahx+ al, a ∈ GF(28), ah, al ∈ GF(24) (3)

and will be denoted by the pair [ah, al]. Both coefficients of such a polynomial
have four bits. All mathematical operations applied to elements of GF(28) can
also be computed in this representation which we call two-term polynomials.
Two-term polynomials are added by addition of their corresponding coefficients

(ahx+ al)⊕ (bhx+ bl) = (ah ⊕ bh)x+ (al ⊕ bl). (4)

An ASIC Implementation of the AES SBoxes 71

Multiplication and inversion of two-term polynomials require a modular reduc-
tion step to ensure that the result is a two-term polynomial too. The irreducible
polynomial needed for the modular reduction is given by

n(x) = x2 + {1}x+ {e}. (5)

The coefficients of n(x) are elements in GF(24) and are written in hexadecimal
notation. Their particular values are chosen to optimize the finite field arith-
metic.

The multiplication of two-term polynomials involves multiplication of ele-
ments in GF(24) which requires an irreducible polynomial of degree 4 which is
given by

m4(x) = x4 + x+ 1. (6)

Deriving formulas for multiplication in GF(24) is similar to Byte-multiplication.
Multiplication in GF(24) is given by

q(x) = a(x)⊗ b(x) = a(x) · b(x) mod m4(x), a(x), b(x), q(x) ∈ GF(24) (7)
aA = a0 ⊕ a3, aB = a2 ⊕ a3

q0 = a0b0 ⊕ a3b1 ⊕ a2b2 ⊕ a1b3 q1 = a1b0 ⊕ aAb1 ⊕ aBb2 ⊕ (a1 ⊕ a2)b3
q2 = a2b0 ⊕ a1b1 ⊕ aAb2 ⊕ aBb3 q3 = a3b0 ⊕ a2b1 ⊕ a1b2 ⊕ aAb3.

Squaring in GF(24) is a special case of multiplication and is given by

q(x) = a(x)2 mod m4(x), q(x), a(x) ∈ GF(24) (8)
q0 = a0 ⊕ a2, q1 = a2, q2 = a1 ⊕ a3, q3 = a3.

The inverse a−1 of an element a ∈ GF (24) can be derived by solving the equation
a(x) · a−1 mod m4(x) = 1 as follows

q(x) = a(x)−1 mod m4(x), q(x), a(x) ∈ GF(24) (9)
aA = a1 ⊕ a2 ⊕ a3 ⊕ a1a2a3

q0 = aA ⊕ a0 ⊕ a0a2 ⊕ a1a2 ⊕ a0a1a2

q1 = a0a1 ⊕ a0a2 ⊕ a1a2 ⊕ a3 ⊕ a1a3 ⊕ a0a1a3

q2 = a0a1 ⊕ a2 ⊕ a0a2 ⊕ a3 ⊕ a0a3 ⊕ a0a2a3

q3 = aA ⊕ a0a3 ⊕ a1a3 ⊕ a2a3.

The concatenation of two bits aiaj in Equations 7 and 9 represents a binary
multiplication which is an AND-operation. In contrast to inversion in GF(28),
inversion in GF(24) is suitable for a hardware implementation using combina-
tional logic since all Boolean equations depend only on four input bits.

Inversion of Two-Term Polynomials. Inversion of two-term polynomials is
the equivalent operation to inversion in GF(28). A multiplication of a two-term
polynomial with its inverse yields the 1-element of the field: (ahx+ al)⊗ (a′hx+

72 Johannes Wolkerstorfer, Elisabeth Oswald, and Mario Lamberger

a′l) = {0}x + {1}, ah, al, a
′
h, a
′
l ∈ GF (24). From this definition the formula for

inversion can be derived:

(ahx+ al)−1 = a′hx+ a′l = (ah ⊗ d)x+ (ah ⊕ al)⊗ d (10)
d = ((a2

h ⊗ {e})⊕ (ah ⊗ al)⊕ a2
l)
−1.

Inversion of two-term polynomials involves only operations in GF(24) which are
suitable for a hardware implementation using combinational logic. Most of the
functionality is used to calculate the term d which is used to calculate both
coefficients of the inverted two-term polynomial.

Transition between Representations of GF(28). The finite field GF(28)
is isomorphic to the finite field GF((24)2) which means that for each element
in GF(28) there exists exactly one element in GF((24)2). The bijection from an
element a ∈ GF (28) to a two-term polynomial ahx + al where ah, al ∈ GF (24)
is given by the function map:

ahx+ al = map(a), ah, al ∈ GF(24), a ∈ GF(28) (11)
aA = a1 ⊕ a7, aB = a5 ⊕ a7, aC = a4 ⊕ a6

al0 = aC ⊕ a0 ⊕ a5, al1 = a1 ⊕ a2, al2 = aA, al3 = a2 ⊕ a4

ah0 = aC ⊕ a5, ah1 = aA ⊕ aC , ah2 = aB ⊕ a2 ⊕ a3, ah3 = aB .

The inverse transformation (map−1) converts two-term polynomials ahx + al,
ah, al ∈ GF (24) back into elements a ∈ GF (28). It is given by

a = map−1(ahx+ al), a ∈ GF(28), ah, al ∈ GF(24) (12)
aA = al1 ⊕ ah3, aB = ah0 ⊕ ah1,

a0 = al0 ⊕ ah0, a1 = aB ⊕ ah3

a2 = aA ⊕ aB , a3 = aB ⊕ al1 ⊕ ah2

a4 = aA ⊕ aB ⊕ al3, a5 = aB ⊕ al2
a6 = aA ⊕ al2 ⊕ al3 ⊕ ah0, a7 = aB ⊕ al2 ⊕ ah3

Both transformations can be derived by following the procedure given in C.
Paar’s PhD thesis [7]. They differ from the transformations given in [5] because
the irreducible polynomial m(x) for GF(28) is different.

3 SBox Building Blocks

The SubByte transformation operates independently on each Byte of the State
using a substitution table (SBox). An AES-SBox is composed of two transfor-
mations:

1. Calculate the multiplicative inverse in the finite field GF(28). The element
{00} is mapped to itself. Table 1 presents the inversion.

An ASIC Implementation of the AES SBoxes 73

Table 1. Inversion of a Byte {xy} ∈ GF (28) in hexadecimal notation.

x\y 0 1 2 3 4 5 6 7 8 9 a b c d e f
0 00 01 8d f6 cb 52 7b d1 e8 4f 29 c0 b0 e1 e5 c7
1 74 b4 aa 4b 99 2b 60 5f 58 3f fd cc ff 40 ee b2
2 3a 6e 5a f1 55 4d a8 c9 c1 0a 98 15 30 44 a2 c2
3 2c 45 92 6c f3 39 66 42 f2 35 20 6f 77 bb 59 19
4 1d fe 37 67 2d 31 f5 69 a7 64 ab 13 54 25 e9 09
5 ed 5c 05 ca 4c 24 87 bf 18 3e 22 f0 51 ec 61 17
6 16 5e af d3 49 a6 36 43 f4 47 91 df 33 93 21 3b
7 79 b7 97 85 10 b5 ba 3c b6 70 d0 06 a1 fa 81 82
8 83 7e 7f 80 96 73 be 56 9b 9e 95 d9 f7 02 b9 a4
9 de 6a 32 6d d8 8a 84 72 2a 14 9f 88 f9 dc 89 9a
a fb 7c 2e c3 8f b8 65 48 26 c8 12 4a ce e7 d2 62
b 0c e0 1f ef 11 75 78 71 a5 8e 76 3d bd bc 86 57
c 0b 28 2f a3 da d4 e4 0f a9 27 53 04 1b fc ac e6
d 7a 07 ae 63 c5 db e2 ea 94 8b c4 d5 9d f8 90 6b
e b1 0d d6 eb c6 0e cf ad 08 4e d7 e3 5d 50 1e b3
f 5b 23 38 34 68 46 03 8c dd 9c 7d a0 cd 1a 41 1c

2. Apply the affine transformation which is given by Equation 13.

q = aff trans(a) (13)
aA = a0 ⊕ a1, aB = a2 ⊕ a3,

aC = a4 ⊕ a5, aD = a6 ⊕ a7

q0 = a0 ⊕ aC ⊕ aD
q1 = a5 ⊕ aA ⊕ aD
q2 = a2 ⊕ aA ⊕ aD
q3 = a7 ⊕ aA ⊕ aB
q4 = a4 ⊕ aA ⊕ aB
q5 = a1 ⊕ aB ⊕ aC
q6 = a6 ⊕ aB ⊕ aC
q7 = a3 ⊕ aC ⊕ aD.

q = aff trans−1(a) (14)
aA = a0 ⊕ a5, aB = a1 ⊕ a4,

aC = a2 ⊕ a7, aD = a3 ⊕ a6

q0 = a5 ⊕ aC
q1 = a0 ⊕ aD
q2 = a7 ⊕ aB
q3 = a2 ⊕ aA
q4 = a1 ⊕ aD
q5 = a4 ⊕ aC
q6 = a3 ⊕ aA
q7 = a6 ⊕ aB .

Overlined bits in Equation 13 and 14 denote inverted bits. Decryption re-
quires the inverse function of SubByte (InvSubByte) which reverses the SBox-
operation by applying the inverse affine transformation first (Equation 14). Then,
the multiplicative inverse in the finite field GF(28) is calculated.

Inversion in the finite field GF(28) is needed to calculate the SubByte-
function as well as InvSubByte. It makes sense, to merge the encryption SBox
with the decryption SBox in order to reuse the finite field inversion circuit for
decryption. Figure 2 depicts this approach. The control signal enc switches be-
tween encryption and decryption. If encryption is chosen (enc=1), the inverse
affine transformation (aff trans−1) is bypassed and the input a is directly fed

74 Johannes Wolkerstorfer, Elisabeth Oswald, and Mario Lamberger

SBox

aff_trans

s’
r,c

8

s
r,c

8

aff_trans-1

a

^-1

a-1

1 0

1 0

enc

^2

d

^-1

 {e}

map

map-1

^2

a-1

8

a
h

a
l

a’
h

a’
l

a

4 4

44

GF(28) Inversion

Fig. 2. Architecture of the AES-SBox

into the inversion circuit. The output of the inversion circuit is modified by the
affine transformation block which calculates the result of the SubByte-function.
During decryption (enc=0), the inverse affine transformation is active and the
affine transformation is bypassed to calculate InvSubByte. The delay for encryp-
tion and decryption is essentially the same because the circuit’s complexity for
the affine transformation and its inverse are equal.

The circuit for inversion of elements in GF(28) covers most of the SBox
functionality. In our approach the inversion is calculated with combinational logic
and is based on Equation 10 which operates in GF(24). The operations occurring
in this equation correspond to the function blocks shown in Fig. 2. Furthermore,
this function block has to convert data from GF(28) to two-term polynomials
and vice versa. The blocks map resp. map−1 provide this functionality based on
Equation 11 and 12. Addition of elements in GF(24) is accomplished by a bitwise
XOR-operation. Squaring relies on Equation 9. Multiplication of an element in
GF(24) with the constant {e} is given by

An ASIC Implementation of the AES SBoxes 75

q = a⊗ {e} (15)
aA = a0 ⊕ a1, aB = a2 ⊕ a3

q0 = a1 ⊕ aB
q1 = aA

q2 = aA ⊕ a2

q3 = aA ⊕ aB .
Multiplication and inversion in GF(24) are the most complex function blocks
and rely on Equations 7 and 9.

4 Implementation

Our implementation is based on the architecture described in Sect. 3. It has a
maskable affine transformation block, a maskable inverse affine transformation
block and a block which calculates the inverse in the finite field GF(28). Most of
the functionality can be implemented with XOR-gates. Additionally, inverters,
AND-gates, and 2-to-1 multiplexers are required, but they can be neglected for
performance analysis purposes.

Table 2. Complexity of the SBox

block dXOR XORs instances sum XORs
aff trans 3 16 1 16
aff trans−1 2 12 1 12
map 2 11 1 11
map−1 3 15 1 15
⊕ 1 4 3 12
∧2 1 2 2 4
⊗{e} 2 5 1 5
⊗ 2 12 3 36
∧−1 3 12 1 12

Max 15 Sum 123

Table 3. Pipelining of the SBox

stages flipflops frequency area
0 0 100% 100%
1 12 178% 111%
3 28 205% 151%

Table 2 lists the resources of all blocks – measured in number of XORs. The
overall amount of gates are 123 XOR-gates with two inputs, 16 2-to-1 multi-
plexers and a dozen of inverters and AND-gates. If XOR-gates with three inputs
are available, the number of gates can be reduced. The delay of the blocks is
measured in numbers of XOR-gates in series (dXOR). The critical path for en-
cryption is composed of 15 XOR-gates in series. For decryption it is 14 because
the inverse of the affine transformation has lower complexity. XOR-gates with
three inputs will shorten the critical path and improve performance.

A feature that can be exploited to gain higher throughput is pipelining.
Pipelining is a technique which subdivides the critical path by insertion of storing
elements (flipflops). Subdividing the SBox functionality into a number of stages

76 Johannes Wolkerstorfer, Elisabeth Oswald, and Mario Lamberger

Fig. 3. Layout of the AES-SBox

is easy to accomplish since flipflops can be inserted nearly anywhere when SBoxes
are implemented with combinational logic. Pipelining introduces latency but the
additional clock cycles are made up by an increased clock frequency as shown in
Table 3. This technique will offer best results if the number of SBox instances
used for an AES implementation is kept low (e.g. 4), otherwise latency will
consume more time than it is saved by shortening the critical path.

Our implementation of the AES-SBox which combines the SubByte-function
and InvSubByte-function from the AES algorithm is a standard-cell circuit on
a 0.6 µm CMOS process from AMS using two metal layers. It has an area
of 0.108 mm2 and contains 1624 transistors (406 NAND equivalents) when no
pipelining is used. A layout is shown in Fig. 3. Layout simulation with typi-
cal mean parameters considering parasitics yields a delay below 14.2 ns which
equals a maximum clock frequency of 70 MHz for both encryption and decryp-
tion. A pipelined version with one stage is slightly bigger (0.120 mm2), contains
nearly 2000 transistors (500 NAND equivalents) and yields a delay below 8 ns
(125 MHz). Further increasing the number of pipeline stages will not improve
throughput that strong and has a worse ratio of performance benefit to area
penalty. It should be considered when the maximum clock frequency is of ut-
most interest.

For comparison, a lookup-table based approach requires a 4k-bit ROM to
store the 256 8-bit entries of SubByte and InvSubByte. An implementation on
the same process technology uses about 0.200 mm2 and has an estimated maxi-
mum frequency of 100 MHz [9].

For an SBox implementation using a full-custom design methodology we
suggest to use a differential logic style [8]. The logic functions of an SBox based
on combinational logic are dominated by XOR-gates and differential XOR-gates
offer good performance and have a moderate transistor count. We assume that
a full-custom design could halve the required chip area because an SBbox is a
small module and does not require the excessive driving capability offered by

An ASIC Implementation of the AES SBoxes 77

standard cells. Output transistors of gates can be dimensioned smaller and this
will in turn make it possible to scale all transistors down without deteriorating
performance. At least three leaf cells are needed: a XOR-gate, an AND-gate
and an inverter. To develop these cells will be an rewarding task if the resulting
performance gain and area saving is pictured.

5 Related Work

Several AES-implementations have been presented recently. For comparison with
our work, only ASIC circuits [11] or circuits exploiting a more efficient finite field
arithmetic are of interest [10]. The approach followed in IBM implementation [10]
is also based on a conversion of elements in GF(28) into two-term polynomials.
In contrast to our approach, they calculate the whole round function in this
representation. Therefore, they choose the conversion function map() in a way
that minimizes the overall gate count. Our primary focus on choosing map() was
to minimize the critical path of the complete SBox and secondarily to keep the
gate count low. Our map()-function has a shorter critical path compared to the
IBM implementation, the critical path of map−1() is identical.

6 Conclusion

This article presented an ASIC implementation of the SBoxes from the Advanced
Encryption Standard (AES). It is based on finite field arithmetic rather than
using lookup-tables. This approach offers higher flexibility. Area requirements
can be traded for the maximum clock frequency. The architecture can be easily
implemented within a standard-cell design methodology because it completely
relies on combinational logic. It is also well suited for a full-custom implementa-
tion since it uses only a few leaf cells. We implemented the AES-SBox on 0.6 µm
CMOS process with standard-cells. The most promising configuration of design
parameters we found is a single stage pipeline architecture. It has a silicon area
of 0.12 mm2 and a maximum clock frequency of 125 MHz. This configuration
has a latency of one clock cycle like a ROM based approach. In comparison to
ROMs, it offers better performance on smaller area and can even be improved
by exploiting better suited logic styles like differential logic.

References

1. NIST, Advanced Encryption Standard (AES), FIPS PUBS 197, National Institute
of Standards and Technology, November 2001.

2. A. Menezes, P. van Oorschot, and S. Vanstone, Handbook of Applied Cryptography,
CRC Press, New York, 1997.

3. R. Lidl and H. Niederreiter, Introduction to finite fields and their applications,
Cambridge University Press, Cambridge, 1986.

4. V. Rijmen, Efficient Implementation of the Rijndael SBox, http://www.esat.ku-
leuven.ac.be/∼rijmen/rijndael/ .

78 Johannes Wolkerstorfer, Elisabeth Oswald, and Mario Lamberger

5. E. Soljanin, R. Urbanke, An Efficient Architecture for Implementation of a Multi-
plier and Inverter in GF(28), Lucent Technologies.

6. E. D. Mastrovito, VLSI Architectures for Computations in Galois Fields, PhD
thesis, Linköping University, Linköping, Sweden, 1991.

7. C. Paar, Efficient VLSI Architectures for Bit Parallel Computation in Galois
Fields, PhD thesis, Universität Essen, 1994.

8. J. B. Kuo, J. H. Lou, Low-Voltage VLSI Circuits, John Wiley, New York, Jan.
1999.

9. AMS, Memory Compiler for Diffusion Programmable ROM in 0.6 µm CMOS,
http://www.amsint.com/databooks/.

10. A. Rudra, P. Dubey, C. Jutla, V. Kumar, J. Rao, P. Rohatgi, Efficient Rijndael En-
cryption Implementation with Composite Field Arithmetic, Proceedings of Work-
shop on Cryptographic Hardware and Embedded Systems, France, 2001, to be
published in Springer LNCS.

11. I. Verbauwhede, H. Kuo, Architectural Optimization for a 1.82 Gbits/sec VLSI Im-
plementation of the AES Rijndael Algorithm, Proceedings of Workshop on Cryp-
tographic Hardware and Embedded Systems, France, 2001, to be published in
Springer LNCS.

	1 Introduction
	2 Mathematical Background
	2.1 GF(2^8) as an Extension of GF(2^4)

	3 SBox Building Blocks
	4 Implementation
	5 Related Work
	6 Conclusion
	References

