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Impedance  Properties of Complementary  Multiterminal 
Planar Structures* 

GEORGES A. DESCHAMPSJr 

Summary-Booker has shown that Babinet’s  principle,  properly 
extended  to  electromagnetic fields, leads  to  a  simple  relation  between 
the  impedances of two  planar  complementary  structures. A relation, 
which  generalizes this result, is found  between  the  impedance ma- 
trices of two complementary  n-terminal  structures. 

This relation is applied to  the particular  n-terminal  structures 
having n-fold symmetry  and to those  that are also  self-complemen- 
tary. In the  latter  case  the  impedance  matrix is real  and  entirely 
determined by the  number of terminals. I t   i s  therefore  independent 
of the  exact  shape of the  elements composing the  structure  and of the 
frequency.  By  connecting in groups the  terminals of such  a  structure 
various  impedance  levels, all frequency  independent  and  real,  may  be 
achieved. 

Structures  having  their  terminal  pairs  in  different  locations in the 
plane are  also  considered. A self-complementary kc-port  structure  is 
found to be equivalent,  from the  impedance point of view, to a  length 
cf lossy transmission line  having  a  characteristic  impedance of 60r 
ohms. 

INTRODUCTION 

B ABINET’S  principle,  generalized to electromag- 
netism,  gives a relation  between  the fields scat- 
tered  or  diffracted  by  two  complementary  plane 

structures.  The  structures  to  which  the  principle ap- 
plies are  made of infinitely  thin  perfectly  conducting 
sheets of arbitrary  shape. Two such  structures  are called 
complementary if one is obtained  from  the  other  by  ex- 
changing  the  open  and  the  conducting  portions of the 
plane. 

After  obtaining  this  generalized  principle, Booker1 
showed that   i t  implies a precise  relation  between  the  im- 
pedances of a pair of complementary  two-terminal 
structures  measured  between  closely  spaced  terminals 
in the  plane of the  structure.  For  example, a narrow  slot 
in a conducting  plane,  excited  across  its  center,  and  the 
complemcntary  narrow  strip,  forming  essentially a di- 
pole  with a gap  at  the  center [see Fig. l(a) 1, have  their 
impedances Z1 and Zt related  by 

ZlZ2 = ( + r ) 2  0 )  

where  is  the  intrinsic  impedance of the  surrounding 
medium (in free  space,  or  in  air, 4r is  practically 60n 
ohms).  The  same  result  holds  for  any  pair  of  comple- 
mentary  two-terminal  structures. 

The  first  problem  considered  in  this  paper is the  gen- 
eralization of (1) to  structures  that  have  more  than  two 
terminals.  Fig. l(b) is an  example of two  complemen- 
taq7  three-terminal  structures.  Since  the  impedance  prop- 

* This work was  supported  by  Contract  AF33(616)-6079,  Wright 
,3ir Development  Center, Dayton, Ohio. 

t University of Illinois, Urbana, Ill. 
H. G. BRoker, “Slot  aerials and  their relation to complementary 

wire aerials,  (Babinet’s  principle), J. IEE, pt. 111-A, pp.  620-627; 
March-May, 1946. 

Fig. 1-Two-terminal and  three-terminal  complementary  structures. 

erties of these  structures  are now represented  by ma- 
trices Z1 an 2 2  i t  is readily  seen that  the  relation be- 
tween  them  must  take a form  different  from (1). 

Motivation  for  this  investigation  came  from  work 
done a t   t he  University of Illinois  on  frequency  inde- 
pendent  antennas. I t  had  been  noted b~7  Mushiake  and 
Rumsey2 that  Booker’s  relation  implies that  a two- 
terminal  structure  congruent  to  its  complement, i.e., 
“self-complementary,”  must  have  an  impedance  equal 
to 60n- ohms  independent of the  frequency.  Examples of 
such  structures  are  shown  in  Fig. 2. For Fig. 2(a), made 
up of two  right  angles,  the  impedance  can  be  computed3 
directly  and is indeed 60n ohms.  The  structure in Fig. 
2(b)  obtained  by  rotating  the  arbitrary  curve C about 0 
through  angles  multiple of 90” has  also a frequency in- 
dependent  impedance of 60n ohms. 

These  considerations  may  seem  of  little  practical  im- 
portance  since any  self-complementary  structure  con- 
tains  equal  areas of conducting  sheets  and  openings  and 
must  therefore  be  infinite.  However, it  was found  by 
Rumsey,?  and  DuHamel  and Isbel14 that  for  some  struc- 
tures of this  type fed at the  center  the  currents  in  the 
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(C) 
Fig. 2-Self-complementary two-terminal structures. 

conducting  sheets,  and  the  electric fields tangent  to  the 
complementary  openings,  decrease  rapidly  with  dis- 
tance.  The  exact  law of decrease  has  not  been  found  but 
it  is  faster  than l/r. As a consequence  the  structure  may 
be  truncated at a finite  distance  without  affecting  the 
input  impedance.  Fig. 2(c) is  an  example of such a struc- 
ture.  The  impedance  measured a t  0 is  found  to  be  close 
to 60n ohms  down  to  a  frequency  where  the  “end  effect” 
becomes  noticeable.  (This  occurs  when  the  distance 
across  the  outside  teeth  approaches half  a wavelength.) 

Isbell and  Mayes  considered  structures  made  up of 
several  conducting  sectors of this  type. By connecting 
the  terminals  in  groups  they  were  able  to  obtain fre- 
quency  independent  impedances  with  values  different 
from 60n. 

One  purpose of this  paper  is  to  show  that  the  meas- 
ured  values  can  be  predicted by using a proper  extension 
of Booker’s  relation. The extension  makes i t  possible  to 
compute  exactly  the  impedance  matrix of a self-com- 
plementary  n-terminal  structure  having n-fold sym- 
metry.  This  result  also  gives,  through a simple  transfor- 
mation,  the  characteristic  impedance  matrix  for TEM 
wave  propagation  along  symmetrical  cylindrical  and 
conical  structures.  Planar  structures  with  terminal  pairs 
at various  locations  in  the  plane  are  also  briefly  consid- 
ered. 

GENERALIZATION OF BOOKER’S RELATION 
Consider  the  feed  region of an  n-terminal  structure 

where  n  conducting  sectors  come  together a t  a  point 0 
(see  Fig. 3). Assume that  these  sectors  are  limited to the 

Fig. &Feed region of the n-terminal structure. 

outside of a sphere S small  compared  to  the  wavelength 
of  operation. A source  located  inside S may  be con- 
nected  in  several  manners  to  these  terminals  producing 
different field configurations  about  the  structure.  Since 
the  sphere  is  small we may  describe  the  various  possible 
connections as we  would for a low-frequency  circuit 
without  regard  for  the exact shape  of  the  conducting 
leads. The  situation is completely  specified  by  indicating 
which  groups of terminals are connected  to  the  two 
terminals of the  source.  For  each  such  grouping a defi- 
nite  field  configuration will result  and  a  definite  imped- 
ance will be  seen by  the source. 

The  method of solution will consist of associating 
those field configurations  produced about complemen- 
tary  structures  that  are  related  by  duality.  From  their 
comparison a relation will result  between  the  corre- 
sponding  voltages  and  currents at  the  terminals  and 
therefore  between  the  impedance  matrices of the  two 
structures. 

Referring  to  Fig. 3, consider  the  various  directed 
paths of integration  designated  by al, a2, - - . a,, bl, 
b2, . b,. They  are  drawn  in  the region I above  the 
plane of the  structure,  very close to  it,  and  have  their 
beginning  and  end  points  in  the  plane.  The b paths  go 
from  metal  to  metal  and  the a paths  from  opening to 
opening. 

For  any  path c and  any  vector field U ,  let us intro- 
duce  the  shorthand  notation c .  U to  indicate  the  integral 
of  the  vector U along  the  directed  path c. 

Let F= ( E ,  H) be  an  electromagnetic field produced 
about  the given structure  by  some  configuration of 
sources  inside S. 

The  voltage difference  between  terminals i and i+l 
is the  integral of the  vector E along  the  path bi 
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The  current I ;  flowing into  terminal i may  be ex- 
pressed by 

li = 2ai.H. (4) 

This  is  seen  by  noting  that  the field F has  even  sym- 
metry  with  respect  to  the  plane of the  structure  and 
that  ai and  its  image  by reflection  in the  plane  (with 
orientation  reversed)  form a loop  enclosing the  i th 
terminal. 

The  integration  paths a and b may  be  somewhat  dis- 
torted  in  the  region of the feed  point  without  changing 
the  values of the  integrals (3) and (4). 

Consider now the  complementary  structure  obtained 
by  replacing  the  open  portions of the  plane  by  conduct- 
ing  plates  and  replacing  the  metal  by  apertures. An ac- 
ceptable  solution  for  the  electromagnetic field about  this 
structure  is  obtained  by  taking  the  dual of F on  one  side 
of the  plane  (Region I for  example) and  the  negative of 
the  dual on the  other  side  (Region 11). This  gives a field 
that  has even  symmetry  with  respect  to  the  plane  and 
satisfies  the  new  boundary  conditions. 

The  dual of a field F= ( E ,  H )  is  defined by 

F’ = (E‘, H’) = ( - t H ,  T E )  ( 5 )  

where { and 17 =l-’ are  respectively  the  intrinsic  imped- 
ance  and  the  intrinsic  admittance of the  surrounding 
space. I t  is a simple  matter  to  verify  that F‘ satisfies 
Maxwell’s  equation  when F does. 

For  the field equal  to F’ in I and  to - F’ in I1 rela- 
tions  similar  to (3) and (4) will hold 

1; = 2bi. H’. (6) 

V; - V’i+l = ai+l- E’. (7) 

They define a set of currents  and  voltages  that  may 
exist a t   t he  terminals of the  complementary  structure 
and  can  be  produced  by  a  proper  arrangement of 
sources  in S. 

Making  use of (5) these  may  be expressed as 

1; = 27(Tri - V,,), (8) 

Vg’ - V’i+l = QrIi+l. (9) 

(By  convention  in  these  formulas  as well as  in ( 3 ,  
(4), (6), (7), n f l  is taken  as  equal  to 1.) Formulas (8) 
and (9) may  be  collected  in  matrix  form  by  introducing 
the  vectors V,  I, V’, I’ having  for  coordinates ( V i ) ,  ( I i ) ,  
(Vi), (I:), respectively,  and  the  matrix 

. .  . 

1 
- 

1 0 o . - . o  -1-  
-1 1 o . . . o  0 

A =  0 - 1  1 * . . 0  0 
. . . . . . . . . .  
0 0 0 . . - - 1  1- 

Then (9) and (8) become: 

AV‘ = +{I, 
AT V. = +{I1. 

(4T denotes  the  transpose of A.) 
These  relations  are  general  in  the  sense  that  to a con- 

dition  specified by V and I on  one  structure  is asso- 
ciated  another  condition  described  by TT’ and I‘ on the 
complementary  structure. 

In  order  to proceed  we  have to  express  the  relations 
between V and I and  those  between V’ and I’ which  de- 
scribe  the  properties of the  two  structures.  We  shall 
only  consider  the  case of truly  n-terminal  structures, 
i.e., those  that  may be  fed arbitrary  currents I =   ( I I ,  Iz, 

, In)  with  the  only  restriction  that cIk=O. The 
field configuration  about  the  structure  then  depends 
upon n -  1 independent  parameters.  When  these  are 
given,  the  voltage  difference  between  any  pair of ter- 
minals  is  defined  and  depends  linearly on the  vector I .  
Instead of choosing  one of the  terminals  as a zero  refer- 
ence  for  the  voltage  it  is  convenient  to use n voltage 
parameters TT= (VI, VZ, * - . , VJ  related by  the condi- 
tion V k  = 0. An impedance  matrix  may  then  be  con- 
structed  such  that 

v = zr (13) 

operates  in  the n- 1-dimensional  space P defined by  the 
relation 

h=n 

C&=O (14) 
k=l 

where  the x k  are the  coordinates of a point. 

mentary  structure 
A  similar  impedance  matrix 2’ describes  the  comple- 

17’ = Z’I’. (15) 

Starting  from  a  given  vector I in  space P the  voltage 
vector V results  from (13). Then  the  vector I’ = 217AT V 
represents  a  set of currents  feeding  the  complementary 
structure  and  producing  the  voltage V’=Z’I’. But from 
relation (1 1) , I = 217 V’. Finally 

AZ‘ATZI = ;pr (16) 

for any  vector in P. 
This will be  expressed by 

AZ’ATZ E itz. (17) 

The sign  is  to  remind  one  that  the  two sides are 
equivalent  only  when  applied  to  vectors  in P. The  left 
hand  side  transforms  any  vector  into a vector  belonging 
to P and  therefore  could  not  be  equal  to  the  right  hand 
side  without  this  restriction. 

Eq. (17) is  the  generalization of Booker’s  relation to 
n-terminal  structures. I t  will now be  applied  to  sym- 
metrical  structures  and  then  to  self-complementary 
structures. 

STRUCTURES WITH Z-FOLD SYMMETRY 
Let us now assume  that  the  structure  has n-fold  ro- 

tational  symmetry.  This  means  that  a  rotation  through 
the  angle e= 2 ~ / n  carries  the  structure  upon itself. For 
example,  Fig. 4 shows  two  complementary  structures 



s374 IRE  TRANSACTIONS O N  ANTENNAS  AND PROPAGATION December 

Fig. &Two complementary structures having four-fold sylnlnetrl-. 

with 4-fold symmetry.  The  corresponding  matrix Z (and 
2’ for the  complementary  structure) will be  completely 
determined  by its first  row.  The  next  row  is  obtained  by 
shifting  all  the  elements  one  step to the  right  and  taking 
the last e!ement to  the  first place. The  folloming rows  are 
obtained  by  the  same  method  and we map  write: 

zo z1 2 2  * . . 2 , - 1  

(18) 

z1 2 2   2 3  - * ZLl 

Because of the  symmetry of the  matrix Z,  ZtL--l =ZI, 
Zn-2=22, - . - and  the  number of parameters is ac- 
tually (n+1)/2 for n odd  and n/2+1 for n even. 

Rather  than using  matrix  notation i t  is  convenient  to 
consider Z as a sequence of n numbers 

2 = ( 2 0 2 1  - * * 24) .  

Similarly,  Vand 1 are  sequences of n numbers 

v = (VnV1V2 - - - V 4 ) ,  

I = (1,1112 * * . In-,). 

(By  convention,  the  index n is equivalent to zero  or, 
more  generally,  any  index is defined  modulo X.) 

The  relation  between Ir and I becomes 

v i  = Zi -k Ik  (19) 
It 

and is then  expressed as a convolution 

I/’= Z * I .  (20) 

In order  to  represent  the  product  by  the  matrix A as a 

1:’ = (1 0 0 . . * 0) 

which  plays the role of unity for the  convolution  prod- 
uct (C‘ * X=X for any  sequence X) and  the  sequence 

s= (0 1 0 .  * . O ) .  

Convolution of any  sequence X by S has  the effect of 
shifting  each  element of X by  one  step  to  the  right  and 
bringing  the  last  element  to  the  first  place. 

3Iultiplication  by A then becomes  convolution by 
L7-- S. Introducing also the  sequence 

s =  (0 0 .  e o  1) 

s* operates a shift  by  one  step  to  the  left  and  multiplica- 
tion  by AT becomes convolution  by U -  3. 

The basic  relation (17) between 2 and Z’ becomes 

(L: - S )  * Z’ * ( U  - 3) * z E 5  p (21) 

or  comnluting  and  reducing  the  factors,  making use of 
the  fact  that S * s= G, 

( 2 U  - s - 3) * Z’ * z = p .  (22)  

[Xs for (1 7) , this  has  to hold only  when  applied  to a se- 
quence I such  that X I ,  = 0.1 

The  usual  technique for handling an equation of this 
type is to  apply a Fourier  transformation which will con- 
vert  the  convolution  into  an  ordinary  product. In the 
case of finite  sequences  this is also known as finding the 
“symmetrical  components” of the sequence. 

Introducing E =  exp ?r j /n .  and  the  matrix 

I 1 1  1 

1 € €2  . . . p-1 

. . . e?(“-l) 

. . . l  1- T = Y .  . e : .  . . . . . 
1 1 e l L - l  $(n-1) . . . E(n-l)? 1 

The  transform of a sequence 

s = (.TITOX1 . . . -Y?,-1) 

is the  sequence 
x = (Awl - . . &+1) ( 2 4  

obtained  by 
x = T X  

nhere TC‘ and X are considered  once  more as column vec- 
tors  rather  than sequences. The  inverse  transformation is 

-x- = = - p x .  
1 

(25) 
12 

The  asterisk  means  the complex  conjugate. U’e shall 
systematically  denote  the  transform of a sequence  by 
the lower case letter  corresponding to the capital  letter 
describing  the  given  sequence.  Thus  the  transform of U 
is the  sequence 

convolution we introduce  the  sequence 24 = (1, 1 ,  . . * 1) 
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and  the  transforms of S a n d  3 are,  respectively, 

s = (1, E ,  . * . P - 1 )  

s-1 = (1, p ,  . . . E - ( n - l ) ) .  

Eq. (22) becomes 

(224 - s - s-1)zz’ = $12. (26)  

Projecting  this  relation  on  the  space P simply 
amounts  to neglecting the zero  component in the  equal- 
ity.  Eq. (26) becomes 

for  all nz#O. 
This is the  complementarity  relation  for  symmetrical 

structures. I t  implies tha t  if the  impedance  properties 
of a symmetrical  structure  are  known,  those of the  com- 
plementary  structure  can be determined.  Each  sym- 
metrical  component  or  eigenvalue of the  impedance 
matrix satisfies a relation  similar  to  the original  Booker’s 
relation modified by a factor  sin2 nm/n depending  on  the 
order of the  component  and  the  number of terminals. 

SELF-COMPLEMENTSRY SYMMETRICAL STRUCTURE 

A self-complementary  symmetrical  structure  (with n- 
fold symmetry)  may be  obtained as shown  in  Fig. 5. 
Starting  from a curve Co extending  from  the  origin 0 
to  infinity,  rotations of n/n about 0 bring i t  successively 
in  positions Cor, Cl, CIr, CZ, . . , C,,-1, Cn-; (Cn coin- 
cides  with CO). If the  alternate  sectors Ci ,to C: are  
filled with  conducting  plates,  the  structure  obtained will 
have n-fold symmetry  since  a  rotation of 2r/n brings i t  
onto itself, and i t  will be  self-complementary  since a 
rotation of half that  angle  transforms  it  into  the com- 
plementary  structure. 

By choosing  for Co a curve  with  some  oscillations  in i t  
or  taking  a zigzag  line as was  done  by Isbell,  a structure 
is obtained  with  small  end effects. Impedance  measure- 
ments  may  be  taken  on a truncated  structure  and  they 
should  agree  with  those  taken  on  the  infinite  structure. 

In  the  relation (27) ,  zm’=z,, therefore 

tP 
2, = , nt # 0. (28) 

sin (r F) 
The  symmetrical  components of the  admittance se- 
quence  may be taken  as 

?n 
ym = 47 sin a - nt # 0. (29) 

(As noted  above we mag  assume zo =yo = 0 since  both 
the zero  order  symmetrical  components of 1;- and I have 
been assumed  equal  to zero.) 

By  using the  inverse  transformation (25) the compo- 
nents of Y may  be  evaluated. 

It 

Fig. 5-Self-complementary  symmetrical structure 
(nine-fold symmetry). 

After  some  computation it  is  found  that 

8 
sin - 

j.ll 2 
n - 8  

COS me - COS - 
2 

Y m  = - > (30) 

where 0 = 2r/n is the  angle of one  sector of the  structure. 
Only  the coefficient Yo is  positive;  all  the  others  are 
negative  and  they  add  up  to - Yo since yo = 0. 

I t  should  be  noted  that  the zm and ym are  also  the 
eigenvalues of the  matrices 2 and Y belonging to  the 
eigenvectors IC,) or  represented  by  the  ?nth  column 
of the  matrix T. 

The  formula (30) for Y, has a simple  graphical  inter- 
pretation  which  may  be useful to  see how the coeffi- 
cients of Y vary  with n and m. If a circle is divided  in n 
equal  parts (see  Fig. 6 where we have  assumed n= 5) 
the  values of cos nz8 are  read  on  the x axis  as OM,. Con- 
sidering  the  point A at angle 0/2 on  the circle, the  slope 
of the line A M ,  is proportional  to Y,  (more  exactly  the 
slope  equals - n Y,/47]). 

The  admittance  matrix,  or  the  impedance  matrix, of a 
symmetrical  self-complementary  structure is entirely 
defined by the  number n of terminals.  The coefficients 
are  real  and  independent of frequency. 

I\;UMERICAL RESULTS-EXPERIMENTAL VERIFICATION 

When  the  admittance  sequence ( Y,) is  known, the im- 
pedance  properties of any  combination of terminals  can 
be  computed  by  simple  circuit  analysis  techniques. 

A systematic  procedure  can  be  found  to  deduce  first 
the  admittance  matrix  resulting  from a grouping of the 
n terminals  into p sets of connected  terminals. If 
C= (Cij) is  the p x n connection  matrix  defined  by Cij = 1 
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2 1  

Fig. &Construction  for  the coefficients Y,,+ (case n=j ) .  

when  terminal i belongs to set j and Cii= 0 otherwise, 
the  reduced  admittance  matrix  is 

If the  source is connected  between  group j and  group 
k, all  the I's are zero  except Ii and l 'k  = - Ij. The  volt- 
ages  are  unknown  except  for  the  difference Vj- V k .  The 
equations are in  sufficient  number to  define  the  ratio  of 
V j -  Vk to  Ij which  is  the  impedance  sought. 

The  computations  have been  carried  out  for a number 
of configurations  involving  up  to 7 elements  and  the 
results  compared  to  experimental  measurements. 

The  measurements  are  difficult  because  the feed lines 
of finite  dimensions  always  disturb  the  ideal  geometry. 
The  thickness of the  metal  plate is also an  important 
factor.  In  view of this,  the  agreement  with  observed 
values  may  be  considered as satisfactory. 

A plot of measured  impedances  obtained  by D. Isbell 
and W. Guffey vs computed  values  (see  Fig. 7) leads 
to  the following  observations. The  experimental  values 
are  systematically below the  theoretical  ones.  This  may 
be  explained  by  the  finite  thickness of the  plate  and  in 
fact  the  agreement  becomes  better  for  thinner  sheets. 
The  percent  error  for  a  given  thickness  increases  almost 
linearly  with  the  number of terminals,  independently of 
the  manner  in which  they  are  connected. 

Disagreement  with  the  theoretical,  real,  and  fre- 
quency  independent  value of the  impedance  is  ac- 
companied  by a small  variation of the  impedance  with 
frequency  about a point on the  real  axis.  This  variation 
is of the  same  order  magnitude  as  the  disagreement. 
For  log-periodic  structures  the  variation  is  periodic  over 
an  approximately  circular locus. The  values used i n  
Fig. 7 are  average  impedances  corresponding  to  the 
center of these circles. 

Theoretical  values  for  some of the  configurations  con- 
sidered are  represented  graphically  in  Fig. 8. I t  is  clear 
that   by increasing  the  number of terminals, a large 
range of frequency  independent  values  can,  in  principle, 

IMRDANCE COMPUTED 

Fig. '/-Comparison with  experiment. 

s= 120 TI * 
.'. 

0 

Fig.  &Table of irnpe&&e  levels obtained  for  various  configurations 

connected to  the source are  represented by small circles. The 
of terminals.  For  each cMtfiguratj..>, the  two  groups of terminals 

floating  terminals  are  represented  by  black  dots. 

APPLICATION TO SOME ELECTROSTATIC AND 

TEM PROPAGATINN PROBLEMS 
Eqs. (17) ,  (22), and (24)>"'9) have  been  derived 

without  reference  to  the pa&!;* .:lar shape of the ele- 
ments  composing  the st?: +we. f : e y  do of course  apply 
when  these  elements  arc.  simple  angular  sectors  limited 

0 

r?: .JJI i , .  

be  obtained.  by  straight  lines [see Fig. 9(b)]. 1;is known,  however, 
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Fig. 9-Related electrostatic  and TEM propagation  problems. 

that  these  special conical structures  support  TEM 
modes of propagation  and  the  admittance  matrix of the 
infinite  structure  then becomes the  characteristic  ad- 
mittance  matrix. 

Furthermore  the  characteristic  admittance  is  simply 
related  to  the  capacitance  matrix of the  trace of the 
structure  on a sphere of center 0. 

Y C  _ -  _ - .  
1 e  

The  complementary  relations (17),  (22), and (27)- 
(29) therefore  have  their  counterparts  for  the  capaci- 
tance of structures  made of conducting  arcs  on a circle. 
For  example,  a  structure  made of equal  conducting  arcs 
of circles [see Fig.  9(d) ] separated  by  equal  openings, 
has a  capacitance  matrix  represen+ ,hie by a sequence: 

cos m.8 - cos - 
2 

(Note  that  this  assumes CQm=O* hence aoes not  give 
information  about  the  capacitancL d the whole struc- 
ture  connected a t  a giv potwtial  with  respect  to  in- 
finity.) 

The  circular  structure  may  be placed  on an  arbitrary 
sphere  and considered as the  trace of a conical set  of 
plates  [Figure  9(a) 1. The  characteristic  admittance 
matrix of this conical stwcture  is  the  same as tha t  of 
the  planar  structure fro1 which i t  comes.3 

Finally  the  circular . Lucture  may  be  thought of as  
the  trace of a cylinci cal  set f plates [Fig.  9(c) ] and 
the  characteristic  ad;nitt;l  atrix is again  the  same 
as  for the  planar  struc: . 

The  appropriate  complementary  formulas could have 
been  proved  directly  for  each of these  structures  but  it  
is worthwhile  to  note  the  relations  between  these  prob- 
lems. 

STRUCTURES V i 7 1 ~ ~  SEVERAL TERMINAL REGIONS 

The  structures considered so far  had all  their  termi- 
nals  coming  to a point  or in  practice  connected  to 
sources  inside a region  small  in  terms of wavelength. 

One  may  also  consider  structures  having  terminals at 
different  locations  in  the  plane.  Fig. 10 shows  an  exam- 
ple of a five-terminal  structure  having  two  terminal  re- 
gions. The  terminals  may  be  numbered (1,   2,  3) (4, 5 ) .  
Those of the  complementary  structure will be (1’, 2’, 
3’) (4’1 5’) as  shown in the figure. By convention if1 is 
the  terminal  “next  to” i, thus 3 f l = l 1  5+1=4.  It is 
convenient  to use as  voltage  parameter Vi, the  poten- 
tial  difference  between  terminal i and i+l. The  sum of 
the Vi as well as the  sum of Ii is  thus zero  for  every 
terminal region. 

Introducing  the  shift  operator defined by 

the  relation  between  the  impedance  matrices of the  two 
complementary  structures  becomes 

There  again  the sign = means  that  the  two  sides of the 
equation  give  the  same  result  when  applied  to a vector I 
such  that CIk=O. Eq. (35) is  obtained  by  the  same 
method as (17). This is an  alternative  form of comple- 
mentarity which  could have been  used instead of (17). 
The  only difference  is  in the choice of the  voltage  param- 
eters.  Those used  in (17) were  found  more  convenient 
in  solving the problem of grouping of the  terminals. 

TWO-PORT SELF-COMPLEMENTARY STRUCTURES 

A case of special  interest is that  of the  two-port  struc- 
ture,  having  two  terminal  regions  with  two  terminals 
each. 

Choosing at each  location, 1 a i J  2, a +terminal,  the 
currents 

are defined as  those flowing into 1, and 2+, the  voltages 

(37) 



5378 IRE  TRANSACTIONS ON ANTENNAS AhTD PROPAGATION 

'+>A 
Fig.  10-Planar structure  with 3+2 terminals. 

are  respectively  the  voltage  differences  between I+, 1- 
and 2+, 2-. The  impedance  matrix Z relates  Vand I. 

v = ZI. (38) 

Fig. 11 shows a self-complementary  two-port  struc- 
ture.  By reflection into  the  straight line  this  structure is 
transformed  into its complement. 

Applying  the  duality  transformation  to  the field as 
was  done in (6)-(9) it is seen that  

(39) 

while 

The  sign  reversal  comes  from the  fact  that in the  dual- 
ity  transformation  each  quantity (17' or 1') is related  to 
the  dual  quantity ( I  or 1,') belonging to  the  terminal  im- 
mediately  to its left (seen  from the region above  the 
plane).  At  location 1 in  Fig. 11, this  relates  the  two + 
terminals,  but  at  location 2 i t  relates  the + terminal  to 
the - terminal of the reflected structure. 

Introducing  a  matrix 

Dmrnher 

-I 
/' 

Transformation 

-I 
/' 

' Transformation < --- ,-' in  the  Reflection 
Plane 

Fig.  11-Self-complementary two-port structure. 

This is the  relation  that Z must  satisfy in  order  to 

Explicitly, if 

I 
represent  the  self-complementary  structure. 

Z =  
2-11 z12 I 2 2 1  zz2 I ' 

i t  follows that  

This 1nal; be  recognized as the  impedance  matrix of 
an ideal attenuator  having a characteristic  impedance of 
60n ohms. The  attenuation  and  phase  shift  through  the 
element  cannot  be  found  from  the  symmetry  considera- 
tions  but  depend  on  the  form of the  structure. 

Another  method of proving  the  equivalence  with  an 
attenuator  is  to consider the  transformation of imped- 

(41) ance  (or reflection  coefficient) through  the  two-port. If 
a resistive  load of 60n ohms  terminates 2, an  impedance 

the  formulas (39) and (40) may  be expressed as  of 60n  ohms will be  seen a t  1. Ploting 60n at the  center 0 
of the reflection chart  as in Fig. 11, the  point 0 becomes 

11' = +{UI its own image  (iconocenter of the  transformation). If 
I' = 27uT7, (42) an open-circuit  load P is mapped a t  point P', the  short 

circuit  load Q will be  mapped a t  Q' corresponding  to  the 
and using (38) which  applies also to  V', I ' ,  reciprocal  impedance  with  respect to 60n. The  segment 

Q'P' has  therefore 0 as its  middle  point.  The  image of 
(43) the  unit circle I' is a  concentric circle I". ,4n equivalent 

circuit  for  the  structure  is  therefore a length of trans- 
mission  line with  60n  ohm  characteristic  impedance  in 

$CUI = z27uv 

or, finally, 

(UZ)2 = p .  (44) cascade  with  an  ideal  attenuator. - -. 


