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Abstract 

T h e  multiplier of a S/390 CMOS microprocessor 
i s  described. It i s  implemented in a n  aggressive 
static CMOS technology with 0.20 p m  effective chan- 
nel length. T h e  multiplier has been demonstrated in a 
single-image shared-memory multiprocessor at frequen- 
cies u p  t o  400 MHz. T h e  multiplier requires three m a -  
chine cycles f o r  a total  latency of  7.5 ns .  Though, the 
design can support a latency of 4.0 n s  if the latches are 
removed. T h e  design goal was t o  imp lemen t  a versa- 
tile S/390 multiplier w i th  reasonable performance at a 
very aggressive cycle t ime .  T h e  multiplier imp lemen t s  
a radiz-8 Boo th  algorithm and i s  capable of supporting 
S/390 floating-point and fixed-point multiplications and 
also division and square root. Logic design and physical 
design issues  are discussed relating t o  the Boo th  decode 
and counter tree implementat ions.  

1. Introduction 

This paper describes the uncommon usage of a 
high radix algorithm for multiplication in a high- 
performance microprocessor. The microprocessor is 
optimized for commercial workloads. The S/390 micro- 
processor has dimensions of 17.35x17.30mm2 and has 
two Floating Point Units (FPU) utilizing 16 percent of 
the chip area. The dual FPUs operate on the same 
instruction stream for fault tolerant purposes. The 
counter tree requires about 15 percent of the FPU area 
and is 3470 pm by 1475 pm. 

In commercial workloads the key issues in FPU im- 
plementations are different from scientific workloads. 
FPU operations are less frequent and more spread out 
in commercial workloads, and the combination of mul- 
tiply and addition is less frequent. Performance is im- 
portant, but not at the cost degradating the perfor- 
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mance of other central processor functions. Thus, cy- 
cle time and area are critical followed by latency and 
throughput. Multiplication is the second most frequent 
arithmetic operation following addition. So, a large 
investment of area is usually spent on the multiplier 
which is best utilized for many operations to save over- 
all area. 

S/390 architecture has its own unique requirements 
not commonly found in other architectures. S/390 ar- 
chitecture defines floating point numbers to be in a 
hexadecimal format with a 1 bit sign, a 7 bit charac- 
teristic, and afraction which is 24 bits for short format, 
56 bits for long format and 112 bits for extended for- 
mat. The following equation describes an operand, XI 
in this format: 

where S, is the sign bit, C, is the characteristic, and 
Fz is the fraction which is less than 1.0. The sign of 
the product and the characteristic are easy to imple- 
ment and are not described in this paper. The fraction 
dataflow of the multiplier is described and it is opti- 
mized for long format. 

S/390 fixed point format consists of two’s comple- 
ment integer notation and has 16 bit and 32 bit formats 
and in rare cases 64 bit format. Multiplication instruc- 
tions are defined for operations on 16 bit by 32 bit and 
32 bit by 32 bit. Division is defined for a 64 bit divi- 
dend and a 32 bit divisor, quotient, and remainder. 

To take advantage of the high-speed multiplier, di- 
vision and square root instructions are executed in the 
FPU using a Goldschmidt algorithm [6,1, 12,131 which 
has two multiplications in its iteration step. Interme- 
diate calculations need to be computed in a higher pre- 
cision to avoid truncation errors. Thus, a multiplier is 
desired which can support more than 56 bit operands. 
However, this support is not as critical as meeting a 
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cycle time objective for long multiplication. The com- 
promise is to only extend the multiplicand operand 
with additional precision, so as not to affect the mul- 
tiplier operand, which has a greater effect on the cycle 
time. Thus, a radix-8 Booth algorithm which supports 
operands of 56 bits and 64 bits and supports both fixed 
point and floating point formats was chosen. 

1.1. Design Issues 

Three bit (radix-4) overlapped scanning Booth algo- 
rithms [3, 141 are commonly implemented in industry 
due to their simplicity and ease of creating multiples 
of the multiplicand. Radix-4 implementations using 4:2 
counters are becoming very popular[l8,11,7]. Though, 
for a S/390 architecture this may not be the optimal 
choice. IEEE 754 standard only has 53 bit operands 
for double format which partitions nicely with a radix 
4 algorithm to require a 27 to 2 counter tree. This can 
be implemented in 4 levels of 4:2 counters or 7 levels 
of 3:2 counters. But a 56 bit radix-4 multiplier has 29 
partial products which require 4 levels of 4:2 counters 
or 8 levels of 3:2 counters. The worst timing path in 
a 3:2 counter is a 3 way exclusive-OR to produce the 
sum output. The propagation delay of 8 levels of 3:2 
counters and Booth multiplexing did not meet our cycle 
time objective. However, there have been S/390 imple- 
mentations with a more relaxed cycle time which have 
been fabricated with this type of implementationl51. 

The counter tree is a difficult function to spread over 
multiplecycles. At the bottom of the counter tree there 
are 2 operands of 120 bits for a total of 240 bits which 
are latched. This increases to approximately 360 bits 
and 480 bits if the latch point is moved one or two lev- 
els up into the tree. Therefore, partitioning the counter 
tree into separate cycles with latch boundaries is not a 
desirable implementation. Another option is to remove 
the latch boundaries and create a two cycle path in the 
counter tree. But this creates problems for AC test 
pattern analysis and timing analysis for latches with 
multiple cycle times. Other common methods are to 
use an iterative method[9], but our performance objec- 
tive was to pipeline a multiplication every cycle, so this 
idea was also rejected. 

A 4 bit (radix-8) overlapped scanning algorithm 
[14, 15, 101 is an attractive option for S/390 format 
since the counter tree is smaller in area and has less 
stages. It only requires a 19 to 2 counter tree which 
can be implemented in 6 levels of 3:2 counters or 4 lev- 
els of 4:2 counters. The disadvantage of 4 bit scanning 
is that it requires a 3X multiple. There have been some 
unusual designs for reducing the 3X delay but at  the 
cost of adding delay to the counter tree[2]. In our im- 

plementation, the key concern was reducing cycle time. 
This translated into reducing the largest component of 
overall delay which is the counter tree. Thus, having 
the the counter tree in a separate cycle from the 3X 
calculation was allowable and desirable. 

A high level comparison of 4 levels of 4:2 counters 
to 6 levels of 3:2 counters would yield that they are 
equivalent. Early designs of 4:2 counters required 2 
levels of 3:2 counters, but recently 4:2 counters with 
pass transistors have been shown to require 1.5 levels 
of 3:2 counters. Thus, they are equivalent from this 
rough comparison. But it will be shown that 3:2 coun- 
ters actually have an advantage in that their inputs 
vary in delay. A design will be shown which optimizes 
the delay for one of the three inputs. The inputs to the 
3:2 counters can be ordered to have late arriving signals 
use the fast inputs. The delay is optimized to require 
less than 6 levels of the worst case propagation delay 
through the counter tree. Thus, using 3:2 counters re- 
sults in a faster implementation than an equivalent 4:2 
counter tree due to the advantages of varying input 
delays. 

Our implementation requires 3 execution cycles for 
most multiplications as shown in Figure 1. The first 
cycle involves creating the 3X multiple and performing 
the Booth decoding. The second cycle involves mul- 
tiplexing the multiples to create partial products and 
then reducing 19 partial products to 2 via the counter 
tree. The third cycle involves an 120 bit addition of the 
two partial results to produce the product. Also, there 
is a selection of two possible normalization results in 
the third cycle. The selection signal is built into the 
custom designed dataflow for speed. This selection is 
sufficient for over 90 percent of the cases since unnor- 
malized input fractions are somewhat rare for multipli- 
cation. For unnormalized input fractions and for expo- 
nents that could potentially overflow or underflow, a 
fourth execution cycle is required. This cycle contains 
a full post normalizer with overflow and underflow de- 
tection. 

This paper describes the Booth decoding, fixed point 
multiplication adaptation, counter tree design, and the 
custom circuit implementation. The multiplier has 
been fabricated and has been clocked at over 400 MHz. 
The multiplier has been partitioned into 3 execution 
cycles. The multiplier has a latency without latch de- 
lays of 4.0 ns. With further optimizations in the 3X 
adder and an aggressive process this multiplier could 
run below 4 ns. 
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Figure 1. Dataflow of Overall Multiplier 

2. Booth Decode 

A 4-bit (radix-$) overlapped scanning algorithm 
[3, 14, 15, 101 is implemented which scans 3 bits plus 
1 overlap bit per scan. The 56 bit multiplier operand 
has 19 scans which recode the multiplier into redun- 
dant octal digits. The digits can equal -4, -3, -2, -1, 0, 
$1, $2, $3, or $4. The scans of the multiplier bits are 
shown in Figure 2. To perform this recoding an addi- 
tional bit needs to be concatenated to the left of the 
most significant bit and this bit is called the sign bit 
and is denoted by “S”. S is equal to zero for a floating 
point multiplication since only magnitudes are consid- 
ered and sign calculation is performed elsewhere, For 
fixed point multiplication, S in previous work [15] was 
equal to the sign bit. But our implementation elimi- 
nates the need for extending sign of the multiplier by 
altering the Booth decode of a few scans as will be de- 
tailed in section 3. In Figure 2 the multiplier is also 
extended past the least significant bit to include the 
bit “E”. This is to complete the scan and complete the 
string recoding. E is chosen equal to zero so as not to 
change the value of the multiplier and just to complete 
the least significant scan. 

For implementation purposes, the scans are num- 
bered from least significant, 1, to most significant, 19. 
Note the fixed point numbers are placed in the least 
significant bits of the multiplier register. The upper 
scans do not have any significant bits and are either all 
zeros or all ones. A scan of all zeros or all ones trans- 
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Figure 2. Booth Scanning of the Multiplier 

lates into the recoding value of zero. The upper scans 
(12 to 19) do not have to consider fixed point encodings 
but the lower scans (1 to 11) do have to consider that 
the multiplicand could be a negative number. 

The implementation of the Booth multiplexing con- 
sists of 19 - 4:l true / complement multiplexors that 
gate the correct multiple for each partial product. 
There are 4 selection lines for the multiples of lx, 2x, 
3x, and 4X which are signaled by sx, S ~ X ,  S ~ X ,  and s4x. 
There is an inversion selection for selecting the one’s 
complement of the multiple and for the hot one encod- 
ing, signaled by sinv. And, there is a selection line for 
the sign encoding bits for each partial product called 
ssign. The following equations are used to implement 
the selection lines for the possible multiples of partial 
product. These equations are expressed for the gen- 
eral multiplier bits yi-1, K ,  K+l,  and y i + 2  from most 
significant to least significant. 

sa: = ((yi-le3 %)(Kt1 e3 -~ y i + z ) )  
s 2 x  = (XX+lyi+2) + (Kyit l  y i t 2 )  

s3x = ( K 4 @  K )  (yi+le3 x+z> 
940 = (Yi_lyiyi+lyi+Z) + (yi-lyi yi t l  K+2) 

Note that 1X and 2X multiples need to have sign ex- 
tension bits filled into their most significant bits. This 
is accomplished using the sign bit of the multiplicand 
denoted by X-SIGN. 

Additionally, the encoding bits of the partial prod- 
uct array are determined. A right encode of three bits 
is used to encode a “hot” one to produce a two’s com- 
plement of the partial product if the multiple is nega- 
tive. And, a left encode of three bits is used to encode 
the sign extension if the partial product is negative. 
There are two different cases for fixed point multiply 
and only one case for floating point multiply. For fixed 
point multiply having a multiple which is negative does 
not imply that the partial product is negative since this 
is also dependent on the sign of the multiplicand, X. 
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The inversion and sign extension can be imple- 
mented in two different ways: 1) assuming two r e p  
resentations for OX (+O, -O), or 2) assuming one repre- 
sentation for OX (+O). Positive zero is represented by a 
series of zeros whereas negative zero is represented by 
all ones plus a hot one and forcing the left sign encode 
bit to be 0 (which catches the carry out). The first o p  
tion of having two zero representations simplifies the 
inversion control since it becomes simply equal to the 
most significant bit of the scan. The following are the 
equations of the two possible formulations where K is 
the scan number: 

OPTION 1 
F O R K  = 

sinv = 

FOR 15 K 
sinv = 

FOR 15 K 
s-sign = 

FOR 125 K 
s-sign = 

19 
0 m u s t  be positive 
5 18 
yi-1 

- < 11 

(Yr-lXX+lX+z) +(X4 X X+l y;+2 )) 
X - i @  ( X S I G N  + 

---__ 

5 18 
X-1 
- 

These equations are detailed in [15]. An alternative 
is option 2 which has only one representation for zero. 
The second option is actually implemented in the mul- 
tiplier. 

OPTION 2 
F O R K  = 

sinv = 
FOR 15 K 

sinv = 

F O R  15 K 
s i g n  = 

F O R  1 2 5  K 
s-sign = 

19 
0 must be positive 
5 18 

K-i(KK+lYi+2) 

5 11 

of the partial product. The right encode is equal to 
(0 1 1  0 1 1  s inv(K))  for the K+1 partial product. 
The K + 1 row contains the hot one for the K-th row. 
s i g n  is used to create the left sign encoding for the 
18th through 1st partial product. For partial products 
18 through 2 the encode is 111 for a positive partial 
product or 110 for a negative partial product which 
corresponds to (1 1 1  1 1 1  s-sign(K)) for the K-th 
partial product. For the first partial product the en- 
code is 1000 for a positive partial product and 0111 
for a negative partial product which corresponds to 
(s-sign( 1) I I s i g n (  1) I I s i g n (  1) I I s-sign( 1)). 

In the implementation of the multiplier the fan-out 
of the Booth select signals is rather large and the wires 
are rather long. To solve this, multiple copies of the 
registers are created to drive only half the width of 
each partial product. The A copy drives bits 34 to 66 
of the multiplexors and the B copy drives bits 1 to 33. 
In addition, multiple copies of the X and 3X register 
are created to reduce the fanout to 19 Booth multi- 
plexors for each partial product. The A copy drives 
partial products 11 to 19 and the B copy drives partial 
products 1 to 10. These registers are placed close to 
the counter tree to reduce the wiring length. 

3. Fixed Point Multiplication 

Fixed point multiplication of 16 by 32 bit and 32 by 
32 bit is supported in the multiplier. The multiplier 
operand can be 16 or 32 bits and the multiplicand is 
always 32 bits. Fixed point data is right aligned to the 
least significant bits of the multiplier. Sign-extending 
the fixed point operands to 56 bits creates large fanouts 
which can result in a long delay. A simpler solution is 
used which is equivalent without the large fanouts. 

If the multiplier operand is sign extended to 56 bits 
then certain scans will have all zeros or all ones. For 
32 bit format, scans 12 to 19, and for 16 bit format, 
scans 7 to 19 are affected. These scans are recoded 
to the value zero for either case. If instead the input 

(X-SIGN @ Yi-i) + (Yi-iYiYi+iYi+z) operands were not sign extended but instead were zero 
+(Kl r; Yi+l Kt2 1 extended on the most significant side, then these scans 

would also have the recoded value of zero. So, it is 
not necessary to sign extend the multiplier operand for 

5 18 these scans, zero extending them is sufficient. 
Yi--l(KX+lYi+2) For the scans that have a partial sign extension an 

equivalent operation can be done. Scan 6 for 16 bit for- 
mat and scan 11 for 32 bit format can have significant 

These selections are summarized in Table 1. Note 
sinv is used to conditionally invert the K-th partial 
product, if equal to  one it is inverted, if equal to zero 
it is the true signal. sinv is also used by the K + l  par- 
tial product as the hot one encode placed to the right 

bits of the fixed point numbers and sign bits. -Scan 11 
has bits 23,24,25, and 26 where bit 24 can be the most 
significant bit / sign bit of a 32 bit fix point operand. 
In this case bit 24 is sign extended to bit 23 and the re- 
sulting signal is used rather than normal fraction bits. 

5 



+ 1 x  
0 0 
0 0 1 0  
0 0 1 0  +3X 
0 0 1 1  

1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 

0 0 0  1 +lX 
0 0 1  0 +1x 
0 0 1  1 +ax 
0 1 0  o +ax 
0 1 0  1 +3x 
0 1 1  0 +3x 
0 1 1  1 +4x 
1 0 0  0 -4x 
1 0 0  1 -3x 
1 0 1  0 -3x 
1 0 1  1 -ax 
1 1 0  o -ax 
1 1 0  1 -lX 
I l l  0 -lx 
1 1 1  1 ox 

Option 
1 to 11 

sinr *-sign 
0 +o 1 
0 1 
0 1 
0 1 
0 1 
0 1 
0 1 
0 1 
1 0 
1 0 
1 0 
1 0 
1 0 
1 0 
1 0 
1 -0 0 
0 +o 1 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
1 1 
1 1 
1 1 
1 1 
1 1 
1 1 
1 1 
1 -0 0 

+o/-0 
ia to is 

sinv *-sign 
0 +o 1 
0 1 
0 1 
0 1 
0 1 
0 1 
0 1 
0 1 
1 0 
1 0 
1 0 
1 0 
1 0 
1 0 
1 0 
1 -0 0 
0 +o 1 
0 1 
0 1 
0 1 
0 1 
0 1 
0 1 
0 1 
1 0 
1 0 
1 0 
1 0 
1 0 
1 0 
1 0 
1 -0 0 

Option a:  +O 

sinv .-sign sin7 .-sign 
1 to 11 ia t o  19 

0 +o 1 

Table 1. Booth Scanning: Determination of Select Signals 

For scan 6, bit 40 is the sign bit for a 16 bit fixed 
point operand and it needs to be sign extended to bits 
38 and 39 of the scan. The Booth select signals are 
created using the resulting signal rather than normal 
fraction bits. 

The sign extension for fixed point only affects 3 bits 
that drive to two scans. The equations of these signals 
are as follows: 

Y-SCANll(23) = (FIXPT-32 and Y(23)) OT 

Y-SCAN6(38) = (FIXPT-16 and Y(38)) OT 

Y_SCAN6(39) = (FIXPT-16 and Y(39)) OT 

(FIXPT-32 and Y(24))  

(FIXPT-16 and Y(40)) 

(FIXPT-16 and Y(40)) 

where the signal FIXPT-32 is active high for fixed point 
32 bit format, FIXPT-16 is active high for fixed point 
16 bit format, Y-SCANll(23) is the signal driven to 
the Booth decoder for scan 11 instead of Y(23), and 
Y_SCAN6(38:39) is driven to the decoder for scan 6 
instead of Y(38:39). Note that bit 23 and bit 38 driven 
to scan 12 and scan 7 respectively are not the new sign 
extension signals. Instead they must be the original 
multiplier bits so that these scans will still have all 
zero or all one bits. This implementation reduces the 
sign extension of the fixed point multiplier operand to 
be only 2 bits for 16 bit format and 1 bit for 32 bit 
format, rather than 41 bits and 25 bits respectively. 

4. Counter Tree Design 

The Booth decode creates the select lines for the 
multiplexing of the possible multiples. This is im- 
plemented with a 4:l True/Complement multiplexor. 
In addition to creating the partial products, the sign 
encode and hot one encode for each partial product 
are formed from the sign of the coefficient of the par- 
tial product and the sign of the partial product. The 
partial product array produced is shown in Figure 3. 
There are 19 partial products. Each partial product 
has 66 bits of magnitude, all but the top and bottom 
row have 3 bits of left (sign) encode, and all but the 
bottom have 3 bits of right (hot one) encode. Thus, 
the average partial product has 72 bits. 

The 19 partial products are summed to 2 partial 
products. They are summed using carry-save adders 
(CSAs), sometimes referred to as full-adders or as 3 to 
2 counters. The CSAs perform carry-free addition and 
reduce three inputs to two outputs. The counter tree 
has 6 levels and outputs a final carry and sum of 120 
bits. 

Note that any carries out of the most significant bit 
are discarded. A 56 by 64 bit multiply is guaranteed 
to only require 120 bits to represent the full precision 
product. Also, the sign extension encoding can produce 
a carry out of the partial product array which should 
be ignored. 

A Dadda type[4] implementation is employed where 
not all the columns participate in a given level of the re- 
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Figure 3. Partial Product Array for 4 Bit Scanning 

duction as opposed to a Wallace scheme[l6]. Columns 
1 to 17 and 105 to 120 (with the most significant col- 
umn labeled 1) are optimized for counter usage while 
columns 18 to 104 require all 6 levels of counters. 

4.1. Connection and Placement of Counter 
Trees 

Care was taken in connecting the counters to opti- 192 COUNTER TREE 

mize for timing. Approximately 282 ps is needed to 
compute the sum output from the A and B inputs and 
202 ps is needed to compute the carry output (Cout) 
from the A and B inputs at a 400 MH5 clock fre- 
quency. There is less delay in the carry input (Cin) 
signal through the counter. The overall connection of 
counters is shown in Figure 4. 

Counters labeled A through F make up the first 
level, G through J the second level, K through M the 
third level, N and 0 the fourth level, P the fifth level, 
and Q the sixth level. The counters are arranged in the 
second level to have counter H and I to have fast inputs 
and G and J to have slow inputs. Then to save overall 
delay in the third level the G and J sum outputs are 

f 
1 

input to carry input of the next level counters. In this 
way the delay of the overall tree is less than the worse 

Figure 4. Timing and Connection of Counter 
Tree 

delay per stage times the number of stages (1692 ps) 
and instead is 1452 ps. This is an average of 242 ps per 
counter level. 

The placement of the counters was also carefully 
chosen as shown in Figure 5. The sum output bits of 
the counters and the multiplexor output bits are shown 
on the left with black arrows. Their outputs stay in 
the same track since they do not change weights. The 
carry output bits from the next lesser significant track 
are shown on the right of the figure with white arrows. 
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Figure 5. Placement of Counters 

The carries propagate one track to the left since they 
are weighted more than the sum bit from the same 
counter. The goal in placing the counters and multi- 
plexors was to reduce the number of wiring tracks used 
and the length of the wire. The multiplexors which 
feed into a counter are placed next to it. And counters 
which feed another counter are placed close by. The 
counters feed inwards. The last counter in the tree, Q, 
is located in the middle of the tree and its outputs are 
the overall carry and sum of the counter tree. 

The physical design of the counter tree is shown 
in Figure 6. Note the traditional rhomboid shape of 
the counter tree layout. Other researchers have shown 
methods for creating rectangular layouts [2] to reduce 
area but this creates wiring problems. In our imple- 
mentation, the fraction dataflow has an 120 bit wide 
layout, so the width of the rhomboid did not present 
a problem. The dataflow going into the multiplier is 
66 bits wide which takes up approximately half the 
width of the fraction dataflow and placed along side it 
is the aligner for floating point addition. The 120 bit 
adder and the post normalizer require the full fraction 
dataflow width. So, the counter tree did not present 
a problem in terms of layout width. Though, it did 
present a challenge in driving select signals due to wire 
length and fanout. As mentioned earlier, two copies of 
the registers which drive the Booth multiplexors were 
created and placed on each side of the counter tree. 
The leftover area from placing the rhomboid counter 
tree in a rectangular layout area is used for these reg- 

isters. Note that in Figure 6, the rhomboid is 3470 pm 
by 1475 pm and the total area shown is 3875 pm by 
1800 pm. Thus, the select registers are very close to 
the counter tree and take up otherwise unusable space 
due to its triangular shape. 

5. Overall Delay 

There are 3 cycles of execution for the multiplier. At 
the demonstrated cycle time of 400 MHz (2.5 ns) E171 
this is a total of 7.5 ns of latency. Several recent stud- 
ies have compared multipliers without including latch 
delays with the best being between 4.1 to 4.4 ns for a 
54 by 54 bit multiplier [ll, 7, 81. To fairly compare 
our multiplier, the delay needs to be determined with- 
out latches even though it is not implemented in this 
fashion. In the first cycle there is a 3X computation 
which takes 1100 ps. It is not optimized for latency but 
is a conservative implementation to reduce area with 
the requirement of meeting cycle time. Also the Booth 
decode is in the first cycle but it is much faster than 
the 3X computation. In the second cycle the 4:l true 
/ complement multiplexor has a delay of 363 ps and 
the counter tree requires 1452 ps for a total of 1815 ps. 
In the third cycle there is an 120 bit adder which has 
a delay of 1090 ns. The 120 bit adder is a conditional 
sum adder with 8 bit groups using carry lookahead to 
determine the carry, and ripple add to determine the 
conditioned sums. So the total of 1100, 1815, and 1090 
ps is 4.005 ns for the 56 by 64 bit multiplication. This 
is faster than these previous multiplier studies. This 
design could be further optimized for latency with a 
better 3X adder delay or designing the 3X computa- 
tion into the partial product array [2]. 

6. Conclusion 

Our design goal was to implement a multiplier sup- 
porting a fast cycle time with a latency of approxi- 
mately 3 execution cycles. And our goal was not to 
build the fastest multiplier but build a system with 
a fast multiplier supporting multiple purposes. S/390 
fixed point and floating point multiplication and divi- 
sion and square root are implemented using this mul- 
tiplier. This is a versatile multiplier for S/390 instruc- 
tions and it is reasonably fast. A S/390 microprocessor 
employing a 3 cycle execution radix-8 multiplier has 
been fabricated and operated in a system at speeds up 
to 400 MHz. 
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Figure 6. Physical Design of Counter Tree 
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