
A Radix-8 CMOS S/390 Multiplier

Eric M. Schwarz Robert M. Averill I11 Leon J. Sigal
IBM S/390 IBM S/390 IBM Research

Mailstop: P310 Mailstop: P310 T.J. Watson Research Center
522 South Rd. 522 South Rd. Route 134

Poughkeepsie, NY 12601 Poughkeepsie, NY 12601 Yorktown Heights, NY 10598
schwarzQvnet .ibm.com

Abstract

T h e multiplier of a S/390 CMOS microprocessor
i s described. It i s implemented in a n aggressive
static CMOS technology with 0.20 p m effective chan-
nel length. T h e multiplier has been demonstrated in a
single-image shared-memory multiprocessor at frequen-
cies u p t o 400 MHz. T h e multiplier requires three m a -
chine cycles f o r a total latency of 7.5 ns . Though, the
design can support a latency of 4.0 n s if the latches are
removed. T h e design goal was t o imp lemen t a versa-
tile S/390 multiplier w i th reasonable performance at a
very aggressive cycle t ime . T h e multiplier imp lemen t s
a radiz-8 Boo th algorithm and i s capable of supporting
S/390 floating-point and fixed-point multiplications and
also division and square root. Logic design and physical
design issues are discussed relating t o the Boo th decode
and counter tree implementat ions.

1. Introduction

This paper describes the uncommon usage of a
high radix algorithm for multiplication in a high-
performance microprocessor. The microprocessor is
optimized for commercial workloads. The S/390 micro-
processor has dimensions of 17.35x17.30mm2 and has
two Floating Point Units (FPU) utilizing 16 percent of
the chip area. The dual FPUs operate on the same
instruction stream for fault tolerant purposes. The
counter tree requires about 15 percent of the FPU area
and is 3470 pm by 1475 pm.

In commercial workloads the key issues in FPU im-
plementations are different from scientific workloads.
FPU operations are less frequent and more spread out
in commercial workloads, and the combination of mul-
tiply and addition is less frequent. Performance is im-
portant, but not at the cost degradating the perfor-

1063-6889/97 $10.00 0 1997 IEEE 2

mance of other central processor functions. Thus, cy-
cle time and area are critical followed by latency and
throughput. Multiplication is the second most frequent
arithmetic operation following addition. So, a large
investment of area is usually spent on the multiplier
which is best utilized for many operations to save over-
all area.

S/390 architecture has its own unique requirements
not commonly found in other architectures. S/390 ar-
chitecture defines floating point numbers to be in a
hexadecimal format with a 1 bit sign, a 7 bit charac-
teristic, and afraction which is 24 bits for short format,
56 bits for long format and 112 bits for extended for-
mat. The following equation describes an operand, XI
in this format:

where S, is the sign bit, C, is the characteristic, and
Fz is the fraction which is less than 1.0. The sign of
the product and the characteristic are easy to imple-
ment and are not described in this paper. The fraction
dataflow of the multiplier is described and it is opti-
mized for long format.

S/390 fixed point format consists of two’s comple-
ment integer notation and has 16 bit and 32 bit formats
and in rare cases 64 bit format. Multiplication instruc-
tions are defined for operations on 16 bit by 32 bit and
32 bit by 32 bit. Division is defined for a 64 bit divi-
dend and a 32 bit divisor, quotient, and remainder.

To take advantage of the high-speed multiplier, di-
vision and square root instructions are executed in the
FPU using a Goldschmidt algorithm [6,1, 12,131 which
has two multiplications in its iteration step. Interme-
diate calculations need to be computed in a higher pre-
cision to avoid truncation errors. Thus, a multiplier is
desired which can support more than 56 bit operands.
However, this support is not as critical as meeting a

http://ibm.com

cycle time objective for long multiplication. The com-
promise is to only extend the multiplicand operand
with additional precision, so as not to affect the mul-
tiplier operand, which has a greater effect on the cycle
time. Thus, a radix-8 Booth algorithm which supports
operands of 56 bits and 64 bits and supports both fixed
point and floating point formats was chosen.

1.1. Design Issues

Three bit (radix-4) overlapped scanning Booth algo-
rithms [3, 141 are commonly implemented in industry
due to their simplicity and ease of creating multiples
of the multiplicand. Radix-4 implementations using 4:2
counters are becoming very popular[l8,11,7]. Though,
for a S/390 architecture this may not be the optimal
choice. IEEE 754 standard only has 53 bit operands
for double format which partitions nicely with a radix
4 algorithm to require a 27 to 2 counter tree. This can
be implemented in 4 levels of 4:2 counters or 7 levels
of 3:2 counters. But a 56 bit radix-4 multiplier has 29
partial products which require 4 levels of 4:2 counters
or 8 levels of 3:2 counters. The worst timing path in
a 3:2 counter is a 3 way exclusive-OR to produce the
sum output. The propagation delay of 8 levels of 3:2
counters and Booth multiplexing did not meet our cycle
time objective. However, there have been S/390 imple-
mentations with a more relaxed cycle time which have
been fabricated with this type of implementationl51.

The counter tree is a difficult function to spread over
multiplecycles. At the bottom of the counter tree there
are 2 operands of 120 bits for a total of 240 bits which
are latched. This increases to approximately 360 bits
and 480 bits if the latch point is moved one or two lev-
els up into the tree. Therefore, partitioning the counter
tree into separate cycles with latch boundaries is not a
desirable implementation. Another option is to remove
the latch boundaries and create a two cycle path in the
counter tree. But this creates problems for AC test
pattern analysis and timing analysis for latches with
multiple cycle times. Other common methods are to
use an iterative method[9], but our performance objec-
tive was to pipeline a multiplication every cycle, so this
idea was also rejected.

A 4 bit (radix-8) overlapped scanning algorithm
[14, 15, 101 is an attractive option for S/390 format
since the counter tree is smaller in area and has less
stages. It only requires a 19 to 2 counter tree which
can be implemented in 6 levels of 3:2 counters or 4 lev-
els of 4:2 counters. The disadvantage of 4 bit scanning
is that it requires a 3X multiple. There have been some
unusual designs for reducing the 3X delay but at the
cost of adding delay to the counter tree[2]. In our im-

plementation, the key concern was reducing cycle time.
This translated into reducing the largest component of
overall delay which is the counter tree. Thus, having
the the counter tree in a separate cycle from the 3X
calculation was allowable and desirable.

A high level comparison of 4 levels of 4:2 counters
to 6 levels of 3:2 counters would yield that they are
equivalent. Early designs of 4:2 counters required 2
levels of 3:2 counters, but recently 4:2 counters with
pass transistors have been shown to require 1.5 levels
of 3:2 counters. Thus, they are equivalent from this
rough comparison. But it will be shown that 3:2 coun-
ters actually have an advantage in that their inputs
vary in delay. A design will be shown which optimizes
the delay for one of the three inputs. The inputs to the
3:2 counters can be ordered to have late arriving signals
use the fast inputs. The delay is optimized to require
less than 6 levels of the worst case propagation delay
through the counter tree. Thus, using 3:2 counters re-
sults in a faster implementation than an equivalent 4:2
counter tree due to the advantages of varying input
delays.

Our implementation requires 3 execution cycles for
most multiplications as shown in Figure 1. The first
cycle involves creating the 3X multiple and performing
the Booth decoding. The second cycle involves mul-
tiplexing the multiples to create partial products and
then reducing 19 partial products to 2 via the counter
tree. The third cycle involves an 120 bit addition of the
two partial results to produce the product. Also, there
is a selection of two possible normalization results in
the third cycle. The selection signal is built into the
custom designed dataflow for speed. This selection is
sufficient for over 90 percent of the cases since unnor-
malized input fractions are somewhat rare for multipli-
cation. For unnormalized input fractions and for expo-
nents that could potentially overflow or underflow, a
fourth execution cycle is required. This cycle contains
a full post normalizer with overflow and underflow de-
tection.

This paper describes the Booth decoding, fixed point
multiplication adaptation, counter tree design, and the
custom circuit implementation. The multiplier has
been fabricated and has been clocked at over 400 MHz.
The multiplier has been partitioned into 3 execution
cycles. The multiplier has a latency without latch de-
lays of 4.0 ns. With further optimizations in the 3X
adder and an aggressive process this multiplier could
run below 4 ns.

3

Cyde 2

W P S

19102 CcunterTree
1452ps

I Prcdud Register

Figure 1. Dataflow of Overall Multiplier

2. Booth Decode

A 4-bit (radix-$) overlapped scanning algorithm
[3, 14, 15, 101 is implemented which scans 3 bits plus
1 overlap bit per scan. The 56 bit multiplier operand
has 19 scans which recode the multiplier into redun-
dant octal digits. The digits can equal -4, -3, -2, -1, 0,
$1, $2, $3, or $4. The scans of the multiplier bits are
shown in Figure 2. To perform this recoding an addi-
tional bit needs to be concatenated to the left of the
most significant bit and this bit is called the sign bit
and is denoted by “S”. S is equal to zero for a floating
point multiplication since only magnitudes are consid-
ered and sign calculation is performed elsewhere, For
fixed point multiplication, S in previous work [15] was
equal to the sign bit. But our implementation elimi-
nates the need for extending sign of the multiplier by
altering the Booth decode of a few scans as will be de-
tailed in section 3. In Figure 2 the multiplier is also
extended past the least significant bit to include the
bit “E”. This is to complete the scan and complete the
string recoding. E is chosen equal to zero so as not to
change the value of the multiplier and just to complete
the least significant scan.

For implementation purposes, the scans are num-
bered from least significant, 1, to most significant, 19.
Note the fixed point numbers are placed in the least
significant bits of the multiplier register. The upper
scans do not have any significant bits and are either all
zeros or all ones. A scan of all zeros or all ones trans-

b i t s

S01234567890123456789012345678901234567890123456789012345E

19 17 15 13 il* 9 7 5 3 1

18 16 14 12 10 8 6* 4 2

I ---- 32 b i t ---I ---- 16 bit----I
1111111111222222222233333333334444444444555555

+ I l l + I l l + I l l + I l l + I l l + I l l + I l l + I l l + I l l + I l l

+I l l +Il l + I l l + I l l +Il l + I l l * I l l + I l l + I l l

scans
Hot at ion:
+ - overlap b i t * - s p e c i a l f i x e d
I - scan b i t E - extra b i t (zero) point decodes

S - s i g n b i t (= 0

Figure 2. Booth Scanning of the Multiplier

lates into the recoding value of zero. The upper scans
(12 to 19) do not have to consider fixed point encodings
but the lower scans (1 to 11) do have to consider that
the multiplicand could be a negative number.

The implementation of the Booth multiplexing con-
sists of 19 - 4:l true / complement multiplexors that
gate the correct multiple for each partial product.
There are 4 selection lines for the multiples of lx, 2x,
3x, and 4X which are signaled by sx, S ~ X , S ~ X , and s4x.
There is an inversion selection for selecting the one’s
complement of the multiple and for the hot one encod-
ing, signaled by sinv. And, there is a selection line for
the sign encoding bits for each partial product called
ssign. The following equations are used to implement
the selection lines for the possible multiples of partial
product. These equations are expressed for the gen-
eral multiplier bits yi-1, K , K+l, and y i + 2 from most
significant to least significant.

sa: = ((yi-le3 %)(Kt1 e3 -~ y i + z))
s 2 x = (XX+lyi+2) + (Kyit l y i t 2)

s3x = (K 4 @ K) (yi+le3 x+z>
940 = (Yi_lyiyi+lyi+Z) + (yi-lyi yi t l K+2)

Note that 1X and 2X multiples need to have sign ex-
tension bits filled into their most significant bits. This
is accomplished using the sign bit of the multiplicand
denoted by X-SIGN.

Additionally, the encoding bits of the partial prod-
uct array are determined. A right encode of three bits
is used to encode a “hot” one to produce a two’s com-
plement of the partial product if the multiple is nega-
tive. And, a left encode of three bits is used to encode
the sign extension if the partial product is negative.
There are two different cases for fixed point multiply
and only one case for floating point multiply. For fixed
point multiply having a multiple which is negative does
not imply that the partial product is negative since this
is also dependent on the sign of the multiplicand, X.

4

The inversion and sign extension can be imple-
mented in two different ways: 1) assuming two r e p
resentations for OX (+O, -O), or 2) assuming one repre-
sentation for OX (+O). Positive zero is represented by a
series of zeros whereas negative zero is represented by
all ones plus a hot one and forcing the left sign encode
bit to be 0 (which catches the carry out). The first o p
tion of having two zero representations simplifies the
inversion control since it becomes simply equal to the
most significant bit of the scan. The following are the
equations of the two possible formulations where K is
the scan number:

OPTION 1
F O R K =

sinv =

FOR 15 K
sinv =

FOR 15 K
s-sign =

FOR 125 K
s-sign =

19
0 m u s t be positive
5 18
yi-1

- < 11

(Yr-lXX+lX+z) +(X4 X X+l y;+2))
X - i @ (X S I G N +

---__

5 18
X-1
-

These equations are detailed in [15]. An alternative
is option 2 which has only one representation for zero.
The second option is actually implemented in the mul-
tiplier.

OPTION 2
F O R K =

sinv =
FOR 15 K

sinv =

F O R 15 K
s i g n =

F O R 1 2 5 K
s-sign =

19
0 must be positive
5 18

K-i(KK+lYi+2)

5 11

of the partial product. The right encode is equal to
(0 1 1 0 1 1 s inv(K)) for the K+1 partial product.
The K + 1 row contains the hot one for the K-th row.
s i g n is used to create the left sign encoding for the
18th through 1st partial product. For partial products
18 through 2 the encode is 111 for a positive partial
product or 110 for a negative partial product which
corresponds to (1 1 1 1 1 1 s-sign(K)) for the K-th
partial product. For the first partial product the en-
code is 1000 for a positive partial product and 0111
for a negative partial product which corresponds to
(s-sign(1) I I s i g n (1) I I s i g n (1) I I s-sign(1)).

In the implementation of the multiplier the fan-out
of the Booth select signals is rather large and the wires
are rather long. To solve this, multiple copies of the
registers are created to drive only half the width of
each partial product. The A copy drives bits 34 to 66
of the multiplexors and the B copy drives bits 1 to 33.
In addition, multiple copies of the X and 3X register
are created to reduce the fanout to 19 Booth multi-
plexors for each partial product. The A copy drives
partial products 11 to 19 and the B copy drives partial
products 1 to 10. These registers are placed close to
the counter tree to reduce the wiring length.

3. Fixed Point Multiplication

Fixed point multiplication of 16 by 32 bit and 32 by
32 bit is supported in the multiplier. The multiplier
operand can be 16 or 32 bits and the multiplicand is
always 32 bits. Fixed point data is right aligned to the
least significant bits of the multiplier. Sign-extending
the fixed point operands to 56 bits creates large fanouts
which can result in a long delay. A simpler solution is
used which is equivalent without the large fanouts.

If the multiplier operand is sign extended to 56 bits
then certain scans will have all zeros or all ones. For
32 bit format, scans 12 to 19, and for 16 bit format,
scans 7 to 19 are affected. These scans are recoded
to the value zero for either case. If instead the input

(X-SIGN @ Yi-i) + (Yi-iYiYi+iYi+z) operands were not sign extended but instead were zero
+(Kl r; Yi+l Kt2 1 extended on the most significant side, then these scans

would also have the recoded value of zero. So, it is
not necessary to sign extend the multiplier operand for

5 18 these scans, zero extending them is sufficient.
Yi--l(KX+lYi+2) For the scans that have a partial sign extension an

equivalent operation can be done. Scan 6 for 16 bit for-
mat and scan 11 for 32 bit format can have significant

These selections are summarized in Table 1. Note
sinv is used to conditionally invert the K-th partial
product, if equal to one it is inverted, if equal to zero
it is the true signal. sinv is also used by the K + l par-
tial product as the hot one encode placed to the right

bits of the fixed point numbers and sign bits. -Scan 11
has bits 23,24,25, and 26 where bit 24 can be the most
significant bit / sign bit of a 32 bit fix point operand.
In this case bit 24 is sign extended to bit 23 and the re-
sulting signal is used rather than normal fraction bits.

5

+ 1 x
0 0
0 0 1 0
0 0 1 0 +3X
0 0 1 1

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

0 0 0 1 +lX
0 0 1 0 +1x
0 0 1 1 +ax
0 1 0 o +ax
0 1 0 1 +3x
0 1 1 0 +3x
0 1 1 1 +4x
1 0 0 0 -4x
1 0 0 1 -3x
1 0 1 0 -3x
1 0 1 1 -ax
1 1 0 o -ax
1 1 0 1 -lX
I l l 0 -lx
1 1 1 1 ox

Option
1 to 11

sinr *-sign
0 +o 1
0 1
0 1
0 1
0 1
0 1
0 1
0 1
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 -0 0
0 +o 1
0 0
0 0
0 0
0 0
0 0
0 0
0 0
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 -0 0

+o/-0
ia to is

sinv *-sign
0 +o 1
0 1
0 1
0 1
0 1
0 1
0 1
0 1
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 -0 0
0 +o 1
0 1
0 1
0 1
0 1
0 1
0 1
0 1
1 0
1 0
1 0
1 0
1 0
1 0
1 0
1 -0 0

Option a: +O

sinv .-sign sin7 .-sign
1 to 11 ia t o 19

0 +o 1

Table 1. Booth Scanning: Determination of Select Signals

For scan 6, bit 40 is the sign bit for a 16 bit fixed
point operand and it needs to be sign extended to bits
38 and 39 of the scan. The Booth select signals are
created using the resulting signal rather than normal
fraction bits.

The sign extension for fixed point only affects 3 bits
that drive to two scans. The equations of these signals
are as follows:

Y-SCANll(23) = (FIXPT-32 and Y(23)) OT

Y-SCAN6(38) = (FIXPT-16 and Y(38)) OT

Y_SCAN6(39) = (FIXPT-16 and Y(39)) OT

(FIXPT-32 and Y(24))

(FIXPT-16 and Y(40))

(FIXPT-16 and Y(40))

where the signal FIXPT-32 is active high for fixed point
32 bit format, FIXPT-16 is active high for fixed point
16 bit format, Y-SCANll(23) is the signal driven to
the Booth decoder for scan 11 instead of Y(23), and
Y_SCAN6(38:39) is driven to the decoder for scan 6
instead of Y(38:39). Note that bit 23 and bit 38 driven
to scan 12 and scan 7 respectively are not the new sign
extension signals. Instead they must be the original
multiplier bits so that these scans will still have all
zero or all one bits. This implementation reduces the
sign extension of the fixed point multiplier operand to
be only 2 bits for 16 bit format and 1 bit for 32 bit
format, rather than 41 bits and 25 bits respectively.

4. Counter Tree Design

The Booth decode creates the select lines for the
multiplexing of the possible multiples. This is im-
plemented with a 4:l True/Complement multiplexor.
In addition to creating the partial products, the sign
encode and hot one encode for each partial product
are formed from the sign of the coefficient of the par-
tial product and the sign of the partial product. The
partial product array produced is shown in Figure 3.
There are 19 partial products. Each partial product
has 66 bits of magnitude, all but the top and bottom
row have 3 bits of left (sign) encode, and all but the
bottom have 3 bits of right (hot one) encode. Thus,
the average partial product has 72 bits.

The 19 partial products are summed to 2 partial
products. They are summed using carry-save adders
(CSAs), sometimes referred to as full-adders or as 3 to
2 counters. The CSAs perform carry-free addition and
reduce three inputs to two outputs. The counter tree
has 6 levels and outputs a final carry and sum of 120
bits.

Note that any carries out of the most significant bit
are discarded. A 56 by 64 bit multiply is guaranteed
to only require 120 bits to represent the full precision
product. Also, the sign extension encoding can produce
a carry out of the partial product array which should
be ignored.

A Dadda type[4] implementation is employed where
not all the columns participate in a given level of the re-

6

I_- 66 bits + I

8
9
10
11

13
14
15
16
17
18
19

ia

3
4
5
6
7
8
9
10
11
11
13
14
15
16
17
18
i e

120 columns

Figure 3. Partial Product Array for 4 Bit Scanning

duction as opposed to a Wallace scheme[l6]. Columns
1 to 17 and 105 to 120 (with the most significant col-
umn labeled 1) are optimized for counter usage while
columns 18 to 104 require all 6 levels of counters.

4.1. Connection and Placement of Counter
Trees

Care was taken in connecting the counters to opti- 192 COUNTER TREE

mize for timing. Approximately 282 ps is needed to
compute the sum output from the A and B inputs and
202 ps is needed to compute the carry output (Cout)
from the A and B inputs at a 400 MH5 clock fre-
quency. There is less delay in the carry input (Cin)
signal through the counter. The overall connection of
counters is shown in Figure 4.

Counters labeled A through F make up the first
level, G through J the second level, K through M the
third level, N and 0 the fourth level, P the fifth level,
and Q the sixth level. The counters are arranged in the
second level to have counter H and I to have fast inputs
and G and J to have slow inputs. Then to save overall
delay in the third level the G and J sum outputs are

f
1

input to carry input of the next level counters. In this
way the delay of the overall tree is less than the worse

Figure 4. Timing and Connection of Counter
Tree

delay per stage times the number of stages (1692 ps)
and instead is 1452 ps. This is an average of 242 ps per
counter level.

The placement of the counters was also carefully
chosen as shown in Figure 5. The sum output bits of
the counters and the multiplexor output bits are shown
on the left with black arrows. Their outputs stay in
the same track since they do not change weights. The
carry output bits from the next lesser significant track
are shown on the right of the figure with white arrows.

7

MUX 1
MUX 2
MUX 3
CSA D
MUX 4
MUX 5
MUX 6
CSA E
MUX 7
MUX 8
MUX 9
CSAF
MUX 10
CSA I
CSA 1
CSA L
CSA M
CSA 0
CSA P
CSA Q
CSA N
CSA K
CSA C
CSA H
CSA C
MUX 11
MUX 12
MUX 13
CSA B
MUX 14
MUX IS
MUX 16
CSA A
MUX 17
MUX 18
MUX 19

sum tracks

Y
B

I ' I t I

sum caw

Figure 5. Placement of Counters

The carries propagate one track to the left since they
are weighted more than the sum bit from the same
counter. The goal in placing the counters and multi-
plexors was to reduce the number of wiring tracks used
and the length of the wire. The multiplexors which
feed into a counter are placed next to it. And counters
which feed another counter are placed close by. The
counters feed inwards. The last counter in the tree, Q,
is located in the middle of the tree and its outputs are
the overall carry and sum of the counter tree.

The physical design of the counter tree is shown
in Figure 6. Note the traditional rhomboid shape of
the counter tree layout. Other researchers have shown
methods for creating rectangular layouts [2] to reduce
area but this creates wiring problems. In our imple-
mentation, the fraction dataflow has an 120 bit wide
layout, so the width of the rhomboid did not present
a problem. The dataflow going into the multiplier is
66 bits wide which takes up approximately half the
width of the fraction dataflow and placed along side it
is the aligner for floating point addition. The 120 bit
adder and the post normalizer require the full fraction
dataflow width. So, the counter tree did not present
a problem in terms of layout width. Though, it did
present a challenge in driving select signals due to wire
length and fanout. As mentioned earlier, two copies of
the registers which drive the Booth multiplexors were
created and placed on each side of the counter tree.
The leftover area from placing the rhomboid counter
tree in a rectangular layout area is used for these reg-

isters. Note that in Figure 6, the rhomboid is 3470 pm
by 1475 pm and the total area shown is 3875 pm by
1800 pm. Thus, the select registers are very close to
the counter tree and take up otherwise unusable space
due to its triangular shape.

5. Overall Delay

There are 3 cycles of execution for the multiplier. At
the demonstrated cycle time of 400 MHz (2.5 ns) E171
this is a total of 7.5 ns of latency. Several recent stud-
ies have compared multipliers without including latch
delays with the best being between 4.1 to 4.4 ns for a
54 by 54 bit multiplier [ll, 7, 81. To fairly compare
our multiplier, the delay needs to be determined with-
out latches even though it is not implemented in this
fashion. In the first cycle there is a 3X computation
which takes 1100 ps. It is not optimized for latency but
is a conservative implementation to reduce area with
the requirement of meeting cycle time. Also the Booth
decode is in the first cycle but it is much faster than
the 3X computation. In the second cycle the 4:l true
/ complement multiplexor has a delay of 363 ps and
the counter tree requires 1452 ps for a total of 1815 ps.
In the third cycle there is an 120 bit adder which has
a delay of 1090 ns. The 120 bit adder is a conditional
sum adder with 8 bit groups using carry lookahead to
determine the carry, and ripple add to determine the
conditioned sums. So the total of 1100, 1815, and 1090
ps is 4.005 ns for the 56 by 64 bit multiplication. This
is faster than these previous multiplier studies. This
design could be further optimized for latency with a
better 3X adder delay or designing the 3X computa-
tion into the partial product array [2].

6. Conclusion

Our design goal was to implement a multiplier sup-
porting a fast cycle time with a latency of approxi-
mately 3 execution cycles. And our goal was not to
build the fastest multiplier but build a system with
a fast multiplier supporting multiple purposes. S/390
fixed point and floating point multiplication and divi-
sion and square root are implemented using this mul-
tiplier. This is a versatile multiplier for S/390 instruc-
tions and it is reasonably fast. A S/390 microprocessor
employing a 3 cycle execution radix-8 multiplier has
been fabricated and operated in a system at speeds up
to 400 MHz.

8

Figure 6. Physical Design of Counter Tree

7. Acknowledgment [9] R. Jessani and C. Olson. “The floating point unit of
the PowerPC 603e microprocessor,” IBM Journal of
Research and Development, 40(5):559-566, Sept. 1996.

[lo] J. A. K o w d e s ~ , J ~ . et al.. “A dual-execution pipelined
floating-point CMOS processor,” In ISSCC Digest of
Technical Papers, pages 358-359, Feb. 1996.

[ll] N. Ohkubo et al.. “A 4.4 ns CMOS 54 x 54-b multi-

The design of a microprocessor’s multiplier involves
many people and we would especially like to thank the
efforts of Barry Winter and Dale Hoffman.

References

S. F. Anderson, J. G. Earle, R. E. Goldschmidt, and
D. M. Powers. “The IBM system/360 model 91:
floating-point execution unit,” IBM Journal of Re-
search and Development, 11(1):34-53, Jan. 1967.
G. Bewick. “Fast multiplication: algorithms and im-
plementations,” Technical Report CSL-TR-94-617,
Stanford Univ., Apr. 1994.
A. D. Booth. “A signed multiplication technique,”
Quarterly J . Mech. Appl. Math., 4:236-240, 1951.
L. Dadda. “Some schemes for parallel multipliers,”
Alta Frequenza, 34:349-356, May 1965.
S. Dao-Trong and K. Helwig. “A single-chip IBM
system/390 floating-point processor in CMOS,” IBM
Journal of Research and Development, 36(4):733-749,
July 1992.
R. E. Goldschmidt. “Applications of division by con-
vergence,” Master’s thesis, M.I.T., June 1964.
M. Hanawa et al.. “A 4.3ns 0.3 ,um CMOS 54x54b
multiplier using precharged pass-transistor logic,” In
ISSCC Digest of Technical Papers, pages 364-365, Feb.
1996.
A. Inoue et al.. “A 4.lns compact 54x54b multiplier
utilising sign select Booth encoders,” In ISSCC Digest
of Technical Papers, pages 416-417, Feb. 1997.

plier using pass-transistor multiplexer,” IEEE J. Solid-
State Circuits, 30(3):251-257, Mar. 1995.

[12] C. V. Ramamoorthy, J. R. Goodman, and K. H. Kim.
“Some properties of iterative square-rooting methods
using high-speed multiplication,” IEEE Trans. Com-

[13] E. M. Schwarz, L. Sigd, and T. McPherson. “A 400
MHs CMOS S/390 Floating Point Unit,” to be pub-
lished in IBM Journal of Research and Development,
1997.

[14] S. Vassiliadis, E. M. Schwarz, and D. J. Hanrahan.
“A general proof for overlapped multiple-bit scanning
multiplications,” IEEE Trans. Comput., 38(2):172-

put., C-21(8):837-847, Aug. 1972.

. .

183, Feb. 1989.
[15] S. Vassiliadis, E. M. Schwarz, and B. M. Sung.

“Hard-wired multipliers with encoded partial prod-
ucts,” IEEE Trans. Comput., 40(11):1181-1197, Nov.
1991.

[16] C. S. Wallace. “A suggestion for a fast multiplier,”
IEEE Trans. Comput., EC-13:14-17, Feb. 1964.

[17] C. Webb et al.. “A 400 MHs S/390 microprocessor,”
In ISSCC Digest of Technical Papers, pages 168-169,
Feb. 1997.

[18] R. Yu and G. Zyner. “167 MHs Rad=-4 Floating Point
Multiplier,” In Proc. of Twelfth Symp. on Comput.
Arith., pages 149-154, Bath, England, July 1995.

9

