13

'ON A PROPOSED FLOATING-POINT STANDARD

W, Kahan'
University of California, Berkeley

J. Palmer - \
INTEL Corporation, Aloha, Oregon

October 1, 1979

A standard for binary floating-point arithmetic is being proposed and there is a very real possibility that it
will be adopted by many manufacturers and implemented on a wide range of computers. This development
matters to all of us concerned with numerical software. One of the principal motivations for the standard is to
distribute more evenly the burden of portability between hardware and software. At present, any program
intenided to be portable must be designed for a mythical computer that enjoys no capability not supported by
every computer on which the program will be run. That mythical computer is so much grubbier than almost any
real computer that a portable program will frequently be denigrated as ‘‘suboptimal’® and then supplanted by
another program supposedly “‘optimal’® for the real computer in question but often inferior in critical respects
like reliability. A standard — almost any reasonable standard - will surely improve the situation, A standard
environment for numerical programs will promote fair comparisons and sharing of numerical codes, thereby
fowering costs and prices. Furthermore, we have chosen repeatedly to enrich that environment iri order that
applications programs be simpler and more reliable. Thus will the onus of portability be shared among
hardware manufacturers and software producers.

© The standard that we will describe has been under development for some time and there have been many -
contributors. Its most recent history began with the publication, after a year’s study, of a paper (1] in 1977,
indicating INTEL's committment to a subset of the standard. This paper was the basis for the initial discus-
sions of the [EEE microprocessor floating-point standards commitlee that began in late 1977, Within a few
months, a much expanded proposal was brought to the committee by H. Stone, J. Coonen and one of us (W.
Kahan); that proposal’s latest drafts have been prepared by J. Coonen {3]. At the same time we and several
other people at INTEL have been scrutinizing the proposal, attempting to balance user benefit and implementa-
tion cost. Meanwhile the IEEE ‘‘microprocessor” committee has been augmented by representatives from mini-
computer and mainframe companies because they foresee a likely niigration towards any such standard.

The ideas embodied in this standard have been brewing for years, and it appears that their time has finally
come. The momentum behind the standard is growing and even now may be irreversible. Two chips are on
sale, the AMD 8512 and the INTEL 8232, which almost conform to a subset of the proposed standard, and
INTEL has indicated that its 8087, scheduled to appear in about a year, will support the standard fully. And

- other companies are known to be implementing it. What then is this standard?

The standard is not a set of radicaliy new and ingenious concepts but a carefully considered: collection and
integration of many people’s good ideas that have been thought of and occasionally implemented in isolation.
In this case the whole is indeed greater than the sum of its parts, for when they are all integrated the various
features support each other synergetically in a systemn whose increased safety, capability and simplicity transcend
its slightly increased implementation cost. Perhaps “‘simplicity” is the wrong word, because the draft standard
[2] looks very complicated; but so are the blueprints for a car’s automatic transmission much more complicated
than what a driver has to know to use it. The document [3] describing the implementation also appears compli-
cated because it handles all exceptions and covers several permissible levels of implementation. If a single
implementation level is selected and all exceptions are delegated to software, the hardware is simple to build.

The standard specifies two basic formats, single and double precision, that are intended to be fully sup-
poried by accurate functions and conversions and to be used in the ordinary way as a program’s named vari-
ables. (An optional third format, called extended, unpacked or temporary, is recommended for purposes to be
discussed later.) The two formats are shown below:

singfe (32 bit): X, has the form - :
s] e | f | |
0 8

31

'Supported in part by ONR Graat NODO14—76-C—0013

14

double (64 bit): X, has the form
1< R SR
0 Y . 63
The values of the representations are, for normalized numbers,
Xg = (=102271(1f), provided 0 < e < 255
b = (=13257198(1f), provided 0 < e < 2047,

The 1 to the left of the binary point is implicit and is not stored. The special value zero lies in the midst of the
“denormalized” numbers all distinguished by e = 0 and interpreted thus:

= (=1)27125(0.f), so { = 0 when Xs=10
= (=1)2712(0.5), s0 f = 0 when X =,

These numbers are used to implement gradual underflow [4], a techmque for handhng underflows that will be
discussed later. Exponents e = 255 in single or e = 2047 in double designate a reserved operand, a Not-a-
Number (NaN), that is used primarily for diagnostic information except that e = 255 and f = 0 {or e = 2047
and { = 0) represent oo the use of =0 and *oo will be explained later.

" The third format, extended, is optional but strongly recommended. It takes advantage of an unpacked for-"‘*

mat which is expected to be used by hardware or firmware to implement the ‘basic formats described above.
Whereas the single and double precision variables are to be used in the ordinary way, extended precision,
intended for their support, is to be used initially to imptément elementary functions (log, exp, cos, ...) and
binary-decimal conversion efficiently, later to be available for use for anenymous variables and for a limited
number-of named variables. The extended named variables are-usefuf 1o hold accumulations during the execu-
lion of a loop after which the resuit will normally be assigned to.one of the basnc formats. The extended format
is somewhat machine dependent but must, if support:ng double;,

have at least 15 bits of exponent

have at least 64 bils of precision

have an explicit first bit

4. include x0, *co and the full set of Not -a- Numbers

In a system where only the smgle format 1s implemented, the’ extended would have at least 11 bits of exponem
and 12 bits of precision.

i e

If compllers used the extended format for subexpressxons then over/underﬂows which mostly occur dur-

ing intermediate calculations, would almost disappear. Also, the extra precision would ensure that, for many

- caicutations, rounding errors be really negligibie, The idea here-is that the easiest errors and exceptions 1o

analyze and handle are those thai do not occur, Provided the compiler would allow some named extended varni-

ables, mixed mode arithmetic would be encouraged. THus, the use by default of éxtended precision would usu-

ally ensure that the only significant rounding error or possiblity of over/underflow would occur at the conclu-
sion of a calculation when the calculated value in extended must be rounded and asmgned to a basic format.

But we speak rather vaguely of roundmg, how do we propose to do it?

The standard requires two kinds of control on roundmg it$ direction and precision. We mean 10 prowde a
very simple model:

The rounded result will be one of the represemable neighbors of the m/mnely prec:se trie residlt, deperzdmg on the
specified direction.

The standard requires one rounding mode called “‘round to nearest even’ > (RN}

The rounded result is the nearest represemabfe number 10 the true resu!f .f there are . rwo then it is the one with
© the least significant bit zero.

In this mode, not only are the statistics 1rnpeccable (5] but the error and error bound are unimprovable, There
have been arguments, some spurious, that round to nearest odd (RO) is' preferable. There is of course little
difference, but the only one visible to a user is that RN produces integers more ofien than does RO. Consider:

“Theorem: Suppose m and n are small integers in the sense that 3m, Sm, 3n, 5n and mn can all be stored in a binary
Hoating-point word. Then

RN(2 RN ((mn)/(3n))) = m

RN RNmnd/(3n))) =
and the conclusion is not true with RO in place of RN.

\

15

in addition to RN, the standard recommends the provision of

RZ: round toward zero

RP: round toward +se

RM: round toward —ee)
The recommendation is justified because the mechanism to provide RN is exactly that needed for the others,
namely a “‘sticky’ or indicator [6] bit, and the additional modes yield capabilities far more valuable than their
trivial cost: .

RZ: allows one lo do the usual Fortran things with integers

RP and RM: permil implementation of both rigorous and tight bounding and Interval Arithmetic (7). In fact,
Interval Arithmetic can be implemented only a factor of about 5 slower than ordinary arith-
metic. (Our implementation of Interval Arithmetic {8] is safe, fast and closed: division by
intervals containing zero is allowed.)

4

We hope that higher level languages will soon provide facilities for controlling (1esting and setting} the round-
ing mode for expressions and blocks, and that they will add INTERVAL as a new two-word data type with the
obvious mixed mode arithmetic allowed. :

The otlier aspect of rounding control, namely precision control, is simply a way of enforcing that the pre-
cision of results be determined not by the ostensible precision of operands but rather by the results’ intended

use. I the destination is single or double, then the result must be correctly rounded to single or double preci= .«

sion respectively: if Lhe destinalion is an ‘extended variable then precision conirol allows us to choose whether
single. double or full {extended) precision results will be computed. Thus, a computation may be controlled so
that all caleutations are done 10 single precision, as is currently required by some languages, but the greater
exponent range of extended is still used for intermediates. Although the iniended defauit is extended precision,
we hope languages will provide precision control capabilily as well as rounding direction control. We hope too
that languages will be more flexible in allowing mixed precision arithmetic, and in treating the arguments of
subroutines as numbers rather than words of predelermined widths.

fn addition to rounding and precision control, the standard provides for “infinity™ control. Since e sys-
tem must cope somehow wilh division by zero and overflow, we have provided the two infinity symbols to
allow 4 computation to proceed as far as possible. Infinity control must be provided because there are Lwo types
ol infinity closure: projective and affine.

The projective closure is whal you gel when the real niumbers are thought to lie on a circle with infinity at
the 1op. For complex numbers, the Riemann sphere is the projeclive closure. There is a single poinlt at infinity,
(the signs of zero and infinity are ignored) and infinity obeys no order relationships. This mode is generally
used for rationat arithmetic, real or complex, such as continued fractions, and thus its main effect is to allow
division by zero without risk of undelected anomalies. The projective is the default mode.

Another mode, the affine mode, exists mainly 1o fix up overflow. Here the signs of infinity and zero are
relevant. This mode is nol perfect and must be used with care. One must analyze his program o make sure the
signs of zero and infinity are nol misinformation inherited from rounding errors.

Obviously the system must treat the infinitles in a stightly different manner in the two modes and thus the
language must allow the user to specify which mode he wants. (In Interval Arithmetic the signs of zero and
infinity have a different use. They signal whether an interval with endpoints zero or infinity is open or closed-
there [8).) Examples using the lwo modes will be given later.

The standard also allows automatic handling of underflow using gradual underflow. This is implemented
using denormalized numbers in single and double precision and unnormalized numbers in extended. These
numbers, while retaining as much information as possible, carry a warning {**not normalized™"} that will not
disappear unless the information lost by underflow is approximately the same as that lost to rounding error.
This mechanism is also not perfect, but in comparison to the usual “‘underflow to zero” (UZ), gradual
underflow

1. works better when they both work
2. occastonally works when UZ does not.

3. usually provides a warning when it does not work {with UZ all information is lost with no warning except
possibly an underflow indicator that, if present, is usually iznored.) :

Thus, the system provides slightly miore functionality and much more safety for only a small additional imple-
mentation cost, and without obliging programmers to abandon their bad habits. :

From the error analyst’s point of view, over/underflow is a violation of the simple rule

(») {(computed result) = (true resuit)%(l + small quantity bounded in advance)

16

valid tor each elementary arithmetic operalion: a_ldd.' sublract, multiply. divide, square root. Hence,
over/underflow must always set a flag, even if it does not trap. But if denormatized numbers are used. the error
analyst hus two more options, One, used by defuult, is Lo regard nonzero numbers whose inherited error may
“axceed that allowed by the rule (+) above us marked with a scarlet fetter which will not fade uniess the informa-
tion lost Lo underflow. turns out 1o have been information that would have been lost to roundoff anyway. Con-
sequently. agemipls (o greatly magnity denormalized numbers, by multiplying them by huge faclors or dividing
them by liny divisors are treated as invalid, This mechanism is appropriate For most “forward™ error analyses,
especially where an unwanled zero or infinite resuit would call “attention to itself but an ordinary number
without the scarlet fetter would not. Anolher option is to think of denormalized numbers in connection with an
error bound : :

tcomputed result) = (rue result)x {1 + small quantity bounded in advance) < {another tiny quantily}
c.e. in single precision; with RN rounding,

(computed resuit) = (rue result)x (1 £ 2 °Y) +2 b

This interpretation is appropriate for most “backward' error analyses, usually the term 2 'Y will be seen 0
disappear amidst the rounding errors. This interpretation is reatized by aljowing denormalized numbers 10 parli-
cipaie inall maitiplications und divisions as il they had firsi been nornalized. T

A simple example wiit illustrate the usetulness of gradual undertlow. Suppose the values A, B, C, D, E,
Foare regarded as exact and we calculate ' : '
X ;= (A + BxC) / (D + ExF).
If an overflow occurs the caleulated resutt- X will be infinite, zero.or NaN und that fact will be obvious.
It prbducls underflowed to zero and it D or A were smali, comparable (0 the underflow threshold, X

coutd easily be ofl by a tactor of, say, four, but otherwise unexceplional. Furthermore, this error could be
enormous compared with the damage that roundoff could cause. We don't do this.

Using gradual underflow ensures that the uncertainty in he result is virtually the same as roundotl uncer-
tainly unless a warning (besides underflow) is given by an invalid operation, a division by zero or an
~unnormatized or zero result X, , : s
Thus, in the absence of additional warnings gradual underflow makes (he threat of underflow comparable to
that of roundofl, ' o : : : S : ‘

Another feature that is provided by the standard is a set .of entities called Not-a-Numbers that may be
used in many ways, the principal one being the provision of relrospective diagnosis. For instunce, one can
defer judgement on whether an error (such as 070 or using unitialized dala) is significant until the program has
completed, contident that he will find encoded in a Not-a-Number some debugging information suchas a
pointer to the tirst occurrence of the error. ' : ,

The Tast exceplion specified by the standard is a4 maskable ““trap on exacl result”, This gives one the abil-
ity to use. a5 conveniently as one uses floating point arithmelic, the precision of the extended format .for exact
comptitations (accounting, extended integers). In addition it provides another debugging aid. And fAnally, it
altows cortain fast bul unstable algorithms to be used safely since on delecting a dangerous rounding error one
citn switch Lo a slower, more stable procedure. _ ' : :

The ability 1o handie exceptions in Lhe high level language is'a major consideration that must be given
more thought than it has %zeretoi‘ore evidenily received. . ‘ L : ‘

The standard provides by default for the fix-ups described above, but since all these may be in the
soltware or since others niay be desired, the language must provide for exception handling. An example of a
different Hx-up is: . ' o

if the system, instead of using gradual underflow, produces an encoding of the correct result and
then (raps, one may wish to.credle a heap of these numbers for later use.

The major features of Lhe standard have been discussed and we will now briefly outline some of its appli-
cations and.advantages. One of its advantages is that it aliows portability at two levels.

Al the higher level, we will have poriability of ‘‘programs™ expréssed and documented in natural
language. This can only be the case if the standard is so tight that when we transiate into computer language,
we will alf obtain essentially the same program and resulls. This allows us to take components of programs as
ideas and transfer them to other applications confident that the assumed computational eavironments are the
same. :

17

The lower level of portability concerns programs wrilten in high level languages. The standard preserves
portability of codes already in existence lo within an edil and recompile because the functionality of the stan-
dard equals or exceeds the capability assumed by existing portable software. Thus, existing portable software,
run on a standard system. will very likely either run better if the program was correct, or yield a diagnostic if
the old one was wrong. ‘

In addition to portability, the standard provides “‘program robusiness’’: codes writlen by programmers
who are nol numerical analysts have a much better chance of ~working' on a standard system than on a typical
system. (A working program either yields the correct answer or an explanation of why it can not.) A good
example is solving a quadratic equalion, :

A*X*_X — 24B*X +C =0
Almost everyone wriles:

ROOTI := (B + SQRT(B+B — A=C))/A
ROOT2:= (B — SQRT(B+B — A+C))/A

which is exceedingly vulnerable 10 roundoff on the Lypicai system; but on a system with extended precision for
intermediates. not only does the rounding error problem in these expressions recede substantially, but
over/underflow occurs only if the correct result cannot be represented.

i

In addition 1o portability and robusiness, the system admits to a simple model. This is important not only
for ease of explanation and use, bul also for automatic analysis of rounding errors. With this simple model, a..
symbolic manipulator like MACSYMA, and a set of numerical routines, it shouid be possible to produce a sys-
tem thal allows a user to simply describe his problem and the system will analyze it and choose the correct rou-
ling 1o solve it. Such a system would make use of extended precision, inexact result trap, diagnostic Not-a-
Numbers, gradual underflow, infinity fix-ups and Interval Arithmetic 1o detect and diagnose incorrect numerical
results and then 1o choose alternative procedures 1o recalculate those results more accurately. :

Below we give examples of programs that use various features of the system and illustrate its advantages.

0. Normalizing a vector: v, = x /][x||.
Extended variabie d {optional)

d:=0 ‘
fori=ltondod:=d + x*x,
d:= /d .
fori=liondov = xwld

it extended variables are availiable this program will always yield a valid answer given valid data. Without
extended precision but relying on gradual underflow, the computed result will be as reliable as roundoff aliows
as long as underflow is the only exception generated. This is true even though ail x/ may be denormalized and
yet produce. a normalized sum. In that case the uncertainty is only twice the uncertainty attributed to roundoff
alone.

1. Newton's divided difference formula. Consider a polynomial

S(x)y = ia,—]j (x=4)

jmd k=41
and its dertvative f'{x):

Extended variables f, {', vy (optional)
fri=0,f:=a,
for j=1 to n do begin
y.= x—bj; o= yof" + £, = ysf + 3
end j '
New x := x — {/f' ... for Newton's iteration to solve f(x) = 0.

Denormalized response to over/underflow upon multiplication avoids unnecessary loss of pfecision; invalid
multiplication or division, if it occurs, warns of unavoidable loss of precision 10 underflow,

M
2. Scalar product. r=b— Y ax; =b-a'x
=l
Extended variable sum {optional)
sum = b
for j=1 to n do sum = sum — a*x;
T == SUIT

18

Denormalized underflow ensures that r is about as correct as roundoff allows despite underflow except possibly
if ot underflow occurred and neither r nor b is a normalized nonzero number. The extended variable sum, if
available, would both preclude intermediate over/underflow and suppress roundoff to an extent that would
make the uncertainty in r nearly independent of n until n is very big, because the most significant rounding
error would usually occur when sum'is rounded into r. : :

3. Continued fraction f and its derivative f:
bﬂ

Flx) = a,+
bu—-l
x+a,t+

b
x+ag

xba gk

Extended variables f, ', r, s (optional) :
... On division by zero deliver co except 0/0 = NaN.
.. Either Affine or Projective mode is allowed, and so is infinite x.
fi=f:=0 ” ' '
forj=1tondo
begin :
ri=(x+a)+0 F.=b/r
if (ris finite) '
then ri= —F={1+{"r
~elseri= b{l+s)/b,
s:=f f:=1 ..s=previousf
end j
c=a_+ f, if x is infinite then {" := ~b /x?
This program is intended to give resuits { and " as correct as rounding errors will allow despite the possibie
intrusion of over/underflow and/or infinities. In particular, at poles where f is infinite, " wiil be infinite too

with the correct sign. {If the test *'r is finile” were taken for granted to simplify the program, then " would be
calculated as NaN whenever division by zero occusred in the loop.)

4. Rayleigh quetient. Givena symmetric matrix A and an approximate eigenpair (A,X), s0 AX == Ax, com-
pute an improvement o = X' (A—A)x/x"x and.a residual p = |} (A—A—0)x}] /|| x{} which bounds the error
in the eigenvalue extimate A t+o. . S -
Extended variables B, £, 3. ¢ {optional)
B = f.:=38:=0
fori==1 ton do
begin
@ 1= —AEX,
£ = XX, + £
fori=ltondog¢g:= ¢+ a,%x,
/ B =B+ drx
§ 1= § + g
end i
o= B/¢ o
p = 8/¢ — (B/&)’

We have calculated

¢c=x'x=|}x|]?
f. = ((A-)\)x),
b= x"(A-A)x

d =

[(A=) x]1?

19

5. Extended accumulation: S = LX via Dekker’s method {9} for extendiﬁg the available precision. To an
accumulation S+s we add a new terrii* X 1o get an updated accumulation S+s:
sl s
-+
S 11

Applications: summation of infinite series; numerical quadrature; integration. of ordinary differential equa-
" tions; running averages and standard deviations.

Assume: All variables and intermediate results are to one level of precision (all single or all double), with
. neither extended precision nor range. Underflows are denormalized. Rounding is to nearest.
Program: if |S| < |X| then swap(X,S)

T = {X+s) + 8
t:= ((§-T)+X) +5s
S 1= T+t

s 1= (T-8) +1

Only if X itself underflowed could underflow contaminate the sum, and then only if the final sum S is not

a normalized number. Do not use this program with other Kinds of rounding, nor with any other radix but... .

binary unless T and (have exiended precision.

6. Eigenvalue problem, Let T be the symmetric tridiagonal matrix

a, b

n n

where b, = 0, but every olher b, # 0. Given any number p, determine

k = number of T's eigenvalues less than p.
The following procedure was first introduced in the mid 1950°s by Boris Davison, a physicist interested in tran-
sport theory, and is used to find a few eigenvalues when n is very large. Normally T is given in terms of two
arrays, one of a’s and the other of b¥s. In the latter bj = 0 but every other bf = () since otherwise T would
split inlo independent parts whose eigenvalues could be located separately faster than jointly.

Extended variable d {optional, to avoid the nuisance of over/underflow; otherwise normalize denor-
ntalized divisors.) S : _

... On division by zero deliver infinity (0/0 cannot occur). Default Projective mode is all right but
Affine is betler because il avoids an unnecessary selting of the invafid operarion flag when **d 2 0 is

executed with infinile d. However to avoid d = —0 in the Affine mode we need the statement ...

if p=0then p := ~p| '

d:= 1, k:=0 ..k countsthe number of timesd < 0.

forj=1tondo '
begin
d = (a—p) — b'/d. if not(d>0) then k := k+1
end j :

Note: if d=0 on one pass through the loop, then d = +0 so that on the next pass d = —eco is computed

correctly.

If d is not an extended variabie, replacing bi"- by (b.]/d)a-bL will diminish the nuisance caused by over/underflow,
though at some cost in speed. ‘ o ‘ .

7. Preconditioning a guadratic equation. CAxX2-2«B+X+C = 0. The usual formula for the roots,
X = (B (B'—AC)/ A, suffers grievous harm from roundofl whenever the two roots are either too nearly
_equal or too disparate in magnitude. One way to cope is with the aid of double precision, by whose aid the
discriminant B*~AC may be calculated precisely. But an equally useful accomplishment is within reach of a
mere extended precision short of double precision. Here i a program which exploits the relation

20
1 0jl4 B|il ~s .
=det} _.qlig cllo 1 for every s

' A b
= det[b c] where b = B—sA and ¢ = (C~sB)—sb.

o 14 B
—Drscrrmmam_= det B C

The program chooses s in a way calculated to exploit cancellation without roundoff etror and hence withowt
significant loss of significance. o

Procedure Quadratic (A, B, C, rootl, root2, realpart, imaginarypart):
Extended variables d, ali subexpressions : '
Copydata: b:=B; c:=C
preconditionloop:
s 1= (b/A rounded to 8 significant bits for single data;
rounded to 11 significant bits for double data)
if s is finite and s # 0 then
begin .
Reset INEXACT fag _ L
b 1= b-s*A; ¢ 1= {c—s*b) — s=b ° '
if not INEXACT then begin¢ := ¢ b= b,. go 1o preconditionloop end
end =0 . _
d = b«b — A*c ... l0 extended precision and range, so unnecessary over/underflow is avoided.
if d < 0 then begin reaiparl := B/A; imaginarypart 1= /~d/A; return
d:=d; ifB<Othend:= —d _
d:=d+ B: rootl := C/d; roet2 .= d/A; return
end Quadratic

Each root is correct to nearly dala-prec-is'ion, unless it lies out of range, despite that intermediate
results might over/underflow if extended range were not available.

Similar notions lead to schemes to precondition very ill-conditioned sysiems of linear equations in
cases where backward error-analysis explains but does ot excuse more conventional methods.

8. Over/underflow without heaps for products and quotients. - Calculate:

[HN

r= H(dﬁ-b,)/ﬂ(cﬁd,-)
. r=] el
exploiting exponent wrap-around by *B whenever over/underflow is trapped, i.2.
Overflowed (X+Y) == (X+Y)/28, :
Underflowed (X+Y) = (XxY)«28, S Co : ,
in the absence of Extended format. The standard specifies B-= 192 or 1536 for Single and Pouble respec-

tively,

ro=1: K:=0 .. countover/underflows -
count: begin .
Upon OVERFLOW do K := K+1
Upon UNDERFLOW do K := K-! !
forj=ltondor:= r*(ci+dj.)
K:=—=K; r:=1l/r
fori=1tomdor = r«a+b)
. now (desired r) = (stored r)=2%¥
if r = 0 or ris not finite then K := 0 ' _
ifiK| = 1 thenbeginL := K, K:=0; r:= pa2b 82,0082 eng
end count ... revert to previous mode of response to over/underflow
if K 2 0then .. rlies oul of range : :

This kind of code provides a large part of the capability ot_h-crwise requiring a 'h'é'a'p.‘ .

CONCLUSION :

The standard has been describled briefly. One area that is also specified but not discussed is BCD
conversion. We also intend that in the future the elementary transcendental functions wili be specified in
the standard. And, ultimately, we hope a decimal version of this standard may be promuigated.

o

21

Floaling-point arithmelic, as most are aware, has inherent pitfalls that are so varied and subtle that al-

most everyone would prefer not to think about them. Unfortunately that cannot be — some of us must
think about them, including language people. but with a4 well designed and widely implemented standard,
the number of those who musl think about pitfalls and the required depth of their thought can be minim-
ized. Thus, more people will be able 10 devote their full.intellectual energy to their own problems.

We live in an imperfect world and this standard is no exception; absolute safety, if attainable, would

have ¢ost more that its worth, This standard was designed 1o vield, for a slightly increased implementation
cost, a considerably safer system with greater capability (debugging aids, deferred judgement) and simpler
explanation than wypical floating-point sysiems.

BIBLIOGRAPHY

(1
(2]

3]

4]

Palmer,). (1977) “"The INTEL Swandard for Floating-Point Arithmetic,”” Proc. COMPSAC, 107-112.

Coonen. J.. W. Kuhan, J. Palmer, T. Pittman and D, Stevenson (1979), **A Proposed Standard lor
Binury Flouting Point Arithmetic,”” This issue, pages xx-yy.

Coonen, J. {1979}, “Specifications for a Proposed Standard for Floating-Point Arithmetic,” Draft
submitted 1o EEE Microprocessor Floating-Point Standards Committee, August 26, -

Kahan. W. (1966), *7094-11 System Support for Numerical Analysis.”” SHARE Secretarial Distribu-
ton SSD-139, tlem C4537,

< Brent, RO 61973}, "On the Precision Attainable with Various Floating-Point Number Sysiems,”’,

IEEE Trans. Computers, Vol C-22, No. 6, 601-607.

Yohe, 1. {1973}, “Roundings in Floating-Poim Arithmetic,”” IEEE Trans. Computers, Vol. C-22,
No.b, §77-586. '

Moore. R.E. (1966), Interval Analysis, Englewood Cliffs, N.J.: Prentice-Hall.

© Kahan, W. (1968), **A More Complele Interval Arithmetic,” Lecture Notes for a course at Universi-

iy of Michigan, June 17-21,

Dekher. TU1 11971}, A Floating-Point Technique for Extending the Available Precision,”™ Numer-
wmsche Mathematik, Vol, 18, 224-242,

