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Foreword

Rijndael was the surprise winner of the contest for the new Advanced En-
cryption Standard (AES) for the United States. This contest was organized
and run by the National Institute of Standards and Technology (NIST) be-
ginning in January 1997; Rijndael was announced as the winner in October
2000. It was the “surprise winner” because many observers (and even some
participants) expressed scepticism that the US government would adopt as
an encryption standard any algorithm that was not designed by US citizens.

Yet NIST ran an open, international, selection process that should serve
as a model for other standards organizations. For example, NIST held their
1999 AES meeting in Rome, Italy. The five finalist algorithms were designed
by teams from all over the world.

In the end, the elegance, efficiency, security, and principled design of
Rijndael won the day for its two Belgian designers, Joan Daemen and Vincent
Rijmen, over the competing finalist designs from RSA, IBM, Counterpane
Systems, and an English/Israeli/Danish team.

This book is the story of the design of Rijndael, as told by the designers
themselves. It outlines the foundations of Rijndael in relation to the previous
ciphers the authors have designed. It explains the mathematics needed to
understand the operation of Rijndael, and it provides reference C code and
test vectors for the cipher.

Most importantly, this book provides justification for the belief that
Rijndael is secure against all known attacks. The world has changed greatly
since the DES was adopted as the national standard in 1976. Then, argu-
ments about security focused primarily on the length of the key (56 bits).
Differential and linear cryptanalysis (our most powerful tools for breaking
ciphers) were then unknown to the public. Today, there is a large public lit-
erature on block ciphers, and a new algorithm is unlikely to be considered
seriously unless it is accompanied by a detailed analysis of the strength of
the cipher against at least differential and linear cryptanalysis.

This book introduces the “wide trail” strategy for cipher design, and
explains how Rijndael derives strength by applying this strategy. Excellent
resistance to differential and linear cryptanalysis follows as a result. High
efficiency is also a result, as relatively few rounds are needed to achieve strong
security.
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The adoption of Rijndael as the AES is a major milestone in the history
of cryptography. It is likely that Rijndael will soon become the most widely
used cryptosystem in the world. This wonderfully written book by the de-
signers themselves is a “must read” for anyone interested in understanding
this development in depth.

Ronald L. Rivest
Viterbi Professor of Computer Science

MIT
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Preface

This book is about the design of Rijndael, the block cipher that became
the Advanced Encryption Standard (AES). According to the ‘Handbook of
Applied Cryptography’ [110], a block cipher can be described as follows:

A block cipher is a function which maps n-bit plaintext blocks to n-
bit ciphertext blocks; n is called the block length. [. . . ] The function
is parameterized by a key.

Although block ciphers are used in many interesting applications, such as
e-commerce and e-security, this book is not about applications. Instead, this
book gives a detailed description of Rijndael and explains the design strategy
that was used to develop it.

Structure of this book

When we wrote this book, we had basically two kinds of readers in mind.
Perhaps the largest group of readers will consist of people who want to read
a full and unambiguous description of Rijndael. For those readers, the most
important chapter of this book is Chap. 3, which gives its comprehensive
description. In order to follow our description, it might be helpful to read
the preliminaries given in Chap. 2. Advanced implementation aspects are
discussed in Chap. 4. A short overview of the AES selection process is given
in Chap. 1.

A large part of this book is aimed at readers who want to know why we
designed Rijndael in the way we did. For them, we explain the ideas and
principles underlying the design of Rijndael, culminating in our wide trail
design strategy. In Chap. 5 we explain our approach to block cipher design
and the criteria that played an important role in the design of Rijndael. Our
design strategy has grown out of our experiences with linear and differential
cryptanalysis, two cryptanalytical attacks that have been applied with some
success to the previous standard, the Data Encryption Standard (DES). In
Chap. 6 we give a short overview of the DES and of the differential and
the linear attacks that are applied to it. Our framework to describe linear
cryptanalysis is explained in Chap. 7; differential cryptanalysis is described
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in Chap. 8. Finally, in Chap. 9, we explain how the wide trail design strategy
follows from these considerations.

Chap. 10 gives an overview of the published attacks on reduced-round
variants of Rijndael. Chap. 11 gives an overview of ciphers related to Rijndael.
We describe its predecessors and discuss their similarities and differences.
This is followed by a short description of a number of block ciphers that have
been strongly influenced by Rijndael and its predecessors.

In Chap. 12 we show how linear and differential analysis can be applied to
ciphers that are defined in terms of finite field operations rather than Boolean
functions. In Chap. 13 we discuss extensions of differential and linear crypt-
analysis. In Chap. 14 we study the probability of differentials and trails over
two rounds of Rijndael, and in Chap. 15 we define plateau trails. To assist
programmers, Appendix A lists some tables that are used in various descrip-
tions of Rijndael, Appendix B gives a set of test vectors, and Appendix C
consists of an example implementation of Rijndael in the C programming
language.
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1. The Advanced Encryption Standard Process

The main subject of this book would probably have remained an esoteric topic
of cryptographic research — with a name unpronounceable to most of the
world — without the Advanced Encryption Standard (AES) process. There-
fore, we thought it proper to include a short overview of the AES process.

1.1 In the Beginning . . .

In January 1997, the US National Institute of Standards and Technology
(NIST) announced the start of an initiative to develop a new encryption
standard: the AES. The new encryption standard was to become a Federal
Information Processing Standard (FIPS), replacing the old Data Encryption
Standard (DES) and Triple DES.

Unlike the selection process for the DES, the Secure Hash Algorithm
(SHA-1) and the Digital Signature Algorithm (DSA), NIST had announced
that the AES selection process would be open. Anyone could submit a can-
didate cipher. Each submission, provided it met the requirements, would be
considered on its merits. NIST would not perform any security or efficiency
evaluation itself, but instead invited the cryptology community to mount
attacks and try to cryptanalyze the different candidates, and anyone who
was interested to evaluate implementation cost. All results could be sent to
NIST as public comments for publication on the NIST AES web site or be
submitted for presentation at AES conferences. NIST would merely collect
contributions, using them as the basis for their selection. NIST would moti-
vate their choices in evaluation reports.

1.2 AES: Scope and Significance

The official scope of a FIPS standard is quite limited: the FIPS only applies
to the US Federal Administration. Furthermore, the new AES would only
be used for documents that contain sensitive but not classified information.
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2 1. The Advanced Encryption Standard Process

However, it was anticipated that the impact of the AES would be much larger
than this: for the AES is the successor of the DES, the cipher that ever since
its adoption has been used as a worldwide de facto cryptographic standard
by banks, administrations and industry.

The major factors for the quick acceptance of Rijndael are that it is
available royalty-free, and that it can be implemented easily on a wide range
of platforms without reducing bandwidth in a significant way.

1.3 Start of the AES Process

In September 1997, the final request for candidate nominations for the AES
was published. The minimum functional requirements asked for symmetric
block ciphers capable of supporting block lengths of 128 bits and key lengths
of 128, 192 and 256 bits. An early draft of the AES functional requirements
had asked for block ciphers also supporting block sizes of 192 and 256 bits,
but this requirement was dropped later on. Nevertheless, since the request
for proposals mentioned that extra functionality in the submissions would be
received favorably, some submitters decided to keep the variable block length
in the designs. (Examples include RC6 and Rijndael.)

NIST declared that it was looking for a block cipher as secure as Triple
DES, but much more efficient. Another mandatory requirement was that the
submitters agreed to make their cipher available on a worldwide royalty-free
basis if it were to be selected as the AES. In order to qualify as an official
AES candidate, the designers had to provide:

1. A complete written specification of the block cipher in the form of an
algorithm.

2. A reference implementation in ANSI C, and mathematically optimized
implementations in ANSI C and Java.

3. Implementations of a series of known-answer and Monte Carlo tests, as
well as the expected outputs of these tests for a correct implementation
of their block cipher.

4. Statements concerning the estimated computational efficiency in both
hardware and software, the expected strength against cryptanalytic at-
tacks, and the advantages and limitations of the cipher in various appli-
cations.

5. An analysis of the cipher’s strength against known cryptanalytic attacks.

It turned out that the required effort to produce a ‘complete and proper’ sub-
mission package would already filter out several of the proposals. Early in the
submission stage, the Cryptix team announced that they would provide Java
implementations for all submitted ciphers, as well as Java implementations
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of the known-answer and Monte Carlo tests. This generous offer took some
weight off the designers’ shoulders, but still the effort required to compile
a submission package was too heavy for some designers. The fact that the
AES Application Programming Interface (API), which all submissions were
required to follow, was updated twice during the submission stage increased
the workload. Table 1.1 lists (in alphabetical order) the 15 submissions that
were completed in time and accepted.

Table 1.1. The 15 AES candidates accepted for the first evaluation round

Submissions Submitter(s) Submitter type

CAST-256 Entrust (CA) Company

Crypton Future Systems (KR) Company

DEAL Outerbridge and Knudsen (USA–DK) Researchers

DFC ENS-CNRS (FR) Researchers

E2 NTT (JP) Company

FROG TecApro (CR) Company

HPC Schroeppel (USA) Researcher

LOKI97 Brown et al. (AU) Researchers

Magenta Deutsche Telekom (DE) Company

Mars IBM (USA) Company

RC6 RSA (USA) Company

Rijndael Daemen and Rijmen (BE) Researchers

SAFER+ Cylink (USA) Company

Serpent Anderson, Biham and Knudsen (UK–IL–DK) Researchers

Twofish Counterpane (USA) Company

1.4 The First Round

The selection process was divided into several stages, with a public workshop
to be held near the end of each stage. The process started with a submission
stage, which ended on 15 May 1998. All accepted candidates were presented
at The First Advanced Encryption Standard Candidate Conference, held in
Ventura, California, on 20-22 August 1998. This was the official start of the
first evaluation round, during which the international cryptographic commu-
nity was asked for comments on the candidates.
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1.5 Evaluation Criteria

The evaluation criteria for the first round were divided into three major cate-
gories: security, cost and algorithm and implementation characteristics. NIST
invited the cryptology community to mount attacks and try to cryptanalyze
the different candidates, and anyone interested to evaluate implementation
cost. The result could be sent to NIST as public comments or be submitted
for presentation at the second AES conference. NIST collected all contribu-
tions and would use these to select five finalists. In the following sections we
discuss the evaluation criteria.

1.5.1 Security

Security was the most important category, but perhaps the most difficult
to assess. Only a small number of candidates showed some theoretical design
flaws. The large majority of the candidates fell into the category ‘no weakness
demonstrated’.

1.5.2 Costs

The ‘costs’ of the candidates were divided into different subcategories. A first
category was formed by costs associated with intellectual property (IP) is-
sues. First of all, each submitter was required to make his cipher available
for free if it were to be selected as the AES. Secondly, each submitter was
also asked to make a signed statement that he would not claim ownership
or exercise patents on ideas used in another submitter’s proposal that would
eventually be selected as the AES. A second category of ‘costs’ was formed
by costs associated with the implementation and execution of the candi-
dates. This covers aspects such as computational efficiency, program size and
working memory requirements in software implementations, and chip area in
dedicated hardware implementations.

1.5.3 Algorithm and Implementation Characteristics

The category algorithm and implementation characteristics grouped a num-
ber of features that are harder to quantify. The first one is versatility, meaning
the ability to be implemented efficiently on different platforms. At one end
of the spectrum the AES should fit 8-bit micro-controllers and smart cards,
which have limited storage for the program and a very restricted amount of
RAM for working memory. At the other end of the spectrum the AES should
be implementable efficiently in dedicated hardware, e.g. to provide on-the-fly
encryption/decryption of communication links at gigabit-per-second rates. In
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between there is the whole range of processors that are used in servers, work-
stations, PCs, palmtops etc., which are all devices in need of cryptographic
support. A prominent place in this range is taken by the Pentium family of
processors due to its presence in most personal computers.

A second feature is key agility. In most block ciphers, key setup takes
some processing. In applications where the same key is used to encrypt large
amounts of data, this processing is relatively unimportant. In applications
where the key often changes, such as the encryption of Internet Protocol
(IP) packets in Internet Protocol Security (IPSEC), the overhead due to key
setup may become quite relevant. Obviously, in those applications it is an
advantage to have a fast key setup.

Finally, there is the criterion of simplicity, which may even be harder to
evaluate than cryptographic security. Simplicity is related to the size of the
description, the number of different operations used in the specification, the
symmetry or lack of symmetry in the cipher and the ease with which the
algorithm can be understood. All other things being equal, NIST considered
it to be an advantage for an AES candidate to be more simple for reasons of
ease of implementation and confidence in security.

1.6 Selection of Five Finalists

In March 1999, the second AES conference was held in Rome, Italy. The
remarkable fact that a US Government department organized a conference
on a future US Standard in Europe is easily explained. NIST chose to combine
the conference with the yearly Fast Software Encryption Workshop, which
had for the most part the same target audience and was scheduled to be in
Rome.

1.6.1 The Second AES Conference

The papers presented at the conference ranged from crypto-attacks, cipher
cross-analysis, smart-card-related papers, and so-called algorithm observa-
tions. In the session on cryptographic attacks, it was shown that FROG,
Magenta and LOKI97 did not satisfy the security requirements imposed by
NIST. For DEAL it was already known in advance that the security require-
ments were not satisfied. For HPC weaknesses had been demonstrated in a
paper previously sent to NIST. This eliminated five candidates.

Some cipher cross-analysis papers focused on performance evaluation. The
paper of B. Gladman [65], a researcher who had no link with any submission,
considered performance on the Pentium processor. From this paper it became
clear that RC6, Rijndael, Twofish, MARS and Crypton were the five fastest
ciphers on this processor. On the other hand, the candidates DEAL, Frog,
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Magenta, SAFER+ and Serpent appeared to be problematically slow. Other
papers by the Twofish team (Bruce Schneier et al.) [138] and a French team
of 12 cryptographers [10] essentially confirmed this.

A paper by E. Biham warned that the security margins of the AES can-
didates differed greatly and that this should be taken into account in the
performance evaluation [21]. The lack of speed of Serpent (with E. Biham
in the design team) was seen to be compensated for by a very high margin
of security. Discussions on how to measure and take into account security
margins lasted until after the third AES conference.

In the session on smart cards there were two papers comparing the perfor-
mance of AES candidates on typical 8-bit processors and a 32-bit processor:
one by G. Keating [78] and one by G. Hachez et al. [69]. From these papers
and results from other papers, it became clear that some candidates simply
did not fit onto a smart card and that Rijndael was by far the best suited
for this platform. In the same session there were some papers that discussed
power analysis attacks and the suitability of the different candidates for im-
plementations that can resist against these attacks [27, 39, 49].

Finally, in the algorithm observations session, there were a number of
papers in which AES submitters re-confirmed their confidence in their sub-
mission by means of a considerable amount of formulas, graphs and tables and
some loyal cryptanalysis (the demonstration of having found no weaknesses
after attacks on their own cipher).

1.6.2 The Five Finalists

After the workshop there was a relatively calm period that ended with the
announcement of the five candidates by NIST in August 1999. The finalists
were (in alphabetical order): MARS, RC6, Rijndael, Serpent and Twofish.

Along with the announcement of the finalists, NIST published a status
report [118] in which the selection was motivated. The choice coincided with
the top five that resulted from the response to a questionnaire handed out
at the end of the second AES workshop. Despite its moderate performance,
Serpent made it thanks to its high security margin. The candidates that had
not been eliminated because of security problems were not selected mainly
for the following reasons:

1. CAST-256: comparable to Serpent but with a higher implementation
cost.

2. Crypton: comparable to Rijndael and Twofish but with a lower security
margin.

3. DFC: low security margin and bad performance on anything other than
64-bit processors.



7

4. E2: comparable to Rijndael and Twofish in structure, but with a lower
security margin and higher implementation cost.

5. SAFER+: high security margin similar to Serpent but even slower.

1.7 The Second Round

After the announcement of the five candidates NIST made another open call
for contributions focused on the finalists. Intellectual property issues and
performance and chip area in dedicated hardware implementations entered
the picture. A remarkable contribution originated from NSA, presenting the
results of hardware-performance simulations performed for the finalists. This
third AES conference was held in New York City in April 2000. As in the
year before, it was combined with the Fast Software Encryption Workshop.

In the sessions on cryptographic attacks there were some interesting re-
sults but no breakthroughs, since none of the finalists showed any weak-
nesses that could jeopardize their security. Most of the results were attacks
on reduced-round versions of the ciphers. All attacks presented are only of
academic relevance in that they are only slightly faster than an exhaustive
key search. In the sessions on software implementations, the conclusions of
the second workshop were confirmed.

In the sessions on dedicated hardware implementations attention was paid
to Field Programmable Gate Arrays (FPGAs) and Application-Specific In-
tegrated Circuits (ASICs). In the papers Serpent came out as a consistently
excellent performer. Rijndael and Twofish also proved to be quite suited for
hardware implementation while RC6 turned out to be expensive due to its
use of 32-bit multiplication. Dedicated hardware implementations of MARS
seemed in general to be quite costly. The Rijndael-related results presented at
this conference are discussed in more detail in Chap. 4 (which is on efficient
implementations) and Chap. 10 (which is on cryptanalytic results).

At the end of the conference a questionnaire was handed out asking about
the preferences of the attendants. Rijndael was resoundingly voted to be the
public’s favorite.

1.8 The Selection

On 2 October 2000, NIST officially announced that Rijndael, without modifi-
cations, would become the AES. NIST published an excellent 116-page report
in which they summarize all contributions and motivate the choice [117]. In
the conclusion of this report, NIST motivates the choice of Rijndael with the
following words:

1.8 The Selection
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Rijndael appears to be consistently a very good performer in both
hardware and software across a wide range of computing environ-
ments regardless of its use in feedback or non-feedback modes. Its
key setup time is excellent, and its key agility is good. Rijndael’s
very low memory requirements make it very well suited for restricted-
space environments, in which it also demonstrates excellent perfor-
mance. Rijndael’s operations are among the easiest to defend against
power and timing attacks. Additionally, it appears that some defense
can be provided against such attacks without significantly impacting
Rijndael’s performance.

Finally, Rijndael’s internal round structure appears to have good
potential to benefit from instruction-level parallelism.



2. Preliminaries

In this chapter we introduce a number of mathematical concepts and explain
the terminology that we need in the specification of Rijndael (in Chap. 3),
in the treatment of some implementation aspects (in Chap. 4) and when we
discuss our design choices (Chaps. 5–9).

The first part of this chapter starts with a discussion of finite fields, the
representation of their elements and the impact of this on their operations
of addition and multiplication. Subsequently, there is a short introduction
to linear codes. Understanding the mathematics is not necessary for a full
and correct implementation of the cipher. However, the mathematics are
necessary for a good understanding of our design motivations. Knowledge
of the underlying mathematical constructions also helps for doing optimized
implementations. Not all aspects will be covered in detail; where possible, we
refer to books dedicated to the topics we introduce.

In the second part of this chapter we introduce the terminology that
we use to indicate different common types of Boolean functions and block
ciphers.

When the discussion moves from a general level to an example specific
to Rijndael, the text is put in a grey box.

Notation. We use in this book two types of indexing:

subscripts: Parts of a larger, named structure are denoted with subscripts.
For instance, the bytes of a state a are denoted by ai,j (see Chap. 3).

superscripts: In an enumeration of more or less independent objects, where
the objects are denoted by their own symbols, we use superscripts. For
instance the elements of a nameless set are denoted by {a(1), a(2), . . . },
and consecutive rounds of an iterative transformation are denoted by
ρ(1), ρ(2), . . . (see Sect. 2.3.4).
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2.1 Finite Fields

In this section we present a basic introduction to the theory of finite fields.
For a more formal and elaborate introduction, we refer to the work of Lidl
and Niederreiter [95].

2.1.1 Groups, Rings and Fields

We start with the formal definition of a group.

Definition 2.1.1. An Abelian group (G,+) consists of a set G and an op-
eration defined on its elements, here denoted by ‘+’:

+ : G×G → G : (a, b) �→ a+ b. (2.1)

For the group to qualify as an Abelian group, the operation has to fulfill the
following conditions:

closed: ∀ a, b ∈ G : a+ b ∈ G (2.2)

associative: ∀ a, b, c ∈ G : (a+ b) + c = a+ (b+ c) (2.3)

commutative: ∀ a, b ∈ G : a+ b = b+ a (2.4)

neutral element: ∃0 ∈ G, ∀ a ∈ G : a+ 0 = a (2.5)

inverse elements: ∀ a ∈ G, ∃ b ∈ G : a+ b = 0. (2.6)

Example 2.1.1. The best-known example of an Abelian group is (Z,+), the
set of integers, with the operation ‘addition’. The structure (Zn,+) is a second
example. The set contains the integer numbers 0 to n− 1 and the operation
is addition modulo n.

Since the addition of integers is the best-known example of a group, usually
the symbol ‘+’ is used to denote an arbitrary group operation. In this book,
both an arbitrary group operation and integer addition will be denoted by
the symbol ‘+’.

Both rings and fields are formally defined as structures that consist of a
set of elements with two operations defined on these elements.

Definition 2.1.2. A ring (R,+, ·) consists of a set R with two operations
defined on its elements, here denoted by ‘+’ and ‘·’. For R to qualify as a
ring, the operations have to fulfill the following conditions:

1. The structure (R,+) is an Abelian group.

2. The operation ‘·’ is closed, and associative over R. There is a neutral
element for ‘·’ in R.
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3. The two operations ‘+’ and ‘·’ are related by the law of distributivity:

∀ a, b, c ∈ R : (a+ b) · c = (a · c) + (b · c). (2.7)

The neutral element for ‘·’ is usually denoted by 1. A ring (R,+, ·) is called
a commutative ring if the operation ‘·’ is commutative.

Example 2.1.2. The best-known example of a ring is (Z,+, ·): the set of inte-
gers, with the operations ‘addition’ and ‘multiplication’. This ring is a com-
mutative ring. The set of matrices with n rows and n columns, with the
operations ‘matrix addition’ and ‘matrix multiplication’ is a ring, but not a
commutative ring (if n > 1).

Definition 2.1.3. A structure (F,+, ·) is a field if the following two condi-
tions are satisfied:

1. (F,+, ·) is a commutative ring.

2. For all elements of F , there is an inverse element in F with respect to
the operation ‘·’, except for the element 0, the neutral element of (F,+).

A structure (F,+, ·) is a field iff both (F,+) and (F\{0}, ·) are Abelian groups
and the law of distributivity applies. The neutral element of (F\{0}, ·) is
called the unit element of the field.

Example 2.1.3. The best-known example of a field is the set of real num-
bers, with the operations ‘addition’ and ‘multiplication.’ Other examples are
the set of complex numbers and the set of rational numbers, with the same
operations. Note that for these examples the number of elements is infinite.

2.1.2 Vector Spaces

Let (F,+, ·) be a field, with unit element 1, and let (V,+) be an Abelian
group. Let ‘�’ be an operation on elements of F and V :

� : F × V → V. (2.8)

Definition 2.1.4. The structure (F, V,+,+, ·,�) is a vector space over F
if the following conditions are satisfied:

1. distributivity:

∀ a ∈ F, ∀ v,w ∈ V : a� (v+w) = (a� v)+ (a�w) (2.9)

∀ a, b ∈ F, ∀ v ∈ V : (a+ b)� v = (a� v)+ (b� v). (2.10)

2. associativity:

∀ a, b ∈ F, ∀ v ∈ V : (a · b)� v = a� (b� v). (2.11)



12 2. Preliminaries

3. neutral element:

∀ v ∈ V : 1� v = v. (2.12)

The elements of V are called vectors, and the elements of F are the scalars.
The operation ‘+’ is called the vector addition, and ‘�’ is the scalar multi-
plication.

Example 2.1.4. For any field F , the set of n-tuples (a0, a1, . . . , an−1) forms a
vector space, where ‘+’ and ‘�’ are defined in terms of the field operations:

(a1, . . . , an)+ (b1, . . . , bn) = (a1 + b1, . . . , an + bn) (2.13)

a� (b1, . . . , bn) = (a · b1, . . . , a · bn). (2.14)

A vector v is a linear combination of the vectors w(1),w(2), . . . ,w(s) if
there exist scalars a(i) such that:

v = a(1) �w(1) + a(2) �w(2) + · · · + a(s) �w(s). (2.15)

In a vector space we can always find a set of vectors such that all elements of
the vector space can be written in exactly one way as a linear combination of
the vectors of the set. Such a set is called a basis of the vector space. We will
consider only vector spaces where the bases have a finite number of elements.
We denote a basis by a column vector e:

e =
[
e(1), e(2), . . . e(n)

]T
. (2.16)

In this expression the T superscript denotes taking the transpose of the row
vector in the right-hand side of the equation. The scalars used in this linear
combination are called the coordinates of x with respect to the basis e:

co(x) = x = (c1, c2, . . . , cn) ⇔ x =
∑n

i=1ci � e(i). (2.17)

In order to simplify the notation, from now on we will denote vector addition
by the same symbol as the field addition (‘+’), and the scalar multiplication
by the same symbol as the field multiplication (‘·’). It should always be clear
from the context what operation the symbols are referring to.

A function f is called a linear function of a vector space V over a field F ,
if it has the following properties:

∀ x,y ∈ V : f(x+ y) = f(x) + f(y) (2.18)

∀ a ∈ F, ∀ x ∈ V : f(ax) = af(x). (2.19)

The linear functions of a vector space can be represented by a matrix multi-
plication on the coordinates of the vectors. A function f is a linear function
of the vector space GF(p)

n
iff there exists a matrix M such that

co(f(x)) = M · x, ∀ x ∈ GF(p)
n
. (2.20)



2.1 Finite Fields 13

2.1.3 Fields with a Finite Number of Elements

A finite field is a field with a finite number of elements. The number of
elements in the set is called the order of the field. A field with order m exists
iff m is a prime power, i.e. m = pn for some integer n and with p a prime
integer. p is called the characteristic of the finite field.

All finite fields used in the description of Rijndael have characteristic 2.

Fields of the same order are isomorphic: they display exactly the same
algebraic structure, differing only in the representation of the elements. In
other words, for each prime power there is exactly one finite field, denoted
by GF(pn). From now on, we will only consider fields with a finite number of
elements.

Perhaps the most intuitive examples of finite fields are the fields of prime
order p. The elements of a finite field GF(p) can be represented by the integers
0, 1, . . . , p − 1. The two operations of the field are then ‘integer addition
modulo p’ and ‘integer multiplication modulo p’.

For finite fields with an order that is not prime, the operations addition
and multiplication cannot be represented by addition and multiplication of
integers modulo a number. Instead, slightly more complex representations
must be introduced. Finite fields GF(pn) with n > 1 can be represented in
several ways. The representation of GF(pn) by means of polynomials over
GF(p) is quite popular and is the one we have adopted in Rijndael and its
predecessors. In the next sections, we explain this representation.

2.1.4 Polynomials over a Field

A polynomial over a field F is an expression of the form

b(x) = bn−1x
n−1 + bn−2x

n−2 + · · · + b2x
2 + b1x+ b0, (2.21)

x being called the indeterminate of the polynomial, and the bi ∈ F the
coefficients. The degree of a polynomial equals � if bj = 0, ∀j > �, and � is the
smallest number with this property. The set of polynomials over a field F is
denoted by F [x]. The set of polynomials over a field F that have a degree
below � is denoted by F [x]|�.

In computer memory, the polynomials in F [x]|� with F a finite field can
be stored efficiently by storing the � coefficients as a string.

Example 2.1.5. Let the field F be GF(2), and let � = 8. The polynomials can
conveniently be stored as 8-bit values, or bytes:

b(x) �→ b7b6b5b4b3b2b1b0. (2.22)

Strings of bits are often abbreviated using the hexadecimal notation.
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Example 2.1.6. The polynomial in GF(2)|8
x6 + x4 + x2 + x+ 1

corresponds to the bit string 01010111, or 57 in hexadecimal notation.

2.1.5 Operations on Polynomials

We define the following operations on polynomials.

Addition. Summing of polynomials consists of summing the coefficients
with equal powers of x, where the summing of the coefficients occurs in the
underlying field F :

c(x) = a(x) + b(x) ⇔ ci = ai + bi, 0 ≤ i < n. (2.23)

The neutral element for the addition 0 is the polynomial with all coefficients
equal to 0. The inverse element of a polynomial can be found by replacing
each coefficient by its inverse element in F . The degree of c(x) is at most the
maximum of the degrees of a(x) and b(x), hence the addition is closed. The
structure (F [x]|�,+) is an Abelian group.

Example 2.1.7. Let F be the field GF(2). The sum of the polynomials de-
noted by 57 and 83 is the polynomial denoted by D4, since:

(x6 + x4 + x2 + x+ 1) + (x7 + x+ 1)

= x7 + x6 + x4 + x2 + (1 + 1)x+ (1 + 1)

= x7 + x6 + x4 + x2.

In binary notation we have: 01010111 + 10000011 = 11010100. Clearly, the
addition can be implemented with the bitwise XOR instruction.

Multiplication. Multiplication of polynomials is associative (2.3), commu-
tative (2.4) and distributive (2.7) with respect to addition of polynomials.
There is a neutral element: the polynomial of degree 0 and with coefficient
of x0 equal to 1. In order to make the multiplication closed (2.2) over F [x]|�,
we select a polynomial m(x) of degree �, called the reduction polynomial.
The multiplication of two polynomials a(x) and b(x) is then defined as the
algebraic product of the polynomials modulo the polynomial m(x):

c(x) = a(x) · b(x) ⇔ c(x) ≡ a(x)× b(x) (mod m(x)). (2.24)

Hence, the structure (F [x]|�,+, ·) is a commutative ring. For special choices
of the reduction polynomial m(x), the structure becomes a field.

Definition 2.1.5. A polynomial d(x) is irreducible over the field GF(p)
iff there exist no two polynomials a(x) and b(x) with coefficients in GF(p)
such that d(x) = a(x)× b(x), where a(x) and b(x) are of degree > 0.
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The inverse element for the multiplication can be found by means of the ex-
tended Euclidean algorithm (see, e.g. [110, p. 81]). Let a(x) be the polynomial
we want to find the inverse for. The extended Euclidean algorithm can then
be used to find two polynomials b(x) and c(x) such that:

a(x)× b(x) +m(x)× c(x) = gcd(a(x),m(x)). (2.25)

Here gcd(a(x),m(x)) denotes the greatest common divisor of the polynomials
a(x) and m(x), which is always equal to 1 iff m(x) is irreducible. Applying
modular reduction to (2.25), we get:

a(x)× b(x) ≡ 1 (mod m(x)), (2.26)

which means that b(x) is the inverse element of a(x) for the definition of
the multiplication ‘·’ given in (2.24). A polynomial of degree n is primitive
if its roots generate the multiplicative group of GF(pn), or equivalently, the
multiplicative polynomial x has order pn−1. It can be shown that a primitive
polynomial is irreducible.

Conclusion. Let F be the field GF(p). With a suitable choice for the re-
duction polynomial, the structure (F [x]|n,+, ·) is a field with pn elements,
usually denoted by GF(pn).

Example 2.1.8. Consider the field GF(23). Let α be a root of x3 + x+1 = 0.
Then the elements of GF(23) can be denoted by 0, 1, α, α+1, α2, α2+1, α2+α
and α2 + α+ 1.

2.1.6 Polynomials and Bytes

According to (2.22) a byte can be considered as a polynomial with coefficients
in GF(2):

b7b6b5b4b3b2b1b0 �→ b(x) (2.27)

b(x) = b7x
7 + b6x

6 + b5x
5 + b4x

4 + b3x
3 + b2x

2 + b1x+ b0. (2.28)

The set of all possible byte values corresponds to the set of all polynomials
with degree less than eight. Addition of bytes can be defined as addition of
the corresponding polynomials. In order to define the multiplication, we need
to select a reduction polynomial m(x).
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In the specification of Rijndael, we consider the bytes as polynomials.
Byte addition is defined as addition of the corresponding polynomials. In
order to define byte multiplication, we use the following irreducible polyno-
mial as reduction polynomial:

m(x) = x8 + x4 + x3 + x+ 1. (2.29)

Since this reduction polynomial is irreducible, we have constructed a rep-
resentation for the field GF(28). Hence we can state the following: In the
Rijndael specification, bytes are considered as elements of GF(28). Opera-
tions on bytes are defined as operations in GF(28).

Example 2.1.9. In our representation for GF(28), the product of the elements
denoted by 57 and 83 is the element denoted by C1, since:

(x6 + x4 + x2 + x+ 1)× (x7 + x+ 1)

= (x13 + x11 + x9 + x8 + x7) + (x7 + x5 + x3 + x2 + x)

+ (x6 + x4 + x2 + x+ 1)

= x13 + x11 + x9 + x8 + x6 + x5 + x4 + x3 + 1

and

(x13 + x11 + x9 + x8 + x6 + x5 + x4 + x3 + 1)

≡ x7 + x6 + 1 (mod x8 + x4 + x3 + x+ 1).

2.1.7 Polynomials and Columns

In the Rijndael specification, 4-byte columns are considered as polyno-
mials over GF(28), having a degree smaller than four. In order to define the
multiplication operation, the following reduction polynomial is used:

l(x) = x4 + 1. (2.30)

This polynomial is reducible, since in GF(28)

x4 + 1 = (x+ 1)4. (2.31)

In the definition of Rijndael, one of the inputs of the multiplication is a
constant polynomial.

Since l(x) is reducible over GF(28), not all polynomials have an inverse
element for the multiplication modulo l(x). A polynomial b(x) has an inverse
if the polynomial x+ 1 does not divide it.
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Multiplication with a fixed polynomial. We work out in more detail
the multiplication with the fixed polynomial used in Rijndael.

Let b(x) be the fixed polynomial with degree three:

b(x) = b0 + b1x+ b2x
2 + b3x

3 (2.32)

and let c(x) and d(x) be two variable polynomials with coefficients ci and di,
respectively (0 ≤ i < 4). We derive the matrix representation of the trans-
formation that takes as input the coefficients of polynomial c, and produces
as output the coefficients of the polynomial d = b× c. We have:

d = b · c (2.33)

�
(b0 + b1x+ b2x

2 + b3x
3)× (c0 + c1x+ c2x

2 + c3x
3)

≡ (d0 + d1x+ d2x
2 + d3x

3) (mod x4 + 1). (2.34)

Working out the product and separating the conditions for different powers
of x, we get:⎡

⎢⎢⎣
d0
d1
d2
d3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
b0 b3 b2 b1
b1 b0 b3 b2
b2 b1 b0 b3
b3 b2 b1 b0

⎤
⎥⎥⎦×

⎡
⎢⎢⎣
c0
c1
c2
c3

⎤
⎥⎥⎦ . (2.35)

2.1.8 Functions over Fields

All functions over GF(pn) can be expressed as a polynomial over GF(pn) of
degree at most pn − 1:

f(a) =

pn−1∑
i=0

cia
i , (2.36)

with ci ∈ GF(pn). For simplicity of notation we follow the convention that
00 = 1. Given a table specification where the output value f(a) is given for the
pn different input values a, the pn coefficients of this polynomial can be found
by applying Lagrange interpolation [95, p. 28]. On the other hand, given a
polynomial expression, the table specification can be found by evaluating the
polynomial for all values of a.

The trace function is a function from GF(pn) to GF(p) that will turn out
to be useful later.

Definition 2.1.6. Let x be an element of GF(pn). The trace of x over GF(p)
is defined by

Tr(x) = x+ xp + xp2

+ xp3

+ · · ·+ xpn−1

.
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The trace is linear over GF(p):

∀ x, y ∈ GF(pn) : Tr(x+ y) = Tr(x) + Tr(y)

∀ a ∈ GF(p), ∀ x ∈ GF(pn) : Tr(ax) = aTr(x).

and it can be shown that Tr(x) is an element of GF(p).

2.1.9 Representations of GF(pn)

Finite fields can be represented in different ways.

Cyclic representation of GF(pn). It can be proven that the multiplica-
tive group of GF(pn) is cyclic. The elements of this group (different from 0)
can be represented as the pn − 1 powers of a generator α ∈ GF(pn):

∀x ∈ GF(pn)\{0}, ∃ ax ∈ Zpn−1 : x = αax . (2.37)

In this representation, multiplication of two non-zero elements corresponds
to addition of their powers modulo pn − 1:

x · y = αax · αay = αax+ay mod pn−1. (2.38)

Operations such as taking the multiplicative inverse and exponentiation are
trivial in this representation. For addition, however, the vector representation
(discussed next) is more appropriate. In computations involving both addition
and multiplication, one may switch between the two different representations
by means of conversion tables. The table used for conversion from the vector
representation to the cyclic representation is called a log table, and the table
for the inverse conversion is called an alog table. We have used this principle
in our reference implementation (see Appendix C).

Vector space representation of GF(pn). The additive group of the finite
field GF(pn) and the n-dimensional vector space over GF(p) are isomorphic.
The addition of vectors in this vector space corresponds to the addition in
GF(pn). We can choose a basis e consisting of n elements e(i) ∈ GF(pn). We
depict the basis e by a column vector that has as elements the elements of
the basis:

e =
[
e(1) e(2) · · · e(n)

]T
The elements of GF(pn) can be represented by their coordinates with respect
to this basis. We have

a =
∑
i

aie
(i) = aTe. (2.39)

where ai ∈ GF(2) are the coordinates of a with respect to the basis e and
where a is the column vector consisting of coordinates ai. The map

φe : GF(pn) → GF(p)
n
: a �→ φe(a) = a

forms an isomorphism.
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Dual bases. Coordinates of a field element with respect to a basis can be
expressed in terms of the dual basis and the trace map.

Definition 2.1.7. Two bases e and d are called dual bases if for all i and j
with 1 ≤ i, j ≤ n, it holds that

Tr(d(i)e(j)) = δ(i− j) (2.40)

with δ(x) the Kronecker delta that is 1 if x = 0 and 0 otherwise. Every basis
has exactly one dual basis. Let e and d be dual bases. Then we have

Tr(d(j)a) = Tr

(
d(j)

n∑
i=1

aie
(i)

)
=

n∑
i=1

aiTr(d
(j)e(i)) = aj .

Hence the coordinates with respect to basis e can be expressed in an elegant
way by means of the trace map and the dual basis d [95]:

φe(a) = a =
[
Tr(d(1)a) Tr(d(2)a) . . . Tr(d(n)a)

]
. (2.41)

Applying (2.39) gives:

a =
n∑

i=1

Tr(d(i)a)e(i) =

n∑
i=1

Tr(e(i)a)d(i). (2.42)

Example 2.1.10. By choosing a basis, we can represent the elements of
GF(23) as vectors. We choose the basis e as follows:

e = [α2 + α+ 1, α+ 1, 1]T.

The dual basis of e can be determined by solving (2.40). It is given by

d = [α, α2 + α, α2 + 1]T.

Table 2.1 shows the coordinates of the elements of GF(23), with respect to
both bases.

Boolean functions and functions in GF(pn). Functions of GF(pn) can
be mapped to functions of GF(p)

n
by choosing a basis e in GF(pn). Given

f : GF(pn) → GF(pn) : a �→ b = f(a),

we can define a Boolean function f :

f : GF(p)
n → GF(p)

n
: a �→ b = f(a)

where
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Table 2.1. Coordinates of the field elements, with respect to the bases e and d

a a ad

0 000 000

1 001 111

α+ 1 010 011

α 011 100

α2 + α+ 1 100 101

α2 + α 101 010

α2 110 110

α2 + 1 111 001

a = [a1 a2 . . . an]

b = [b1 b2 . . . bn] ,

and

ai = Tr(ad(i))

bi = Tr(bd(i)).

On the other hand, given a Boolean function g, a function over GF(pn) can
be defined as

a = aTe

b = bTe.

So in short, f = φe ◦ f ◦ φ−1
e and f = φ−1

e ◦ f ◦ φe. This can be extended to
functions operating on vectors of elements of GF(pn).

2.2 Linear Codes

In this section we give a short introduction to the theory of linear codes.
For a more detailed treatment, we refer the interested reader to the work
of MacWilliams and Sloane [100]. In a code, message words are represented
by codewords that have some redundancy. In code theory textbooks, it is
customary to write codewords as 1 × n matrices, or row vectors. We will
follow that custom here. In subsequent chapters, one-dimensional arrays will
as often be denoted as n× 1 matrices, or column vectors.

2.2.1 Definitions

The Hamming weight of a codeword is defined as follows.
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Definition 2.2.1. The Hamming weight wh(x) of a vector x is the number
of non-zero components of the vector x.

Based on the definition of Hamming weight, we can define the Hamming
distance between two vectors.

Definition 2.2.2. The Hamming distance between two vectors x and y is
wh(x−y), which is equal to the Hamming weight of the difference of the two
vectors.

Now we are ready to define linear codes.

Definition 2.2.3. A linear [n, k, d] code over GF(2p) is a k-dimensional sub-
space of the vector space GF(2p)

n
, where any two different vectors of the sub-

space have a Hamming distance of at least d (and d is the largest number
with this property).

The distance d of a linear code equals the minimum weight of a non-zero
codeword in the code. A linear code can be described by each of the two
following matrices:

1. A generator matrix G for an [n, k, d] code C is a k×n matrix whose rows
form a vector space basis for C (only generator matrices of full rank are
considered). Since the choice of a basis in a vector space is not unique,
a code has many different generator matrices, which can be reduced to
one another by performing elementary row operations. The echelon form
of the generator matrix is the following:

Ge =
[
Ik×k Ak×(n−k)

]
, (2.43)

where Ik×k is the k × k identity matrix.

2. A parity-check matrix H for an [n, k, d] code C is an (n − k) × n matrix
with the property that a vector x is a codeword of C iff

HxT = 0. (2.44)

If G is a generator matrix and H a parity-check matrix of the same code, then

GHT = 0. (2.45)

Moreover, if G = [I C] is a generator matrix of a code, then H =
[−CT I

]
is a

parity-check matrix of the same code.

The dual code C⊥ of a code C is defined as the set of vectors that are
orthogonal to all the vectors of C:

C⊥ = {x | xyT = 0, ∀ y ∈ C}. (2.46)

It follows that a parity-check matrix of C is a generator matrix of C⊥ and
vice versa.
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2.2.2 MDS Codes

The theory of linear codes addresses the problems of determining the distance
of a linear code and the construction of linear codes with a given distance.
We review a few well-known results.

The Singleton bound gives an upper bound for the distance of a code with
given dimensions.

Theorem 2.2.1 (The Singleton bound). If C is an [n, k, d] code, then
d ≤ n− k + 1.

A code that meets the Singleton bound is called a maximal distance sepa-
rable (MDS) code. The following theorems relate the distance of a code to
properties of the generator matrix G.

Theorem 2.2.2. A linear code C has distance d iff every d − 1 columns of
the parity-check matrix H are linearly independent and there exists some set
of d columns that are linearly dependent.

By definition, an MDS code has distance n− k+1. Hence, every set of n− k
columns of the parity-check matrix are linearly independent. This property
can be translated into a requirement for the matrix A:

Theorem 2.2.3 ([100]). An [n, k, d] code with generator matrix

G =
[
Ik×k Ak×(n−k)

]
,

is an MDS code iff every square submatrix of A is nonsingular.

A well-known class of MDS codes is formed by the Reed-Solomon codes, for
which efficient construction algorithms are known.

2.3 Boolean Functions

The smallest finite field has an order of 2: GF(2). Its two elements are denoted
by 0 and 1. Its addition is the integer addition modulo 2 and its multiplication
is the integer multiplication modulo 2. Variables that range over GF(2) are
called Boolean variables, or bits for short. The addition of 2 bits corresponds
to the Boolean operation exclusive or, denoted by XOR. The multiplication of
2 bits corresponds to the Boolean operation AND. The operation of changing
the value of a bit is called complementation.

A vector whose coordinates are bits is called a Boolean vector. The oper-
ation of changing the value of all bits of a Boolean vector is called comple-
mentation. If we have two Boolean vectors a and b of the same dimension,
we can apply the following operations:
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1. Bitwise XOR: results in a vector whose bits consist of the XOR of the
corresponding bits of a and b.

2. Bitwise AND: results in a vector whose bits consist of the AND of the
corresponding bits of a and b.

A function b = φ(a) that maps a Boolean vector to another Boolean
vector is called a Boolean function:

φ : GF(2)n → GF(2)m : a �→ b = φ(a), (2.47)

where b is called the output Boolean vector and a the input Boolean vector.
This Boolean function has n input bits and m output bits.

A binary Boolean function b = f(a) is a Boolean function with a single
output bit, in other words m = 1:

f : GF(2)n → GF(2) : a �→ b = f(a), (2.48)

where b is called the output bit. Each bit of the output of a Boolean function
is itself a binary Boolean function of the input vector. These functions are
called the component binary Boolean functions of the Boolean function.

A Boolean function can be specified by providing the output value for the
2n possible values of the input Boolean vector. A Boolean function with the
same number of input bits as output bits can be considered as operating on
an n-bit state. We call such a function a Boolean transformation. A Boolean
transformation is called invertible if it maps all input states to different output
states. An invertible Boolean transformation is called a Boolean permutation.

2.3.1 Tuple Partitions

In several instances it is useful to see the bits of a state as being partitioned
into a number of subsets. Boolean transformations operating on a state can
be expressed in terms of these subsets rather than in terms of the individual
bits of the state. In the context of this book we restrict ourselves to partitions
that divide the state bits into a number of equally sized subsets. We will use
the term tuples to describe these subsets.1 Because in the case of Rijndael,
tuples contain eight bits, we will often write bytes instead. However, the
reasoning applies as well to tuples of other sizes (larger than two).

Consider an nb-bit state a consisting of bits ai where i ∈ I. I is called the
index space. In its simplest form, the index space is just equal to {1, . . . , nb}.
However, for clarity the bits may be indexed in another way to ease specifi-
cations. A partitioning of the state bits may be reflected by having an index
with two components: one component indicating the byte position within

1 In the first edition we used the term bundles, but this term now gets another
meaning in Chap. 14.
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the state, and one component indicating the bit position within the byte. In
this representation, a(i,j) would mean the state bit in byte i at bit position
j within that byte. The value of the byte itself can be indicated by ai. On
some occasions, even the byte index can be decomposed. For example, in
Rijndael the bytes are arranged in a two-dimensional array with the byte
index composed of a column index and a row index.

Next to the obvious 8-bit bytes also the 32-bit columns in Rijndael define
a partitioning. The nonlinear steps in the round transformations of the AES
finalist Serpent [4] operate on 4-bit bytes. The nonlinear step in the round
transformation of 3-Way [43] and BaseKing [45] operate on 3-bit tuples. The
tuples can be considered as representations of elements in some group, ring
or field. Examples are the integers modulo 2m or elements of GF(2m). In this
way, steps of the round transformation, or even the full round transformation
can be expressed in terms of operations in these mathematical structures.

2.3.2 Transpositions

A transposition is a Boolean permutation that only moves the positions of
bits of the state without affecting their value. For a transposition b = π(a)
we have:

bi = ap(i), (2.49)

where p(i) is a permutation over the index space.

A byte transposition is a transposition that changes the positions of the
bytes but leaves the positions of the bits within the bytes intact. This can be
expressed as:

b(i,j) = a(p(i),j). (2.50)

An example is shown in Fig. 2.1. Figure 2.2 shows the pictogram that we will
use to represent a byte transposition in this book.

� � � ��� �

Fig. 2.1. Example of a byte transposition
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Fig. 2.2. Pictogram for a byte transposition

2.3.3 Bricklayer Functions

A bricklayer function is a function that can be decomposed into a number
of Boolean functions operating independently on subsets of bits of the input
vector. These subsets form a partition of the bits of the input vector. A
bricklayer function can be considered as the parallel application of a number
of Boolean functions operating on smaller inputs. If nonlinear, these Boolean
functions are called S-boxes. If linear, we use the term D-box, where D stands
for diffusion.

A bricklayer function operating on a state is called a bricklayer transfor-
mation. As a bricklayer transformation operates on a number of subsets of
the state independently, it defines a byte partition. The component transfor-
mations of the bricklayer transformation operate independently on a number
of bytes. A graphical illustration is given in Fig. 2.3. An invertible bricklayer
transformation is called a bricklayer permutation. For a bricklayer transfor-
mation to be invertible, all of its S-boxes (or D-boxes) must be permutations.
The pictogram that we will use is shown in Fig. 2.4.

For a bricklayer transformation b = φ(a) we have:

(b(i,1), b(i,2), . . . , b(i,m)) = φi(a(i,1), a(i,2), . . . , a(i,m)), (2.51)

for all values of i. If the bytes within a and b are represented by ai and bi,
respectively, this becomes:

bi = φi(ai). (2.52)

� �

� �

� �

� �

� �

� �

� �

� �

φ0 φ1 φ2 φ3

φ

Fig. 2.3. Example of a bricklayer transformation

Fig. 2.4. Pictogram for a bricklayer transformation
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2.3.4 Iterative Boolean Transformations

A Boolean vector can be transformed iteratively by applying a sequence of
Boolean transformations, one after the other. Such a sequence is referred to
as an iterative Boolean transformation. If the individual Boolean transfor-
mations are denoted by ρ(i), an iterative Boolean transformation is of the
form

β = ρ(r) ◦ . . . ◦ ρ(2) ◦ ρ(1). (2.53)

A schematic illustration is given in Fig. 2.5. We have b = β(d), where
d = a(0),b = a(m) and a(i) = ρ(i)(a(i−1)). The value of a(i) is called an
intermediate state. An iterative Boolean transformation that is a sequence of
Boolean permutations is an iterative Boolean permutation.

ρ(1)

ρ(2)

ρ(3)
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�

�

�

�

�

�

�
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�

�

�

�

�
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�

�

�

�

�

�

�

�

�

�

�

�

Fig. 2.5. Iterative Boolean transformation

2.4 Block Ciphers

A block cipher transforms plaintext blocks of a fixed length nb into ciphertext
blocks of the same length under the influence of a cipher key k. More precisely,
a block cipher is a set of Boolean permutations operating on nb-bit vectors.
This set contains a Boolean permutation for each value of the cipher key k. In
this book we only consider block ciphers in which the cipher key is a Boolean
vector. If the number of bits in the cipher key is denoted by nk, a block cipher
consists of 2nk Boolean permutations.

The operation of transforming a plaintext block into a ciphertext block is
called encryption, and the operation of transforming a ciphertext block into
a plaintext block is called decryption.
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Usually, block ciphers are specified by an encryption algorithm, being
the sequence of transformations to be applied to the plaintext to obtain
the ciphertext. These transformations are operations with a relatively simple
description. The resulting Boolean permutation depends on the cipher key
due to the fact that key material, computed from the cipher key, is used in
the transformations.

For a block cipher to be up to its task, it has to fulfill two requirements:

1. Efficiency. Given the value of the cipher key, applying the corresponding
Boolean permutation, or its inverse, is efficient, preferably on a wide range
of platforms.

2. Security. It must be impossible to exploit knowledge of the internal
structure of the cipher in cryptographic attacks.

All block ciphers of any significance satisfy these requirements by itera-
tively applying Boolean permutations that are relatively simple to describe.

2.4.1 Iterative Block Ciphers

In an iterative block cipher, the Boolean permutations are iterative. The block
cipher is defined as the application of a number of key-dependent Boolean
permutations. The Boolean permutations are called the round transforma-
tions of the block cipher. Every application of a round transformation is
called a round.

Example 2.4.1. The DES has 16 rounds. Since every round uses the same
round transformation, we say the DES has only one round transformation.

We denote the number of rounds by r. We have:

B[k] = ρ(r)[k(r)] ◦ · · · ◦ ρ(2)[k(2)] ◦ ρ(1)[k(1)]. (2.54)

In this expression, ρ(i) is called the ith round of the block cipher and k(i) is
called the ith round key.

The round keys are computed from the cipher key. Usually, this is specified
with an algorithm. The algorithm that describes how to derive the round keys
from the cipher key is called the key schedule. The concatenation of all round
keys is called the expanded key, denoted by K:

K = k(0)|k(1)|k(2)| . . . |k(r) (2.55)

The length of the expanded key is denoted by nK. The iterative block ci-
pher model is illustrated in Fig. 2.6. Almost all block ciphers known can be
modeled this way. There is however a large variety in round transformations
and key schedules. An iterative block cipher in which all rounds (with the
exception of the initial or final round) use the same round transformation is
called an iterated block cipher.
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Fig. 2.6. Iterative block cipher with three rounds

2.4.2 Key-Alternating Block Ciphers

Rijndael belongs to a class of block ciphers in which the round key is ap-
plied in a particularly simple way: the key-alternating block ciphers. A key-
alternating block cipher is an iterative block cipher with the following prop-
erties:

1. Alternation. The cipher is defined as the alternated application of key-
independent round transformations and key additions. The first round
key is added before the first round and the last round key is added after
the last round.

2. Simple key addition. The round keys are added to the state by means
of a simple XOR. A key addition is denoted by σ[k].

We have:

B[k] = σ[k(r)] ◦ ρ(r) ◦ σ[k(r−1)] ◦ · · · ◦ σ[k(1)] ◦ ρ(1) ◦ σ[k(0)]. (2.56)

A graphical illustration is given in Fig. 2.7.

Key-alternating block ciphers are a class of block ciphers that lend them-
selves to analysis with respect to their resistance against cryptanalysis. This
will become clear in Chaps. 7–9 and in Chaps. 13–15. A special class of key-
alternating block ciphers are the key-iterated block ciphers. In this class, all
rounds (except maybe the first or the last) of the cipher use the same round
transformation. We have:

B[k] = σ[k(r)] ◦ ρ ◦ σ[k(r−1)] ◦ · · · ◦ σ[k(1)] ◦ ρ ◦ σ[k(0)]. (2.57)

In this case, ρ is called the round transformation of the block cipher. The
relations between the different classes of block ciphers that we define here
are shown in Fig. 2.8.
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Fig. 2.7. Key-alternating block cipher with two rounds

Key-iterated block ciphers lend themselves to efficient implementations.
In dedicated hardware implementations, one can hardwire the round trans-
formation and the key addition. The block cipher can be executed by simply
iterating the round transformation alternated with the right round keys. In
software implementations, the program needs to code only the one round
transformation in a loop and the cipher can be executed by executing this
loop the required number of times. In practice, for performance reasons, block
ciphers in software will often have code for all rounds: so-called loop unrolling.
In these implementations, it is less important to have identical rounds. Nev-
ertheless, the most-used block ciphers all consist of a number of identical
rounds. Some other advantages of the key-iterated structure are discussed in
Chap. 5.

key-iterated
block ciphers

iterated
block ciphers

key-alternating
block ciphers

iterative block ciphers

Fig. 2.8. Block cipher taxonomy

A block cipher is a cryptographic primitive that can convert a fixed-length
plaintext block to a fixed-length ciphertext block and vice versa under a given
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cipher key. In order to use a cipher to protect the confidentiality or integrity
of messages of arbitrary length, it must be specified how the cipher is used.
These specifications are the so-called modes of operation of a block cipher.
Modes of operation are out of scope of this book. We refer the reader to [102].



3. Specification of Rijndael

In this chapter we specify the cipher structure and the building blocks of
Rijndael. After explaining the difference between the Rijndael specifications
and the AES standard, we specify the external interface to the ciphers. This is
followed by the description of the Rijndael structure and the steps of its round
transformation. Subsequently, we specify the number of rounds as a function
of the block and key length, and describe the key schedule. We conclude this
chapter with a treatment of algorithms for implementing decryption with
Rijndael. This chapter is not intended as an implementation guideline. For
implementation aspects, we refer to Chap. 4.

3.1 Differences Between Rijndael and the AES

The only difference between Rijndael and the AES is the range of supported
values for the block length and cipher key length.

Rijndael is a block cipher with both a variable block length and a variable
key length. The block length and the key length can be independently spec-
ified to any multiple of 32 bits, with a minimum of 128 bits and a maximum
of 256 bits. It would be possible to define versions of Rijndael with a higher
block length or key length, but currently there seems no need for it.

The AES fixes the block length to 128 bits, and supports key lengths of
128, 192 or 256 bits only. The extra block and key lengths in Rijndael were
not evaluated in the AES selection process, and consequently they are not
adopted in the current FIPS standard.

3.2 Input and Output for Encryption and Decryption

The input and output of Rijndael are considered to be one-dimensional arrays
of 8-bit bytes. For encryption the input is a plaintext block and a key, and the
output is a ciphertext block. For decryption, the input is a ciphertext block
and a key, and the output is a plaintext block. The round transformation of
Rijndael, and its steps, operate on an intermediate result, called the state.
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The state can be pictured as a rectangular array of bytes, with four rows.
The number of columns in the state is denoted by Nb and is equal to the
block length divided by 32. Let the plaintext block be denoted by

p0p1p2p3 . . . p4·Nb−1,

where p0 denotes the first byte,and p4·Nb−1 denotes the last byte of the plain-
text block. Similarly, a ciphertext block can be denoted by

c0c1c2c3 . . . c4·Nb−1.

Let the state be denoted by

ai,j , 0 ≤ i < 4, 0 ≤ j < Nb,

where ai,j denotes the byte in row i and column j. The input bytes are
mapped onto the state bytes in the order a0,0, a1,0, a2,0, a3,0, a0,1, a1,1, a2,1,
a3,1, . . . . For encryption, the input is a plaintext block and the mapping is

ai,j = pi+4j , 0 ≤ i < 4, 0 ≤ j < Nb. (3.1)

For decryption, the input is a ciphertext block and the mapping is

ai,j = ci+4j , 0 ≤ i < 4, 0 ≤ j < Nb. (3.2)

At the end of the encryption, the ciphertext is extracted from the state by
taking the state bytes in the same order:

ci = ai mod 4,i/4, 0 ≤ i < 4Nb. (3.3)

At the end of decryption, the plaintext block is extracted from the state
according to

pi = ai mod 4,i/4, 0 ≤ i < 4Nb. (3.4)

Similarly, the key is mapped onto a two-dimensional cipher key. The cipher
key is pictured as a rectangular array with four rows similar to the state. The
number of columns of the cipher key is denoted by Nk and is equal to the
key length divided by 32. The bytes of the key are mapped onto the bytes of
the cipher key in the order: k0,0, k1,0, k2,0, k3,0, k0,1, k1,1, k2,1, k3,1, k0,2 . . . .
If we denote the key by

z0z1z2z3 . . . z4·Nk−1,

then

ki,j = zi+4j , 0 ≤ i < 4, 0 ≤ j < Nk. (3.5)

The representation of the state and cipher key and the mappings plaintext–
state and key–cipher key are illustrated in Fig. 3.1.
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Fig. 3.1. State and cipher key layout for the case Nb = 4 and Nk = 6

3.3 Structure of Rijndael

Rijndael is a key-iterated block cipher: it consists of the repeated application
of a round transformation on the state. The number of rounds is denoted by
Nr and depends on the block length and the key length.

Note that in this chapter, contrary to the definitions (2.54)–(2.57), the
key addition is included in the round transformation. This is done in order
to make the description in this chapter consistent with the description in the
FIPS standard.

Following a suggestion of B. Gladman, we changed the names of some
steps with respect to the description given in our original AES submission.
The new names are more consistent, and are also adopted in the FIPS stan-
dard. We made some further changes, all in order to make the description
more clear and complete. No changes have been made to the block cipher
itself.

An encryption with Rijndael consists of an initial key addition, denoted
by AddRoundKey, followed by Nr−1 applications of the transformation Round,
and finally one application of FinalRound. The initial key addition and every
round take as input the State and a round key. The round key for round i
is denoted by ExpandedKey[i], and ExpandedKey[0] denotes the input of the
initial key addition. The derivation of ExpandedKey from the CipherKey is
denoted by KeyExpansion. A high-level description of Rijndael in pseudocode
notation is shown in List. 3.1.

3.4 The Round Transformation

The round transformation is denoted Round, and is a sequence of four trans-
formations, called steps. This is shown in List. 3.2. The final round of the
cipher is slightly different. It is denoted FinalRound and is also shown in
List. 3.2. In the listings, the transformations (Round, SubBytes, ShiftRows,

3.4 The Round Transformation
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procedure Rijndael(State,Cipherkey)
KeyExpansion(CipherKey,ExpandedKey)
AddRoundKey(State,ExpandedKey[0])
for i = 1 to Nr − 1 do

Round(State,ExpandedKey[i])
end for
FinalRound(State,ExpandedKey[Nr])

end procedure

List. 3.1. High-level algorithm for encryption with Rijndael

. . . ) operate on arrays to which pointers (State, ExpandedKey[i]) are pro-
vided. It is easy to verify that the transformation FinalRound is equal to
the transformation Round, but with the MixColumns step removed. The steps
are specified in the following subsections, together with the design criteria
we used for each step. Besides the step-specific criteria, we also applied the
following two general design criteria:

1. Invertibility. The structure of the Rijndael round transformation re-
quires that all steps be invertible.

2. Simplicity. As explained in Chap. 5, we prefer simple components over
complex ones.

procedure Round(State,ExpandedKey[i])
SubBytes(State);
ShiftRows(State);
MixColumns(State);
AddRoundKey(State,ExpandedKey[i]);

end procedure

procedure FinalRound(State,ExpandedKey[Nr])
SubBytes(State);
ShiftRows(State);
AddRoundKey(State,ExpandedKey[Nr]);

end procedure

List. 3.2. The Rijndael round transformation

3.4.1 The SubBytes Step

The SubBytes step is the only nonlinear transformation of the cipher.
SubBytes is a bricklayer permutation consisting of an S-box applied to the
bytes of the state. We denote the particular S-box being used in Rijndael
by SRD. Figure 3.2 illustrates the effect of the SubBytes step on the state.
Figure 3.3 shows the pictograms that we will use to represent SubBytes and
its inverse.
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Fig. 3.2. SubBytes acts on the individual bytes of the state
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Fig. 3.3. The pictograms for SubBytes (left) and InvSubBytes (right)

Design criteria for SRD. We have applied the following design criteria for
SRD, appearing in order of importance:

1. Nonlinearity.

a) Correlation. The maximum input-output correlation amplitude
must be as small as possible.

b) Difference propagation probability. The maximum difference
propagation probability must be as small as possible.

2. Algebraic complexity. The algebraic expression of SRD in GF(28) has
to be complex.

Only one S-box is used for all byte positions. This is certainly not a necessity:
SubBytes could as easily be defined with different S-boxes for every byte. This
issue is discussed in Chap. 5. The nonlinearity criteria are inspired by linear
and differential cryptanalysis. Chap. 9 discusses this in depth.

Selection of SRD. In [120], K. Nyberg gives several construction methods
for S-boxes with good nonlinearity. For invertible S-boxes operating on bytes,
the maximum correlation amplitude can be made as low as 2−3, and the max-
imum difference propagation probability can be as low as 2−6. We decided
to choose — from the alternatives described in [120] — the S-box that is
defined by the following function in GF(28):

Inv8 : a → b = a254. (3.6)

This function is usually described as the mapping a → a−1 extended with 0

being mapped to 0. We use the polynomial representation of GF(28) defined
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in Sect. 2.1.6: the elements of GF(28) are considered as polynomials having a
degree smaller than eight, with coefficients in the finite field GF(2). Multipli-
cation is done modulo the irreducible polynomial m(x) = x8+x4+x3+x+1;
the functions a254 and a−1 are defined accordingly. By definition, g has a very
simple algebraic expression. This could allow algebraic manipulations that
can be used to mount attacks such as interpolation attacks. Therefore, we
built the S-box as the sequence of Inv8 and an invertible affine transforma-
tion Aff8: SRD = Aff8 ◦ Inv8. This affine transformation has no impact on the
nonlinearity properties, but if properly chosen, allows SRD to have a complex
algebraic expression. We have chosen an affine transformation that has a very
simple description per se, but a complicated algebraic expression if combined
with the transformation Inv8. Because this still leaves many possibilities for
the choice of Aff8, we additionally imposed the restriction that SRD should
have no fixed points and no opposite fixed points:

SRD[a] + a = 0, ∀a (3.7)

SRD[a] + a = FF, ∀a. (3.8)

Note that we are not aware of any attacks that would exploit the existence
of (opposite) fixed points.

The affine transformation Aff8 is defined by

b = Aff8(a)

�⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b7
b6
b5
b4
b3
b2
b1
b0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1
1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a7
a6
a5
a4
a3
a2
a1
a0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
1
0
0
0
1
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.9)

The affine transformation Aff8 can also be described as a linearized polyno-
mial over GF(28), followed by the addition (in GF(28)) with a constant:

Aff8(a) = L(a) + q. (3.10)

This is explained in Appendix A, where also a tabular description of SRD is
given.

Inverse operation. InvSubBytes is the inverse operation of SubBytes. It
is a bricklayer permutation consisting of the inverse S-box SRD

−1 applied to
the bytes of the state. The inverse S-box SRD

−1 is obtained by applying the
inverse of the affine transformation (3.9) followed by taking the multiplicative
inverse in GF(28). The inverse of Aff8 is specified by:
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⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x7

x6

x5

x4

x3

x2

x1

x0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 1 0 0 1 0
0 0 1 0 1 0 0 1
1 0 0 1 0 1 0 0
0 1 0 0 1 0 1 0
0 0 1 0 0 1 0 1
1 0 0 1 0 0 1 0
0 1 0 0 1 0 0 1
1 0 1 0 0 1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y7
y6
y5
y4
y3
y2
y1
y0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
1
0
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.11)

Tabular descriptions of SRD
−1 and Aff−1

8 are given in Appendix A.

3.4.2 The ShiftRows Step

The ShiftRows step is a byte transposition that cyclically shifts the rows of
the state over different offsets. Row 0 is shifted over C0 bytes, row 1 over
C1 bytes, row 2 over C2 bytes and row 3 over C3 bytes, so that the byte at
position j in row i moves to position (j − Ci) mod Nb. The shift offsets C0,
C1, C2 and C3 depend on the value of Nb.

Design criteria for the offsets. The design criteria for the offsets are the
following:

1. Diffusion optimal. The four offsets have to be different (see Defini-
tion 9.4.1).

2. Other diffusion effects. The resistance against truncated differential
attacks (see Chap. 10) and saturation attacks has to be maximized.

Diffusion optimality is important in providing resistance against differential
and linear cryptanalysis. The other diffusion effects are only relevant when
the block length is larger than 128 bits.

Selection of the offsets. The simplicity criterion dictates that one offset is
taken equal to 0. In fact, for a block length of 128 bits, the offsets have to be
0, 1, 2 and 3. The assignment of offsets to rows is arbitrary. For block lengths
larger than 128 bits, there are more possibilities. Detailed studies of truncated
differential attacks and saturation attacks on reduced versions of Rijndael
show that not all choices are equivalent. For certain choices, the attacks can
be extended by one round. Among the choices that are best with respect to
saturation and truncated differential attacks, we picked the simplest ones.
The different values are specified in Table 3.1. Figure 3.4 illustrates the effect
of the ShiftRows step on the state. Figure 3.5 shows the pictograms for
ShiftRows and its inverse.

Inverse operation. The inverse operation of ShiftRows is called
InvShiftRows. It is a cyclic shift of the three bottom rows over Nb − C1,
Nb −C2 and Nb −C3 bytes respectively so that the byte at position j in row
i moves to position (j + Ci) mod Nb.
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Table 3.1. ShiftRows: shift offsets for different block lengths

Nb C0 C1 C2 C3

4 0 1 2 3
5 0 1 2 3
6 0 1 2 3
7 0 1 2 4
8 0 1 3 4
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Fig. 3.4. ShiftRows operates on the rows of the state
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Fig. 3.5. Pictograms for ShiftRows (left) and InvShiftRows (right)
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3.4.3 The MixColumns Step

The MixColumns step is a bricklayer permutation operating on the state col-
umn by column.

Design criteria. The design criteria for the MixColumns step are the fol-
lowing:

1. Dimensions. The transformation is a bricklayer transformation operat-
ing on 4-byte columns.

2. Linearity. The transformation is preferably linear over GF(2).

3. Diffusion. The transformation has to have relevant diffusion power.

4. Performance on 8-bit processors. The performance of the transfor-
mation on 8-bit processors has to be high.

The criteria about linearity and diffusion are requirements imposed by
the wide trail strategy (see Chap. 9). The dimensions criterion of having
columns consisting of 4 bytes is to make optimal use of 32-bit architectures
in look-up table implementations (see Sect. 4.2.1). The performance on 8-bit
processors is mentioned because MixColumns is the only step for which good
performance on 8-bit processors is not trivial to obtain.

Selection. The diffusion and performance criteria have lead us to the fol-
lowing choice for the definition of the D-box in MixColumns. The columns of
the state are considered as polynomials over GF(28) and multiplied modulo
x4+1 with a fixed polynomial c(x). The criteria about invertibility, diffusion
and performance impose conditions on the coefficients of c(x). The perfor-
mance criterion can be satisfied if the coefficients have simple values, such
as 0, 1, 2, 3, . . . . Multiplication with the value 0 or 1 implies no processing
at all, multiplication with 2 can be implemented efficiently with a dedicated
routine (see Sect. 4.1.1) and multiplication with 3 can be implemented as a
multiplication with 2 plus an additional XOR operation with the operand.
The diffusion criterion induces a more complicated condition on the coeffi-
cients of c(x). We determined the coefficients in such a way that the branch
number of MixColumns is five, i.e. the maximum possible for a transforma-
tion with these dimensions. Further explanation of the branch number of a
function and the relation to the diffusion power can be found in Sect. 9.3.

The polynomial c(x) is given by

c(x) = 3 · x3 + 1 · x2 + 1 · x+ 2. (3.12)

This polynomial is coprime to x4 + 1 and therefore invertible. Observe that
the algebraic order of c(x) equals 4:

c(x) · c(x) · c(x) · c(x) = 1 (mod x4 + 1). (3.13)
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As described in Sect. 2.1.7, the modular multiplication with a fixed poly-
nomial can be written as a matrix multiplication. Let b(x) = c(x) · a(x)
(mod x4 + 1). Then⎡

⎢⎢⎣
b0
b1
b2
b3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
2 3 1 1

1 2 3 1

1 1 2 3

3 1 1 2

⎤
⎥⎥⎦×

⎡
⎢⎢⎣
a0
a1
a2
a3

⎤
⎥⎥⎦ . (3.14)

We denote the matrix in the previous expression by Mc. Figure 3.6 illus-
trates the effect of the MixColumns step on the state. Figure 3.7 shows the
pictograms for MixColumns and its inverse.
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Fig. 3.6. MixColumns operates on the columns of the state
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Fig. 3.7. Pictograms for MixColumns (left) and InvMixColumns (right)

Inverse operation. The inverse operation of MixColumns is called
InvMixColumns. It is similar to MixColumns. Every column is transformed
by multiplying it with a fixed multiplication polynomial d(x), defined by

(3 · x3 + 1 · x2 + 1 · x+ 2) · d(x) ≡ 1 (mod x4 + 1). (3.15)

It is given by

d(x) = B · x3 + D · x2 + 9 · x+ E. (3.16)
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Written as a matrix multiplication, InvMixColumns transforms the columns
in the following way:⎡

⎢⎢⎣
b0
b1
b2
b3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
E B D 9

9 E B D

D 9 E B

B D 9 E

⎤
⎥⎥⎦×

⎡
⎢⎢⎣
a0
a1
a2
a3

⎤
⎥⎥⎦ . (3.17)

3.4.4 The Key Addition

The key addition is denoted AddRoundKey. In this transformation, the state
is modified by combining it with a round key with the bitwise XOR opera-
tion. A round key is denoted by ExpandedKey[i], 0 ≤ i ≤ Nr. The array of
round keys ExpandedKey is derived from the cipher key by means of the key
schedule (see Sect. 3.6). The round key length is equal to the block length.
The AddRoundKey transformation is illustrated in Fig. 3.8. AddRoundKey is
its own inverse. Figure 3.9 shows the pictogram for AddRoundKey.
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Fig. 3.8. In AddRoundKey, the round key is added to the state with a bitwise XOR

Fig. 3.9. Pictogram for AddRoundKey

3.4.5 The Rijndael Super Box

It is often convenient to describe Rijndael by means of a super box.
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Definition 3.4.1. A super box maps an array a of nt elements ai to an
array e of nt elements ei. Each of the elements has size ns. A super box takes
a key k of size nt×ns = nb. It consists of the sequence of four transformations
(or steps):

– bi = S[ai]: nt parallel applications of an ns-bit S-box

– c = M(b): a linear map

– d = c+ k: key addition

– ei = S[di]: nt parallel applications of an ns-bit S-box.

The S-boxes in the two S-box steps may also be all different.

For the Rijndael super box we have nt = 4, M = Mc and S applies SRD

four times. If we consider two Rijndael rounds, swap the steps ShiftRows and
SubBytes in the first round, and remove the linear transformations before the
first SubBytes transformation and after the second SubBytes transformation,
then we obtain a map that can also be described as four parallel instances of
the Rijndael super box.

3.5 The Number of Rounds

With the exception of slide attacks [31], the body of published cryptanalysis
at the time of the design of Rijndael indicated that the resistance of itera-
tive block ciphers against cryptanalytic attacks increases with the number of
rounds, and this is still the case at time of writing this second edition of the
book.

We have determined the number of rounds by considering the maximum
number of rounds for which shortcut attacks (see Sect. 5.5.1) have been found
that are significantly more efficient than an exhaustive key search. Subse-
quently, we added a considerable security margin. For Rijndael with a block
length and key length of 128 bits, no shortcut attacks had been found for re-
duced versions with more than six rounds. We added four rounds as a security
margin. This is a conservative approach, because

1. Two rounds of Rijndael provide ‘full diffusion’ in the following sense:
every state bit depends on all state bits two rounds ago, or a change in
one state bit is likely to affect half of the state bits after two rounds.
Adding four rounds can be seen as adding a ‘full diffusion step’ at the
beginning and at the end of the cipher. The high diffusion of the Rijndael
round transformation is thanks to its uniform structure that operates on
all state bits. For so-called Feistel ciphers, a round only operates on half
of the state bits and full diffusion can at best be obtained after three
rounds and in practice it typically takes four rounds or more.
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2. Generally, linear cryptanalysis, differential cryptanalysis and truncated
differential attacks exploit a propagation trail through n rounds in order
to attack n+1 or n+2 rounds. This is also the case for the saturation at-
tack (see Sect. 10.2) and the impossible-differential attack (see Sect. 10.8)
that use a four-round propagation structure to attack six, respectively
seven, rounds. In this respect, adding four rounds actually doubles the
number of rounds through which a propagation trail has to be found.

For Rijndael versions with a longer key, the number of rounds was raised
by one for every additional 32 bits in the cipher key. This was done for the
following reasons:

1. One of the main objectives is the absence of shortcut attacks, i.e. attacks
that are more efficient than an exhaustive key search. Since the workload
of an exhaustive key search grows with the key length, shortcut attacks
can afford to be less efficient for longer keys.

2. (Partially) known-key and related-key attacks exploit the knowledge of
cipher key bits or the ability to apply different cipher keys. If the ci-
pher key grows, the range of possibilities available to the cryptanalyst
increases.

So far, there have been no publications that reveal any weakness in Rijndael
that could be exploited to attacks relevant in the real world. For Rijndael
versions with a higher block length, the number of rounds is raised by one
for every additional 32 bits in the block length, for the following reasons:

1. For a block length above 128 bits, it takes three rounds to realize full
diffusion, i.e. the diffusion power of the round transformation, relative to
the block length, diminishes with the block length.

2. The larger block length causes the range of possible patterns that can
be applied at the input/output of a sequence of rounds to increase. This
additional flexibility may allow the extension of attacks by one or more
rounds.

We have found that extensions of attacks by a single round are even hard
to realize for the maximum block length of 256 bits. Therefore, this is a
conservative margin.

Table 3.2 lists the value of Nr as a function of Nb and Nk. For the AES,
Nb is fixed to the value 4; Nr = 10 for 128-bit keys (Nk = 4), Nr = 12 for
192-bit keys (Nk = 6) and Nr = 14 for 256-bit keys (Nk = 8).

3.6 Key Schedule

The key schedule consists of two components: the key expansion and the
round key selection. The key expansion specifies how ExpandedKey is derived
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Table 3.2. Number of rounds (Nr) as a function of Nb (Nb = block length/32) and
Nk (key length/32)

Nb

Nk 4 5 6 7 8

4 10 11 12 13 14
5 11 11 12 13 14
6 12 12 12 13 14
7 13 13 13 13 14
8 14 14 14 14 14

from the cipher key. The total number of bits in ExpandedKey is equal to
the block length multiplied by the number of rounds plus 1, since the cipher
requires one round key for the initial key addition, and one for each of the
rounds. Please note that the ExpandedKey is always derived from the cipher
key; it should never be specified directly.

3.6.1 Design Criteria

The key expansion has been chosen according to the following criteria:

1. Efficiency.

a) Working memory. It should be possible to execute the key schedule
using a small amount of working memory.

b) Performance. It should have a high performance on a wide range
of processors.

2. Symmetry elimination. It should use round constants to eliminate
symmetries.

3. Diffusion. It should have an efficient diffusion of cipher key differences
into the expanded key,

4. Nonlinearity. It should exhibit enough nonlinearity to prohibit the full
determination of differences in the expanded key from cipher key differ-
ences only.

For a more thorough treatment of the criteria underlying the design of the
key schedule, we refer to Sect. 5.8.

3.6.2 Selection

In order to be efficient on 8-bit processors, a lightweight, byte-oriented expan-
sion scheme has been adopted. The application of the nonlinear SRD ensures
the nonlinearity of the scheme, without adding much in the way of temporary
storage requirements on an 8-bit processor.
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During the key expansion the cipher key is expanded into an expanded
key array, consisting of four rows and Nb(Nr+1) columns. This array is here
denoted byW[4][Nb(Nr+1)]. The round key of the ith round, ExpandedKey[i],
is given by the columns Nb · i to Nb · (i+ 1)− 1 of W:

ExpandedKey[i] =

W[·][Nb · i] ‖ W[·][Nb · i+ 1] ‖ · · · ‖ W[·][Nb · (i+ 1)− 1],

0 ≤ i ≤ Nr. (3.18)

The key expansion function depends on the value of Nk: there is a version
for Nk equal to or below 6, shown in List. 3.3, and a version for Nk above
6, shown in List. 3.4. In both versions of the key expansion, the first Nk

columns ofW are filled with the cipher key. The following columns are defined
recursively in terms of previously defined columns. The recursion uses the
bytes of the previous column, the bytes of the column Nk positions earlier,
and round constants RC[j].

The recursion function depends on the position of the column. If i is not
a multiple of Nk, column i is the bitwise XOR of column i−Nk and column
i−1. Otherwise, column i is the bitwise XOR of column i−Nk and a nonlinear
function of column i − 1. For cipher key length values Nk > 6, this is also
the case if i mod Nk = 4. The nonlinear function is realized by means of
the application of SRD to the four bytes of the column, an additional cyclic
rotation of the bytes within the column and the addition of a round constant
(for elimination of symmetry). The round constants are independent of Nk,
and defined by a recursion rule in GF(28):

RC[1] = x0 (i.e. 1) (3.19)

RC[2] = x (i.e. 2) (3.20)

RC[j] = x · RC[j − 1] = xj−1, j > 2. (3.21)

The key expansion process and the round key selection are illustrated in
Fig. 3.10.

k0 k1 k2 k3 k4 k5 k6 k7 k8 k9 k10 k11 k12 k13 k14 k15 . . .

Round key 0 Round key 1 Round key 2 . . .

k6n = k6n−6 + f(k6n−1)

ki = ki−6 + ki−1, i �= 6n

Fig. 3.10. Key expansion and round key selection for Nb = 4 and Nk = 6
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procedure KeyExpansion(byte K[4][Nk], byte W[4][Nb(Nr + 1)]) � Nk ≤ 6
for j = 0 to Nk − 1 do

for i = 0 to 3 do
W[i][j] ← K[i][j]

end for
end for
for j = Nk to Nb(Nr + 1)− 1 do

if j mod Nk = 0 then
W[0][j] ← W[0][j −Nk] + SRD[W[1][j − 1]] + RC[j/Nk]
for i = 1 to 3 do

W[i][j] ← W[i][j −Nk] + SRD[W[i+ 1 mod 4][j − 1]]
end for

else
for i = 0 to 3 do

W[i][j] ← W[i][j −Nk] +W[i][j − 1]
end for

end if
end for

end procedure

List. 3.3. The key expansion for Nk ≤ 6

3.7 Decryption

The algorithm for decryption can be found in a straightforward way by using
the inverses of the steps InvSubBytes, InvShiftRows, InvMixColumns and
AddRoundKey, and reversing their order. We call the resulting algorithm the
straightforward decryption algorithm. In this algorithm, not only the steps
themselves differ from those used in encryption, but also the sequence in
which the steps occur is different. For implementation reasons, it is often
convenient that the only nonlinear step (SubBytes) is the first step of the
round transformation (see Chap. 4). This aspect has been anticipated in
the design. The structure of Rijndael is such that it is possible to define an
equivalent algorithm for decryption in which the sequence of steps is equal to
that for encryption, with the steps replaced by their inverses and a change in
the key schedule. We illustrate this in Sect. 3.7.1–3.7.3 for a reduced version of
Rijndael that consists of only one round followed by the final round. Note that
this identity in structure differs from the identity of components and structure
(cf. Sect. 5.3.5) that is found in most ciphers with the Feistel structure, but
also in IDEA [93].

3.7.1 Decryption for a Two-Round Rijndael Variant

The straightforward decryption algorithm with a two-round Rijndael vari-
ant consists of the inverse of FinalRound, followed by the inverse of Round,
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procedure KeyExpansion(byte K[4][Nk], byte W[4][Nb(Nr + 1)]) � Nk > 6
for j = 0 to Nk − 1 do

for i = 0 to 3 do
W[i][j] ← K[i][j]

end for
end for
for j = Nk to Nb(Nr + 1)− 1 do

if j mod Nk = 0 then
W[0][j] ← W[0][j −Nk] + SRD[W[1][j − 1]] + RC[j/Nk]
for i = 1 to 3 do

W[i][j] ← W[i][j −Nk] + SRD[W[i+ 1 mod 4][j − 1]]
end for

else if j mod Nk = 4 then
for i = 0 to 3 do

W[i][j] ← W[i][j −Nk] + SRD[W[i][j − 1]]
end for

else
for i = 0 to 3 do

W[i][j] ← W[i][j −Nk] +W[i][j − 1]
end for

end if
end for

end procedure

List. 3.4. The key expansion for Nk > 6

followed by a key addition. The inverse transformation of Round is denoted
InvRound. The inverse of FinalRound is denoted InvFinalRound. Both trans-
formations are described in List. 3.5. Listing 3.6 gives the straightforward
decryption algorithm for the two-round Rijndael variant.

procedure InvRound(State,ExpandedKey[i])
AddRoundKey(State,ExpandedKey[i])
InvMixColumns(State)
InvShiftRows(State)
InvSubBytes(State)

end procedure

procedure InvFinalRound(State,ExpandedKey[Nr])
AddRoundKey(State,ExpandedKey[Nr])
InvMixColumns(State)
InvShiftRows(State)
InvSubBytes(State)

end procedure

List. 3.5. Round transformations of the straightforward decryption algorithm
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AddRoundKey(State,ExpandedKey[2])
InvShiftRows(State)
InvSubBytes(State)
AddRoundKey(State,ExpandedKey[1])
InvMixColumns(State)
InvShiftRows(State)
InvSubBytes(State)
AddRoundKey(State,ExpandedKey[0])

List. 3.6. Straightforward decryption algorithm for a two-round variant

3.7.2 Algebraic Properties

In order to derive the equivalent decryption algorithm, we use two properties
of the steps:

1. The order of InvShiftRows and InvSubBytes is irrelevant.

2. The order of AddRoundKey and InvMixColumns can be inverted if the
round key is adapted accordingly.

The first property can be explained as follows. InvShiftRows simply trans-
poses the bytes and has no effect on the byte values. InvSubBytes operates
on individual bytes, independent of their position. Therefore, the two steps
commute.

The explanation of the second property is somewhat more sophisticated.
For any linear transformation A : x → y = A(x), it holds by definition that

A(x+ k) = A(x) +A(k). (3.22)

Since AddRoundKey simply adds the constant ExpandedKey[i] to its input,
and InvMixColumns is a linear operation, the sequence of steps

AddRoundKey(State,ExpandedKey[i])
InvMixColumns(State)

can be replaced by the following equivalent sequence of steps:

InvMixColumns(State)
AddRoundKey(State,EqExpandedKey[i])

where EqExpandedKey[i] is obtained by applying InvMixColumns to
ExpandedKey[i]. This is illustrated graphically in Fig. 3.11.

3.7.3 The Equivalent Decryption Algorithm

Using the properties described above, we can transform the straightforward
decryption algorithm given in List. 3.6 into the algorithm given in List. 3.7.
Comparing List. 3.7 with the definition of the original round transformations
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Fig. 3.11. A linear transformation L can be ‘pushed through’ an XOR

Round and FinalRound (List. 3.2), we see that we can regroup the opera-
tions of List. 3.7 into an initial key addition, a Round-like transformation
and a FinalRound-like transformation. The Round-like transformation and
the FinalRound-like transformation have the same structure as Round and
FinalRound, but they use the inverse transformations. We can generalize this
regrouping to any number of rounds.

AddRoundKey(State,ExpandedKey[2])
InvSubBytes(State)
InvShiftRows(State)
InvMixColumns(State)
AddRoundKey(State,ExpandedKey[1])
InvSubBytes(State)
InvShiftRows(State)
AddRoundKey(State,ExpandedKey[0])

List. 3.7. Equivalent decryption algorithm for a two-round variant

We define the equivalent round transformation EqRound and the equiv-
alent final round transformation EqFinalRound to use in the equivalent de-
cryption algorithm. The transformations are described in List. 3.8. Listing 3.9
gives the equivalent decryption algorithm. Figure 3.12 shows a graphical il-
lustration of encryption with the two-round Rijndael variant, decryption ac-
cording to the straightforward algorithm and decryption according to the
equivalent algorithm. The dashed boxes enclose the steps that can be im-
plemented together efficiently. In the straightforward decryption algorithm,
the (inverse) steps appear in the wrong order and cannot be implemented as
efficiently. By changing the order of InvShiftRows and InvSubBytes, and
by pushing MixColumns through the XOR of AddRoundKey, the equivalent
decryption algorithm is obtained. This structure has again the operations in
a good order for efficient implementation.
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procedure EqRound(State,EqExpandedKey[i])
InvSubBytes(State)
InvShiftRows(State)
InvMixColumns(State)
AddRoundKey(State,EqExpandedKey[i])

end procedure

procedure EqFinalRound(State,EqExpandedKey[0])
InvSubBytes(State)
InvShiftRows(State)
AddRoundKey(State,EqExpandedKey[0])

end procedure

List. 3.8. Round transformations for the equivalent decryption algorithm

procedure InvRijndael(State,CipherKey)
EqKeyExpansion(CipherKey,EqExpandedKey)
AddRoundKey(State,EqExpandedKey[Nr])
for i = Nr − 1 downto 1 do

EqRound(State,EqExpandedKey[i])
end for
EqFinalRound(State,EqExpandedKey[0])

end procedure

List. 3.9. Equivalent decryption algorithm

EqKeyExpansion, the key expansion to be used in conjunction with the
equivalent decryption algorithm, is defined as follows:

1. Apply the key expansion KeyExpansion.

2. Apply InvMixColumns to all round keys except the first one and the last
one.

Listing 3.10 lists EqKeyExpansion.

procedure EqKeyExpansion(CipherKey,EqExpandedKey)
KeyExpansion(CipherKey,EqExpandedKey)
for i = 1 to Nr − 1 do

InvMixColumns(EqExpandedKey[i])
end for

end procedure

List. 3.10. Key expansion for the equivalent decryption algorithm

3.8 Conclusions

In this chapter we have given the specification of Rijndael encryption and
decryption, and the motivation for some of the design choices.



3.8 Conclusions 51

� � � � � � � � �
�

k(0)

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

		
	

�
�
�
�
�
�
�
�

�

k(1)

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

		
	 �

k(2)

� � � � � � � � �
�

k(2)

��
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�

k(1)

�
�
�
�
�
�
�
� �

�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
� �

k(0)

� � � � � � � � �
�

k(2)

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
�

�
�
�
�
�
�
�
�

�

�
�
�
�
�
�
�
�

�

k(1)

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��
� �

k(0)

Fig. 3.12. Graphical representation of the algorithm for a two-round Rijndael
variant: encryption (top), decryption in the straightforward way (middle) and de-
cryption in the equivalent way (bottom). Dashed boxes enclose operations that can
be implemented together efficiently



4. Implementation Aspects

In this chapter we discuss issues related to the implementation of Rijndael on
different platforms. Most topics apply also to related ciphers such as Square,
Anubis and Crypton, which are discussed in Chap. 11. We have grouped the
material of this chapter into sections that deal with the most typical issues
for one specific platform each. However, several of the discussed issues are
relevant to more than one platform. If you want to squeeze out the best
possible performance, we advise reading the whole chapter, with a critical
mindset.

4.1 Eight-Bit Platforms

The performance on 8-bit processors is an important issue, since many cryp-
tographic applications still run on such low-end processors.

4.1.1 Finite-Field Multiplication

In the algorithm of Rijndael there are no multiplications of two variables in
GF(28), but only the multiplication of a variable with a constant. The latter
is easier to implement than the former.

We describe here how multiplication by the value 2 can be implemented.
The polynomial associated with 2 is x. Therefore, if we multiply an element
b with 2, we get

b · x = b7x
8 + b6x

7 + b5x
6 + b4x

5

+ b3x
4 + b2x

3 + b1x
2 + b0x (mod m(x)) (4.1)

= b6x
7 + b5x

6 + b4x
5 + (b3 + b7)x

4

+ (b2 + b7)x
3 + b1x

2 + (b0 + b7)x+ b7. (4.2)

The multiplication by 2 is denoted xtime(x). xtime can be implemented
with a shift operation and a conditional XOR operation. To prevent timing
attacks, attention must be paid so that xtime is implemented in such a
way that it takes a fixed number of cycles, independently of the value of
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its argument. This can be achieved by inserting dummy instructions at the
right places. However, this approach is likely to introduce weaknesses against
power analysis attacks (see Sect. 10.9.2). A better approach seems to be to
define a table M , where M [a] = 2 ·a. The routine xtime is then implemented
as a table look-up using M .

Since all elements of GF(28) can be written as a sum of powers of 2,
multiplication by any constant value can be implemented by a repeated use
of xtime.

Example 4.1.1. The multiplication of an input b by the constant value 15 can
be implemented as follows:

b · 15 = b · (1+ 4+ 10)

= b · (1+ 22 + 24)

= b+ xtime(xtime(b)) + xtime(xtime(xtime(xtime(b))))

= b+ xtime(xtime(b+ xtime(xtime(b)))).

4.1.2 Encryption

On an 8-bit processor, encryption with Rijndael can be programmed by sim-
ply implementing the different steps. The implementation of ShiftRows and
AddRoundKey is straightforward from the description. The implementation of
SubBytes requires a table of 256 bytes to store SRD.

AddRoundKey, SubBytes and ShiftRows can be efficiently combined and
executed serially per state byte. Indexing overhead is minimized by explicitly
coding the operation for every state byte.

MixColumns. In choosing the MixColumns polynomial, we took into account
the efficiency on 8-bit processors. We illustrate in List. 4.1 how MixColumns

can be realized in a small series of instructions. (The listing gives the algo-
rithm to process one column.) The only finite-field multiplication used in this
algorithm is multiplication with the element 2, denoted by ‘xtime’.

t ← a[0] + a[1] + a[2] + a[3] � a is a column
u ← a[0]
v ← a[0] + a[1]; v ← xtime(v); a[0] ← a[0] + v + t
v ← a[1] + a[2]; v ← xtime(v); a[1] ← a[1] + v + t
v ← a[2] + a[3]; v ← xtime(v); a[2] ← a[2] + v + t
v ← a[3] + u ; v ← xtime(v); a[3] ← a[3] + v + t

List. 4.1. Efficient implementation of MixColumns
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The key expansion. Implementing the key expansion in a single-shot oper-
ation is likely to occupy too much RAM in a low-end processor. Moreover, in
most low-end applications the amount of data to be encrypted and decrypted
or which is subject to a message authentication code (MAC) is typically only
a few blocks per session. Hence, not much performance can be gained by
storing the expanded key instead of regenerating it for every application of
the block cipher.

In the design of the key schedule, we took into account the restrictions
imposed by low-end processors. The key expansion can be implemented using
a cyclic buffer of 4Nk bytes. When all bytes of the buffer have been used, the
buffer content is updated. All operations in this key update can be imple-
mented efficiently with byte-level operations.

4.1.3 Decryption

For implementations on 8-bit platforms, there is no benefit in following the
equivalent decryption algorithm. Instead, the straightforward decryption al-
gorithm is followed.

InvMixColumns. Decryption is similar in structure to encryption, but uses
the InvMixColumns step instead of MixColumns. Where the MixColumns co-
efficients are limited to 1, 2 and 3, the coefficients of InvMixColumns are 9,
E, B and D. In our 8-bit implementation, these multiplications take signifi-
cantly more time and this results in a performance degradation of the 8-bit
implementation. A considerable speed-up can be obtained by using look-up
tables at the cost of additional tables.

P. Barreto observes the following relation between the MixColumns poly-
nomial c(x) and the InvMixColumns polynomial d(x):

d(x) = (4x2 + 5)c(x) (mod x4 + 1). (4.3)

In matrix notation, this relation becomes:⎡
⎢⎢⎣
E B D 9

9 E B D

D 9 E B

B D 9 E

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
2 3 1 1

1 2 3 1

1 1 2 3

3 1 1 2

⎤
⎥⎥⎦×

⎡
⎢⎢⎣
5 0 4 0

0 5 0 4

4 0 5 0

0 4 0 5

⎤
⎥⎥⎦ . (4.4)

The consequence is that InvMixColumns can be implemented as a simple
preprocessing step, followed by a MixColumns step. An algorithm for the
preprocessing step is given in List. 4.2. If the performance drop caused by
this implementation of the preprocessing step is acceptable, no extra tables
have to be defined.
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u ← xtime(xtime(a[0] + a[2])) � a is a column
v ← xtime(xtime(a[1] + a[3]))
a[0] ← a[0] + u
a[1] ← a[1] + v
a[2] ← a[2] + u
a[3] ← a[3] + v

List. 4.2. Preprocessing step for implementation of the decryption

The key expansion. The key expansion operation that generates W is de-
fined in such a way that we can also start with the last Nk words of round key
information and roll back to the original cipher key. When applications need
to calculate frequently the decryption round keys ‘on the fly’, it is prefer-
able to calculate the last Nk words of round key information once and store
them for later reuse. The decryption round key calculation can then be im-
plemented in such a way that it outputs the round keys in the order they are
needed for the decryption process. Listings. 4.3 and 4.4 give a description of
InvKeyExpansion in pseudo C notation. First note that Ki, the first input of
the routine, is not the cipher key. Instead, Ki consists of the last Nk columns of
the expanded key, generated from the cipher key by means of KeyExpansion
(see Sect. 3.6). After running InvKeyExpansion, Wi contains the decryption
round keys in the order they are used for decryption, i.e. columns with lower
indices are used first. Secondly, note that this is the key expansion for use
in conjunction with the straightforward decryption algorithm. If the equiva-
lent decryption algorithm is implemented, all but two of the round keys have
additionally to be transformed by InvMixColumns (see Sect. 3.7.3).

4.2 Thirty-Two-Bit Platforms

4.2.1 T-Table Implementation

The different steps of the round transformation can be combined in a single
set of look-up tables, allowing for very fast implementations on processors
with word lengths 32 or greater. In this section, we explain how this can be
done.

Let the input of the round transformation be denoted by a, and the output
of SubBytes by b:

bi,j = SRD[ai,j ], 0 ≤ i < 4; 0 ≤ j < Nb. (4.5)

Let the output of ShiftRows be denoted by c and the output of MixColumns
by d:
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procedure InvKeyExpansion(byte Ki[4][Nk], byte Wi[4][Nb(Nr + 1)])
� Nk ≤ 6

for j = 0 to Nk − 1 do
for i = 0 to 3 do

Wi[i][j] ← Ki[i][j]
end for

end for
for j = Nk to Nb(Nr + 1)− 1 do

if j mod Nk = 0 then
Wi[0][j] ← Wi[0][j −Nk] + SRD[Wi[1][j − 1] +Wi[1][j − 2]]

+ RC[Nr + 1− j/Nk]
for i = 1 to 3 do

Wi[i][j] ← Wi[i][j −Nk] + SRD[Wi[i+ 1 mod 4][j − 1]
+Wi[i+ 1 mod 4][j − 2]]

end for
else

for i = 0 to 3 do
Wi[i][j] ← Wi[i][j −Nk] +Wi[i][j −Nk − 1]

end for
end if

end for
end procedure

List. 4.3. Algorithm for the inverse key expansion for Nk ≤ 6

procedure InvKeyExpansion(byte Ki[4][Nk], byte Wi[4][Nb(Nr + 1)])
� Nk > 6

for j = 0 to Nk − 1 do
for i = 0 to 3 do

Wi[i][j] ← Ki[i][j]
end for

end for
for j = Nk to Nb(Nr + 1)− 1 do

if j mod Nk = 0 then
Wi[0][j] ← Wi[0][j −Nk] + SRD[Wi[1][j − 1] +Wi[1][j − 2]]

+ RC[Nr + 1− j/Nk]
for i = 1 to 3 do

Wi[i][j] ← Wi[i][j −Nk] + SRD[Wi[i+ 1 mod 4][j − 1]
+Wi[i+ 1 mod 4][j − 2]]

end for
else if j mod Nk = 4 then

for i = 0 to 3 do
Wi[i][j] ← Wi[i][j −Nk] + SRD[Wi[i][j −Nk − 1]]

end for
else

for i = 0 to 3 do
Wi[i][j] ← Wi[i][j −Nk] +Wi[i][j −Nk − 1]

end for
end if

end for
end procedure

List. 4.4. Algorithm for the inverse key expansion for Nk > 6
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⎢⎢⎣
c0,j
c1,j
c2,j
c3,j

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
b0,j+C0

b1,j+C1

b2,j+C2

b3,j+C3

⎤
⎥⎥⎦ , 0 ≤ j < Nb (4.6)

⎡
⎢⎢⎣
d0,j
d1,j
d2,j
d3,j

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
2 3 1 1

1 2 3 1

1 1 2 3

3 1 1 2

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣
c0,j
c1,j
c2,j
c3,j

⎤
⎥⎥⎦ , 0 ≤ j < Nb. (4.7)

The addition in the indices of (4.6) must be done modulo Nb. Equations
(4.5)–(4.7) can be combined into⎡

⎢⎢⎣
d0,j
d1,j
d2,j
d3,j

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
2 3 1 1

1 2 3 1

1 1 2 3

3 1 1 2

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣
SRD[a0,j+C0

]
SRD[a1,j+C1 ]
SRD[a2,j+C2 ]
SRD[a3,j+C3

]

⎤
⎥⎥⎦ , 0 ≤ j < Nb. (4.8)

The matrix multiplication can be interpreted as a linear combination of four
column vectors:⎡

⎢⎢⎣
d0,j
d1,j
d2,j
d3,j

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
2

1

1

3

⎤
⎥⎥⎦ SRD[a0,j+C0 ] +

⎡
⎢⎢⎣
3

2

1

1

⎤
⎥⎥⎦ SRD[a1,j+C1 ] +

⎡
⎢⎢⎣
1

3

2

1

⎤
⎥⎥⎦ SRD[a2,j+C2

] +

⎡
⎢⎢⎣
1

1

3

2

⎤
⎥⎥⎦ SRD[a3,j+C3 ], 0 ≤ j < Nb. (4.9)

We define now the four T -tables: T0, T1, T2 and T3:

T0[a] =

⎡
⎢⎢⎣
2 · SRD[a]
1 · SRD[a]
1 · SRD[a]
3 · SRD[a]

⎤
⎥⎥⎦ , T1[a] =

⎡
⎢⎢⎣
3 · SRD[a]
2 · SRD[a]
1 · SRD[a]
1 · SRD[a]

⎤
⎥⎥⎦ , (4.10)

T2[a] =

⎡
⎢⎢⎣
1 · SRD[a]
3 · SRD[a]
2 · SRD[a]
1 · SRD[a]

⎤
⎥⎥⎦ , T3[a] =

⎡
⎢⎢⎣
1 · SRD[a]
1 · SRD[a]
3 · SRD[a]
2 · SRD[a]

⎤
⎥⎥⎦ . (4.11)

These tables each have 256 4-byte word entries and require 4 kB of storage
space. Using these tables, (4.9) translates into⎡

⎢⎢⎣
d0,j
d1,j
d2,j
d3,j

⎤
⎥⎥⎦ = T0[a0,j+C0

] + T1[a1,j+C1
] + T2[a2,j+C2

] + T3[a3,j+C3
],

0 ≤ j < Nb. (4.12)
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Taking into account that AddRoundKey can be implemented with an addi-
tional 32-bit XOR operation per column, we get a look-up table implemen-
tation with 4 kB of tables that takes only four table look-ups and four XOR
operations per column per round.

Furthermore, the entries T0[a], T1[a], T2[a] and T3[a] are rotated versions
of one another, for all values a. Consequently, at the cost of three additional
rotations per round per column, the look-up table implementation can be
realized with only one table, i.e. with a total table size of 1 kB. The size of
the encryption routine (relevant in applets) can be kept small by including a
program to generate the tables instead of the tables themselves.

In the final round, there is no MixColumns operation. This boils down
to the fact that SRD must be used instead of the T -tables. The need for
additional tables can be suppressed by extracting the SRD-table from a T -
table by masking while executing the final round.

Most operations in the key expansion are 32-bit XOR operations. The
additional transformations are the application SRD and a cyclic shift over 8
bits. This can be implemented very efficiently.

Decryption can be described in terms of the transformations EqRound and
EqFinalRound used in the equivalent decryption algorithm. These can be im-
plemented with look-up tables in exactly the same way as the transformations
Round and FinalRound. There is no performance degradation compared to
encryption. The look-up tables for the decryption are however different. The
key expansion to be used in conjunction with the equivalent decryption al-
gorithm is slower, because after the key expansion all but two of the round
keys are subject to InvMixColumns (cf. Sect. 3.7).

4.2.2 Bitsliced Software

As discussed in Sect. 10.9.1, the most efficient AES implementations may be
vulnerable to timing attacks on processors with cache memory due to table
look-ups. This led to AES software that avoids table look-ups altogether.

The technique to avoid table look-ups is called bitslicing and was first
proposed in [19] for DES. Its basic principle is simple. Each bit of the state
and the key is put in a separate CPU word. Taking a bit-level description, e.g.
for dedicated hardware, one can now program DES by executing solely bitwise
Boolean instructions. This can be made efficient by grouping multiple DES
instances in the CPU words. On a CPU supporting 32-bit bitwise Boolean
instructions, each CPU word then contains the bits in a specific position of
32 different DES instances. A straightforward implementation of DES in this
way would require 64 + 56 = 120 words. For this bitsliced implementation
to be efficient, 32 DES instances must be available that can be computed in
parallel. This rules out modes such as CBC or OFB that are strictly serial.
Counter mode on the other hand lends itself ideally to this.
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In [76] E. Käsper and P. Schwabe applied the bitslice technique to AES.
We briefly summarize their approach here and refer the interested reader
to the original publication for a more in-depth treatment. To get an effi-
cient bit-level description, they based their approach on the tower field S-box
representations of [37]. Additionally, they exploited the large amount of sym-
metry in AES to reduce the number of parallel instances to eight of the
high-end Intel CPUs of the era. As a matter of fact, SubBytes, MixColumns
and AddRoundKey treat the 16 bytes of the state in a fully symmetric way,
allowing the arrangement of the ith bit of the 16 state bytes in a single CPU
word. For MixColumns this requires some additional shuffling of bits within
a word as a bit depends on bits in all four bytes of its column. ShiftRows
can be implemented with the same shuffling operations.

4.3 Dedicated Hardware

Rijndael is suited to be implemented in dedicated hardware. Several trade-
offs between chip area and speed are possible. Because the implementation
in software on general-purpose processors is already very fast, the need for
hardware implementations will very probably be limited to two specific cases:

1. Extremely high-speed chip with no area restrictions: the T -tables can be
hardwired and the XOR operations can be conducted in parallel.

2. Compact coprocessor on a low-end platform to speed up Rijndael exe-
cution: for such platforms typically SRD and the xtime (or the complete
MixColumns) operation can be hardwired.

In dedicated hardware, xtime can be implemented with the combination of
a hardwired bit transposition and four XOR gates. The SubBytes step is the
most critical part for a hardware implementation, for two reasons:

1. In order to achieve the highest performance, SRD needs to be instanti-
ated 16 times (disregarding the key schedule). A straightforward imple-
mentation with 16 256-byte tables is likely to dominate the chip area
requirements or the consumption of logic blocks.

2. Since Rijndael encryption and decryption use different transformations,
a circuit that implements Rijndael encryption does not automatically
support decryption.

However, when building dedicated hardware for supporting both encryption
and decryption, we can limit the required chip area by using parts of the
circuit for both transformations. In the following, we explain how SRD and
SRD

−1 can be implemented efficiently.
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4.3.1 Decomposition of SRD

The Rijndael S-box SRD is constructed from two transformations:

SRD[a] = Aff8(Inv8(a)) , (4.13)

where Inv8(a) is the transformation

a → a−1 in GF(28), (4.14)

and Aff8(a) is an affine transformation. The transformation Inv8(a) is self-
inverse and hence

SRD
−1[a] = Inv−1

8 (Aff−1
8 (a)) = Inv8(Aff−1

8 (a)) . (4.15)

Therefore, when we want both SRD and SRD
−1, we need to implement only

Inv8, Aff8 and Aff−1
8 . Since both Aff8 and Aff−1

8 can be implemented with a
limited number of XOR gates, the extra hardware can be reduced significantly
compared to having to hardwire both SRD and SRD

−1.

The affine transformations Aff8 and Aff−1
8 are defined in Sect. 3.4.1. For

ease of reference, we give a tabular description of the functions Aff8, Aff−1
8

and Inv8 in Appendix A.

4.3.2 Efficient Inversion in GF(28)

The problem of designing efficient circuits for inversion in finite fields has
been studied extensively before; e.g. by C. Paar and M. Rosner in [124]. We
summarize here a possible approach.

Every element of GF(28) can be mapped by a linear transformation to

an element of GF(24)
2
, i.e. a polynomial of degree one with coefficients in

GF(24). In order to define multiplication in GF(24)
2
, we need a polynomial

of degree two that is irreducible over GF(24). There exist irreducible polyno-
mials of the form

P (x) = x2 + x+A. (4.16)

Here ‘A’ is a constant element of GF(24) that can be chosen to optimize
the hardware, as long as P (x) stays irreducible. The inverse of an arbitrary
element (bx+ c) is then given by the polynomial (px+ q) iff

1 = (bx+ c) · (px+ q) mod P (x) (4.17)

= (cp+ bq + bp)x+ (cq + bpA). (4.18)

This gives a set of linear equations in p and q, with the following solution:{
p = b(Ab2 + bc+ c2)−1

q = (c+ b)(Ab2 + bc+ c2)−1.
(4.19)
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The problem of generating an inverse in GF(28) has been translated into the
calculation of an inverse and some operations in GF(24). The calculation of
an inverse in GF(24) can be done with a small table.

The basic approach sketched above has been extended in several ways
and optimized [136, 111, 36, 119]. The extensions can be summarized as
follows. Firstly, in order to work without any table, one can apply the sketched
approach recursively and translate the generation of inverses in GF(24) into
the calculation of an inverse and some operations in GF(22). The calculation
of an inverse in GF(22), finally, can be done with a few gates. Secondly, there
are in total 432 choices of basis in GF(28) and GF(24) to consider: there
are more polynomial bases than described by (4.16), and also normal bases
can be considered. A similar optimization effort, with a different outcome,
is done for the case of software bitsliced implementations in [37]. Finally,
for very compact (but slow) implementations, one can exploit the rotational
symmetry of inversion in normal bases [131].

4.3.3 AES-NI

In 2008, Intel and AMD introduced the AES New Instructions (AES-NI)
[68]. Later, other processors (SPARC, ARM, IBM, . . . ) introduced different
instructions with similar functionality. The AES-NI instructions combine the
steps of the round transformation into a single processor instruction. The set
includes instructions to compute one round of AES encryption or decryption,
to compute the special last round of AES encryption or decryption, and to
perform parts of the AES keyscheduling and InvMixColumns.

These instructions can be used to speed up software implementations of
AES, but their effect is most prominent when AES is used in a parallel mode
of operation. The AES encryption round instruction has a latency of eight
cycles. Although a new input can be sent to the instruction in every cycle,
the result is available only eight cycles later. (Early versions of the AES-NI
instructions had a latency of only six cycles, but could be called only once
every two cycles [16, 15]). It follows that the previously popular cipher block
chaining (CBC) mode of operation does not enjoy the same speed-up as a
parallel mode such as counter mode.

4.4 Multiprocessor Platforms

There is considerable parallelism in the round transformation. All four steps
of the round act in a parallel way on bytes, rows or columns of the state. In
the look-up table implementation, all table look-ups can in principle be done
in parallel. The XOR operations can be done mostly in parallel as well.
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The key expansion is clearly of a more sequential nature: the value of
W[i−1] is needed for the computation of W[i]. However, in most applications
where speed is critical, the key expansion has to be done only once for a large
number of cipher executions. In applications where the cipher key changes
often (in extremis, once per application of the block cipher), the key expansion
and the cipher rounds can be done in parallel.

A study by C. Clapp [41] indicates that the performance of Rijndael on
parallel processors is not constrained by the critical path length. Instead,
the limiting factor for Rijndael implementations is the number of memory
references that can be done per cycle.

4.5 Conclusions

In this chapter we have shown how Rijndael can be efficiently implemented
in dedicated hardware and in software on a wide variety of processors.



5. Design Philosophy

In this chapter we motivate the choices we have made in the process of de-
signing Rijndael and its predecessors. We start with discussing the criteria
that are widely considered important for block ciphers, such as security and
efficiency. After that, we introduce the criterion of simplicity that plays such
an important role in our design approach. We explain what we mean by it
and why it is so important. A very effective way to keep things simple is by
the introduction of symmetry. After discussing different ways of introducing
symmetry, we motivate the choice of operations in Rijndael and its predeces-
sors and our approach to security. This is followed by a discussion of what we
think it takes to design a block cipher that satisfies our criteria. We conclude
this chapter with a discussion on the generation and usage of round keys.

5.1 Generic Criteria in Cipher Design

In this section we describe a number of design criteria that are adopted by
most cryptographers.

5.1.1 Security

The most important criterion for a block cipher is security, meaning the
absence of cryptanalytic attacks that exploit its internal structure. Among
other things, this implies the absence of attacks that have a workload smaller
than that of an exhaustive search for the key.

5.1.2 Efficiency

The complementary criterion is that of efficiency. Efficiency refers to the
amount of resources required to perform an encryption or decryption. In ded-
icated hardware implementations, energy consumption per encryption or per
encrypted bit are relevant, as well as encryption and decryption speed and the
required chip area. In software implementations, the encryption/decryption
speed and the required amount of working memory and program-storage
memory are relevant.
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5.1.3 Key Agility

When quoting the speed of a cipher, one often makes the silent assumption
that a large amount of data is encrypted with the same key. In that case
the key schedule can be neglected. However, if a cipher key is used to secure
messages consisting of a few blocks only, the number of cycles taken by the
computation of the key schedule becomes important. The ability to efficiently
change keys is called key agility.

5.1.4 Versatility

Differences in processor word length and instruction sets may cause the effi-
ciency of a cipher to be very dependent on the processor type. As the AES
is implemented on smart cards, smart phones, desktop PCs, workstations,
routers, set-top boxes, hardware security modules and probably some other
types of devices, we have attempted to design a cipher that is efficient on the
widest range of processors possible. Although just a qualifier for efficiency,
we call this requirement versatility.

5.1.5 Discussion

The criteria of security and efficiency are applied by all cipher designers.
There are cases in which efficiency is sacrificed to obtain a higher security
margin. The challenge is to come up with a cipher design that offers a rea-
sonable security margin while optimizing efficiency.

The criteria of key agility and versatility are less universal. In some cases
these criteria are irrelevant because the cipher is meant for a particular ap-
plication and will be implemented on a specific platform. For the AES — the
successor of the ubiquitous DES — we expected key agility and versatility
to be major issues. Still, a large part of the ciphers submitted to the AES
focus on efficiency of bulk data encryption on 32-bit processors without much
attention to 8-bit processors, multiprocessors or dedicated hardware, or an
efficient key schedule.

5.2 Simplicity

A notion that characterizes our design philosophy is simplicity. The design
process can be broken down into a number of decisions and choices. In each of
these decisions and choices, the simplicity criterion has played an important
role.

We distinguish simplicity of specification and simplicity of analysis. A
specification is simple if it makes use of a limited number of operations and
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if the operations by themselves can be easily explained. An obvious advan-
tage of a simple specification is that it facilitates a correct implementation.
Another advantage is that a cipher with a simple specification seems a more
interesting object to study than a cipher with a complex specification. More-
over, the simplicity of the specification may lead people to believe that it
is easier to find a successful attack. In other words, the simplicity of a ci-
pher contributes to the appeal it has for cryptanalysts, and in the absence of
successful cryptanalysis, to its cryptographic credibility.

Simplicity of analysis corresponds to the ability to demonstrate and un-
derstand in what way the cipher offers protection against known types of
cryptanalysis. In this way, resistance against known attacks can be covered
in the design phase, thereby providing a certain level of cryptographic credi-
bility from the start. This contributes again to the appeal to cryptanalysts:
successful cryptanalysis of a cipher with some credibility gives more prestige
than cryptanalysis of an insignificant cipher.

Simplicity of specification does not necessarily imply simplicity of analy-
sis. It is relatively easy to come up with a cipher with a very simple description
for which the analysis with respect to known attacks is very hard.

On top of the advantages cited above, we use the criterion of simplicity
to obtain a good trade-off between security on the one hand and efficiency
and versatility on the other hand. This is explained in Sect. 5.3.

Simplicity can be achieved in a number of ways. In the design of Rijndael
and its predecessors, we have mostly realized it through the adoption of
symmetry and our choice of operations.

5.3 Symmetry

A very powerful tool for introducing simplicity is symmetry. Symmetry can
be applied in several ways. We distinguish symmetry across the rounds, sym-
metry within the round transformation and symmetry in the steps.

5.3.1 Symmetry Across the Rounds

We design a cipher as the repeated iteration of the same keyed round trans-
formation. This approach has the advantage that in specifications only one
round transformation needs to be specified, and in software implementations
only one round has to be programmed. Moreover, it allows dedicated hard-
ware implementations that only contain a circuit for the round transformation
and the key schedule. In Rijndael, the last round is different from the other
ones in order to make the algorithms for decryption and encryption have the
same structure (see Chap. 4).
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One may wonder whether this symmetry cannot be exploited in crypt-
analysis. As a matter of fact, the so-called slide attacks as described by A.
Biryukov and D. Wagner in [31] exploit this kind of symmetry. However,
for slide attacks to work, also the key schedule must exhibit a large degree
of symmetry. Hence, protection against known slide attacks can already be
achieved with a very simple key schedule, e.g. consisting merely of the XOR
of well-chosen constants with the cipher key.

5.3.2 Symmetry Within the Round Transformation

Symmetry within the round transformation implies that it treats all bits of
the state in a similar way. In the Feistel round structure, as adopted in the
DES (see Chap. 6) this is clearly not the case since the two halves of the
state are treated quite differently.

A consequence of our design strategy (see Chap. 9) is that the round
transformation consists of a sequence of steps, each with its own particular
function. For each of these steps, the symmetry requirement translates easily
into some concrete restrictions:

1. Nonlinear step. A bricklayer transformation consisting of nonlinear
S-boxes operating independently on bytes. The symmetry requirement
translates easily into the requirement that the same S-box is used for all
byte positions.

2. Mixing step. A bricklayer transformation consisting of linear D-boxes
operating independently on columns. The symmetry requirement trans-
lates into the requirement that the same D-box is used for all column
positions. Additionally, alignment between bytes and columns may be
imposed: all bits in the same byte are also in the same column.

3. Transposition step. The transposition step consist of the mere trans-
position of bytes. Alignment with the nonlinear step may be imposed: the
transposition step is a byte transposition rather than a bit transposition.

These symmetry requirements offer a framework in which only the size of
the bytes and the columns, the S-box and the D-box, and the byte transpo-
sition need to be specified to fully define the round transformation.

Having a large degree of symmetry in the round transformation may lead
to cryptographic weaknesses. An example of such a weakness is the comple-
mentation property of the DES [71]. If in Rijndael the key application is not
taken into account, there exist a number of byte transpositions π that com-
mute with the round transformation. In other words, we have π ◦ ρ = ρ ◦ π.
If all round keys are 0, this is also valid for the complete cipher. The same
property holds if each individual round key is composed of bytes that all
have the same value. These symmetry properties can however be eliminated
by using even a simple key schedule.
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Imposing alignment results in the cipher actually operating on bytes
rather than bits. As a matter of fact, this property is exploited in some
of the most powerful attacks against reduced-round versions of Rijndael and
its relatives to date, the so-called saturation attacks, which are described in
Sect. 10.2. The saturation attacks form one of the main motivations behind
the number of rounds in Rijndael and its relatives.

Note. Instead of translating symmetry into the requirement for byte
alignment, as is done for Rijndael and its relatives, one may choose the oppo-
site: non-alignment. In this case the transposition step moves bits belonging
to the same byte to bits in different bytes. This is the approach followed for
the bitslice ciphers 3-Way [43], BaseKing [45] and Noekeon [46]. Because of
the small size of their S-box, these ciphers are very compact in dedicated
hardware. In software they are in general slower than Rijndael and its rel-
atives. Perhaps the best-known bitslice cipher is Serpent, which is the AES
candidate submitted by E. Biham et al. [4]. The designers of Serpent have not
followed the same simplicity strategy: it has eight different S-boxes giving rise
to eight different round transformations, and the mixing step has a substan-
tial amount of asymmetry. These factors make it harder to prove bounds for
Serpent than for Rijndael and its relatives and the more symmetric bitslice
ciphers mentioned above.

5.3.3 Symmetry in the D-Box

Specifying a D-box with the same size as the one used in the mixing step
of Rijndael can in general be done with a binary 32 × 32 matrix, requiring
128 bytes of storage. By interpreting bytes as elements in a finite field, and
restricting ourselves to a matrix multiplication over GF(28), the D-box can be
specified with 16 byte values. We have imposed that the matrix is a circulant
matrix, imposing on the matrix elements ai,j = a0,j−i mod n for all i, j. This
reduces the number of bytes required to specify the D-box to 4. Other types
of symmetry may be imposed. For example, the mixing step of Anubis [9]
makes use of a matrix where the matrix elements are indexed with binary
strings i and j instead of integers and the matrix elements satisfy ai,j = a0,i⊕j

for all i, j.

5.3.4 Symmetry and Simplicity in the S-Box

For a discussion on the design underlying the S-box and its predecessors used
in Rijndael, we refer to Sect. 3.4.1.

5.3.5 Symmetry Between Encryption and Decryption

In general it is an advantage for a block cipher that encryption and decryption
can be performed with the same software program or make use of the same
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hardware circuit. In Feistel ciphers such as the DES (see Chap. 6) this can
easily be achieved by omitting the switching of the two halves in the last
round. It suffices to execute the rounds taking the round keys in reverse
order.

In ciphers that have a round structure like the one of Rijndael, this is
less trivial to achieve. For Rijndael and its predecessors, encryption and de-
cryption are different algorithms. Still, in Sect. 3.7 we derive an equivalent
decryption algorithm that has the same structure as the encryption algo-
rithm. By selecting the steps of the round transformation in a careful way, it
is possible to design a Rijndael-like block cipher that has encryption and de-
cryption algorithms that are identical with the exception of the key schedule.
This is illustrated by the design of Anubis [9].

5.3.6 Additional Benefits of Symmetry

In this section we describe a number of benefits that result from the applica-
tion of symmetry.

Parallelism. A consequence of the symmetry in the different steps is that
they all exhibit a large degree of parallelism. The order in which the S-boxes
of the nonlinear step are computed is unimportant, and so they may be
all computed in parallel. The same argument is valid for the different D-
boxes of the mixing step and for the key application. In dedicated hardware
implementations of the round transformation, this gives rise to a critical path
consisting only of the S-box, the D-box and the XOR of the key addition.
In software implementations, this gives the programmer a lot of flexibility in
the order in which the computations are executed. Moreover, it allows the
efficient exploitation of parallelism supported by multiprocessors, as C. Clapp
demonstrated in [41].

Flexibility in the order of steps. The linearity of three of the four steps
and the symmetry of the nonlinear step allow even more freedom in the order
in which the steps of the round transformation are executed. The transpo-
sition step and the mixing step both commute with the key addition under
the condition that the key value is adapted to this changed order. On the
other hand, thanks to the fact that the nonlinear step has the same effect on
all bytes, it commutes with the transposition step. This gives software imple-
menters even more freedom and in fact allows construction of an equivalent
algorithm for decryption that has the same structure as the algorithm for
encryption (see Sect. 3.7).

Variable block length. Rijndael shares with the AES candidate RC6 [133]
the property that it supports different block lengths. In RC6, the state con-
sists of four 32-bit words and these words appear as arguments in multipli-
cation modulo 232, XOR and cyclic shift. By adopting another word length,
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the block length can be varied in steps of 4 bits. For example, adopting a
word length of 40 leads to a block length of 160 bits.

The symmetry in the steps of Rijndael similarly facilitates the definition
of the round transformation for multiple block lengths. The nonlinear step
only requires the block length to be a multiple of the S-box width. The mixing
step requires the block length to be a multiple of the column size. The key
addition does not impose any condition at all. The only step that must be
specified explicitly for each block length supported is the byte transposition.

Changing the block length in RC6 may have a dramatic impact on the effi-
ciency of implementations. For example, implementing 40-bit multiplications
and cyclic shifts on a 32-bit processor is not trivial. Changing the block length
is easy in the specifications, but costly in implementations. In Rijndael, the
basic operations and the components of the state keep their length if the block
length changes. This means that the block length of Rijndael can be varied
with minimal impact on its computational cost per byte, on any platform.

5.4 Choice of Operations

In the specification of Rijndael and its predecessors, we have limited ourselves
to relatively simple operations such as XOR and multiplication with constants
in GF(28). The S-box makes use of the multiplicative inverse in GF(28) and
an affine transformation.

With this limitation we have excluded a number of simple and efficient
operations that are widely used as components in block ciphers and that ap-
pear to have excellent nonlinearity and/or diffusion properties. The first class
are arithmetic operations such as addition, subtraction and multiplication,
most often performed modulo a number of the form 2n. The second class are
cyclic shifts over an offset that depends on state or key bits. We explain our
objections against these operations in the following subsections.

5.4.1 Arithmetic Operations

Addition, subtraction and multiplication seem to be simple operations to
describe. Moreover, Boolean transformations based on multiplication seem
to perform very well with respect to most common nonlinearity and diffusion
criteria. Most processors support arithmetic instructions that execute in as
few cycles as a simple bitwise XOR.

Unfortunately, if the word length of the processor does not match the
length of the operands, either it becomes hard to take full advantage of the
processor power due to carry propagation, or limitations in the processing
power become apparent. For example, implementing a 32-bit multiplication
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modulo 232 on an 8-bit processor smart card requires about 10 multiply
instructions and 16 addition instructions.

In dedicated hardware, the number of gates required for addition (or
subtraction) is about three times that of a bitwise XOR, and due to the
carry propagation the gate delay is much larger and even depends on the
word length. Implementing multiplication in dedicated hardware appears to
give rise to circuits with a large number of gates and a large gate delay.

Another cost that appears is the protection against power analysis attacks.
The carry propagation complicates the implementation of certain protection
measures against differential power analysis (DPA) that are trivial for XOR,
such as balancing (cf. Sect. 10.9.2).

If arithmetic operations are used that operate on numbers that are rep-
resented by more than a single byte, one needs to define in what order these
bytes must be interpreted as an integer. In processors there are two archi-
tectures: big endian and little endian [142]. Depending on how the order is
defined in the cipher specification, one of the two architectures is typically
favored. By not using arithmetic operations, an endian neutral cipher can be
obtained.

5.4.2 Data-Dependent Shifts

Data-dependent shift operations seem to be simple operations to describe.
Moreover, Boolean transformations based on data-dependent shifts seem to
perform well with respect to most common nonlinearity and diffusion crite-
ria. Many processors support data-dependent (cyclic) shift instructions that
execute in a small fixed number of cycles. Unfortunately, if the word length
of the processor does not match the length of the operand that is shifted, it
takes several instructions to realize the shift operation.

Protection against implementation attacks (see Sect. 10.9) may be very
cumbersome on certain platforms. For example, on a typical 8-bit processor
the only shift instructions available are those that shift the content of an 8-
bit register over 1 bit. A straightforward implementation of a data-dependent
shift would execute in a variable number of cycles, depending on the value
of the offset. Providing protection against timing attacks can be achieved by
inserting dummy instructions, resulting in a constant number of cycles given
by the worst-case offset value. Protecting against DPA on top of that seems
a non-trivial exercise and may result in a multiplication of the number of
cycles by at least a factor of two.
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5.5 Approach to Security

5.5.1 Security Goals

In this section, we present the goals we have set for the security of Rijndael.
We introduce two security criteria in order to define the meaning of a suc-
cessful cryptanalytic attack. Note that we cannot prove that Rijndael satisfies
these criteria.

In order to formulate our goals, some security-related concepts need to be
defined. A block cipher of block length nb has 2nb possible inputs. If the key
length is nk, it defines a set of 2nk permutations. For a block length of nb,
the number of possible permutations is 2nb !. Hence the number of all possible
block ciphers of dimensions nb and nk is

(2nb)!
2(nk)

. (5.1)

For practical values of the dimensions (e.g. nb and nk above 40), the subset of
block ciphers with exploitable weaknesses form a negligible minority in this
set. We define two security properties K-secure and hermetic as criteria that
are satisfied by the majority of block ciphers for the given dimensions.

Definition 5.5.1. A block cipher is K-secure if all possible attack strate-
gies for it have the same expected work factor and storage requirements
as for the majority of possible block ciphers with the same dimensions.
This must be the case for all possible modes of access for the adversary
(known/chosen/adaptively chosen plaintext/ciphertext, known/chosen/adap-
tively chosen key relations...) and for any a priori key distribution.

K-security is a very strong notion of security. If one of the following weak-
nesses apply to a cipher, it cannot be called K-secure:

1. Existence of key-recovering attacks faster than exhaustive search. These
are usually called shortcut attacks.

2. Certain symmetry properties in the block cipher (e.g., complementation
property).

3. Occurrence of classes of weak keys of non-negligible size (as in IDEA).

4. Related-key attacks.

K-security is essentially a relative measure. It is quite possible to build a
K-secure block cipher with a 5-bit block and key length. The lack of security
offered by such a primitive is due to its small dimensions, not to the fact that
the primitive fails to meet the requirements imposed by these dimensions.
Clearly, the longer the key, the higher the targeted security strength.

It is possible to imagine ciphers that have certain weaknesses and still
are K-secure. An example of such a weakness would be a block cipher with a
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block length larger than the key length and a single weak key, for which the
permutation is linear. The detection of the usage of the key would take at
least a few encryptions, whereas checking whether the key is used would only
take a single encryption. If this cipher were to be used for encryption, this
single weak key would pose no problem. However, used as a component in a
larger scheme, for instance as the compression function of a hash function,
this property could introduce a way to efficiently generate collisions. For
these reasons we introduce yet another security concept, denoted by the term
hermetic.

Definition 5.5.2. A block cipher is hermetic if it does not have weaknesses
that are not present for the majority of block ciphers with the same block and
key length.

Informally, a block cipher is hermetic if its internal structure cannot be
exploited in any application. For all key and block lengths defined, the secu-
rity goals are that the Rijndael cipher is K-secure and hermetic. If Rijndael
lives up to its goals, the strength against any known or unknown attacks is
as good as can be expected from a block cipher with the given dimensions.

5.5.2 Translation of Security Goals into Modern Security Notions

The definitions of K-secure and hermetic are stated in an informal, rather
intuitive way. In modern cryptography it is customary to give formal defini-
tions of security of block ciphers. In this section we will discuss the relation
between the security definitions we were using at the time when we designed
Rijndael and these modern security notions.

We give here an informal description of the modern security notions and
refer interested readers to [77] for a more rigorous treatment. Well-established
security notions for a block cipher are its pseudorandom permutation (PRP)
advantage and its strong pseudorandon permutation (SPRP) advantage [12].
These are defined by means of a game where an algorithm (the adversary)
must distinguish the block cipher, keyed with a randomly and uniformly
selected key not known to the adversary, from a permutation chosen randomly
and uniformly from the set of all permutations with the same block size as
the block cipher. In the former case we say the adversary is in the real world
and in the latter case we say it is in the ideal world. The adversary is in the
real world or in the ideal world, each with probability 1/2, not knowing which
one of the two. In both worlds, the adversary can query the primitive and it is
also provided with the specification of the block cipher. In PRP security, the
adversary can make only encryption queries, while in SPRP security, it can
also make decryption queries. After analyzing the responses to the queries
and performing computations, it must guess whether it is in the ideal or
real world. The advantage is basically the adversary’s probability of success
multiplied by two minus one.
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The SPRP advantage of a block cipher with a nk-bit key that is K-secure
is N2−nk with N the amount of computation where the unit of computation
is an execution of the block cipher including the key schedule, and this is irre-
spective of the number of queries. In other words, the only way to distinguish
it from a random permutation is exhaustive key search.

But K-security is actually a much more powerful security notion than can
be expressed with an SPRP advantage. Among other things, it also implies
resistance against related-key attacks, for a wide range of key relations one
can come up with. This is rather a side-effect of the attempt to define a
simple to express security goal in the form of K-security than a wish to offer
resistance against related-key attacks. Indeed, when dealing with a block
cipher with high key agility, there is no need for protocols that allow related-
key attacks. The attacks of Biryukov and Khovratovich [72, 149, 82, 24, 29,
28], discussed in Sect. 10.5 have shown that AES-192 and AES-256 do not
achieve K-security. In retrospect, if we had been familiar with the concept of
SPRP advantage notion at the time, that would have been the appropriate
way to express the security goal of Rijndael. Early versions of the concept had
already been explored as early as 1988 [97, 11] but only became mainstream
after the first edition of this book.

We also presented the security notion of an hermetic cipher to cover un-
keyed uses of Rijndael, e.g. as a compression function in hashing. This concept
would nowadays be described using the term ideal cipher. One could say that
a block cipher is hermetic if, when used in an unkeyed mode, it does not al-
low shortcut attacks. In other words, if the security of the function obtained
by applying the unkeyed mode to the block cipher is the one it would have
calling an ideal cipher. In the case of collision-resistant hashing this makes
sense. One can imagine that it is possible to design a block cipher that, when
used as a compression function in a hashing mode, will provide the resistance
against collisions that would be obtained with an ideal cipher. However, the
notion of hermetic cipher is actually more ambitious: it expresses the prop-
erty to behave like an ideal cipher in all possible circumstances. This is clearly
not possible as one can always make up modes or protocols that would be
secure in the ideal cipher model but that cannot be secure with any concrete
block cipher [35].

5.5.3 Unknown Attacks Versus Known Attacks

‘Prediction is very difficult, especially about the future.’ (Niels Bohr)

Sometimes in cipher design, so-called resistance against future, as yet
unknown, types of cryptanalysis is used as a rationale to introduce complexity.
We prefer to base our ciphers on well-understood components that interact in
well-understood ways allowing us to provide bounds that give evidence that
the cipher is secure with respect to all known attacks. For ciphers making
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use of many different operations that interact in hard-to-analyze ways, it is
much harder to provide such bounds.

5.5.4 Provable Security Versus Provable Bounds

Often claims are made that a cipher would be provably secure. Designing a
block cipher that is provably secure in an absolute sense seems for now an
unattainable goal. Arguments that have been presented as proofs of security
have been shown to be based on (often implicit) assumptions that make
these ‘proofs of security’ irrelevant in the real world. Still, we consider having
provable bounds for the workload of known types of cryptanalysis for a block
cipher an important feature of the design.

5.6 Approaches to Design

5.6.1 Nonlinearity and Diffusion Criteria

Many papers are devoted to describing nonlinearity and diffusion criteria
and counting or characterizing classes of Boolean functions that satisfy them.
In most of these papers the Boolean functions are (tacitly) assumed to be
(components of) S-boxes located in the F-function of a Feistel structure or
in an academic round transformation model such as so-called substitution-
permutation networks [2, 123]. These networks consist of the alternation of
parallel S-boxes and bit permutations, and were proposed in [60, 75]. The
S-boxes are considered to be the elements in the round transformation that
give the cipher its strength against cryptanalysis. Maybe the most important
contribution of the wide trail strategy is the demonstration of the importance
of the linear steps in the round transformation, and quantitative measures
for the quality of the linear steps (cf. branch numbers, Sect. 9.3).

Many of the diffusion and nonlinearity criteria described in the cryptology
literature are just criteria a block cipher must satisfy in order to be secure.
They are necessary conditions for security, but not sufficient. To be of some
use in cryptographic design, criteria for the components of a cipher are needed
rather than criteria for the target cipher. Imposing criteria on components in
a cipher only makes sense if first a structure of the cipher is defined in which
the components have a specific function.

5.6.2 Resistance Against Differential and Linear Cryptanalysis

The discovery of differential and linear cryptanalysis (see Chaps. 6–8 and also
Chaps. 12–15) has given rise to a theoretical basis for the design of iterative
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block ciphers. Nowadays, a new block cipher is only taken seriously if it is
accompanied by evidence that it resists differential and linear cryptanalysis.
Naturally, differential and linear cryptanalysis are not the only attacks that
can be mounted against block ciphers. In Chap. 10 we consider a number
of generic types of cryptanalysis and attacks that are specific to the struc-
ture of Rijndael and its related ciphers. A block cipher should resist all types
of cryptanalysis imaginable. Still, we see that nowadays in most cases resis-
tance against differential and linear cryptanalysis are the criteria that shape a
block cipher; the other known attacks are only considered later and resistance
against them can be obtained with small modifications in the original design
(e.g. the affine transformation in the SRD to thwart interpolation attacks, cf.
Sect. 10.4).

Almost always, an iterative block cipher can be made resistant against dif-
ferential and linear cryptanalysis by taking enough rounds. Even if a round
transformation is used that offers very little nonlinearity or diffusion, repeat-
ing it often enough will result in a block cipher that is not breakable by
differential or linear cryptanalysis. For an iterated cipher, the workload of
an encryption is the workload of the round transformation multiplied by the
number of rounds. The engineering challenge is to design a round transfor-
mation in such a way that this product is minimized while providing lower
bounds for the complexity of differential and linear cryptanalysis that are
higher than exhaustive key search.

5.6.3 Local Versus Global Optimization

The engineering challenge can be tackled in different ways. We distinguish
two approaches:

1. local optimization. The round transformation is designed in such a
way that the worst-case behavior of one round is optimized.

2. global optimization. The round transformation is designed in such a
way that the worst-case behavior of a sequence of rounds is optimized.

In both cases, the worst-case behavior is then used to determine the required
number of rounds to offer resistance against differential and linear cryptanal-
ysis. For the actual block cipher, usually some more rounds are taken, to
provide a security margin.

In the context of linear cryptanalysis, this worst-case behavior corre-
sponds with the maximum input-output correlation (see Chap. 7) and in the
case of differential cryptanalysis it corresponds to the maximum difference
propagation probability (see Chap. 8).

In the case of local optimization, the maximum input-output correlation
and the maximum difference propagation probability of the round trans-
formation determine the number of rounds required. In Feistel ciphers (see
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Chap. 6) it does not make sense to evaluate these criteria over a single round,
since part of the state is merely transposed and undergoes no nonlinear oper-
ation. Therefore, for Feistel ciphers local optimization is done on a sequence
of two rounds.

In Chaps. 7 and 8 we show that to obtain low maximum correlations
and difference propagation probabilities, a Boolean transformation must have
many input bits. In the local optimization approach the round must thus
make use of expensive nonlinear functions such as large S-boxes or modular
multiplication. This can be considered to be a greedy approach: good nonlin-
earity is obtained with only few rounds but at a high implementation cost.

The tendency to do local optimization can be found in many ciphers. For
example, in [93] X. Lai et al. claim that the maximum difference propagation
probability over a single round is an important measure of the resistance that
a round transformation offers against differential cryptanalysis. Another ex-
ample of local optimization is [122] by K. Nyberg and L. Knudsen. All results
are obtained in terms of the maximum difference propagation probability of
the F -function (see Chap. 6) of a Feistel cipher.

In global optimization, the maximum input-output correlation and differ-
ence propagation probability of the round transformation do not play such an
important role. Here several approaches are possible. One of the approaches
is the wide trail strategy that we have adopted for the design of Rijndael
and its predecessors. To fully understand the wide trail strategy, we advise
reading Chaps. 6–9.

As opposed to local optimization, global optimization allows cheap non-
linear Boolean transformations such as small S-boxes. Global optimization
introduces new diffusion criteria. These diffusion criteria no longer specify
what the block cipher should satisfy, but give concrete criteria for the design
of components of the round transformation. In most cases, the round transfor-
mation contains components that realize nonlinearity and components that
realize diffusion. The function of the diffusion components is to make sure
that the input-output correlation (difference propagation probability) over r
rounds is much less than the rth power of the maximum input-output corre-
lation (difference propagation probability) of the round transformation.

For most round transformations, finding the maximum difference prop-
agation probability and the maximum input-output correlation is computa-
tionally feasible. Computing the maximum difference propagation probability
and the maximum input-output correlation over multiple rounds can, how-
ever, become very difficult. In the original differential cryptanalysis and linear
cryptanalysis attacks on the DES, finding high difference propagation proba-
bilities and input-output correlations over all but a few rounds of the cipher
turned out to be one of the major challenges. In the linear cryptanalysis at-
tack (cf. Chap. 6 and [104, 105]), M. Matsui had to write a sophisticated
program that searched for the best linear expression.
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In Rijndael and its predecessors, we have made use of symmetry and align-
ment to easily prove lower bounds for sequences of four rounds (two rounds in
SHARK, see Chap. 11). If alignment is not applied, proving bounds becomes
more difficult. An illustration of this is the AES finalist Serpent [4], which also
applied the principle of global optimization. The Serpent submission contains
a table giving the maximum difference propagation probabilities and input-
output correlations for 1–7 rounds, clearly illustrating this. Especially the
bounds for 5–7 rounds were excellent. Unfortunately, the paper did not give
a proof of these bounds nor a description of how they were obtained. More-
over, later the designers of Serpent had to weaken the bounds due to new
insights [23]. In our bitslice cipher Noekeon [46], we have provided bounds
for four rounds using an exhaustive search program with a relatively sim-
ple structure. By exploiting the high level of symmetry in Noekeon, many
optimizations were possible in this program, enabling us to demonstrate sur-
prisingly good bounds.

5.7 Key-Alternating Cipher Structure

By applying the key with a simple XOR, we simplify the analysis of the cipher
and hence make it easier to prove lower bounds in the resistance against
particular attacks such as differential and linear cryptanalysis (see Sect. 9.1).

The advantage of the key-alternating structure is that the quality of the
round transformations in the context of linear or differential cryptanalysis is
independent of the round key. By adopting a key-alternating structure, the
analysis of linear and differential trails can be conducted without even con-
sidering the influence of the key. An example of a radically different approach
is the block cipher IDEA [93].

Example 5.7.1. In IDEA the subkeys are applied by means of modular mul-
tiplication and addition. The difference propagation probability of the round
transformation depends heavily on the value of these subkeys. However, the
designers of IDEA have proposed considering alternative notions of difference
to come to difference propagation probabilities that are independent of the
value of the round key. Unfortunately, attacks based on XOR as the differ-
ence appear to be more powerful than attacks making use of the alternative
notion of difference. Moreover, the existence of weak subkeys and an unfor-
tunate choice in the key schedule give rise to large classes of weak keys for
which IDEA exhibits difference propagation probabilities equal to 1. Similar
arguments apply for the resistance of IDEA against linear cryptanalysis.
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5.8 The Key Schedule

5.8.1 The Function of a Key Schedule

The function of a key schedule is the generation of the round keys from the ci-
pher key. For a key-alternating cipher with a block length of nb and r rounds,
this means nb(r + 1) bits. There is no consensus on the criteria that a key
schedule must satisfy. In some design approaches, the key schedule must gen-
erate round keys in such a way that they appear to be mutually independent
and can be considered random (see Sects. 7.10.2 and 8.7.2). Moreover, for
some ciphers the key schedule is so strong that the knowledge of one round
key does not help in finding the cipher key or other round keys. In these
ciphers, the key schedule appears to make use of components that can be
considered as cryptographic primitives in their own right.

For the key schedule in Rijndael the criteria are less ambitious. Basically,
the key schedule is there for three purposes:

1. The first one is the introduction of asymmetry. Asymmetry in the key
schedule prevents symmetry in the round transformation and between
the rounds, which would lead to weaknesses or allow attacks. Examples
of such weaknesses are the complementation property of the DES or weak
keys such as in the DES [54]. Examples of attacks that exploit symmetry
are slide attacks.

2. The second purpose is resistance against related-key attacks (cf. Sect. 10.5).

3. The third purpose is resistance against attacks in which the cipher key
is (partially) known by or can be chosen by the cryptanalyst. This is the
case if the cipher is used as the compression function of a hash function
[85].

All other attacks are supposed to be prevented by the rounds of the block
cipher. The modest criteria we impose can be met by a key schedule that
is relatively simple and uses only a small amount of resources. This gives
Rijndael its high key agility.

5.8.2 Key Expansion and Key Selection

In Rijndael, the key schedule consists of two parts: the key expansion, which
maps the nk-bit cipher key to a so-called expanded key, and the round key
selection, which selects the nb-bit round keys from the expanded key. This
modularity facilitates the definition of a key expansion that is independent of
the block length, and a round key selection that is independent of the cipher
key length. For Rijndael, round key selection is very simple: the expanded
key is seen as the concatenation of nb-bit round keys starting with the first
round key.
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5.8.3 The Cost of the Key Expansion

In general, the key schedule is independent of the value of the plaintext or
the ciphertext. If a cipher key is used for encrypting (or decrypting) mul-
tiple blocks, one may limit the computational cost of the key schedule by
performing the key expansion only once and keeping the expanded key in
working memory for the complete sequence of encryptions. If cipher keys are
used to encrypt large amounts of data, the computational cost of the key
schedule can be neglected. Still, in many applications a cipher key is used
for the encryption of only a small number of blocks. If the block cipher is
used as a one-way function (e.g. in key derivation), or as the compression
function in a hash function, each encryption is accompanied by the execu-
tion of the key schedule. In these cases, the computational cost of the key
schedule is very important. Keeping the expanded key in working memory
consumes nb(r+1) bits. In the case of Rijndael, a block length and key length
of 128 bits require 176 bytes of key storage, whereas a block length and key
length of 256 bits require 480 bytes of key storage. On some resource-limited
platforms such as smart cards there may be not enough working memory
available for the storage of the expanded key. To allow efficient implementa-
tions on these platforms, the key schedule must allow implementations using
a limited amount of working memory in a limited number of processor cycles,
in a small program.

5.8.4 A Recursive Key Expansion

We addressed the requirements discussed above by adopting a recursive struc-
ture. After the first nk bits of the expanded key have been initialized with
the cipher key, each subsequent bit is computed in terms of bits that have
previously been generated. More specifically, if we picture the expanded key
as a sequence of 4-byte columns, the column at position i in the expanded
key can be computed using the columns at positions from i − Nk to i − 1
only. Let us now consider a block consisting of the columns with indices from
j to j + Nk − 1. By working out the dependencies, we can show that this
block can be computed using columns j − Nk to j − 1. In other words, each
Nk-column block is completely determined by the previous Nk-column block.
As Nk columns of the expanded key are sufficient for the computation of all
following columns, the key schedule can be implemented using only a work-
ing memory that is the size of the cipher key. The round keys are generated
on the fly and the key expansion is executed whenever round key bits are
required. In the case where the block length is equal to the key length, the
blocks described above coincide with round keys, and round key i can be
computed from round key i − 1 by what can be considered to be one round
of the key schedule. Additionally, the recursion can be inverted, i.e. column i
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can be expressed in terms of columns i+1 to i+Nk. This implies that the ex-
panded key can be computed backwards, starting from the last Nk columns.
This allows on-the-fly round key generation for decryption.

The recursion function must have a low implementation cost while pro-
viding sufficient diffusion and asymmetry to thwart the attacks mentioned
above. To protect against related-key attacks, nonlinearity can be introduced.
More specifically, the nonlinearity should prohibit the full determination of
differences in the expanded key from cipher key differences only.

5.9 Conclusions

In this chapter we have tried to make explicit the mindset with which we have
designed Rijndael and its predecessors. A large part of this is the formulation
of criteria that the result must satisfy. Cipher design is still more engineering
than science. In many cases compromises have to be made between conflicting
requirements. We are aware that Rijndael is just an attempt to achieve a
cipher that satisfies our criteria and that it shows such compromises.
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In this chapter we give a brief description of the block cipher DES [1]. Both
differential cryptanalysis and linear cryptanalysis were successfully applied
to the DES. Differential cryptanalysis was the first chosen-plaintext attack
that was theoretically more efficient than an exhaustive key search for the
DES. Linear cryptanalysis was the first attack that achieved the same in a
known-plaintext scenario. Resistance against these two attacks is the most
important criterion in the design of Rijndael.

We give a summary of the original differential cryptanalysis and linear
cryptanalysis attacks using the terminology of their inventors. For a more de-
tailed treatment of the attacks, we refer to the original publications [26, 104].
The only aim of our description is to indicate the aspects of the attacks that
determine their expected work factor. For differential cryptanalysis the crit-
ical aspect is the maximum probability of difference propagations, for linear
cryptanalysis it is the maximum deviation from 0.5 of the probability that
linear expressions hold.

6.1 The DES

The cipher that was the most important object of the attacks to be discussed
is the DES [1]. Therefore, we start with a brief description of its structure.

The DES is an iterated block cipher with a block length of 64 bits and
a key length of 56 bits. Its main body consists of 16 iterations of a keyed
round function. The computational graph of the round function is depicted
in Fig. 6.1. The state is split into a 32-bit left part Li and a 32-bit right
part Ri. The latter is the argument of the keyed F -function. Li is modified
by combining it with the output of the F -function by means of an XOR
operation. Subsequently, the left and the right parts are interchanged. This
round function has the so-called Feistel structure: the result of applying a
key-dependent function to part of the state is added (using a bitwise XOR
operation) to another part of the state, followed by a transposition of parts
of the state. A block cipher that has rounds with this structure is called a
Feistel cipher.
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Fig. 6.1. Computational graph of the DES round function

The computational graph of the F -function is depicted in Fig. 6.2. It consists
of the succession of four steps:

1. Expansion E. The 32 input bits are expanded to a 48-bit vector. In this
expansion, the 32-bit vector is split into 4-bit tuples, and the first and
last bit of each tuple is duplicated.

2. Key addition. The 48-bit vector is modified by combining it with a
48-bit round key using the bitwise XOR operation.

3. S-boxes. The resulting 48-bit vector is mapped onto a 32-bit vector by
nonlinear S-boxes. The 48-bit vector is split into eight 6-bit tuples, which
are converted into eight 4-bit tuples by eight different nonlinear S-boxes
that each convert 6 input bits into 4 output bits. As an example, Table 6.1
gives the specification of the second S-box. This table must be read as
follows. If the 6-bit input is denoted by a1a2a3a4a5a6, the output is given
by the entry in row 2a1 + a6 and column 8a2 +4a3 +2a4 + a5. The 4-bit
values are given in hexadecimal notation, e.g. D denotes 1101.

4. Bit permutation P . The bits of the 32-bit vector are transposed.

32 11 2 3 4 ··· 32
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Bit permutation P
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Fig. 6.2. Computational graph of the DES F -function
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Observe that the only nonlinear step in the F -function (and also in the round
transformation) consists of the S-boxes. The 48-bit round keys are extracted
from the 56-bit cipher key by means of a linear key schedule.

0 1 2 3 4 5 6 7 8 9 A B C D E F

0 : F 1 8 E 6 B 3 4 9 7 2 D C 0 5 A
1 : 3 D 4 7 F 2 8 E C 0 1 A 6 9 B 5
2 : 0 E 7 B A 4 D 1 5 8 C 6 9 3 2 F
3 : D 8 A 1 3 F 4 2 B 6 7 C 0 5 E 9

Table 6.1. Specification of the DES S-box S2

6.2 Differential Cryptanalysis

In this section we summarize the most important elements of differential
cryptanalysis as E. Biham and A. Shamir described it in [26].

Differential cryptanalysis is a chosen-plaintext (difference) attack in which
a large number of plaintext-ciphertext pairs are used to determine the value
of key bits. Statistical key information is deduced from ciphertext blocks ob-
tained by encrypting pairs of plaintext blocks with a specific bitwise difference
A′ under the target key. The work factor of the attack depends critically on
the largest probability Prob(B′|A′) with B′ being a difference at some fixed
intermediate stage of the block cipher, e.g. at the input of the last round.

In a first approximation, the probabilities Prob(B′|A′) for the DES are
assumed to be independent of the specific value of the key.

In the basic form of the attack, key information is extracted from the
output pairs in the following way. For each pair it is assumed that the inter-
mediate difference is equal to B′. The absolute values of the output pair and
the (assumed) intermediate difference B′ impose restrictions upon a number
� of key bits of the last round key. A pair is said to suggest the subkey values
that are compatible with these restrictions. While for some pairs many keys
are suggested, no keys are found for other pairs, implying that the output
values are incompatible with B′. For each suggested subkey value, a corre-
sponding entry in a frequency table is incremented.

The attack is successful if the correct value of the subkey is suggested
significantly more often than any other value. Pairs with an intermediate
difference not equal to B′ are called wrong pairs. Subkey values suggested by
these pairs are in general wrong. Right pairs, with an intermediate difference
equal to B′, suggest not only the right subkey value but often also a number of
wrong subkey values. For the DES, the wrong suggestions may be considered
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uniformly distributed among the possible key values if the value Prob(B′|A′)
is significantly larger than Prob(C ′|A′) for any C ′ = B′.

Under these conditions it makes sense to calculate the ratio between the
number of times the right value is suggested and the average number of
suggestions per entry, the so-called signal-to-noise (S/N) ratio.

The size of the table of possible values of the �-bit subkey is 2�. If we
denote the average number of suggested subkeys per pair by γ, the S/N ratio
is given by

S/N = Prob(B′|A′)2�/γ. (6.1)

The S/N ratio strongly affects the number of right pairs needed to uniquely
identify the correct subkey value. Experimental results [26] showed that for
a ratio between 1 and 2 about 20–40 right pairs are enough. For larger ratios
only a few right pairs are needed and for ratios that are much smaller than
1 the required number of right pairs makes a practical attack infeasible.

Pairs of differences A′ and B′ with a large probability Prob(B′|A′) are
found by the construction of so-called characteristics. An r-round charac-
teristic comprises an (r + 1)-tuple of difference patterns: (X ′

0, X
′
1, . . . , X

′
r).

The probability of this characteristic is the probability that an initial differ-
ence pattern X ′

0 propagates to difference patterns X ′
1, X

′
2, . . . , X

′
r after 1, 2,

. . . , r rounds, respectively. Under the so-called Markov assumption (cf. also
Sect. 8.7.2), i.e. that the propagation probability from X ′

i−1 to X ′
i is inde-

pendent of the propagation probability from X ′
0 to X ′

i−1, this probability is
given by∏

i

Prob(X ′
i|X ′

i−1), (6.2)

where Prob(X ′
i|X ′

i−1) is the probability that the difference pattern X ′
i−1 at

the input of the round transformation gives rise to X ′
i at its output. Hence,

the multiple-round characteristic is a sequence of single-round characteristics
(X ′

i−1, X
′
i) with probability Prob(X ′

i|X ′
i−1).

In the construction of high-probability characteristics for the DES, ad-
vantage is taken of the linearity in the round transformation. Single-round
characteristics of the form (L′

i−1‖R′
i−1, L

′
i‖R′

i), where R′
i = L′

i−1 and L′
i =

R′
i−1 = 0 have probability 1 and are called trivial. The most probable non-

trivial single-round characteristics have an input difference pattern that only
affects a small number of the eight S-boxes.

Trivial characteristics have been exploited to construct high-probability
iterative characteristics. These are characteristics with a periodic sequence of
differences. The iterative characteristic with highest probability has a period
of two. Of the two involved single-round characteristics, one is trivial. In
the other one there is a non-zero difference pattern at the input of three
neighboring S-boxes, which propagates to a zero difference pattern at the
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output of the S-boxes with probability 1/234. Hence, the resulting iterative
characteristics have a probability of 1/234 per two rounds.

In the actual differential attacks on the DES, some techniques are used to
make the attack more efficient. This involves a special treatment in the first
and last rounds. For these techniques we refer to [26].

6.3 Linear Cryptanalysis

In this section we summarize the most important elements of linear crypt-
analysis as M. Matsui presented them in [104]. Linear cryptanalysis is a
known-plaintext attack in which a large number of plaintext-ciphertext pairs
are used to determine the value of key bits.

A condition for applying linear cryptanalysis to a block cipher is to find
‘effective’ linear expressions. Let A[i1, i2, . . . , ia] be the bitwise sum of the
bits of A with indices in a selection pattern {i1, i2, . . . , ia}; i.e.

A[i1, i2, . . . , ia] = A[i1]⊕A[i2]⊕ · · · ⊕A[ia]. (6.3)

Let P,C and K denote the plaintext, the ciphertext and the key, respectively.
A linear expression is an expression of the following type:

P[i1, i2, . . . , ia]⊕C[j1, j2, . . . , jb] = K[k1, k2, . . . , kc], (6.4)

with i1, i2, . . . , ia, j1, j2, . . . , jb and k1, k2, . . . , kc being fixed bit locations.
The effectiveness, or deviation, of such a linear expression in linear crypt-
analysis is given by |p − 1/2| where p is the probability that the expression
holds. By checking the value of the left-hand side of (6.4) for a large number
of plaintext-ciphertext pairs, the right-hand side can be guessed by taking
the value that occurs most often. In principle, this gives a single bit of infor-
mation about the key. In [104] it is shown that the probability of making a
wrong guess is very small if the number of plaintext-ciphertext pairs is larger
than |p− 1/2|−2.

In [104] another algorithm is given that determines more than a single
bit of key information using a similar linear expression. Instead of (6.4), an
expression is used that contains no plaintext or ciphertext bits, but instead
contains bits of the intermediate encryption values I1 and I15, respectively,
after exactly one round and after all rounds but one:

I1[i1, i2, . . . , ia]⊕ I15[j1, j2, . . . , jb] = K[�1, �2, . . . , �c]. (6.5)

By assuming values for a subset νk of the subkey bits of the first and last
round, the bits of I1 and I15 that occur in (6.5) can be calculated. These
bits are correct if the values assumed for the key bits with indices in νk
are correct. Given a large number � of plaintext-ciphertext pairs, the correct
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values of all bits in νk and the value of the right-hand side of (6.5) can be
determined in the following way. For all values of the key bits with indices
in νk, the number of plaintext-ciphertext pairs are counted for which (6.5)
holds. For the correct assumption the expected value of this sum is p� or
(1− p)�. Thanks to the nonlinear behavior of the round transformation this
sum is expected to have significantly less bias for all wrongly assumed subkey
values. Given a linear expression (6.5) that holds with probability p, the
probability that this algorithm leads to a wrong guess is very small if the
number of plaintext-ciphertext pairs is significantly (say more than a factor
8) larger than |p−1/2|−2. In an improved version of this attack, this factor 8
is reduced to 1 [105]. Hence, in both variants the value of |p− 1/2| is critical
for the work factor of the attack.

Effective linear expressions (6.4) and (6.5) are constructed by ‘chaining’
single-round linear expressions. An (r − 1)-round linear expression can be
turned into an r-round linear expression by appending a single-round linear
expression such that all the intermediate bits cancel:

P[i1, i2, . . . , ia] ⊕ Ir−1[j1, j2, . . . , jb] = K[k1, k2, . . . , kc]
⊕

Ir−1[j1, j2, . . . , jb] ⊕ Ir[m1,m2, . . . ,ma] = K[k2, k5, . . . , kd]
=

P[i1, i2, . . . , ia] ⊕ Ir[m1,m2, . . . ,ma] = K[k1, k3, . . . , kd]

(6.6)

In [104] it is shown that the probability that the resulting linear expression
holds can be approximated by 1/2 + 2(p1 − 1/2)(p2 − 1/2), given that the
component linear expressions hold with probabilities p1 and p2, respectively.

The DES single-round linear expressions and their probabilities can be
studied by observing the dependencies in the computational graph of the
round transformation. The selected round output bits completely specify a
selection pattern at the output of the S-boxes. If round output bits are se-
lected only from the left half, this involves no S-box output bits at all, re-
sulting in linear expressions that hold with a probability of 1. These are of
the following type:

I�−1[j1 + 32, j2 + 32, . . . , ja + 32] = I�[j1, j2, . . . , ja]. (6.7)

This is called a trivial expression. Apparently, the most useful non-trivial
single-round linear expressions only select bits coming from a single S-box.
For a given S-box, all possible linear expressions and their probabilities can
be exhaustively calculated. Together with the key application before the S-
boxes, each of these linear expressions can be converted into a single-round
linear expression. The most effective multiple-round linear expressions for the
DES are constructed by combining single-round trivial expressions with linear
expressions involving output bits of only a single S-box. The resulting most
effective 14-round linear expression has a probability of 1/2± 1.19× 2−21.
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6.4 Conclusions

In this section we have explained the round structure of the DES and have
given a summary of the two most important cryptanalytic attacks on the
DES using the terminology and formalism of the original publications.



7. Correlation Matrices

In this chapter we consider correlations over Boolean functions and iterated
Boolean transformations. Correlations play an important role in cryptanalysis
in general and linear cryptanalysis in particular.

We introduce algebraic tools such as correlation matrices to adequately
describe the properties that make linear cryptanalysis possible. We derive
a number of interesting relations and equalities and apply these to iterated
Boolean transformations.

7.1 The Walsh-Hadamard Transform

7.1.1 Parities and Masks

A parity of a Boolean vector is a binary Boolean function that consists of the
XOR of a number of bits. A parity is determined by the positions of the bits
of the Boolean vector that are included in the XOR.

The mask w of a parity is a Boolean vector value that has a 1 in the
components that are included in the parity and a 0 in all other components.
Analogous to the inner product of vectors in linear algebra, we express the
parity of vector a corresponding with mask w as wTa. The concepts of mask
and parity are illustrated with an example in Fig. 7.1.

Note that for a vector a with n bits, there are 2n different parities. The
set of parities of a Boolean vector is in fact the set of all linear binary Boolean
functions of that vector.

7.1.2 Correlation

Linear cryptanalysis exploits large correlations over all but a few rounds of
a block cipher.

Definition 7.1.1. The correlation C(f, g) between two binary Boolean func-
tions f(a) and g(a) is defined as

C(f, g) = 2 · Prob(f(a) = g(a))− 1. (7.1)
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a: a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11

w: 0 1 0 0 1 1 0 0 1 0 0 0

wTa: a1 + a4 + a5 + a8

Fig. 7.1. Example of state a, mask w and parity wTa

From this definition it follows that C(f, g) = C(g, f). The correlation between
two binary Boolean functions ranges between −1 and 1. If the correlation is
different from zero, the binary Boolean functions are said to be correlated . If
the correlation is 1, the binary Boolean functions are equal; if it is −1, the
binary Boolean functions are each other’s complement.

7.1.3 Real-Valued Counterpart of a Binary Boolean Function

Let f̂(a) be a real-valued function that is−1 for f(a) = 1 and +1 for f(a) = 0.
This can be expressed by

f̂(a) = (−1)f(a) (7.2)

In this notation the real-valued function corresponding to a parity wTa
becomes (−1)w

Ta. The real-valued counterpart of the XOR of two binary
Boolean functions is the product of their real-valued counterparts, i.e.

̂f(a) + g(a) = f̂(a)ĝ(a). (7.3)

7.1.4 Orthogonality and Correlation

We define the inner product of two binary Boolean functions f and g as

〈f̂ , ĝ〉 =
∑
a

f̂(a)ĝ(a). (7.4)

This inner product defines the following norm:

‖f̂‖ =

√
〈f̂ , f̂〉. (7.5)

The norm of a binary Boolean function f(a) is equal to the square root of
its domain size, i.e. 2n/2.

From the definition of correlation it follows that
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C(f, g) =
〈f̂ , ĝ〉

‖f̂‖ · ‖ĝ‖ , (7.6)

or in words, the correlation between two binary Boolean functions is equal
to their inner product divided by their norms. In Fig. 7.2 this is illustrated
in a geometrical way.

�

�

f̂

ĝ

α

C(f, g) = cosα

Fig. 7.2. Geometric representation of binary Boolean functions and their correla-
tion

7.1.5 Spectrum of a Binary Boolean Function

The set of binary Boolean functions of an n-bit vector can be seen as elements
of a vector space of dimension 2n. A vector f has 2n components given by
(−1)f(a) for the 2n values of a. Vector addition corresponds to addition of
the components in R, scalar multiplication to multiplication of components
with elements of R. This is the ring (R2n ,+, ·).

In (R2n ,+, ·) the parities form an orthogonal basis with respect to the
inner product defined by (7.4):

〈(−1)u
Ta, (−1)v

Ta〉 =
∑
a

(−1)u
Ta(−1)v

Ta

=
∑
a

(−1)u
Ta+vTa

=
∑
a

(−1)(u+v)Ta

= 2nδ(u+ v).

Here δ(w) is the Kronecker delta function that is equal to 1 if w is the zero
vector and 0 otherwise. The representation of a binary Boolean function with
respect to the parity basis is called its Walsh-Hadamard spectrum, or simply
its spectrum [66, 128].
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Consider now C(f(a),wTa), which is the correlation between a binary
Boolean function f(a) and the parity wTa. If we denote this by F (w), we
have

f̂(a) =
∑
w

F (w)(−1)w
Ta, (7.7)

where w ranges over all 2n possible values. In words, the coordinates of a
binary Boolean function in the parity basis are the correlations between the
binary Boolean function and the parities. It follows that a Boolean function
is completely specified by the set of correlations with all parities.

Dually, we have

F (w) = C(f(a),wTa) = 2−n
∑
a

f̂(a)(−1)w
Ta. (7.8)

We denote the Walsh-Hadamard transform by the symbol W. We have

W : f(a) �→ F (w) : F (w) = W(f(a)). (7.9)

If we take the square of the norm of both sides of (7.7), we obtain:

〈f̂(a), f̂(a)〉 = 〈
∑
w

F (w)(−1)w
Ta,

∑
v

F (v)(−1)v
Ta〉. (7.10)

Working out both sides gives

2n =
∑
w

F (w)〈(−1)w
Ta,

∑
v

F (v)(−1)v
Ta〉 (7.11)

=
∑
w

F (w)
∑
v

F (v)〈(−1)w
Ta, (−1)v

Ta〉 (7.12)

=
∑
w

∑
v

F (w)F (v)2nδ(w + v) (7.13)

= 2n
∑
w

F 2(w). (7.14)

Dividing this by 2n yields the theorem of Parseval [100, p. 416]:∑
w

F 2(w) = 1. (7.15)

This theorem expresses a relation between the number of parities that a
given binary Boolean function is correlated with and the amplitude of the
correlations. It states that the squares of the correlations corresponding to
all input parities sum to 1.
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7.2 Composing Binary Boolean Functions

7.2.1 Addition

The spectrum of the sum (XOR) of two binary Boolean functions f(a)+g(a)
can be derived using (7.7):

f̂(a)ĝ(a) =
∑
u

F (u)(−1)u
Ta

∑
v

G(v)(−1)v
Ta

=
∑
u

∑
v

F (u)G(v)(−1)(u+v)Ta

=
∑
w

(∑
v

F (v +w)G(v)

)
(−1)w

Ta. (7.16)

The values of the spectrum H(w) = W(f + g) are therefore given by

H(w) =
∑
v

F (v +w)G(v). (7.17)

Hence, the spectrum of the sum of binary Boolean functions is equal to the
convolution of the corresponding spectra. We express this as

W(f + g) = W(f)⊗W(g), (7.18)

where ⊗ denotes the convolution operation. Given this convolution property
it is easy to demonstrate some composition properties that are useful in the
study of linear cryptanalysis:

1. The spectrum of the complement of a binary Boolean function g(a) =
f(a) + 1 is the negative of the spectrum of f(a): G(w) = −F (w).

2. The spectrum of the sum of a binary Boolean function and a parity
g(a) = f(a) + uTa is equal to the spectrum of f(a) transformed by a
so-called dyadic shift: G(w) = F (w + u).

7.2.2 Multiplication

For the multiplication (AND) of two binary Boolean functions we have

̂f(a)g(a) =
1

2
(1 + f̂(a) + ĝ(a)− f̂(a)ĝ(a)). (7.19)

It follows that

W(fg) =
1

2
(δ(w) +W(f) +W(g)−W(f + g)). (7.20)
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7.2.3 Disjunct Boolean Functions

The subspace of GF(2)
n
generated by the masks w for which F (w) = 0 is

called the support space of f and is denoted by Vf . The support space of the
XOR of two binary Boolean functions is a subspace of the (vector) sum of
their corresponding support spaces:

Vf+g ⊆ Vf + Vg (7.21)

This follows directly from the convolution property. Two binary Boolean
functions are called disjunct if their support spaces are disjunct, i.e. if the
intersection of their support spaces only contains the origin. A vector v ∈
Vf+g with f and g disjunct has a unique decomposition into a component
u ∈ Vf and a component w ∈ Vg. In this case the spectrum of h = f + g
satisfies

H(v) = F (u)G(w) where v = u+w and u ∈ Vf ,w ∈ Vg. (7.22)

A pair of binary Boolean functions that depend on non-overlapping sets of
input bits is a special case of disjunct functions.

7.3 Correlation Matrices

Almost all components in block ciphers are Boolean functions mapping n-
bit vectors to m-bit vectors. Examples are S-boxes, round transformations
and their steps, and block ciphers themselves. In many cases m = n. These
functions can be represented by their correlation matrix .

A Boolean function h : GF(2)
n → GF(2)

m
can be decomposed into m

component binary Boolean functions:

(h0, h1, . . . , hm−1).

Each of these component binary Boolean functions hi has a spectrum Hi.
The vector function H with components Hi can be considered the spectrum
of the Boolean function h. As in the case of binary Boolean functions, H
completely determines the function h.

The spectrum of any parity of components of h is specified by a simple
extension of (7.18):

W(uTh) =
⊗
ui=1

Hi. (7.23)

The correlations between input parities and output parities of a Boolean
function h can be arranged in a 2m×2n correlation matrix C(h). The element

C
(h)
u,w in row u and column w is equal to C(uTh(a),wTa).
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Row u of a correlation matrix can be interpreted as

(−1)u
Th(a) =

∑
w

C(h)
u,w(−1)w

Ta. (7.24)

This expresses an output parity with respect to the basis of input parities.

A binary Boolean function f(a) is a special case of a Boolean function:
it has m = 1. Its correlation matrix has two rows: row 0 and row 1. Row 1
contains the spectrum of f(a). Row 0 contains the spectrum of the empty
parity: the binary Boolean function that is equal to 0. This row has a 1 in
column 0 and zeroes in all other columns.

7.3.1 Equivalence of a Boolean Function and Its Correlation
Matrix

A correlation matrix cormat(h) defines a linear map with domain R2n and
range R2m . Let L be a transformation from the space of binary vectors to the
space of real-valued functions that transforms a binary vector of dimension
n to a real-valued function of dimension 2n. L is defined by

L : GF(2)
n → IR2n : a �→ L(a) = α ⇔ αu = (−1)u

Ta. (7.25)

Since L(a+b) = L(a) · L(b), L is a group homomorphism from (GF(2)
n
,+)

to ((IR\{0})2n , ·), where ‘ · ’ denotes the component-wise product. From
(7.24) it follows that

C(h)L(a) = L(h(a)). (7.26)

In words, applying a Boolean function h to a Boolean vector a and trans-
forming the corresponding function (−1)u

Ta with the correlation matrix C(h)

are just different representations of the same operation. This is illustrated in
Fig. 7.3.

a

� L

(−1)a
Tx

�
h

�C(h)

b = h(a)

� L

(−1)b
Tx = C(h)(−1)a

Tx

Fig. 7.3. The equivalence of a Boolean function and its correlation matrix
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7.3.2 Iterative Boolean Functions

Consider an iterated Boolean function h that is the composition of two
Boolean functions h = h(2) ◦ h(1) or h(a) = h(2)(h(1)(a)), where the func-
tion h(1) transforms n-bit vectors to p-bit vectors and where the function
h(2) transforms p-bit vectors to m-bit vectors. The correlation matrix of h is
determined by the correlation matrices of the component functions. We have

(−1)u
Th(a) =

∑
v

C(h(2))
u,v (−1)v

Th(1)(a)

=
∑
v

C(h(2))
u,v

∑
w

C(h(1))
v,w (−1)w

Ta

=
∑
w

(∑
v

C(h(2))
u,v C(h(1))

v,w

)
(−1)w

Ta.

Hence, we have

C(h(2)◦h(1)) = C(h(2)) × C(h(1)), (7.27)

where × denotes the matrix product, C(h(1)) is a 2p × 2n matrix and C(h(2))

is a 2m × 2p matrix. Hence the correlation matrix of the composition of
two Boolean functions is the product of their correlation matrices. This is
illustrated in Fig. 7.4.

a

� L

(−1)a
Tx

�h(1)

�C(h(1))

h(1)(a)

� L

C(h(1))(−1)a
Tx

�h(2)

�C(h(2))

h(2)(h(1)(a))

� L

C(h(2))C(h(1))(−1)a
Tx

Fig. 7.4. Composition of Boolean functions and multiplication of correlation ma-
trices

The correlations over h = h(2) ◦ h(1) are given by

C(uTh(a),wTa) =
∑
v

C(uTh(2)(a),vTa)C(vTh(1)(a),wTa). (7.28)

7.3.3 Boolean Permutations

If h is a permutation in GF(2)
n
, we have
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C(uTh−1(a),wTa) = C(uTb,wTh(b)) = C(wTh(b),uTb). (7.29)

It follows that the correlation matrix of h−1 is the transpose of the correlation
matrix of h:

C(h−1) =
(
C(h)

)T

. (7.30)

Moreover, from the fact that the composition of a Boolean transformation
and its inverse gives the identity function, the product of the corresponding
correlation matrices must result in the identity matrix:

C(h−1) × C(h) = I = C(h) × C(h−1). (7.31)

It follows that

C(h−1) =
(
C(h)

)−1

. (7.32)

We can now prove the following theorem.

Theorem 7.3.1. A Boolean transformation is invertible iff it has an invert-
ible correlation matrix.

Proof.

⇒ For an invertible Boolean transformation, both (7.30) and (7.32) are
valid. Combining these two equations, we have(

C(h)
)−1

=
(
C(h)

)T

.

⇐ Interpreting the rows of the correlation matrix according to (7.24) yields
a set of 2n equations, one for each value of u:

(−1)u
Th(a) =

∑
w

C(h)
u,w(−1)w

Ta.

If we assume that the inverse of C(h) exists, we can convert this set of 2n

equations, one for each value of w:

(−1)w
Ta =

∑
u

(
C(h)

)−1

w,u
(−1)u

Th(a). (7.33)

Assume that we have two Boolean vectors x and y for which h(x) =
h(y). By substituting a in (7.33) by x and y respectively, we obtain 2n

equations, one for each value of w:

(−1)w
Tx = (−1)w

Ty.

From this it follows that x = y and hence that h is injective. It follows
that h is invertible. ��
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7.4 Special Functions

In the following, the superscript (h) in C(h) will be omitted.

7.4.1 Addition with a Constant

Consider the function that consists of the addition (XOR) with a constant
vector k: h(a) = a + k. Since uTh(a) = uTa + uTk, the correlation matrix
is a diagonal matrix with

Cu,u = (−1)u
Tk. (7.34)

Therefore the effect of the bitwise XOR with a constant vector before (or af-
ter) a function h on its correlation matrix is a multiplication of some columns
(or rows) by −1.

7.4.2 Linear Functions

Consider a linear function h(a) = Ma, with M an m × n binary matrix. We
have

uTh(a) = uTMa = (MTu)Ta. (7.35)

The elements of the corresponding correlation matrix are given by

Cu,w = δ(MTu+w). (7.36)

If M is an invertible matrix, the correlation matrix is a permutation matrix.
The single non-zero element in row u is in columnMTu. The effect of applying
an invertible linear function before (or after) a function h on the correlation
matrix is only a permutation of its columns (or rows).

7.4.3 Bricklayer Functions

Consider a bricklayer function b = h(a) that is defined by the following
component functions:

b(i) = h(i)

(
a(i)

)
for 1 ≤ i ≤ �. For every component function h(i), there is a corresponding

correlation matrix denoted by C(i).

From the fact that the different component functions h(i) operate on non-
overlapping sets of input bits and are therefore disjunct, (7.22) can be applied.
The elements of the correlation matrix of h are given by
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Cu,w =
∏
i

C(i)
u(i),w(i)

, (7.37)

where

u =
(
u(1),u(2), . . . ,u(�)

)
and

w =
(
w(1),w(2), . . . ,w(�)

)
.

In words, the correlation between an input parity and an output parity is the
product of the correlations of the corresponding input and output parities of

the component functions C
(i)
u(i),w(i)

.

7.4.4 Keyed Functions

For a keyed function h[k] the correlations C
(h[k])
u,v depend on the value of the

key k. We define the expected linear potential (ELP) associated with an
output mask u and an input mask v over a keyed map h[k] as the average of

the square of the correlation C
(h[k])
u,v over all keys.

Definition 7.4.1 (ELP). The ELP associated with an output mask u and
an input mask v, ELP(u,v) over a keyed map h[k] is given by

ELP(u,v) = 2−|K| ∑
k∈K

(
C(h[k])
u,v

)2

.

7.5 Derived Properties

The concept of the correlation matrix is a valuable tool for demonstrating
properties of Boolean functions and their spectra. We will illustrate this with
some examples.

Lemma 7.5.1. The elements of the correlation matrix of a Boolean function
satisfy

C(u+v),x =
∑
w

Cu,(w+x)Cv,w, (7.38)

for all u,v,x ∈ GF(2)
n
.
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Proof. Using the convolution property, we have

W((u+ v)Th(a)) = W(uTh(a) + vTh(a)) (7.39)

= W(uTh(a))⊗W(vTh(a)). (7.40)

Since the components of W(uTh(a)) are given by Cu,w, the projection of
(7.40) onto the component with index x gives rise to (7.38). ��

From this lemma we have the following.

Corollary 7.5.1. The correlation between two output parities defined by u
and v is equal to the convolution of columns u and v of the correlation matrix:

C(u+v),0 =
∑
w

Cu,wCv,w. (7.41)

A binary Boolean function is balanced if it is 1 (or 0) for exactly half of
the elements in the domain. Clearly, being balanced is equivalent to being
uncorrelated to the binary Boolean function equal to 0 (or 1). Using the
properties of correlation matrices we can now give an elegant proof of the
following well-known theorem [2].

Theorem 7.5.1. A Boolean transformation is invertible iff every output
parity is a balanced binary Boolean function of the input bits.

Proof.

⇒ If h is an invertible transformation, its correlation matrix C is orthogonal.
Since C0,0 = 1 and all rows and columns have norm 1, it follows that
there are no other elements in row 0 or column 0 different from 0. Hence,
C(uTh(a), 0) = δ(u) or uTh(a) is balanced for all u = 0.

⇐ The condition that all output parities are balanced binary Boolean func-
tions of input bits corresponds to Cu,0 = 0 for u = 0. If this is the case,
we can show that the correlation matrix is orthogonal. The expression
CT × C = I is equivalent to the following set of conditions:∑

w

Cu,wCv,w = δ(u+ v) for all u,v ∈ GF(2)
n
. (7.42)

Using (7.41), we have∑
w

Cu,wCv,w = C(u+v),0. (7.43)

Since Cu,0 = 0 for all u = 0, and C0,0 = 1, (7.42) holds for all possible
pairs u,v. It follows that C is an orthogonal matrix, hence h−1 exists
and is defined by CT. ��



7.6 Truncating Functions 103

Lemma 7.5.2. The elements of the correlation matrix of a Boolean function
with domain GF(2)

n
and the spectrum values of a binary Boolean function

with domain GF(2)
n
are integer multiples of 21−n.

Proof. The sum in the right-hand side of (7.8) is always even since its value
is of the form k · (1)+ (2n − k) · (−1) = 2k− 2n. It follows that the spectrum
values must be integer multiples of 21−n. ��

7.6 Truncating Functions

A function from GF(2)
n
to GF(2)

m
can be converted into a function from

GF(2)
n−1

to GF(2)
m

by fixing a single bit of the input. More generally, a bit
of the input can be set equal to a parity of other input components, possibly
complemented. Such a restriction is of the type

vTa = ε, (7.44)

where ε ∈ GF(2). Assume that vs = 0.

The restriction can be modeled by a Boolean function a′ = hr(a) that is

applied before h. It maps GF(2)
n−1

to GF(2)
n
, and is specified by a′i = ai

for i = s and a′s = ε + vTa + as. The non-zero elements of the correlation
matrix of hr are

C(hr)
w,w = 1 and C

(hr)
(v+w),w = (−1)ε for all w where ws = 0. (7.45)

All columns of this matrix have exactly two non-zero entries with amplitude
1.

The function restricted to the specified subset of inputs is the consecutive
application of hr and the function itself. Hence, its correlation matrix C′ is
C× C(hr). The elements of this matrix are

C′
u,w = Cu,w + (−1)εCu,(w+v) (7.46)

if ws = 0, and 0 if ws = 1. The elements in C′ are spectrum values of Boolean
functions of (n−1)-dimensional vectors. Hence, from Lemma 7.5.2 they must
be integer multiples of 22−n.

Applying (7.15) to the rows of the restricted correlation matrices gives
additional laws for the spectrum values of Boolean functions. For the single
restrictions of the type vTa = ε we have∑

w

(F (w) + F (w + v))2 =
∑
w

(F (w)− F (w + v))2 = 2. (7.47)

Lemma 7.6.1. The elements of a correlation matrix corresponding to an
invertible transformation of n-bit vectors are integer multiples of 22−n.
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Proof. Let g be the Boolean function from GF(2)
n−1

to GF(2)
n
that is ob-

tained by restricting the input of function h. Let the input restriction be spec-

ified by the vector w: wTa = 0. Then C
(g)
u,v = C

(h)
u,v + C

(h)
u,(v+w) or C

(g)
u,v = 0.

By filling in 0 for v, this yields C
(g)
u,0 = C

(h)
u,0 + C

(h)
u,w. Now, C

(g)
u,0 must be an

integer multiple of 22−n, and since according to Theorem 7.5.1 C
(h)
u,0 = 0, it

follows that C
(h)
u,w is also an integer multiple of 22−n. ��

7.7 Cross-correlation and Autocorrelation

The cross-correlation function [108, p. 117] of two Boolean functions f(a)
and g(a) is denoted by ĉfg(b), and given by

ĉfg(b) = C(f(a), g(a+ b)) (7.48)

= 2−n
∑
a

f̂(a)ĝ(a+ b) = 2−n
∑
a

(−1)f(a)+g(a+b). (7.49)

Now consider FG, the product of the spectra of two binary Boolean func-
tions f and g:

F (w)G(w) = (2−n
∑
a

f̂(a)(−1)w
Ta)(2−n

∑
b

ĝ(b)(−1)w
Tb) (7.50)

= 2−n
∑
a

(2−n
∑
b

f̂(a)ĝ(b)(−1)w
T(a+b)) (7.51)

= 2−n
∑
a

((2−n
∑
c

f̂(a)ĝ(a+ c)(−1)w
Tc)) (7.52)

= W(2−n
∑
c

f̂(a)ĝ(a+ c)) (7.53)

= W(ĉfg(b)). (7.54)

Hence the spectrum of the cross-correlation function of two binary Boolean
functions equals the product of the spectra of the binary Boolean functions:
ĉfg = W−1(FG).

The cross-correlation function of a binary Boolean function with itself,
ĉff , is called the autocorrelation function of f and is denoted by r̂f . It follows
that the components of the spectrum of the autocorrelation function are the
squares of the components of the spectrum of f , i.e.

F 2 = W(r̂f ). (7.55)

This equation is generally referred to as the Wiener-Khintchine theorem [128].
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7.8 Linear Trails

Let β be an iterative Boolean transformation operating on n-bit vectors:

β = ρ(r) ◦ ρ(r−1) ◦ . . . ◦ ρ(2) ◦ ρ(1). (7.56)

The correlation matrix of β is the product of the correlation matrices corre-
sponding to the respective Boolean transformations:

C(β) = C(ρ(r)) × . . .× C(ρ(2)) × C(ρ(1)). (7.57)

A linear trail U over an iterative Boolean transformation consists of a
sequence of r + 1 masks:

U =
(
u(0),u(1),u(2), . . . ,u(r−1),u(r)

)
. (7.58)

This linear trail is a sequence of r linear steps
(
u(i−1),u(i)

)
that have a

correlation

C
(
u(i)Tρ(i)(a),u(i−1)Ta

)
.

The correlation contribution Cp of a linear trail is the product of the corre-
lation of all its steps:

Cp(U) =
∏
i

C
(ρ(i))

u(i)u(i−1) . (7.59)

As the correlations range from −1 to +1, so do correlation contributions. In
the following, we will often work with the linear potential (LP) of a trail.

Definition 7.8.1. The square of the correlation contribution of a linear trail
U is its linear potential (LP).

LP(U) = (Cp(U))
2
.

From the definition of linear trails and (7.57), we can derive the following
theorem.

Theorem 7.8.1 (Theorem of Linear Trail Composition). The corre-
lation between output parity uTβ(a) and input parity wTa of an iterated
Boolean transformation with r rounds is the sum of the correlation contribu-
tions of all r-round linear trails U with initial mask w and final mask u:

C(uTβ(a),wTa) =
∑

u(0)=w,u(r)=u

Cp(U). (7.60)
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Both the correlation and the correlation contributions are signed. Some
of the correlation contributions will have the same sign as the resulting corre-
lation and contribute positively to its amplitude; the others contribute neg-
atively to its amplitude. We speak of constructive interference in the case
of two linear trails that have a correlation contribution with the same sign
and of destructive interference if their correlation contributions have different
signs.

7.9 Ciphers

The described formalism and tools can be applied to the calculation of cor-
relations in iterated block ciphers such as the DES and Rijndael.

7.9.1 General Case

In general, an iterative cipher consists of a sequence of keyed rounds, where
each round ρ(i) depends on its round key k(i). In a typical cryptanalytic
setting, the round keys are fixed and we can model the cipher as an iterative
Boolean transformation.

Linear cryptanalysis requires the knowledge of an output parity and an
input parity that have a high correlation over all but a few rounds of the
cipher. These correlations are the sum of the correlation contributions of all
linear trails that connect the output parity with the input parity.

In general, the correlations over a round depend on the key value, and
hence computing the correlation contribution of linear trails requires mak-
ing assumptions about the round key values. However, in many cases the
cipher structure allows the analysis of linear trails without having to make
assumptions about the value of the round keys. We will now show that for a
key-alternating cipher the amplitude of the correlation contribution is inde-
pendent of the round key.

7.9.2 Key-Alternating Cipher

We have shown that the Boolean transformation corresponding to a key ad-
dition consisting of the XOR with a round key k(i) has a correlation matrix
with only non-zero elements on its diagonal. The element is −1 if uTk(i) = 1,
and 1 otherwise. If we denote the correlation matrix of ρ by C, the correlation
contribution of the linear trail U then becomes

Cp(U) =
∏
i

(−1)u
(i)Tk(i)

Cu(i),u(i−1) (7.61)

= (−1)dU+
∑

i u
(i)Tk(i)

LP
1
2 (U), (7.62)
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where dU = 1 if
∏

i Cu(i)u(i−1) is negative, and dU = 0 otherwise. LP
1
2 (U) is

independent of the round keys, and hence only the sign of the correlation
contribution is key-dependent. This sign can be expressed as a parity of the
expanded key K plus a key-independent constant:

s = UTK+ dU, (7.63)

where K denotes the expanded key and U denotes the concatenation of the
masks u(i).

The correlation between output parity uTβ(a) and input parity wTa ex-
pressed in terms of the correlation contributions of linear trails now becomes

C(vTβ(a),wTa) =
∑

u(0)=w,u(r)=v

(−1)dU+UTKLP
1
2 (U). (7.64)

Even though for a key-alternating cipher the amplitudes of the correlation
contribution of the individual linear trails are independent of the round keys,
this is not the case for the amplitude of the resulting correlation on the left-
hand side of the equation. The terms in the right-hand side of the equation
are added or subtracted depending on the value of the round keys. It depends
on the value of the round keys whether interference between a pair of linear
trails is constructive or destructive.

7.9.3 Averaging over All Round Keys

In Sect. 7.9.2 we have only discussed correlations for cases in which the value
of the key is fixed. For key-alternating ciphers we can provide an expression
for the expected value of linear potentials, taken over all possible values of
the expanded key (i.e. the concatenation of all round keys).

Clearly, the correlation C
(
uTβ(a),wTa

)
is determined by the set of linear

trails U between v and u. Due to the fact that the correlation contributions
of trails depend on the key, the correlations C

(
uTβ(a),wTa

)
also depend on

the key.

In the case of a key-alternating cipher, the linear potentials LP(U) of trails
are independent of the key. Let us now express the correlation contribution
of trail U as

Cp(U) = (−1)s(U)LP
1
2 (U),

where s(U) is a bit determining the sign. The sign for a trail U is equal to
a parity of the expanded key plus a trail-specific bit: s(U) = UTK + dU. We
can now prove the following theorem:

Theorem 7.9.1. The ELP associated with an input and an output mask is
the sum of the linear potentials of all linear trails between the input and output
mask:
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ELP(u,v) =
∑
U

LP(U). (7.65)

Proof. The ELP associated with the input mask v and output mask u is
given by

ELP(u,v) = 2−nK

∑
K

(∑
U

(−1)s(U)LP
1
2 (U)

)2

= 2−nK

∑
K

(∑
U

(−1)U
TK+dULP

1
2 (U)

)2

. (7.66)

Working this out yields

ELP(u,v) = 2−nK

∑
K

(∑
U

(−1)U
TK+dULP

1
2 (U)

)2

= 2−nK

∑
K

(∑
U

(−1)U
TK+dULP

1
2 (U)

)(∑
V

(−1)V
TK+dVLP

1
2 (V)

)

= 2−nK

∑
K

∑
U

∑
V

(
(−1)U

TK+dULP
1
2 (U)

)(
(−1)V

TK+dVLP
1
2 (V)

)

= 2−nK

∑
K

∑
U

∑
V

(−1)(U+V)TK+dU+dVLP
1
2 (U)LP

1
2 (V)

= 2−nK

∑
U

∑
V

(
∑
K

(−1)(U+V)TK+dU+dV)LP
1
2 (U)LP

1
2 (V). (7.67)

For the factor of LP
1
2 (U)LP

1
2 (V) in (7.67), we have∑

K

(−1)(U+V)TK+dU+dV = 2nKδ(U+ V). (7.68)

Clearly, the expression is equal to 0 if U + V = 0: if we sum over all values
of K, the exponent of (−1) is 1 for half the terms and 0 for the other half. If
U = V the exponent of (−1) becomes 0 and the expression is equal to 2nK .
Substitution in (7.67) yields

ELP(u,v)) = 2−nK

∑
U

∑
V

2nKδ(U+ V)LP
1
2 (U)LP

1
2 (V)

=
∑
U

LP(U),

proving our theorem. ��
As the ELP associated with a pair of masks (u,v) over a block cipher is
determined by the LP values of all linear trails between these masks, we
speak of linear hull (u,v).
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7.9.4 The Effect of the Key Schedule

In the previous section we have taken the average of the linear potentials over
all possible values of the expanded key, implying independent round keys. In
practice, the values of the round keys are restricted by the key schedule, which
computes the round keys from the cipher key. In this section we investigate
the effect that the key schedule has on expected values of linear potentials.

First assume that we have a linear or affine key schedule. For the sake of
simplicity, we limit ourselves to the linear case, but the conclusions are also
valid for the affine case. If the key schedule is linear, the relation between
the expanded key K and the cipher key k can be expressed as multiplication
with a binary matrix:

K = Mκk. (7.69)

If we substitute this in (7.66), we obtain

ELP(u,v) = 2−nk

∑
k

(∑
U

(−1)U
TMκk+dULP

1
2 (U)

)2

. (7.70)

Working out the squares in this equation yields

ELP(u,v) = 2−nk

∑
U

∑
V

(∑
k

(−1)(U+V)TMκk+dU+dV

)
LP

1
2 (U)LP

1
2 (V).

(7.71)

For the factor of LP
1
2 (U)LP

1
2 (V) in (7.67), we have∑

k

(−1)(U+V)TMκk+dU+dV = (−1)(dU+dV)2nkδ(Mκ
T(U+ V)). (7.72)

As above, the expression is equal to 0 if (U+ V)TMκ = 0: if we sum over
all values of k, the exponent of (−1) is 1 for half the terms and 0 for

the other half. However, if (U+ V)TMκ = 0, all terms have the same sign:
(−1)dU+dV . The condition Mκ

T(U + V) = 0 is equivalent to saying that the
bitwise difference of the two trails is mapped to 0 by Mκ, or equivalently,
that the two linear trails depend on the same parities of the cipher key for
the sign of their correlation contribution. Let us call such a pair of trails
a key-colliding pair. The effect of a key-colliding pair on the expression of
the expected linear potential in terms of the linear potentials of the trails is
the following. Next to the terms LP(U) and LP(V) there is twice the term

(−1)(dUi
+dUj

)LP
1
2 (U)LP

1
2 (V). These four terms can be combined into the ex-

pression (LP
1
2 (U)+(−1)(dU+dV)LP

1
2 (V))2. The effect of a trail collision is that

their correlation contributions systematically interfere positively if dUi
= dUj

,
and negatively otherwise.
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Example 7.9.1. We illustrate the above reasoning on an example in which the
key schedule has a dramatic impact. Consider a block cipher B2[k(1),k(2)](x)
consisting of two rounds. The first round is encryption with a block cipher
B with round key k(1), and the second round is decryption with that same
block cipher B with round key k(2). Assume we have chosen a state-of-the-
art block cipher B. In that case, the expected linear potentials between any
pair of input and output masks of B2 are the sum of the linear potentials of
many linear trails over the composition of B and B−1. The expected value
of linear potentials corresponding to any pair of input and output masks is
approximately 2−nb .

Let us now consider a block cipher C[k] defined by

C[k](x) = B2[k,k](x).

Setting k(1) = k(2) = k can be seen as a very simple key schedule. Clearly,
the block cipher C[k](x) is the identity map, and hence we know that it has
linear potentials equal to 1 if the input and output mask are the same, and 0
otherwise. This is the consequence of the fact that in this particular example,
the key schedule is such that the round keys can no longer be considered as
being independent. We have

C(B2[k(1),k(2)])
u,w =

∑
v

C(B[k(1)])
u,v C(B−1[k(2)])

v,w =
∑
v

C(B[k(1)])
u,v C(B[k(2)])

w,v . (7.73)

If k(1) = k(2) = k, this is reduced to

C(C[k])
u,w =

∑
v

C(B[k])
u,v C(B[k])

w,v = δ(u+w). (7.74)

This follows from the fact that for any given value of k, C(B[k]) is an orthog-
onal matrix.

As opposed to this extreme example, key-colliding pairs of linear trails
are very rare. The condition is that the two trails depend on the same parity
of cipher key bits for their sign. The probability that this is the case for
two trails is 2−nk . If the key schedule is nonlinear, linear trails that always
interfere constructively or destructively due to the key schedule cannot ever
occur. Instead of K = Mκk we have K = fκ(k) with fκ a nonlinear function.
The coefficients of the mixed terms are of the form∑

k

(−1)(U+V)Tfκ(k)+dU+dV . (7.75)

It seems hard to come up with a reasonable key schedule for which this
expression does not have approximately as many positive as negative terms.
If that is the case, the sum of the linear potentials of the linear trails is a very
good approximation of the expected linear potentials. Still, taking a nonlinear
key schedule to avoid systematic constructive interference seems unnecessary
in the light of the rarity of the phenomenon.
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7.10 Correlation Matrices and the Linear Cryptanalysis
Literature

In this section we make an attempt to position our approach with respect to
other formalisms and terminology that are used in some of the cryptographic
literature.

7.10.1 Linear Cryptanalysis of the DES

For an overview of the original linear cryptanalysis attack on the DES we
refer to Sect. 6.3. The multiple-round linear expressions described in [104]
correspond to what we call linear trails. The probability p that such an ex-
pression holds corresponds to 1

2 (1 + Cp(U)), where Cp(U) is the correlation
contribution of the corresponding linear trail. The usage of probabilities in
[104] requires the application of the so-called piling-up lemma in the com-
putation of probabilities of composed transformations. When working with
correlations, no such tricks are required: correlations can be simply multi-
plied.

In [104] the correlation over multiple rounds is approximated by the cor-
relation contribution of a single linear trail. The silent assumption underlying
this approximation is that the correlation is dominated by a single linear trail.
This seems valid because of the large relative amplitude of the described cor-
relation. There are no linear trails with the same initial and final masks that
have a correlation contribution that comes close to the dominant trail.

The amplitude of the correlation of the linear trail is independent of the
value of the key, and consists of the product of the correlations of its steps.
In general, the elements of the correlation matrix of the DES round function
are not independent of the round keys, due to the fact that the inputs of
neighboring S-boxes overlap while depending on different key bits. However,
in the described linear trails the actual independence is caused by the fact
that the steps of the described linear trail only involve bits of a single S-box.

The input-output correlations of the F -function of the DES can be cal-
culated by applying the rules given in Sect. 7.4. The 32-bit mask b at the
output of the bit permutation P is converted into a 32-bit mask c at the
output of the S-boxes by a simple linear function. The 32-bit mask a at the
input of the (linear) expansion E gives rise to a set α of 22� 48-bit masks
after the expansion, where � is the number of pairwise neighboring S-box
pairs that are addressed by a.

On the assumption that the round key is all-zero, the correlation between
c and a can now be calculated by simply adding the correlations correspond-
ing to c and all masks in α. Since the S-boxes form a bricklayer function,
these correlations can be calculated from the correlation matrices of the in-
dividual S-boxes. For � > 0 the calculations can be greatly simplified by
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recursively reusing intermediate results in computing these correlations. The
total number of calculations can be reduced to less than 16� multiplications
and additions of S-box correlations.

The effect of a non-zero round key is the multiplication of some of these
correlations by −1. Hence, if � > 0 the correlation depends on the value of
2� different linear combinations of round key bits. If � = 0, α only contains a
single mask and the correlation is independent of the key.

7.10.2 Linear Hulls

A theorem similar to Theorem 7.9.1 has been proved by K. Nyberg in [121],
in her treatment of so-called linear hulls. The difference is the following.
Theorem 7.9.1 expresses the expected linear potential between an input mask
and an output mask, averaged over all values of the expanded keys, as the sum
of the linear potentials LP(U) of the individual trails between these masks. It
is valid for key-alternating ciphers. However, the theorem in [121] is proven
for DES-like ciphers and does not mention key-alternating ciphers. As the
DES is not a key-alternating cipher, the linear potential of a linear trail is
in general not independent of the expanded key. In Theorem 7.9.1, the linear
potentials LP(U) of the linear trails must be replaced by the expected linear
potentials of the trails ELP(U), i.e. averaged over all values of the expanded
key. In [121] the set of linear trails connecting the same initial mask and final
mask is called an approximate linear hull.

Unfortunately, the presentation in [121] does not consider the effect of
the key schedule and only considers the case of independent round keys.
This is often misunderstood by cipher designers as an incentive to design
heavy key schedules, in order to make the relations between round keys very
complicated, or ‘very random’. As we have shown above, linear cryptanalysis
does not suggest complicated key schedules as even in the case of a linear key
schedule systematic constructive interference of linear trails is very rare.

Extrapolating Theorem 7.9.1 to ciphers that are not key-alternating can
be very misleading. First of all, in actual cryptanalysis it is not so much the
maximum average linear potential that is relevant but the maximum linear
potential corresponding to the given key under attack. We illustrate this with
an example.

Example 7.10.1. We consider a cipher B that consists of multiplication with
an invertible binary matrix, where the matrix is the key:

B[K](x) = Kx.

For each given key K, each input parity has a correlation of amplitude 1 with
exactly one output parity and no correlation with all other output parities.
Averaged over all possible keys K (i.e. invertible matrices), the expected linear
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potential between any pair of input-output parities as predicted by Theorem
7.9.1 is exactly (2nb−1)−1. Unfortunately, despite this excellent property with
respect to average correlation amplitudes, the cipher is linear and trivially
breakable.

The following physical metaphor summarizes the problem with the ex-
trapolation. At any given time, on average half of the world’s population is
asleep. This does not mean that everyone is only half awake all the time.

Even for key-alternating ciphers one must take care in interpreting ELP
values. For example, take the case of a high ELP ELP(u,v) that is the
result of one dominant trail U. We have ELP(u,v) ≈ LP(U) and the re-
quired number of plaintext-ciphertext pairs for a given success rate is hence
proportional to LP−1(U). Now consider the case of a high ELP ELP(u,v)

with two dominant trails U and U′ with LP
1
2 (U′) = LP

1
2 (U)/2. Clearly

ELP(u,v) = LP(U) + LP(U′) = 5/4LP(U). One would expect the required
number of plaintext-ciphertext pairs in the latter case to be less than in
the former case. The magnitude of the correlation of (u,v) now depends on
whether the trails have correlation contributions of equal or opposite signs,
something that is determined by a parity of the expanded key. It follows that

for half of the keys this correlation has magnitude 3/2LP
1
2 (U) and for the

other half it is 1/2LP
1
2 (U). The required number of plaintext-ciphertext pairs

for a given success rate is hence 4/9LP−1(U) in half of the cases and 2LP−1(U)
in the other half. Hence, although the additional trail U′ increases the ELP,
it also increases the average attack complexity for equal success rates. It fol-
lows that ELP values should be interpreted with caution [114]. We think
that in design one should focus on worst-case behavior and consider the pos-
sibility of constructive interference of (signed) correlation contributions (see
Sect. 9.1.1).

7.11 Conclusions

In this chapter we have provided a number of tools for describing and in-
vestigating the correlations in Boolean functions, iterated Boolean functions
and block ciphers. This includes the concept of the correlation matrix and
its properties and the systematic treatment of the silent assumptions made
in linear cryptanalysis. We have compared our approach with the formalism
usually adopted in the cryptographic literature, and have argued why it is an
improvement. An extension of our approach to functions and block ciphers
operating on arrays of elements of GF(2n) is presented in Chapter 12.



8. Difference Propagation

In this chapter we consider difference propagation in Boolean functions and
transformations. Difference propagation plays an important role in cryptanal-
ysis in general and in differential cryptanalysis in particular.

We describe how differences propagate through several types of Boolean
functions. We show that the difference propagation probabilities and the cor-
relation potentials of a Boolean function are related by a simple expression.
This is followed by a treatment of difference propagation through iterated
Boolean transformations and in key-alternating ciphers. Finally we apply
our analysis to the differential cryptanalysis of the DES and compare it with
the influential concept of Markov ciphers.

8.1 Difference Propagation

Consider a couple of n-bit vectors a and a∗ with bitwise difference a+a∗ = a′.
Let b = h(a),b∗ = h(a∗) and b′ = b + b∗. The difference a′ propagates to
the difference b′ through h iff

h(a) + h(a+ a′) = b′. (8.1)

In general, b′ is not fully determined by a′ but depends on the value of a
(or equivalently, a∗). The difference propagation probability DP(h)(a′,b′) is
equal to the total number of values a that satisfy this equation, divided by
2n.

Definition 8.1.1. A difference propagation probability DP(h)(a′,b′) is de-
fined as

DP(h)(a′,b′) = 2−n
∑
a

δ(b′ + h(a+ a′) + h(a)). (8.2)

For a pair chosen uniformly from the set of all pairs (a, a∗) where a+a∗ = a′,
DP(h)(a′,b′) is the probability that h(a) + h(a∗) = b′.

As explained in Sect. 2.1.9, a function over GF(2)
n
can be mapped to a

function over GF(2n) and hence described by a polynomial expression (2.36).
We can then transform (8.1) into
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i

cia
i +

∑
ci(a+ a′)i + b′ = 0. (8.3)

This is a polynomial equation in a. For certain special cases, the number of
solutions of these polynomials can be analytically determined, providing prov-
able bounds for difference propagation probability. Examples can be found
in the paper of K. Nyberg on S-boxes [120] and in Sect. 14.1.

Difference propagation probabilities range between 0 and 1. Since

h(a+ a′) + h(a) = h(a) + h(a+ a′), (8.4)

their value must be an integer multiple of 21−n. We have:∑
b′

DP(h)(a′,b′) = 1. (8.5)

The difference propagation from a′ to b′ occurs for a fraction of all possible
input values a (and a∗). This fraction is DP(h)(a′,b′). If DP(h)(a′,b′) = 0, we
say that the input difference a′ and the output difference b′ are incompatible
through h.

Definition 8.1.2. The weight of a difference propagation (a′,b′) is the neg-
ative of the binary logarithm of the DP, i.e.

wr(a
′,b′) = − log2 DP(h)(a′,b′). (8.6)

The weight corresponds to the amount of information (expressed in bits) that
the difference propagation gives about a. Equivalently, it is the loss in entropy
[139] of a due to the restriction that a′ propagates to b′. The weight ranges
between 0 and n − 1: in the worst case the difference propagation gives no
information on a, and in the best case it fully determines the pair {a,a∗}
without their order, leaving only one bit of uncertainty.

If h is a linear function, the difference pattern at the input completely
determines the difference pattern at the output:

b′ = b+ b∗ = h(a) + h(a∗) = h(a+ a∗) = h(a′). (8.7)

From wr(a
′,b′) = 0 it follows that this difference propagation does not give

any information on a.

8.2 Special Functions

8.2.1 Affine Functions

An affine function h from GF(2)
n
to GF(2)

m
is specified by
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b = Ma+ k, (8.8)

where M is an m×n matrix and k is an m-dimensional vector. The difference
propagation for this function is determined by

b′ = Ma′. (8.9)

8.2.2 Bricklayer Functions

For a bricklayer function h, the DP is the product of the DP values of the
component functions:

DP(h)(a′,b′) =
∏
i

DP(h(i))(a′(i),b
′
(i)). (8.10)

The weight is the sum of the weights of the difference propagation in the
component functions:

wr(a
′,b′) =

∑
i

wr(a
′
(i),b

′
(i)), (8.11)

where a′ = (a′(1),a
′
(2), . . . , a

′
(�)) and b′ = (b′

(1),b
′
(2), . . . ,b

′
(�)).

8.2.3 Truncating Functions

A Boolean function h from GF(2)
n

to GF(2)
m

can be converted into a

Boolean function hs from GF(2)
n
to GF(2)

m−1
by discarding a single output

bit as. The difference propagation probabilities of hs can be expressed in
terms of the difference propagation probabilities of h:

DP(hs)(a′,b′) = DP(h)(a′, ω0) + DP(h)(a′, ω1), (8.12)

where b′
i = ω0

i = ω1
i for i = s and ω1

s = 1 and ω0
s = 0. We generalize this

to the situation in which only a number of linear combinations of the output
are considered. Let λ be a linear function corresponding to an m× � binary
matrix M. The difference propagation probabilities of θ ◦ h are given by

DP(λ◦h)(a′,b′) =
∑

ω|b′=Mω

DP(h)(a′, ω). (8.13)

8.2.4 Keyed Functions

For a keyed function h[k] we define a probability DP(h[k])(a′,b′) for each
value k of the key:
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DP(h[k])(a′,b′) = 2−n
∑
a

δ(b′ + h[k](a+ a′) + h[k](a)). (8.14)

The expected differential probability (EDP) of a difference propagation over
a keyed map is the average of the differential propagation DP[k](a,b) over
all keys.

Definition 8.2.1 (EDP). The EDP of a difference propagation (a′,b′) over
a keyed map h[k] is given by

EDP(a′,b′) = 2−|K| ∑
k∈K

DP(h[k])(a′,b′).

8.3 Relation Between DP Values and Correlations

The difference propagation probabilities of Boolean functions can be ex-
pressed in terms of their spectrum and their correlation matrix elements.
The probability of difference propagation DP(h)(a′, 0) is given by

DP(h)(a′, 0) = 2−n
∑
a

δ(h(a) + h(a+ a′))

= 2−n
∑
a

1

2
(1 + ĥ(a)ĥ(a+ a′))

= 2−n
∑
a

1

2
+ 2−n

∑
a

1

2
ĥ(a)ĥ(a+ a′)

=
1

2
(1 + r̂h(a

′))

=
1

2
(1 +

∑
w

(−1)w
Ta′

Ĥ2(w)). (8.15)

The component of the autocorrelation function r̂h(a
′) corresponds to the

amount that DP(h)(a′, 0) deviates from 0.5.

For functions from GF(2)
n
to GF(2)

m
, we denote the autocorrelation

function of uTh(a) by r̂u(a
′), i.e.

r̂u(a
′) = 2−n

∑
a

(−1)u
Th(a)+uTh(a+a′). (8.16)

Now we can prove the following theorem, which expresses the duality be-
tween the difference propagation and the correlation properties of a Boolean
function.

Theorem 8.3.1. The table of DP values and the table of squared correlations
of a Boolean function are linked by a (scaled) Walsh-Hadamard transform.
We have
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DP(a′,b′) = 2−m
∑
u,w

(−1)w
Ta′+uTb′

C2
u,w, (8.17)

and dually

C2
u,w = 2−n

∑
a′,b′

(−1)w
Ta′+uTb′

DP(a′,b′). (8.18)

Proof.

DP(a′,b′) = 2−n
∑
a

δ(h(a) + h(a+ a′) + b′)

= 2−n
∑
a

∏
i

1

2

(
(−1)hi(a)+hi(a+a′)+b′

i + 1
)

= 2−n
∑
a

2−m
∑
u

(∏
ui=1

(−1)hi(a)+hi(a+a′)+b′
i

)

= 2−n
∑
a

2−m
∑
u

(−1)u
T(h(a)+h(a+a′)+b′)

= 2−n
∑
a

2−m
∑
u

(−1)u
Th(a)+uTh(a+a′)+uTb′

= 2−m
∑
u

(−1)u
Tb′

2−n
∑
a

(−1)u
Th(a)+uTh(a+a′)

= 2−m
∑
u

(−1)u
Tb′

r̂u(a
′)

= 2−m
∑
u

(−1)u
Tb′ ∑

w

(−1)w
Ta′

C2
u,w

= 2−m
∑
u,w

(−1)w
Ta′+uTb′

C2
u,w.

��

8.4 Differential Trails

In this section we apply the described formalism and tools to the propagation
of differences in iterative Boolean transformations.

8.4.1 General Case

Let β be an iterative Boolean transformation operating on n-bit vectors that
is a sequence of r transformations:
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β = ρ(r) ◦ ρ(r−1) ◦ . . . ◦ ρ(2) ◦ ρ(1). (8.19)

A differential trail Q over an iterative transformation consists of a sequence
of r + 1 difference patterns:

Q =
(
q(0),q(1),q(2), . . . ,q(r−1),q(r)

)
. (8.20)

A differential trail has a probability that we also denote as its DP. The DP of a
differential trail is the number of values a(0) for which the difference patterns
follow the differential trail divided by the number of possible values for a(0).
This differential trail is a sequence of r differential steps

(
q(i−1),q(i)

)
, which

have a weight

wr
ρ(i)

(
q(i−1),q(i)

)
, (8.21)

or wr
(i) for short.

Definition 8.4.1. The weight of a differential trail Q is the sum of the
weights of its differential steps, i.e.

wr(Q) =
∑
i

wr
ρ(i)

(
q(i−1),q(i)

)
. (8.22)

The significance of the weight of a differential trail is explained in the follow-
ing section.

8.4.2 Independence of Restrictions

A differential step
(
q(i−1),q(i)

)
imposes restrictions on the intermediate state

a(i−1) in the following way. The differential step imposes that the value of

a(i−1) is in a set that contains a fraction 2−wr
(i)

of all possible values. We
denote this set by αi−1(i): the set of possible values of a(i−1) with the re-
strictions imposed by the ith step

(
q(i−1),q(i)

)
. As a(i−1) is completely de-

termined by a(0), we can consider the set α0(i) as the set of possible values
of a(0) with the restrictions imposed by the ith step. In the case that β is
a permutation, and hence all steps are also permutations, for each element
in αi−1(i) there is one element in α0(i). Both have the same relative size:

2−wr
(i)

.

Now consider a two-round differential trail. The first step imposes that
a(0) ∈ α0(1) and the second step that a(1) ∈ α1(2). We can reduce this second
restriction to a(0) ∈ α0(2). The joint restriction imposed by both steps now
becomes: a(0) ∈ α0(1, 2) where α0(1, 2) = α0(1) ∩ α0(2). If

Pr (x ∈ α0(1)|x ∈ α0(2)) = Pr (x ∈ α0(1)) , (8.23)
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the restrictions imposed by the first and the second step are independent. In

that case, the relative size of α0(1, 2) is equal to 2−(wr
(1)+wr

(2)).

The relative size of the set of values a(0) that satisfy the restrictions im-
posed by all the differential steps of a differential trail Q is by definition
the DP of Q. While it is easy to compute the weight of a differential trail,
computing its DP is in general difficult. If we neglect the correlations be-
tween the restrictions of the different steps, the DP of the differential trail is
approximated by

DP(Q) ≈ 2−wr(Q). (8.24)

We refer to Chapter 15 for more details on the accuracy of such an approx-
imation. If wr(Q) is of order n− 1 or larger, (8.24) can no longer be a valid
approximation. In this situation, the inevitable (albeit small) correlations be-
tween the restrictions come into play. DP(Q) multiplied by 2n is the absolute
number of inputs a(0) for which the initial difference pattern propagates along
a differential trail Q. For this reason, it must therefore be an (even) integer.
Of the differential trails Q with a weight wr(Q) above n− 1, only a fraction
2n−1−wr(Q) can be expected to actually occur for some a(0).

Differential cryptanalysis exploits difference propagations (a′,b′) with
large probabilities. Since, for a given input value a(0), exactly one differ-
ential trail is followed, the probability of difference propagation (a′,b′) is the
sum of the probabilities of all r-round differential trails with initial difference
a′ and terminal difference b′. We say that a trail Q is in a differential (a′,b′)
if q(0) = a′ and q(r) = b′. We have

DP(a′,b′) =
∑

Q∈(a′,b′)

DP(Q) (8.25)

and

EDP(a′,b′) =
∑

Q∈(a′,b′)

EDP(Q) . (8.26)

8.5 Key-Alternating Cipher

As the round transformation is independent of the key, so is the weight of
a differential step over a round. A key addition step has no impact on the
difference propagation pattern or the weight. Since the weight of a differential
trail is the total of the weight of its differential steps, it is independent of the
round keys and hence of the cipher key.

The reduction of the restrictions imposed upon a(i−1) by
(
q(i−1),q(i)

)
,

to restrictions on a(0), involves the round keys. As the signs of the corre-
lations between the different restrictions do depend on the round keys, the
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probability of a differential trail is in general not independent of the cipher
key.

For a differential trail Q with a weight wr(Q) above n−1, only an expected
portion 2n−1−wr(Q) of the cipher keys will give pairs following it Q.

8.6 The Effect of the Key Schedule

If we use the total weight over all differential steps to predict the difference
propagation probability, we make the assumption that the restrictions due
to the steps are independent. If we fix the round keys, then we can reduce
the restrictions on all differential steps to restrictions on a(0). It may turn
out that the different restrictions are not independent. The reduction of the
restrictions from all differential steps to a(0) involves the round keys, which
are in turn derived fromf the cipher key by the key schedule. Hence, the key
schedule influences the reduction of restrictions on all differential steps to
restrictions on a(0).

8.7 Differential Trails and the Differential Cryptanalysis
Literature

In this section we compare our formalism with the terminology of the origi-
nal description of differential cryptanalysis and with the concept of Markov
ciphers.

8.7.1 Differential Cryptanalysis of the DES Revisited

In this section we match the elements of differential cryptanalysis as described
in Sect. 6.2 with those of our framework.

The characteristics with their characteristic probability described in [26]
correspond to what we call differential trails and the approximation of their
probability based on their weight. In the cryptanalysis of the DES, the differ-
ence propagation probability from the initial difference pattern to the final
difference pattern is approximated by the probability of the differential trail.
This is a valid approximation because of the low relative weight of the differ-
ential trail:

1. The odd-round differential steps have a weight equal to 0 and do not
impose any restrictions.

2. The even-round differential steps only impose restrictions on few state
bits.
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3. The state bits after round i+2 depend on many state bits after round i.
In other words, the correlation between the different restrictions is very
weak, if there is any.

For the DES round transformation the distribution of the differential steps
and their weight are not independent of the round keys. This dependence was
already recognized in [26] where in the analysis the weights of the differential
steps are approximated by an average value. The two-round iterative differ-
ential trail with approximate probability 1/234 has in fact a probability that
is either 1/146 or 1/585, depending on the value of a linear combination of
round key bits.

8.7.2 Markov Ciphers

In Sect. 8.4.2 we discussed the determination of the probability of a multiple-
round differential trail. This problem has been studied before by X. Lai,
J. Massey and S. Murphy in [93]. They were the first to make the distinction
between differentials and characteristics. A differential is a difference prop-
agation from an input difference pattern to an output difference pattern. A
characteristic is a differential trail along a number of rounds of a block ci-
pher. In [93] it is shown that the probability of a differential over a sequence
of rounds of a block cipher is equal to the sum of the probabilities of all
characteristics (differential trails) over those rounds. They also introduce
the following concepts:

Markov cipher: A Markov cipher is an iterative cipher whose round trans-
formation satisfies the condition that the differential probability is in-
dependent of the choice of one of the component plaintexts under an
appropriate definition of difference. All modern ciphers appearing in the
mainstream literature are Markov ciphers.

Hypothesis of stochastic equivalence: This hypothesis states that, for virtu-
ally all values of the cipher key, the probability of a differential trail can
be approximated by the expected value of the probability of the differen-
tial trail, averaged over all possible values of the cipher key. We illustrate
in Chapter 15 that for many round-reduced variants of modern ciphers,
this hypothesis does not hold.

8.8 Conclusions

We have described the propagation of differences in Boolean functions, in
iterated Boolean transformations and in block ciphers in general. We have
introduced the differential trail as the basic building block of difference prop-
agation in block ciphers.



9. The Wide Trail Strategy

In this chapter we explain the strategy that underlies many choices made in
the design of Rijndael and its related ciphers.

We start with a detailed explanation of how linear correlations and differ-
ence propagation probabilities are built up in key-alternating block ciphers.
This is followed by an explanation of the basic principles of the wide trail
strategy. Then we introduce an important diffusion measure, the branch num-
ber, and describe how it is relevant in providing bounds for the DP of differ-
ential trails and the LP of linear trails over two rounds. This is followed by a
key-alternating cipher structure that combines efficiency with high resistance
against linear and differential cryptanalysis. We apply the same principles
to the Rijndael cipher structure and prove a theorem that provides a lower
bound on the number of active S-boxes in any four-round trail for these ci-
phers. Finally we provide some concrete constructions for the components
used in the described cipher structures, using coding theory and geometrical
representations.

9.1 Propagation in Key-Alternating Block Ciphers

In this section we describe the anatomy of correlations and difference propa-
gations in key-alternating block ciphers. This is used to determine the number
of rounds required to provide resistance against linear and differential crypt-
analysis. In this section we assume that the round transformations do not
exhibit correlations with an amplitude of 1 or difference propagations with a
DP of 1.

Limiting ourselves to the key-alternating structure allows us to reason
more easily about linear and differential trails, since the effect of a key addi-
tion on the propagation is quite simple.

9.1.1 Linear Cryptanalysis

For a successful classical linear cryptanalysis attack, the cryptanalyst needs to
know a correlation over all but a few rounds of the cipher with an amplitude

© Springer-Verlag GmbH Germany, part of Springer Nature 2020 
J. Daemen, V. Rijmen, The Design of Rijndael, Information Security and Cryptography, 
https://doi.org/10.1007/978-3-662-60769-5_9 

125

https://doi.org/10.1007/978-3-662-60769-5_9
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-662-60769-5_9&domain=pdf


126 9. The Wide Trail Strategy

that is significantly larger than 2−nb/2. To avoid this, we choose the number
of rounds so that there are no such linear trails with a correlation contribution
above n−1

k 2−nb/2.

This does not guarantee that there are no high correlations over r rounds.
In Chap. 7 we have shown that each output parity of a Boolean function is
correlated to a number of input parities. Parseval’s theorem (7.15) states that
the sum of the correlation potentials with all input parities is 1. Under the
assumption that the output parity is equally correlated to all 2nb possible
input parities, the correlation to each of these input parities has amplitude
2−nb/2. In practice it is very unlikely that such a uniform distribution will be
attained, and so correlations will exist that are orders of magnitude higher
than 2−nb/2. This also applies to the Boolean permutation formed by a cipher
for a given value of the cipher key. Hence, the presence of high correlations
over (all but a few rounds of) the cipher is a mathematical fact rather than
something that may be avoided by design.

However, when we impose an upper bound on the amplitude of the cor-
relation contributions of linear trails, high correlations can only occur as the
result of constructive interference of many linear trails that share the same
initial and final masks. If this upper bound is n−1

k 2−nb/2, any such correlation
with an amplitude above 2−nb/2 must be the result of at least nk different
linear trails. The condition that a linear trail in this set contributes construc-
tively to the resulting correlation imposes a linear relation on the round key
bits. From the point that more than nk linear trails are combined, it is very
unlikely that all such conditions can be satisfied by choosing the appropriate
cipher key value.

The strong key-dependence of this interference makes it very unlikely that
if a specific output parity has a high correlation with a specific input parity
for a given key, this will also be the case for another value of the key. In other
words, although it follows from Parseval’s theorem that high correlations over
the cipher will exist whatever the number of rounds, the strong round key
dependence of interference makes locating the input and output masks for
which high correlations occur practically infeasible. This is true if the key is
known, and even more so if it is unknown.

In the above discussion we have neglected possible linear trail clustering:
the fact that sets of linear trails tend to propagate along common intermediate
masks. If linear trails tend to cluster, this must be taken into account in the
upper bounds for the correlation contributions.

9.1.2 Differential Cryptanalysis

For a successful classical differential cryptanalysis attack, the cryptanalyst
needs to know an input difference pattern that propagates to an output dif-
ference pattern over all but a few (two or three) rounds of the cipher, with
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a DP that is significantly larger than 21−nb . To avoid this, we choose the
number of rounds so that there are no such differential trails with a weight
below nb.

This strategy does not guarantee that there are no such difference propa-
gations with a high DP. For any Boolean function, a difference pattern at the
input must propagate to some difference pattern at the output, and the sum
of the difference propagation probabilities over all possible output differences
is 1. Hence, there must be difference propagations with probabilities equal to
or larger than 21−nb . This also applies to the Boolean permutation formed
by a cipher for a given value of the cipher key. Hence, similar to what we
have for correlations, the presence of difference propagations with a high DP
over (all but a few rounds of) the cipher is a mathematical fact that cannot
be avoided by a careful design.

Let us analyze how, for a given key value, a difference pattern at the
input propagates to a difference pattern at the output with some DP y.
By definition, there are exactly y2nb−1 pairs with the given input difference
pattern and the given output difference pattern. Each of these pairs follows
a particular differential trail.

Assuming that the pairs are distributed over the trails according to a Pois-
son distribution,1 the expected number of pairs that, for a given key value,
follow a differential trail with weight z is 2nb−1−z. Consider a differential trail
with a weight z larger than nb − 1 that is followed by at least one pair. The
probability that this trail is followed by more than one pair is approximately
2nb−1−z. It follows that if there are no differential trails with a weight below
nb − 1, the y2nb−1 pairs that have the correct input difference pattern and
output difference pattern follow almost y2nb−1 different differential trails.

Hence, if there are no differential trails with a low weight, difference prop-
agations with a large DP are the result of multiple differential trails that hap-
pen to be followed by a pair in the given circumstances, i.e. for the given key
value. For another key value, each of these individual differential trails may
be followed by a pair or may not. This makes predicting the input difference
patterns and output difference patterns that have large difference propaga-
tion probabilities practically infeasible. This is true if the key is known, and
even more so if it is unknown.

In the above discussion we have neglected possible differential trail clus-
tering: the fact that sets of differential trails tend to propagate along common
intermediate difference patterns. If differential trails tend to cluster, this must
be taken into account in the lower bounds for the weight of the differential
trails. Clustering of differential trails in Rijndael and its relatives is treated
in Chap. 13.

1 In Chap. 15 we show that in many ciphers, this assumption does not hold for
two-round or four-round trails. However, for trails over more rounds, this still
seems a plausible assumption.
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9.1.3 Differences Between Linear Trails and Differential Trails

Linear and differential trails propagate in a very similar way. Still, when they
are combined to form correlations and difference propagations, respectively,
there are a number of very important differences.

The impact of a linear trail is its correlation contribution. The correlation
contribution can easily be computed and its amplitude is independent of the
value of the key. The problem with computing correlations over many rounds
is that a correlation may be the result of many linear trails whose interference
— constructive or destructive — is strongly key-dependent.

The impact of a differential trail is its DP, which is in general infeasible
to compute precisely. However, it can be approximated using the weight of
the differential trail. Unlike its DP, the weight of a differential trail is easy
to compute. However, the approximation is only valid for differential trails in
which the restrictions imposed by the differential steps are mutually indepen-
dent and hence that have a weight below nb − 1. If the DP of the individual
differential trails were known for a given key, difference propagation probabil-
ities would be easy to compute. For differential trails, destructive interference
does not exist.

9.2 The Wide Trail Strategy

The wide trail strategy is an approach used to design the round transforma-
tions of key-alternating block ciphers that combine efficiency and resistance
against differential and linear cryptanalysis. In this book we describe the
strategy for key-alternating block ciphers, but it can also be extended to
more general block cipher structures.

We build the round transformations as a sequence of two invertible steps:

1. γ. A local nonlinear transformation. By local, we mean that any output
bit depends on only a limited number of input bits and that neighboring
output bits depend on neighboring input bits.

2. λ. A linear mixing transformation providing high diffusion. What is
meant by high diffusion will be explained in Sect. 9.2.3.

Hence we have a round transformation ρ:

ρ = λ ◦ γ. (9.1)

We refer to this as a γλ round transformation.
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9.2.1 The γλ Round Structure in Block Ciphers

In block cipher design γ is usually a bricklayer permutation consisting of a
number of S-boxes. The state bits of a are partitioned into nt ns-bit tuples
ai ∈ Zns

2 with i ∈ I according to the so-called tuple partition. I is called the
index space. The block size of the cipher is given by nb = nsnt.

Example 9.2.1. Let X1 be a cipher with a block length of 48 bits. Let the
input be divided into six 8-bit tuples:

a =
[
a1 a2 a3 a4 a5 a6

]
.

The index space is I = {1, 2, 3, 4, 5, 6}.

Figure 9.1 illustrates the different steps of a round and a key addition for
a simple example. The block cipher example has a block size of 27 bits. The
nonlinear S-boxes operate on ns = 3 bits at a time. The linear transformation
mixes the outputs of the nt = 9 S-boxes. Figure 9.2 gives a more schematic
representation, which we will use in the remainder of this chapter.

a(r)

γ

�	 λ

σ[k(r)]

a(r+1)
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Fig. 9.1. Steps of an example block cipher

a(r)

γ

�	 λ

σ[k(r)]

a(r+1)

Fig. 9.2. Schematic representation of the different steps of a block cipher
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The step γ is a bricklayer permutation composed of S-boxes:

γ : b = γ(a) ⇔ bi = Sγ(ai), (9.2)

where Sγ is an invertible nonlinear ns-bit substitution box. For the purpose
of this analysis, Sγ need not be specified. Clearly, the inverse of γ consists
of applying the inverse substitution S−1

γ to all bytes. The results of this
chapter can easily be generalized to include nonlinear permutations that use
different S-boxes for different byte positions. However, this does not result in
a plausible improvement of the resistance against known attacks. The use of
different S-boxes also increases the program size in software implementations
and the required chip area in serial hardware implementations.

The step λ combines the bytes linearly: each byte at its output is a linear
function of bytes at its input. λ can be specified at the bit level by a simple
nb × nb binary matrix M. We have

λ : b = λ(a) ⇔ b = Ma. (9.3)

λ can also be specified at the byte level. For this purpose the bytes are
assumed to code elements in GF(2ns) with respect to some basis. In its most
general form, we have

λ : b = λ(a) ⇔ bi =
∑
j

∑
0≤�<ns

Mi,j,�aj
2� . (9.4)

In most instances a more simple linear function is chosen that is a special
case of (9.4):

λ : b = λ(a) ⇔ bi =
∑
j

Mi,jaj . (9.5)

If we consider the state as an array of bytes, this can be expressed as a matrix
multiplication:

λ : b = λ(a) ⇔ b = M · a (9.6)

where M is an nt × nt matrix with elements in GF(2ns). The jth column of
M is denoted by Mj . The inverse of λ is specified by the matrix M−1.

Example 9.2.2. In X1, λ could be defined as

λ
([

a1 a2 a3 a4 a5 a6
])

=[
2 · a1 a1 + a2 a1 + a3 + a4 + a5 a4 + a5 + a6 a3 + a5 + a6 a2 + a3

]
.
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The M matrix is then given by

M =

⎡
⎢⎢⎢⎢⎢⎢⎣

2 0 0 0 0 0

1 1 0 0 0 0

1 0 1 1 1 0

0 0 0 1 1 1

0 0 1 0 1 1

0 1 1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦
.

9.2.2 Weight of a Trail

γ is a bricklayer permutation consisting of S-boxes. Hence, as explained in
Sect. 7.4.3, the correlation over γ is the product of the correlations over the
different S-box positions for the given input and output masks. We define
the weight of a correlation as the negative logarithm of its amplitude. The
correlation weight for an input mask and output mask is the sum of the
correlation weights of the different S-box positions. If the output mask is
non-zero for a particular S-box position or byte, we call this S-box or byte
active.

Similarly, the weight of the difference propagation over γ is the sum of
the weights of the difference propagations of the S-box positions for the given
input difference pattern and output difference pattern. If the input difference
pattern is non-zero for a particular S-box position or byte, we call this S-box
or byte active.

We take S-boxes that have good nonlinearity properties. For linear crypt-
analysis, the relevant property is the maximum amplitude of correlations over
the S-box. For differential cryptanalysis, the relevant property is the maxi-
mum DP. Once a single S-box has been found with good properties, this can
be used for all S-box positions in the nonlinear permutation.

A linear trail is defined by a series of masks. The weight of such a trail is
the sum of the weights of the masks of the trail. As the weight of the masks is
the sum of the weight of its active S-box positions, the weight of a linear trail
is the sum of that of its active S-boxes. An upper bound to the correlation is
a lower bound to the weight per S-box. Hence, the weight of a linear trail is
equal to or larger than the number of active bytes in all its masks times the
minimum (correlation) weight per S-box. We call the number of active bytes
in a pattern or a trail its byte weight.

A differential trail is defined by a series of difference patterns. The weight
of such a trail is the sum of the weights of the difference patterns of the
trail. Completely analogous to linear trails, the weight of a differential trail
is equal to or larger than the number of active S-boxes times the minimum
(differential) weight per S-box.

This suggests two possible mechanisms to eliminate low-weight trails:
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1. Choose S-boxes with high minimum differential and correlation weight.

2. Design the round transformation(s) in such a way that there are no rel-
evant trails with a low byte weight.

The maximum correlation amplitude of an ns-bit invertible S-box is above
2−ns/2, yielding an upper bound for the minimum (correlation) weight of
ns/2. The maximum DP is at least 22−ns , yielding an upper bound for the
minimum (differential) weight of ns−2. This seems to suggest that one should
take large S-boxes.

Instead of spending most of its resources on large S-boxes, the wide trail
strategy aims at designing the round transformation(s) such that there are
no trails with a low byte weight. In ciphers designed following the wide trail
strategy, a relatively large amount of resources is spent in the linear step to
provide high multiple-round diffusion.

9.2.3 Diffusion

Diffusion is the term used by C. Shannon to denote the quantitative spread-
ing of information [140]. The exact meaning of the term diffusion depends
strongly on the context in which it is used. In this section we will explain
what we mean by diffusion in the context of the wide trail strategy.

Inevitably, the nonlinear step γ provides some interaction between the
different bits within the bytes that may be referred to as diffusion. However,
it does not provide any inter-byte interaction: difference propagation and
correlation over γ stay confined within the bytes. In the context of the wide
trail strategy, it is not this kind of diffusion we are interested in. We use
the term diffusion to indicate properties of a Boolean function that increase
the minimum byte weight of linear and differential trails. In this sense, all
diffusion is realized by λ; γ does not provide any diffusion at all.

Let us start by considering single-round trails. Obviously, the byte weight
of a single-round trail — differential or linear — is equal to the number
of active bytes at its input. It follows that the minimum byte weight of a
single-round trail is 1, independent of λ.

In two-round trails, the byte weight is the sum of the number of active
bytes in the masks or difference patterns in the state at the input of the first
and at the second round. The state at the input of the second round is equal
to the XOR of the output of the first and a round key. This key addition has
no impact on the mask or difference pattern and hence does not impact their
byte weight. In this context a relevant diffusion measure of ρ is the minimum
number of active bytes at the input and output of ρ. We call this the (byte)
branch number of ρ. Basically, this branch number provides a lower bound for
the minimum byte weight of any two-round trail. The byte branch number
ranges between two (‘no diffusion at all’) and the total number of bytes in
the state nt plus one.
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In trails of more than two rounds, the desired diffusion properties of ρ are
less trivial. It is clear that any 2n-round trail is a sequence of n two-round
trails and hence that its byte weight is lower bounded by n times the branch
number of ρ. One approach would be to design a round transformation with a
maximum branch number. However, similar to large S-boxes, transformations
that provide high branch numbers have a tendency to have a high implemen-
tation cost. More efficient designs can be achieved using a round structure
with a limited branch number but with some other particular propagation
properties.

For this purpose, λ can be built as a sequence of two steps:

1. θ. A step that provides high local diffusion.

2. π. A step that provides high dispersion.

In block cipher design, the mixing step θ is usually a linear bricklayer
permutation. Its component permutations operate on a limited number of
bytes and have a branch number that is high with respect to their dimensions.
The step π takes care of dispersion. By dispersion we mean the operation by
which bits or bytes that are close to each other in the context of θ are moved
to positions that are distant.

Jointly, θ and π have a spectacular effect on patterns with a low Hamming
weight: through θ this propagates to a localized pattern with high Hamming
weight that is dispersed all over the state by π. There are several approaches
to the selection of θ and π. One of these approaches has led to Rijndael and
its relatives.

9.3 Branch Numbers and Two-Round Trails

In this section we formally define the branch number of a Boolean transfor-
mation with respect to a byte partition.

The byte weight of a state is equal to the number of non-zero bytes. This
is denoted by wt(a). If this is applied to a difference pattern a′, wt(a

′) is
the number of active bytes in a′. Applied to a mask v, wt(v) is the number
of active bytes in v. We make a distinction between the differential and the
linear branch number of a transformation.

Definition 9.3.1. The differential branch number of a transformation φ is
given by

Bd(φ) = min
a,b 	=a

{wt(a+ b) + wt(φ(a) + φ(b))}. (9.7)

For a linear transformation λ(a) + λ(b) = λ(a+ b), and (9.7) reduces to
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Bd(λ) = min
a′ 	=0

{wt(a
′) + wt(λ(a

′))}. (9.8)

Analogous to the differential branch number, we can define the linear
branch number.

Definition 9.3.2. The linear branch number of a transformation φ is given
by

Bl(φ) = min
α,β,C(αTx,βTφ(x)) 	=0

{wt(α) + wt(β)}. (9.9)

If φ is a linear transformation denoted by λ, there exists a matrix M such
that λ(x) = M · x. Equation (9.9) can then be simplified to (see Sect. 7.4)

Bl(λ) = min
α 	=0

{wt(α) + wt(M
Tα)}. (9.10)

It follows that the linear branch number of the linear transformation spec-
ified by the matrix M is equal to the differential branch number of the linear
transformation specified by the matrix MT. Many of the following discussions
are valid both for differential and linear branch numbers, and both Bd and
Bl are denoted simply by B.

An upper bound for the (differential or linear) branch number of a Boolean
transformation φ is given by one plus the total number of bytes in the state,
denoted by nα. The output difference pattern or mask corresponding to an
input difference pattern or mask with a single non-zero byte can have a
maximum weight of nα. Hence, the branch number of φ is upper bounded by

B(φ) ≤ nα + 1. (9.11)

In general, the linear and differential branch numbers of a transformation
with respect to a partition are not equal. This is illustrated in Example 9.3.1.
However, if the step λ satisfies certain conditions it can be shown that the dif-
ferential and linear branch numbers are equal. An obvious sufficient condition
is the requirement thatM be symmetric. Also, if a Boolean transformation has
the maximal possible differential or linear branch number, then both branch
numbers are equal. This is proven for the case of linear transformations in
Sect. 9.6 and for the general case in Chap. 13.

Example 9.3.1. Consider the transformation λ : x �→ A ·x over GF(4), where

A =

⎡
⎢⎢⎣
1 1 1 1

0 1 0 1

0 0 1 1

0 1 1 0

⎤
⎥⎥⎦ . (9.12)

A is invertible and hence Bd(θ) ≥ 2 and Bl(θ) ≥ 2. The first column of A has
only a single 1 in the first position and hence A · (1, 0, 0, 0)T = (1, 0, 0, 0)T;
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it follows that Bd(θ) = 2. A has no rows with a single 1, so AT does not
map vectors with weight 1 to weight 1. It does have rows with two non-zero
entries; and therefore, Bl(θ) = 3.

9.3.1 Derived Properties

From the symmetry of Definitions 9.3.1 and 9.3.2 it follows that the branch
number of a transformation and that of its inverse are the same. Moreover,
we have the following properties:

1. A difference pattern or mask a is not affected by a key addition and hence
its byte weight wt(a) is not affected.

2. A bricklayer permutation operating on individual bytes cannot turn an
active byte into a non-active byte or vice versa. Hence, it does not affect
the byte weight wt.

Assume that we have a transformation φ that is a sequence of a trans-
formation φ1 and a bricklayer transformation φ2 operating on bytes, i.e.
φ = φ2 ◦ φ1. As φ2 does not affect the number of active bytes in a propaga-
tion pattern, the branch numbers of φ and φ1 are the same. More generally,
if propagation of patterns is analyzed at the level of bytes, bricklayer trans-
formations operating on individual bytes may be ignored as they leave the
difference patterns and masks unchanged.

If we apply this to the byte weight of a γλ round transformation ρ, it
follows immediately that the (linear or differential) byte branch number of ρ
is that of its linear part λ.

9.3.2 A Two-Round Propagation Theorem

The following theorem relates the value of B(λ) to a bound on the number
of active bytes in a trail. The proof is valid both for linear and differential
trails: in the case of linear trails B stands for Bl and in the case of differential
trails B stands for Bd.

Theorem 9.3.1 (Two-Round Propagation Theorem).
For a key-alternating block cipher with a γλ round structure, the number
of active bytes of any two-round trail is lower bounded by the (byte) branch
number of λ.

Proof. Figure 9.3 depicts two rounds. Since the steps γ and σ[k] operate on
each byte individually, they do not affect the propagation of patterns. Hence
it follows that wt(a

1)+wt(a
2) is only bounded by the properties of the linear

step λ of the first round. Definitions 9.3.1 and 9.3.2 imply that the sum of
the active bytes before and after λ of the first round is lower bounded by
B(λ). ��
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a(1)

γ

�	 λ

σ[k(1)]

a(2)

γ

�	 λ

σ[k(2)]

Fig. 9.3. Steps relevant in the proof of Theorem 9.3.1

9.4 An Efficient Key-Alternating Structure

Theorem 9.3.1 seems to suggest that to obtain high lower bounds on the byte
weight of multiple-round trails, a transformation λ must be used with a high
branch number. However, realizing a high branch number has its computa-
tional cost. In this section we elaborate on a cipher structure that is more
efficient in providing lower bounds.

We build a key-alternating block cipher that consists of an alternation of
two different round transformations defined by

ρa = θ ◦ γ and (9.13)

ρb = Θ ◦ γ. (9.14)

The step γ is defined as before and operates on nt ns-bit bytes.

9.4.1 The Diffusion Step θ

With respect to θ, the bytes of the state are grouped into a number of columns
by a partition Ξ of the index space I. We denote a column by ξ and the
number of columns by nΞ . The column containing an index i is denoted by
ξ(i), and the number of indices in a column ξ by nξ. The size of the columns
relates to the block length by

m
∑
ξ∈Ξ

nξ = mnt.
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θ is a bricklayer permutation with component permutations that each operate
on a column, as illustrated by Fig. 9.4. Within each column, bytes are linearly
combined. We have

θ : b = θ(a) ⇔ bi =
∑

j∈ξ(i)

Mi,jaj . (9.15)

a

�	 �	 �	 θ

b

Fig. 9.4. The diffusion step θ

If the array of bytes with indices in ξ is denoted by aξ, we have

θ : b = θ(a) ⇔ bξ = Mξaξ (9.16)

where Mξ is an nξ × nξ matrix. The jth column of Mξ is denoted by Mξ|j .
The inverse of θ is specified by the partition Ξ and the matrices M−1

ξ . The
bricklayer transformation θ only needs to realize diffusion within the columns
and hence has a low implementation cost.

Similar to active bytes, we can speak of active columns. The number of
active columns of a propagation pattern a is denoted by ws(a).

The round transformation ρ(a) = θ ◦ γ is a bricklayer transformation op-
erating independently on a number of columns. Taking this bricklayer struc-
ture into account, we can extend the results of Sect. 9.3 slightly. The branch
number of θ is given by the minimum branch number of its component trans-
formations. Applying (9.11) to the component permutations defined by the
matrices Mξ results in the following upper bound:

B(θ) ≤ min
ξ

nξ + 1. (9.17)

Hence, the smallest column imposes the upper limit for the branch number.

The two-round propagation theorem (Theorem 9.3.1) implies the follow-
ing lemma.

Lemma 9.4.1. The byte weight of any two-round trail in which the first
round has a γθ round transformation is lower bounded by NB(θ), where N
is the number of active columns at the input of the second round.

Proof. Theorem 9.3.1 can be applied separately to each of the component
transformations of the bricklayer transformation ρ(a). For each active column
there are at least B(θ) active bytes in the two-round trail. If the number of
active columns is denoted by N , we obtain the proof. ��
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Example 9.4.1. In X2, the partition Ξ has two elements. θ can be defined as

θ

⎛
⎜⎜⎝
⎡
⎢⎢⎣
a1 a3
a2 a4

a5
a6

⎤
⎥⎥⎦
⎞
⎟⎟⎠ =

⎡
⎢⎢⎣
2a1 + a2 a3 + a4 + a5
a1 + a2 a4 + a5 + a6

a3 + a5 + a6
a3 + a4 + a6

⎤
⎥⎥⎦ .

In this case there are two matrices Mξ:

Mξ(0) =

[
2 1

1 1

]
, and Mξ(1) =

⎡
⎢⎢⎣
1 1 1 0

0 1 1 1

1 0 1 1

1 1 0 1

⎤
⎥⎥⎦ .

9.4.2 The Linear Step Θ

Θ mixes bytes across columns:

Θ : b = Θ(a) ⇔ bi =
∑
j

Mi,jaj . (9.18)

The goal of Θ is to provide inter-column diffusion. Its design criterion is to
have a high branch number with respect to the column partition. This is
denoted by Bc(Θ) and called its column branch number.

9.4.3 A Lower Bound on the Byte Weight of Four-Round Trails

The combination of the byte branch number of θ and the column branch
number of Θ allows us to prove a lower bound on the byte weight of any trail
over four rounds starting with ρ(a).

Theorem 9.4.1 (Four-Round Propagation Theorem for θΘ Con-
struction). For a key-alternating block cipher with round transformations
as defined in (9.13) and (9.14), the byte weight of any trail over ρ(b) ◦ ρ(a) ◦
ρ(b) ◦ ρ(a) is lower bounded by B(θ)× Bc(Θ).

Proof. Figure 9.5 depicts four rounds with the key addition steps and the
nonlinear steps removed, since these play no role in the trail propagation. It
is easy to see that the linear step of the fourth round plays no role. The sum
of the number of active columns in a(2) and a(3) is lower bounded by Bc(Θ).
According to Lemma 9.4.1, for each active column in a(2) there are at least
B(θ) active bytes in the corresponding columns of a(1) and a(2). Similarly,
for each active column in a(3) there are at least B(θ) active bytes in the
corresponding columns of a(3) and a(4). Hence the total number of active
bytes is lower bounded by B(θ)× Bc(Θ). ��
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a(1)

�	 �	 �	 θ

a(2)

Θ

a(3)

�	 �	 �	 θ

a(4)

Θ

Fig. 9.5. Steps relevant in the proof of Theorem 9.4.1

9.4.4 An Efficient Construction for Θ

As opposed to θ, Θ does not operate on different columns independently
and hence may have a much higher implementation cost. In this section we
present a construction of Θ in terms of θ and byte transpositions denoted by
π. We have

Θ = π ◦ θ ◦ π. (9.19)

In the following we will define π, and prove that if π is well chosen the column
branch number of Θ can be made equal to the byte branch number of θ.

The byte transposition π. The byte transposition π is defined as

π : b = π(a) ⇔ bi = ap(i), (9.20)

where p(i) is a permutation of the index space I. The inverse of π is defined
by p−1(i).

Example 9.4.2. In the cipher X2, we define π as the transformation that
leaves the first row unchanged and shifts the second row one place to the
right:

π

([
a1 a3 a5
a2 a4 a6

])
=

[
a1 a3 a5
a6 a2 a4

]
.

Observe that a byte transposition π does not affect the byte weight of a
propagation pattern and hence that the branch number of a transformation
is not affected if it is composed with π.

As opposed to θ, π provides inter-column diffusion. Intuitively, good dif-
fusion for π would mean that it distributes the different bytes of a column to
as many different columns as possible.
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We say π is diffusion optimal if the different bytes in each column are
distributed over all different columns. More formally, we have the following.

Definition 9.4.1. π is diffusion optimal iff

∀i, j ∈ I, i = j : (ξ(i) = ξ(j)) ⇒ (ξ(p(i)) = ξ(p(j))). (9.21)

It is easy to see that this implies the same condition for π−1. A diffusion
optimal byte transposition π implies ws(π(a)) ≥ maxξ(wt(aξ)). Therefore a
diffusion optimal transformation can only exist if nΞ ≥ maxi(nξi). In words,
π can only be diffusion optimal if there are at least as many columns as there
are bytes in the largest column.

If π is diffusion optimal, we can prove that the column branch number of
the transformation Θ is equal to the branch number of θ.

Lemma 9.4.2. If π is a diffusion optimal transposition of bytes, the column
branch number of π ◦ φ ◦ π is equal to the byte branch number of φ.

Proof. We refer to Fig. 9.6 for the notation used in this proof. Firstly, we
demonstrate that

ws(a) + ws(d) ≥ B(φ). (9.22)

For any active column in b, the number of active bytes in that column and
the corresponding column of c is at least B(φ). π moves all active bytes in an
active column of c to different columns in d, and π−1 moves all active bytes
in an active column of b to different columns in a. It follows that the sum
of the number of active columns in a and in d is lower bounded by the byte
branch number of φ.
Now we only have to prove that the sum of the number of active columns in a
and in d is upper bounded by the byte branch number of φ. Assume that b,
and equivalently c, only have one active column and that φ restricted to this
column has branch number B(φ). In that case, there exists a configuration
in which the sum of the number of active bytes in b and c is equal to B(φ).
π moves the active bytes in the active column of c to different columns in d,
and π−1 moves the active bytes in the active column of b to different columns
in a, and hence the total number of active columns in a and d is equal to
B(φ). ��

9.5 The Round Structure of Rijndael

9.5.1 A Key-Iterated Structure

The efficient structure described in Sect. 9.4 uses two different round transfor-
mations. It is possible to define a block cipher structure with only one round
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a

π

b

�	 �	 �	 φ

c

π

d

Fig. 9.6. Steps relevant in the proof of Lemma 9.4.2

transformation that achieves the same bound. This is the round structure
used in Rijndael and most of the related ciphers. The advantage of having a
single round transformation is a reduction in program size in software imple-
mentations and chip area in dedicated hardware implementations. For this
purpose, λ can be built as the sequence of two steps:

1. θ. The linear bricklayer transformation that provides high local diffusion,
as defined in Sect. 9.4.1.

2. π. The byte transposition that provides high dispersion, as defined in
Sect. 9.4.4.

Hence we have the following for the round transformation:

ρc = θ ◦ π ◦ γ. (9.23)

Fig. 9.7 gives a schematic representation of the different steps of a round.
The steps of the round transformation are defined in such a way that they

a(i)

γ

π

�	 �	 �	 θ

σ[k(i)]

a(i+1)

Fig. 9.7. Sequence of steps of a γπθ round transformation, followed by a key
addition
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impose strict lower bounds on the number of active S-boxes in four-round
trails.

For two-round trails the number of active bytes is lower bounded by
B(ρ) = B(λ) = B(θ). For four rounds, we can prove the following impor-
tant theorem.

Theorem 9.5.1 (Four-Round Propagation Theorem).
For a key-iterated block cipher with a γπθ round transformation and diffusion
optimal π, the number of active S-boxes in a four-round trail is lower bounded
by (B(θ))2.

Proof. Firstly, we show that the transformation consisting of four rounds ρc

as defined in (9.23) is equivalent to four rounds of the construction with ρa

and ρb as defined in (9.13) and (9.14). For simplicity, we leave out the key
addition steps, but the proof works in the same way if the key addition steps
are present. Let A be defined as

A = ρc ◦ ρc ◦ ρc ◦ ρc
= (θ ◦ π ◦ γ) ◦ (θ ◦ π ◦ γ) ◦ (θ ◦ π ◦ γ) ◦ (θ ◦ π ◦ γ).

γ is a bricklayer permutation, operating on every byte separately and op-
erating independently of the byte’s position. Therefore γ commutes with π,
which only moves the bytes to different positions. We get

A = (θ ◦ γ) ◦ (π ◦ θ ◦ π ◦ γ) ◦ (θ ◦ γ) ◦ (π ◦ θ ◦ π ◦ γ)
= ρa ◦ ρb ◦ ρa ◦ ρb,

where Θ of ρb is defined exactly as in (9.19). Now we can apply Lemma 9.4.2
and Theorem 9.4.1 to finish the proof. ��

In a four-round trail there can be only 4nt active bytes. One may wonder
how the lower bound of Theorem 9.5.1 relates to this upper bound. From
(9.11) we have that B2 ≤ min(nξ + 1)2 = minn2

ξ + 2minnξ + 1. Diffusion-

optimality implies that min(nξ +1)2 ≤ minnξnΞ +2minnξ +1 ≤ nt+2nt+
nt = 4nt. Hence, the lower bound of Theorem 9.5.1 is always below the upper
bound of 4nt.

9.5.2 Applying the Wide Trail Strategy to Rijndael

To provide resistance against differential and linear cryptanalysis, Rijndael
has been designed according to the wide trail strategy: the four-round prop-
agation theorem is applicable to Rijndael. It exhibits the key-iterated round
structure described above:

1. SubBytes: the nonlinear step γ, operating on the state bytes in parallel.



9.6 Constructions for θ 143

2. ShiftRows: the transposition step π.

3. MixColumns: the mixing step θ, operating on columns of four bytes each.

The coefficients of MixColumns have been selected in such a way that both
the differential branch number and the linear branch number (see Defini-
tions 9.3.1 and 9.3.2) of MixColumns are equal to 5. Since ShiftRows moves
the bytes of each column to four different columns, it is diffusion optimal (see
Definition 9.4.1). Hence, the four-round propagation theorem (Theorem 9.5.1)
proves that the number of active S-boxes in a four-round differential trail or
linear trail is lower bounded by 25.

SRD has been selected in such a way that the maximum correlation over
it is at most 2−3, and the DP is at most 2−6, in other words, that the weight
of any difference propagation is at least 6.

This gives a minimum weight of 150 for any four-round differential or
linear trail. These results hold for all block lengths of Rijndael and are inde-
pendent of the value of the round keys. Hence there are no eight-round trails
with a weight below 300 or a correlation contribution above 2−150.

9.6 Constructions for θ

For memory-efficient implementations, all columns preferably have the same
size. The fact that the branch number is upper bounded by the smallest
column (see Eq. (9.11)) points in the same direction. Hence we will consider
in the following only the case where all columns have the same size.

Additionally we can reduce program and chip size by imposing the re-
quirement that θ acts in the same way on each column. In this case the same
matrix Mξ is used for all columns.

Imposing additional symmetry conditions on the matrix Mξ can lead to
even more compact implementations. For instance, Mξ can be defined as a
circulant matrix.

Definition 9.6.1. An n× n matrix A is circulant if there exist n constants
a1, . . . , an and a ‘step’ c = 0 such that for all i, j ( 0 ≤ i, j < n)

ai,j = ai+cj mod n . (9.24)

If gcd(c, n) = 1 it can be proven that Bl(λ) = Bd(λ).

The branch numbers of linear functions can be studied using the frame-
work of linear codes over GF(2p). Codes can be associated with Boolean
transformations in the following way.

Definition 9.6.2. Let θ be a transformation from GF (2ns)n to GF (2ns)n.
The associated code of θ, Cθ, is the code that has codewords given by the
vectors (x, θ(x))T. The code Cθ has 2nsn codewords and has length 2n.
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If θ is defined as θ(x) = A · x, then Cθ is a linear [2n, n, d] code. Code Cθ
consists of the vectors (x,A · x)T, where x takes all possible input values.

Equivalently, the generator matrix Gθ of Cθ is given by

Gθ =
[
I AT

]
, (9.25)

and the parity-check matrix Hθ is given by

Hθ = [−A I] = [A I] . (9.26)

We can construct matrices Mξ giving rise to a maximum branch number from
an MDS code. Because of this connection, Mξ matrices are often called MDS
matrices.

It follows from Definition 9.3.1 that the differential branch number of a
transformation θ equals the minimal distance between two different code-
words of its associated code Cθ. The theory of linear codes addresses the
problems of determining the distance of a linear code and the construction
of linear codes with a given distance. The relations between linear trans-
formations and linear codes allow us to construct efficiently transformations
with high branch numbers. As a first example, the upper bound on the dif-
ferential branch number given in (9.11) corresponds to the Singleton bound
for codes (Theorem 2.2.1). Theorem 2.2.2 states that a linear code has dis-
tance d if and only if every d − 1 columns of the parity-check matrix H are
linearly independent and there exists some set of d columns that are lin-
early dependent. Reconsidering the matrix A of Example 9.3.1, all columns
in H = [−A I] are non-zero, hence every set of one column is linearly inde-
pendent. Since two columns are equal, there is a set of two columns that
is not linearly independent. Therefore the differential branch number equals
two. Theorem 2.2.3 states that a linear code with maximal distance requires
that every square submatrix of A is nonsingular. An immediate consequence
is that transformations can have maximal branch numbers only if they are
invertible. Furthermore, a transformation with maximal linear branch num-
ber has also maximal differential branch number, and vice versa. Indeed, if
all submatrices of A are nonsingular, then this holds also for AT.

The following theorem relates the linear branch number of a linear trans-
formation to the dual of the associated code.

Theorem 9.6.1. If Cθ is the associated code of the linear transformation θ,
then the linear branch number of θ is equal to the distance of the dual code
of Cθ.

Proof. We give the proof for binary codes only. If θ is specified by the matrix
A, then

[
I AT

]
is a generator matrix for Cθ, and [A I] is a generator matrix for

the dual of Cθ. It follows from (9.10) that the minimal distance of the code
generated by [A I] equals the linear branch number of θ. ��
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It follows that transformations that have an associated code that is MDS
have equal differential and linear branch numbers.

9.7 Choices for the Structure of I and π

In this section we present several concrete constructions for π and the impli-
cations with respect to trails.

We present two general structures for I and π. In the first structure the
different bytes of a state are arranged in a multidimensional regular array or
hypercube of dimension d and side nξ. Ciphers constructed in this way have
a block size of nsn

d
ξ . In the second structure the bytes of a state are arranged

in a rectangle with one side equal to nξ. This gives more freedom for the
choice of the block size of the cipher.

9.7.1 The Hypercube Structure

In this construction the columns ξ are arranged in a hypercube. The step π
corresponds to a rotation of the hypercube around a diagonal axis (called the
p-axis).

The indices i ∈ I are represented by a vector of length d and elements ij
between 0 and nξ − 1. We have

i = (i1, i2, . . . , id). (9.27)

The columns ξ are given by

j ∈ ξ(i) if j1 = i1, j2 = i2, . . . and jd−1 = id−1. (9.28)

p(i), defining π, is given by

p : j = p(i) ⇔ (j1, j2, . . . , jd−1, jd) = (i2, i3, . . . , id, i1). (9.29)

Clearly, π is diffusion optimal (if d > 1). We will briefly illustrate this for d
equal to 1, 2 and 3.

Dimension 1. Dimension 1 is a degenerate case because the partition counts
only one column, and π cannot be diffusion optimal. SHARK [132] is an
example where nt = nξ = 8 and ns = 8, resulting in a block size of 64 bits.

Dimension 2. Figure 9.8 shows the two-dimensional array, the transposition
π and the partition Ξ.

The two-dimensional structure is adopted in Square [44], with ns = 8 and
nξ = 4, resulting in a block cipher with a block size of 128 bits in which every
four-round trail has at least B2 = 25 active S-boxes.

Crypton [96] has the same structure and transposition π as SQUARE,
but it uses a different step θ. Since for Crypton B(θ) = 4, there are at least
16 active S-boxes in every four-round trail.
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�

p

Fig. 9.8. Example of the hypercube structure with d = 2 and nξ = 3. The p-axis
is indicated on the left

Dimension 3. For dimension three, with nξ = 2 and ns = 8, we get a 64-
bit cipher that has some similarity to the block cipher SAFER designed by
J. Massey [103], however the round transformation of SAFER actually looks
more like a triple application of θ ◦ π for every application of γ. Therefore
SAFER also can (almost) be seen as an example of a cipher with a diffusion
layer of dimension 1.

Theorem 9.5.1 guarantees for our constructions a lower bound on the
number of active S-boxes per four rounds of 9. For trails of more than four
rounds, the minimum number of active S-boxes per round rises significantly:
after six rounds for instance there are already a minimum of 18 active S-
boxes. Figure 9.9 shows an example for the arrangement of the bytes and the
columns.

�

p

Fig. 9.9. Example for the hypercube structure with d = 3 and nξ = 3. The bytes
are shown on the left and the colunms are shown on the right
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9.7.2 The Rectangular Structure

In this construction the columns ξ are arranged in a rectangle. The other
dimensions of the array are determined from the required block size of the
cipher. Figure 9.10 shows the arrangement of the bytes and the columns for an
example where nξ = 3 and nΞ = 5. The step π leaves the first row invariant,
shifts the second row by one position, and the third row by two positions.

Generally, if the step π shifts every row by a different number of bytes,
the diffusion of π is optimal. (Note that this is only possible if nΞ ≥ nξ, i.e.
if the number of rows is at most the number of columns.)

If a byte has ns = 8 bits and every column contains nξ = 4 bytes, then
setting the number of columns nΞ to 4, 5, 6, 7 or 8 gives a block size of 128,
160, 192, 224 or 256 bits, respectively. This is exactly the structure adopted
in Rijndael [47]. BKSQ [48] is a cipher tailored for smart cards. Therefore its
dimensions are kept small: ns = 8, nξ = 3 and nΞ = 4 to give a block length
of 96 bits.

π

π

�

�

Fig. 9.10. Example of the rectangular structure. The bytes are shown on the left
and the columns are on the right

9.8 Conclusions

In this chapter we have given the design strategy that is the foundation of the
Rijndael structure. The proposed cipher structure allows us to give provable
bounds on the correlation of linear trails and the weight of differential trails,
while at the same time allowing efficient implementations.

Finally, we show that Rijndael and its related ciphers are instances of a
cipher family that allows a large flexibility in block length without losing the
properties of efficiency and high resistance against cryptanalysis.
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The resistance of Rijndael against linear and differential cryptanalysis has
been treated extensively in Chaps. 7 to 9. In this chapter we discuss the
resistance of Rijndael against various other cryptanalytic attacks. None of
these attacks poses a threat to Rijndael in a practical sense. We also touch
briefly on the topic of implementation attacks.

10.1 Truncated Differentials

The concept of truncated differentials was described by L. Knudsen in [84].
The corresponding class of attacks exploit the fact that in some ciphers,
differential trails (see Chap. 8) tend to cluster. We refer to Chap. 13 for a
treatment in depth. In short, clustering takes place if for certain sets of input
difference patterns and output difference patterns, the number of differential
trails is exceedingly large. The expected probability that a differential trail
stays within the boundaries of the cluster can be computed independently
of the probabilities of the individual differential trails. Ciphers in which all
steps operate on the state in bytes are prone to be susceptible to this type of
attack. Since this is the case for Rijndael, with all steps operating on bytes
rather than individual bits, we investigated its resistance against truncated
differentials.

10.2 Saturation Attacks

In the paper presenting the block cipher Square [44], a dedicated attack
by L. Knudsen on reduced versions of Square is described. The attack is
often referred to as the ‘Square’ attack. The attack exploits the byte-oriented
structure of Square, and is also applicable to reduced versions of Rijndael.
N. Ferguson et al. [61] proposed some optimizations that reduce the work
factor of the attack. In [99], S. Lucks proposes the name ‘saturation attack’
for this type of attack. Later, these attacks have been called Structural attacks
[30] and Integral attacks [88].
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The saturation attack is a chosen-plaintext attack on ciphers with the
Rijndael round structure. It can be mounted independently of the choice of
the S-box in the nonlinear step and the key schedule. The version we describe
here is for the case in which the columns of mixing step MixColumns have a
maximum branch number and the byte transposition ShiftRows is diffusion
optimal. If one of these two conditions is not fulfilled, the attack is slightly
different but has comparable complexity. In this section we describe the attack
on a cipher in which the tuples are 8-bit values. Generalizing the attack to
other tuple sizes is trivial.

Applied to Rijndael, the saturation attack is faster than an exhaustive
key search for reduced-round versions of up to six rounds. After describing
the basic attack on four rounds, we will show how it can be extended to five
and six rounds.

10.2.1 Preliminaries

Let a Λ-set be a set of 256 states with some relation to one another. We
define four relations:

Constant: A Λ-set is constant in position i, j if

∀x,y ∈ Λ : xi,j = yi,j .

Active: A Λ-set is active in position i, j if

∀x,y ∈ Λ : xi,j = yi,j .

Balanced: A Λ-set is balanced in position i, j if∑
l∈Λ

xl
i,j = 0.

Unknown: A Λ-set is unknown in position i, j if we cannot prove that it has
one of the three previous properties.

Observe that if a Λ-set is active or constant in a position i, j, then it is
also balanced in that position. Observe further that if a Λ-set contains only
active or constant positions, then the application of the steps SubBytes or
AddRoundKey on the states of a Λ-set results in a different Λ-set with the
positions of the active bytes unchanged. Application of the step ShiftRows

results in a Λ-set in which the active bytes are transposed by ShiftRows.
Application of the step MixColumns does not conserve active positions. How-
ever, since every output byte of MixColumns is a linear combination with
invertible coefficients of the four input bytes in the same column, an input
column with a single active byte gives rise to an output column with all four
bytes active.
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10.2.2 The Basic Attack

Consider a Λ-set in which only one position is active and all other posi-
tions are constant. We will now trace the evolution of the properties through
three rounds. In the first round, MixColumns converts the active position to
a complete column of active positions. In the second round, the four active
positions of this column are spread over four distinct columns by ShiftRows.
Subsequently, MixColumns of the second round converts this to four columns
of only active positions. The SubBytes and ShiftRows of the third round do
not change the properties. Let the inputs of MixColumns in the third round
be denoted by al, and the outputs by bl. Then we have for all positions i, j
that∑

l

bli,j =
∑
l

MixColumns(ali,j)

=
∑
l

(
02 · ali,j + 03 · ali+1,j + ali+2,j + ali+3,j

)
= 02 ·

∑
l

ali,j + 03 ·
∑
l

ali+1,j +
∑
l

ali+2,j +
∑
l

ali+3,j

= 0 + 0 + 0 + 0 = 0.

Hence, all positions at the input of the fourth round are balanced. This
property is in general destroyed by the subsequent application of SubBytes.

We assume that the fourth round is a FinalRound, i.e. it does not include
a MixColumns operation. Every output byte of the fourth round depends on
only one input byte of the fourth round. Let the input of the fourth round
be denoted by c, the output by d and the round key of the fourth round by
k. We have

d = AddRoundKey (ShiftRows (SubBytes(c)) ,k) (10.1)

di,j = SRD[ci,j+Ci
] + ki,j , ∀ i, j (10.2)

ci,j = SRD
−1[di,j−Ci

+ ki,j−Ci
], ∀ i, j, (10.3)

where the operations on the column index are, as always, performed in mod-
ulo Nb. Using (10.3), the value of ci,j can be calculated from the ciphertexts
for all elements of the Λ-set by assuming a value for ki,j−Ci

. If the assumed
value for ki,j−Ci

is equal to the correct round key byte, the following equa-
tions must hold:∑

l

cli,j = 0, ∀ i, j. (10.4)

If (10.4) does not hold, the assumed value for the key byte must be wrong.
This is expected to eliminate all but approximately one key value. This can
be repeated for the other positions of k. Since checking (10.4) for a single
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Λ-set leaves only 1/256 of the wrong key assumptions as possible candidates,
the cipher key can be found with overwhelming probability with only two Λ-
sets. The work factor of the attack is determined by the processing of the first
set of 28 plaintexts. For all possible values of one round key byte, (10.4) has
to be evaluated. This means 216 XOR operations and S-box look-ups. This
corresponds to roughly 210 executions of the four-round cipher. A negligible
number of possible values for the round key byte have to be checked against
the second set of plaintexts. In order to recover a full round key, the attack
needs to be repeated 16 times. This results in a total complexity of 214 cipher
executions.

10.2.3 Influence of the Final Round

At first sight, it seems that the removal of the operation MixColumns in
the final round of Rijndael makes the cipher weaker against the saturation
attack. We will now show that adding a MixColumns operation in the last
round would not increase the resistance against this attack. Let the input of
the fourth round still be denoted by c, and the output of a ‘full’ fourth round
(including MixColumns) by e. We have

e = AddRoundKey (MixColumns (ShiftRows (SubBytes(c))) ,k) (10.5)

ei,j = 02 · SRD[ci,j+Ci
] + 03 · SRD[ci+1,j+Ci+1

]

+ SRD[ci+2,j+Ci+2
] + SRD[ci+3,j+Ci+3

] + ki,j , ∀ i, j. (10.6)

There are 4Nb equations (10.6): one for each value of i, j. The equations can
be solved for the bytes of c, e.g. for c0,0:

c0,0 = SRD
−1[0E · (e0,0 + k0,0) + 0B · (e1,−C1

+ k1,−C1
)

+ 0D · (e2,−C2
+ k2,−C2

) + 09 · (e3,−C3
+ k3,−C3

)] (10.7)

= SRD
−1[0E · e0,0 + 0B · e1,−C1

+ 0D · e2,−C2
+ 09 · e3,−C3

+ k′0,0], (10.8)

where the equivalent key k′ is defined as

k′ = InvMixColumns(InvShiftRows(k)). (10.9)

Similar equations hold for the other bytes of c. The value of c0,0 in all elements
of the Λ-set can be calculated from the value of the ciphertext by assuming
a value for one byte of the equivalent key k′, and the same attack as before
can be applied in order to recover the bytes of the equivalent key k′. When
all bytes of k′ have been determined, (10.9) can be used to determine k.

We conclude that the removal of the MixColumns step in the final round
does not weaken Rijndael with respect to the four-round saturation attack.
This conclusion agrees with the results of Sect. 3.7.2. Since the order of
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the steps MixColumns and AddRoundKey in the final round can be inverted,
MixColumns can be moved after the last key addition and thus a cryptanalyst
can easily factor it out, even if he does not know the round key.

10.2.4 Extension at the End

If a round is added, we have to calculate the value of ci,j+Ci
from (10.3) using

the output of the fifth round instead of the fourth round. This can be done
by additionally assuming a value for a set of 4 bytes of the fifth round key. As
in the case of the four-round attack, wrong key assumptions are eliminated
by verifying (10.4).

In this five-round attack, 240 key values must be checked, and this must be
repeated four times. Since checking (10.4) for a single Λ-set leaves only 1/256
of the wrong key assumptions as possible candidates, the cipher key can be
found with overwhelming probability with only five Λ-sets. The complexity
of the attack can be estimated at four runs × 240 possible values for five
key bytes × 28 ciphertexts in the set × five S-box look-ups per test, or 246

five-round cipher executions.

10.2.5 Extension at the Beginning

The basic idea of this extension is to work with sets of plaintexts that result in
a Λ-set with a single active position and 15 constant positions at the output
of the first round.

We consider a set of 232 plaintexts, such that one column at the input of
MixColumns in the first round ranges over all possible values and all other po-
sitions are constant. Since MixColumns and AddRoundKey are invertible and
work independently on the four columns, this property will be conserved: at
the output of the first round the states will have constant values for three
columns, and the value of the fourth column will range over all 232 possibil-
ities. This set of 232 plaintexts can be considered as a union of 224 Λ-sets,
where each Λ-set has one active position at the output of the first round, and
all other positions are constant. It is not possible to separate the plaintexts of
the different Λ-sets, but evidently, since (10.4) must hold for every individual
Λ-set, it must also hold when the sum goes over all 232 values. Therefore, the
round key of the final round can be recovered byte by byte, in the same way
as for the four-round attack. This five-round attack requires two structures
of 232 chosen plaintexts. The work factor of this attack can be estimated at
16 runs × 232 plaintexts in the set ×28 possible values for the key byte ×
one S-box look-up per test, or 238 five-round cipher executions.
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10.2.6 Attacks on Six Rounds

Combining both extensions results in a six-round attack. The work factor can
be estimated at four runs × 232 plaintexts in the set × 240 possible values for
5 key bytes × 5 S-box look-ups per test, or 270 six-round cipher executions.
N. Ferguson et al. explain in [61] a way to do the required calculations more
efficiently. In this way, the work factor of the six-round attack can be further
reduced to 246 six-round cipher executions. The work factor and memory re-
quirements are summarized in Table 10.1. S. Lucks observed that for Rijndael
with key lengths of 192 or 256, the six-round attack can be extended by one
more round by guessing an additional round key [98]. The work factor of the
attack increases accordingly.

Table 10.1. Complexity of saturation attacks applied to Rijndael

Attack No. of No. of Memory
plaintexts cipher executions

Basic (four rounds) 29 214 small
Extension at end 211 246 small
Extension at beginning 233 238 232

Both extensions 235 246 232

10.2.7 The Herds Attack and Other Extensions

N. Ferguson et al. describe in [61] a further extension of the saturation attack,
known as the herds attack. The authors describe a seven-round attack that
requires 2128−2119 chosen plaintexts and 264 bits of memory. The attack has
a workload comparable to 2120 encryptions.

The herds attack can be extended into an eight-round attack with the
same plaintext requirements and using 2104 bits of memory. The workload is
too large to be applicable to the case of 128-bit keys. For 192-bit keys, the
workload is comparable to 2188 encryptions. For 256-bit keys, this becomes
2204 encryptions.

J. Nakahara et al. apply the saturation attack to versions of Rijndael
with larger block sizes, i.e. versions that are not included in AES [116]. They
describe attacks on up to seven rounds of Rijndael versions with block lengths
of 160, 192, 224 and 256 bits. All these attacks have a data complexity,
memory complexity or time complexity above 2128. Minier et al. provide an
overview of saturation attacks and their underlying principles for AES and
all versions of Rijndael [113].

Sun et al. present a saturation property like the one discussed in Sect. 10.2.2,
extending over five rounds instead of four [141].
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10.2.8 Division Cryptanalysis

Division cryptanalysis was introduced in [143]. For any x,u ∈ GF(2)
n
we

define xu as the product of the coordinates xi where the corresponding co-
ordinate ui = 1. A set X ⊆ GF(2)

n
has division property Dn

k if∑
x∈X

xu = 0, ∀u with wh(u) < k . (10.10)

Usually it is assumed that k is the largest integer with this property. Every
set with an even number of elements trivially satisfies at least Dn

1 .

It can easily be verified that a Λ-set is balanced iff it has division prop-
erty Dn

2 ; a Λ-set is active iff it has division property Dn
n. Note that division

properties can easily be defined for multi-sets, and also the concepts of ac-
tive, balanced and constant sets can be extended to multi-sets. For these
extensions, Dn

2 is still equivalent to balanced multi-sets; active sets still have
division property Dn

n, but the reverse may no longer be true, depending on
the way an active multi-set is defined.

The intuition behind division cryptanalysis is that a saturation attack
may possibly be improved by considering the properties Dn

k for 2 < k < n.
The propagation of Dn

k properties through an S-box depends to a first ap-
proximation on the algebraic degree of the S-box. A more detailed analysis is
provided in [34]. The propagation of Dn

k properties through a linear diffusion
layer is currently determined on an ad hoc basis.

Division cryptanalysis has been used to construct new attacks on (reduced
variants of) several Rijndael-like ciphers, but not on Rijndael itself.

10.3 Gilbert-Minier and Demirci-Selçuk Attack

The saturation attack on Rijndael reduced to six rounds is based on the fact
that three rounds of Rijndael can be distinguished from a random permu-
tation. H. Gilbert and M. Minier developed a four-round distinguisher that
allows an attack on Rijndael that is reduced to seven rounds [64, 112]. Due
to the increased work factor of the attack, it is more efficient than exhaustive
key search for only some of the key lengths. H. Demirci and A.A. Selçuk
extended this work and developed an attack on Rijndael reduced to eight
rounds [55].

10.3.1 The Four-Round Distinguisher

Let R4k, R5k denote the action of Rijndael, reduced to four, respectively five
rounds, under the unknown key k. Let a denote the input, e the output after
four rounds and f the output after five rounds of Rijndael.
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Gilbert and Minier show in [64] that the structure in the transformation
Round can be used to derive relations between a and e = R4k(a). More
particularly, one can define a family of functions derived from R4k:

fc : GF(28) → GF(28) : x �→ fc(x) = y, (10.11)

where x = a0,0, y = 0Ee0,0+0Be1,0+0De2,0+09e3,0 and c is a vector containing
only 10 coefficients from GF(28), which depend on the key k and the 15
remaining elements of a. Gilbert and Minier further show that four of the 10
coefficients depend only on k and on a1,0, a2,0, a3,0. It follows that if for a fixed
key, 216 different values for a1,0, a2,0, a3,0 are selected, with large probability
at least two choices will result in the same function f . This property holds
for all values of the key k and can be used to distinguish R4k from a random
permutation. Note that the distinguisher does not work with probability 1.
More information on the construction of this four-round distinguisher can
be found in [64]. In [112], Minier presents a stronger distinguisher, which
however doesn’t lead to a stronger or more efficient attack.

10.3.2 The Attack on Seven Rounds

In the same way as the six-round saturation attack, the seven-round attack is
mounted by adding one round before the distinguisher and two rounds after
it.

By assuming a value for 4 key bytes of the first round key, it is possible
to determine a set of plaintexts such that the inputs of the second round
are constant in three columns. This set is divided into subsets with constant
values for the ‘parameters’ u, v and w at the input of the second round.
There should be 216 subsets, with 16 plaintexts in each subset. 16 values
for x suffices to determine whether two sets of parameters result in identical
functions, with negligible false-alarm probability. It can be shown that the
required plaintexts for all 232 values of the 4 bytes of the first round key can
be drawn from a set of 232 plaintexts.

Each of the bytes ei,j can be expressed as a function of 4 ciphertext bytes
and 5 key bytes. Hence the y values depend on 20 key bytes, which have
to be guessed in order to perform the attack. The work complexity of the
attack can be estimated at about 2192 executions of the round transformation,
which is below the complexity of an exhaustive search for a 256-bit key, and
approximately equal to the complexity of an exhaustive search for a 192-bit
key.

A variant of this attack works only for the 128-bit key schedule, and is
claimed to be marginally faster than an exhaustive search for a 128-bit key.
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10.3.3 The Demirci-Selçuk Attack

Demirci and Selçuk extend in [55] the Gilbert-Minier attack and derive rela-
tions between a and f = R5k(a). They obtain the following family of func-
tions:

gd : GF(28) → GF(28) : x �→ gd(x) = y, (10.12)

where x = a0,0, y = 0Ef0,0 + 0Bf1,0 + 0Df2,0 + 09f3,0 and d is a vector
containing 26 coefficients from GF(28), which depend on the key k and the
15 remaining elements of a.

26 key-dependent coefficients cannot be determined more efficiently than
searching for a 128-bit key, but even the naive method is faster than search-
ing for a 256-bit key. Demirci and Selçuk employ a time-memory trade-off to
reduce the complexity of the coefficient-determination step below the com-
plexity of the search for a 192-bit key. Subsequently, they use the relations
to mount meet-in-the-middle attacks on Rijndael reduced to seven and eight
rounds. For further details of these attacks, we refer to [55].

10.4 Interpolation Attacks

In [73] T. Jakobsen and L. Knudsen introduced a new algebraic attack on
block ciphers. The attack is feasible if the components in the cipher have a
compact algebraic expression and can be combined to give expressions with
manageable complexity. The basis of the attack is that if the constructed
polynomials have a small degree, only a few cipher input/output pairs are
necessary to solve for the (key-dependent) coefficients of the polynomials.

SRD takes bytes as input and produces bytes as output. Like any other
transformation with this input size and output size, it can be expressed as a
polynomial over GF(28). The polynomial expression of SRD can, for example,
be found by means of the Lagrange interpolation technique. The polynomial
expression for SRD is given by

SRD[x] = 63+ 8Fx127 + B5x191 + 01x223 + F4x239

+ 25x247 + F9x251 + 09x253 + 05x254. (10.13)

This complicated expression of SRD in GF(28), in combination with the effect
of the mixing and transposition steps, prohibits interpolation attacks on more
than a few rounds of Rijndael.

The techniques in [73] can be extended to use rational expressions or in
fact any other type of expression. We found no simple rational expression
for SRD but it seems impossible to prove that no usable expression can be
found. A second possible extension of this attack is the use of approximate
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expressions, as proposed by T. Jakobsen in [74]. It remains an open problem
whether any useful expression can be derived in this way.

N. Ferguson et al. describe how one can derive an algebraic expression for
ten-round Rijndael [62]. The expression would count 250 terms. Although this
is certainly an interesting result, the authors are not aware of ways to use this
expression in an actual attack. Another interesting and as yet unanswered
question is how this compares with other block ciphers. Cid et al. present
an overview of algebraic aspects of the AES in [40]. In [33] Bouillaguet et
al. use algebraic techniques to construct equations describing reduced-round
versions of Rijndael and to solve them for the key.

10.5 Related-Key Attacks

This section is based on material that appeared earlier in [53]. In [18], E. Bi-
ham introduced a related-key attack. Later it was demonstrated by J. Kelsey
et al. that several ciphers have related-key weaknesses [81]. In a related-key
attack, the attacker submits queries containing an input x or an output y
for the block cipher. Additionally, the adversary specifies for each query a
function G, which needs to be applied to the secret key k. The Key Access
Scheme (KAS) of a related-key attack defines the relations between the keys
under which the attacker can query the block cipher. A KAS consists of a
set of functions Γ and a set of domains α. The attacker can query the block
cipher under all keys l for which there is a function Gi ∈ Γ and a constant
aj in a domain Aj ∈ α such that l = Gi(k, aj).

A KAS may lead to the observation of properties in block ciphers that at
first sight appear to be weaknesses, but on closer inspection turn out not to
be so. For example, consider the KAS containing the two following functions:
G1(k, a) = k ⊕ a and with some abuse of notation G2(k, a) = k + a mod 2n,
with k and a interpreted as integers and a an nk-bit string/integer. For any
block cipher B, if the least significant bit of k equals 0, then for all text inputs
x

B[G1(k, 1)](x) = B[G2(k, 1)](x). (10.14)

On the other hand, if the least significant bit of k equals 1, then for most
block ciphers (10.14) will hold for a very low fraction of the inputs x. By
repeating the queries for aj = 2, 4, 8, . . . the attacker recovers k. However,
this ‘attack’ does not allow us to distinguish any block cipher from the ideal
cipher, because the property holds also for the latter.

A more subtle characteristic of related-key security follows from time/data
trade-off considerations. If an attacker can obtain for an arbitrary input x the
values B[k1](x), B[k2](x), . . . , B[kn](x), then an exhaustive search for the key
can be accelerated with a factor d. By setting kj = G(k, aj) we can convert
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this result to the related-key scenario [13]. Hence all KAS result in a seeming
erosion of security proportional to the number of functions and constants.

10.5.1 The Key Schedule of Rijndael-256

We first introduce a new notation for the key schedule of Rijndael with 256-
bit keys. This key schedule produces 15 round keys, which we will denote
here by K[0], . . . ,K[14]. The first two round keys are simple copies of the
two halves of the key:

[
K[0] K[1]

]
= K. The 13 following keys are derived

iteratively by the repeated application of a transformation that we denote by
ϕ. The transformation ϕ is defined as follows:

ϕ (K[2t],K[2t+ 1]) = (K[2t+ 2],K[2t+ 3])

⇔

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

K[2t+ 2]i,0 = SRD [K[2t+ 1]j+1,3] + K[2t]j,0
K[2t+ 2]i,1 = K[2t+ 2]i,0 + K[2t]j,1
K[2t+ 2]i,2 = K[2t+ 2]i,1 + K[2t]j,2
K[2t+ 2]i,3 = K[2t+ 2]i,2 + K[2t]j,3
K[2t+ 3]i,0 = SRD [K[2t+ 2]i,3] + K[2t+ 1]j, 0
K[2t+ 3]i,1 = K[2t+ 3]i,0 + K[2t+ 1]j,1
K[2t+ 3]i,2 = K[2t+ 3]i,1 + K[2t+ 1]j,2
K[2t+ 3]i,3 = K[2t+ 3]i,2 + K[2t+ 1]j,3

, for j = 0, 1, 2, 3.

We denote by ϕt the transformation constructed by iterating t times ϕ. Fi-
nally, we denote by ϕ0.5 the transformation that computes only one new
round key:

ϕ (K[2t],K[2t+ 1]) = (K[2t+ 2],K[2t+ 3])

⇒ ϕ0.5 (K[2t],K[2t+ 1]) = (K[2t+ 1],K[2t+ 2]) .

10.5.2 The Biryukov-Khovratovich Attack

Related-key differential attacks on Rijndael or reduced variants of Rijndael
have been studied in several papers [72, 149, 82, 24, 29, 28]. We briefly present
here the attack by Biryukov and Khovratovich on Rijndael-256 [28]. Their
attack requires 299.5 chosen plaintexts/ciphertexts. It has a computational
complexity of 299.5 encryptions and requires a memory of 277 states.

The attack is a Boomerang attack, which uses quartets instead of pairs
[145]. An important feature of the Biryukov-Khovratovich attack is that they
allow the attacker to query the block cipher under related keys, where the
relation is expressed in terms of the round keys. Hence, this attack could also
be called a related round key attack. Denote the four related keys by KA, KB ,
KC , KD, and the round keys generated from them by KA[t], KB [t], KC [t],
KD[t] with 0 ≤ t ≤ 14. The attack imposes eight relations between round
keys, described by four state differences, denoted by M1, M2, M3, M4:



160 10. Cryptanalysis

M1 = KA[2] + KB [2] = KC [2] + KD[2] =

⎡
⎢⎢⎣
00 00 00 00

00 01 00 01

00 00 00 00

00 00 00 00

⎤
⎥⎥⎦ (10.15)

M2 = KA[3] + KB [3] = KC [3] + KD[3] =

⎡
⎢⎢⎣
3E 00 3E 00

21 00 21 00

1F 00 1F 00

1F 00 1F 00

⎤
⎥⎥⎦ (10.16)

M3 = KA[7] + KC [7] = KB [7] + KD[7] =

⎡
⎢⎢⎣
3E 3E 3E 3E

21 21 21 21

1F 1F 1F 1F

1F 1F 1F 1F

⎤
⎥⎥⎦ (10.17)

M4 = KA[8] + KC [8] = KB [8] + KD[8] =

⎡
⎢⎢⎣
01 00 01 00

00 00 00 00

00 00 00 00

00 00 00 00

⎤
⎥⎥⎦ (10.18)

These round key relations can also be described as nonlinear relations between
the keys:

KB = ϕ−1
(
ϕ (KA) +

[
M1 M2

])
KD = ϕ−1

(
ϕ (KC) +

[
M1 M2

])
KC = ϕ−3.5

(
ϕ3.5 (KA) +

[
M3 M4

])
KD = ϕ−3.5

(
ϕ3.5 (KB) +

[
M3 M4

])
.

A related-key differential attack on Rijndael performs better than a stan-
dard differential attack because the differences introduced in the keys will
cause differences in the round keys, which in turn will partially cancel out
the differences in the state during the encryption (with some probability). A
related round key attack performs better than a related-key attack because
the attacker can directly choose the differences in round keys, thereby making
a part of the attack deterministic instead of probabilistic.

10.5.3 The KAS of the Biryukov-Khovratovich Attack

Biryukov and Khovratovich did not define the Key Access Scheme of their
attack. In order to assess the impact of their attack, we try to define one
here. As a first attempt to define a KAS, we propose the following function:

G(K,A1,A2) = ϕ−1
(
ϕ−2.5

(
ϕ3.5(K) + A2

)
+ A1

)
, (10.19)

where A1, A2 can be any couple of 256-bit constants. Indeed, in order to
construct a quartet of keys as needed for the Biryukov-Khovratovich attack,
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we can set KA = K and compute the three remaining keys using (10.19) as
follows:

KB = G(KA,
[
M1 M2

]
, 0)

KC = G(KA, 0,
[
M3 M4

]
)

KD = G(KA,
[
M1 M2

]
,
[
M3 M4

]
).

However, we show now that we can use (10.19) to recover the key of any
block cipher. Let a, b denote two values in GF(28) with as condition that
the differential (a, b) has DP 2−7 over the SRD. We define the following four
states:

D1 =

⎡
⎢⎢⎣
00 00 00 00

00 00 00 00

00 00 00 00

00 00 00 00

⎤
⎥⎥⎦ , D2 =

⎡
⎢⎢⎣
00 00 00 00

00 a a 00

00 00 00 00

00 00 00 00

⎤
⎥⎥⎦ ,

D3 =

⎡
⎢⎢⎣
b b b b
00 00 00 00

00 00 00 00

00 00 00 00

⎤
⎥⎥⎦ , D4 =

⎡
⎢⎢⎣
00 00 00 00

00 a a a
00 00 00 00

00 00 00 00

⎤
⎥⎥⎦ .

With these definitions, the differential
([
D1 D2

]
,
[
D3 D4

])
has DP 2−7 over

ϕ2.5, since only one S-box gets a non-zero input difference (equal to a). It
follows that for all keys K the relation

G (K,X,Y) = G
(
K,X+

[
D1 D2

]
,Y +

[
D3 D4

])
holds for a fraction of 2−7 of the states X,Y. It follows that for each key, it is
easy to find solutions X,Y, i.e. to create collisions for the Key Access Scheme.
A collision in the Key Access Scheme is trivially detectable by the attacker
and can be used to recover one byte of the round key (cf. the example with
XOR and modular addition). Note that the number of queries needed to
find with high probability a collision can be reduced to 25 by working with
several choices of (a, b) simultaneously. The attack can be repeated 19 times
with slightly different choices for D1, D2, D3, D4, allowing the attacker to
recover 160 bits of key material using only 500 related-key queries.

Although the attack uses SRD and the Rijndael key schedule, it works for
any block cipher: ϕ and the S-box are used only to describe the KAS; they
do not have to be used in the block cipher that is being attacked. It follows
that this first attempt to define a Key Access Scheme is not sound.

In order to repair the Key Access Scheme, we can modify it as follows. We
forbid the use of values A1, A2 that result in a differential over ϕ2.5 with non-
zero DP, while at the same time not excluding the values that are needed for
the Biryukov-Khovratovich attack. Although this restriction repairs the KAS,
it has to be designed specially for this attack and could be called contrived.
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10.6 Biclique Attacks

Biclique attacks can be described as extensions of meet-in-the-middle attacks.
A biclique of dimension d for a key-dependent function f [k] is a structure
consisting of 2d ciphertexts ci, 2

d internal states sj and 22d keys ki,j such
that

∀i, j ∈ {0, 1, . . . , 2n − 1} : ci = f [ki,j ](sj).

In order to perform a biclique attack on a cipher B[k] = f [k]◦g[k], an attacker
first builds a biclique structure for f [k]. Subsequently, the attacker obtains
the 2d plaintexts pi corresponding to the ciphertexts ci. Finally, the attacker
checks whether ∃i, j ∈ {0, 1, . . . , 2n−1} : g[ki,j ](pi) = sj . Each ki,j satisfying
this relation is a valid candidate for the key.

An efficient way to construct bicliques is by using differential trails satis-
fying some extra conditions [32]. Bogdanov et al. claim that they can perform
a key recovery on Rijndael at 1/5 to 1/3 of the complexity of an exhaustive
search for the key, depending on the length of the key.

10.7 Rebound Attacks

The rebound attack was proposed in [109] for the cryptanalysis of Rijndael-
based hash functions. It can be described as an improved version of a dif-
ferential attack, applicable to hash functions only. From a perspective of
differential cryptanalysis, finding a collision for a hash function corresponds
to finding a pair that follows a trail through that hash function with output
difference zero. It follows that differential cryptanalysis of hash functions is
intuitively very similar to differential cryptanalysis of block ciphers. However,
there are also important differences between these two cases, which can be
observed also in the rebound attack.

In the case of block ciphers, an adversary that wants to find a pair follow-
ing a trail can usually do little better than simply trying out pairs. The effort
is proportional to the inverse of the DP of the trail. Since hash functions do
not have a secret key, an adversary can do better than that. In principle,
an adversary could simply write out the equations that determine whether
a pair follows a trail and solve them. In practice, these equations are highly
nonlinear and difficult to solve. However, it is often possible to determine
some of the message bits, thereby increasing the probability that a random
guess for the remaining part of the solution will be correct. Typically, the
equations arising from the first steps of the hash function are easier to solve,
because they do not yet depend on all message words. These techniques are
known in the literature under the name message modification techniques.
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The rebound attack consists of two phases, called the inbound and out-
bound phases. According to these phases, the compression function, internal
block cipher or permutation of a hash function is split into three sub-parts.
Let W be the permutation, then we get W = Wforward ◦Winbound ◦Wbackward.
The part of the inbound phase is placed in the middle of the permutation
and the two parts of the outbound phase (forward and backward) are placed
next to the inbound part. Two high-probability (truncated) differential trails
are constructed through the two parts of the outbound phase. Subsequently,
these trails are connected by a third trail, which runs through the inbound
phase. Similar to the message modification technique of Wang and Yu [147],
the freedom in the choice of inputs or (internal) state variables is used to
efficiently fulfill most conditions of the differential trail through the inbound
phase, hence its probability is of less importance in the attack complexity.

10.8 Impossible-Differential Attacks

10.8.1 Principle of the Attack

As explained in Sect. 6.2, in a classical differential attack (partial) information
about the key is derived from the ciphertexts and the difference b′ of some
intermediate values. Since the difference b′ is known only with probability
DP(h)(a′,b′), where a′ is the plaintext difference, the information about the
key is probabilistic. Since the work factor of the classical attack depends on
the largest probability DP(h)(a′,b′) over all choices of a′ and b′, a designer

might try to ensure that DP(h)(a′,b′) is small for all a′, b′. In fact, this is
one of the objectives of the Wide Trail Strategy; see Sect. 9.2.

Impossible-differential attacks [22, 83], on the contrary, exploit differ-

ence propagations (a′,b′) with DP(h)(a′,b′) = 0. Note that the differ-
ence propagation probability equals the sum of the DP of all trails Q with
q(0) = a′,q(r) = b′, see (8.25), so in order to have DP(h)(a′,b′) = 0 it is
required that DP(Q) = 0 for all Q. If a difference propagation with DP = 0
is known, then it can be exploited as follows.

Obtain the ciphertexts c, c∗ corresponding to a pair of plaintexts with
difference a′. Let g[k] denote the operation that partially decrypts the ci-
phertexts to the intermediate states b,b∗. In other words, the block cipher
B[k] = g−1[k] ◦ h[k]. By definition, any key k that satisfies

g[k](c) + g[k](c∗) = b′ (10.20)

must be different from the key used to compute c, c∗. By using multiple pairs
of plaintexts, the probability for a wrong key to survive this test can be made
very small. This attack can be more efficient than exhaustive search for the
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key only if the function h[k] can be computed without full knowledge of the
key.

The impossible-differential attack can be generalized to difference propa-
gations with DP(h)(a′,b′) ≈ 0, provided that the probability that the correct
key satisfies (10.20) is significantly smaller than the probability that an in-
correct key satisfies (10.20) [87]. One can again define an S/N ratio, similarly
to the approach in Sect. 6.2.

10.8.2 Application to Rijndael

From the analysis in Sect. 10.2 it follows easily that there are many differ-
ence propagations over three rounds of Rijndael with DP(h)(a′,b′) = 0. For

example, if wt(a
′) = wt(b

′) = 1, then we always have DP(h)(a′,b′) = 0.
An impossible differential over four rounds of Rijndael was first presented in
[25]. An impossible-differential attack for seven rounds of Rijndael with block
length 128 bits is described in [101]. Impossible-differential attacks for up to
10 rounds of Rijndael with larger block lengths are described in [146].

10.9 Implementation Attacks

Implementation attacks are based not only on mathematical properties of
the cipher, but also on physical characteristics of the implementation. Typ-
ical examples are timing attacks [90], introduced by P. Kocher, and power
analysis [91], introduced by P. Kocher et al. In timing attacks, key informa-
tion is derived from the total execution time of the encryption algorithm. In
power analysis attacks, key information is derived from the power consump-
tion of the device executing the encryption algorithm. Power analysis attacks
can be generalized to other measurable quantities such as electro-magnetic
emanation or heat dissipation from the device.

10.9.1 Timing Attacks

A timing attack can be mounted if the execution time of the encryption algo-
rithm depends on the value of the key. Let us illustrate this by an example.
Assume that we have a cipher implementation in which an instruction is ex-
ecuted on the condition that a certain key-dependent intermediate result b
takes a specific value. If no special precautions are taken, the total execution
time of the cipher will vary depending on whether or not the conditional
instruction is executed. Hence, it is possible to deduce the value of b by
carefully measuring the execution time. It suffices to compare the encryption
time for different values of b, while taking care that all other parameters
influencing the encryption time are kept constant or averaged out.
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An implementation can be protected against timing attacks by ensuring
that the encryption time is independent of the value of the key. For condi-
tional instructions, this can be done by inserting dummy instructions in the
shortest path until all paths take the same time. However, this solution might
leave the cipher unprotected against power analysis attacks.

In Rijndael on low-end CPUs, a possible weakness with respect to
timing attacks is the implementation of the finite-field multiplications in
MixColumns, namely the subroutine xtime. The weakness in xtime can easily
be eliminated by defining a 256-byte table and using a look-up table to im-
plement xtime (see Sect. 4.1.1). This reduces a Rijndael program to a fixed
sequence of table look-ups and XORs.

However, it soon turned out that these table look-ups form a potential
weakness with respect to timing attacks. Namely, in 2002, D. Page suggested
that cache mechanisms in modern processors could be used to mount side
channel attacks [125]. In 2005, G. Bertoni et al. published the first cache
miss attacks against Rijndael implementations with T-tables [17]. This was
followed by a long series of papers improving and refining the attacks and
applying them to other ciphers. Cache miss attacks exploit the fact that the
latency of a table look-up depends on whether the addressed table entry is in
cache memory or not, and that this entry, or rather its offset, depends on the
key. T-table Rijndael implementations on high-end CPUs lend themselves
well to cache miss attacks due to the relatively large T-tables. To thwart
these attacks, Rijndael implementations were developed that have no table
look-ups; see Sect. 4.2.2. Moreover they led Intel, and later also other CPU
manufacturers, to hardwire dedicated Rijndael instructions in their proces-
sors; see Sect. 4.3.3.

10.9.2 Power Analysis

Simple power analysis (SPA) is an attack where the attacker obtains mea-
surements of the power consumption of the device during the execution of
one (or a few) encryptions. Typically, this type of attack is applicable to de-
vices that depend on external power supplies, e.g. smart cards. If the power
consumption pattern of the hardware depends on the instruction being exe-
cuted, the attacker can deduce the sequence of instructions. If the sequence
or the type of instructions depends on the value of the key, then the power
consumption pattern leaks information about the key. Rijndael can easily be
implemented with a fixed sequence of instructions, which prevents this type
of attack.

In most processors, the power consumption pattern of an instruction de-
pends on the value of the operands. For example, setting a bit in a register
might consume more power than clearing it. Usually, the variation in the
power consumption due to the difference in operand value is so small that it
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is buried in noise and is not revealed in power consumption measurements.
However, by combining measurements of many encryptions, the attacker can
average out the noise and obtain information about the value of the operand.
This class of attack is called differential power analysis (DPA). Protecting
implementations against these sophisticated attacks is much harder than for
timing attacks and SPA, especially if the signal-to-noise ratio is high. Pro-
posed countermeasures can be divided into three classes:

Balancing: It is possible to reduce the vulnerability of each individual instruc-
tion against power analysis by a redesign of the hardware to minimize or
eliminate completely the dependency of the power consumption on the
value of the operands. This redesign can also be simulated by changing
the software in such a way that all data words contain at all times the
complement of each of the data bits as well as the data bits themselves.
In this way, the correlation between power consumption and input values
can be diminished. It seems unlikely that the dependency can be elimi-
nated completely since there will always be small physical variations in
the devices.

Masking: In this approach, instructions on a sensitive variable x are replaced
by instructions on operands x(1), x(2), . . . , x(s) with x = x(1)+x(2)+· · ·+
x(s). The approach can be described as the application of Multi-Party
Computation techniques at micro-level.

Leakage-resilient cryptography: In this approach the mode of operation of
the block cipher and the key management are redesigned such that each
secret key is used only a small number of times. The goal of this approach
is to ensure that before an attacker has collected enough measurements of
the power consumption of the device to be able to recover the key, the key
is already put out of use. One has to ensure that measurements obtained
for one key cannot be used to accelerate an attack on a subsequent key.

10.10 Conclusions

Resistance against linear and differential attacks was a design criterion of
Rijndael. From the number of publications alone, we can conclude that dur-
ing the AES selection process, Rijndael attracted a significant amount of
attention from the cryptographic community. Square, the direct predecessor
of Rijndael, has also been scrutinized vigorously for weaknesses. The com-
plexity of the published attacks on reduced versions of Rijndael indicate that
with the current state-of-the-art cryptographic techniques, no practical at-
tacks can be mounted on a full version of Rijndael.

In order to resist implementation attacks, care has to be taken when
implementing the algorithm. Because of its simplicity, Rijndael has a number
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of advantages when it comes to protecting its implementation against this
kind of attack.

The selection of cryptanalytic results that we reviewed in this chapter is
by no means complete. The decisions on what material we discussed here at
length, what material we only cited and what material we left out are based
on our personal tastes and bound by the incompleteness of our knowledge.
Whether a certain paper was included in this chapter or not should not be
seen as a judgment on its quality. We mention here a few attack models that
were introduced after the AES process.

Known-key and chosen-key attacks look at the security of the block cipher
when some of the bits of the key are known to, or can be chosen by the
cryptanalyst. This type of security can be relevant for example when the
block cipher is used as a building block for a cryptographic hash function.
Chosen-key attacks on Rijndael are described in [63].

Subspace attacks can be described as an extension of differential crypt-
analysis, where the cryptanalyst tracks the propagation not of pairs of texts,
but of a larger set of texts that form a subspace. Its application to Rijndael is
described in [67]. Another extension of differential cryptanalysis is the Yo-yo
attack, invented specially to cryptanalyze Rijndael and similar ciphers [135].



11. The Road to Rijndael

We did not design Rijndael from scratch. In fact, prior to its design, we had
already published three block ciphers that are similar to Rijndael. Each of
these ciphers inherits properties from its predecessor and enriches them with
new ideas. Hence, Rijndael can be seen as a step in an evolution process. In
this chapter, we discuss the similarities and differences between Rijndael and
its predecessors.

11.1 Overview

The design of Rijndael is only one step in a long process of our research on the
design of secure and efficient block ciphers using the wide trail design strat-
egy. In this section, we briefly present the different ciphers that we designed
along the way. We also discuss common elements of the round transformation
structure, and the differences in the first or the last round.

11.1.1 Evolution

SHARK. The first cipher in the series was SHARK [132]. In this cipher,
we first used MDS codes to build a mixing step. The mixing step of SHARK
has the one-dimensional structure described in Sect. 9.7.1. The round trans-
formation of SHARK is modular and in principle easily extendible to any
block length that is a multiple of 8. However, for a block length of 8n bits,
an efficient implementation of the round transformation uses tables that re-
quire n2 × 256 bytes of memory. For block lengths of 128 bits, this becomes
inefficient on most common processors.

Square. The cipher Square was published in [44]. It has a block length of
128 bits, yet requires only sixteen 8-bit to 32-bit table look-ups per round,
whereas an extension of SHARK to this block length would require sixteen
8-bit to 128-bit table look-ups per round. The increased efficiency is achieved
by using a two-dimensional structure, as discussed in Sect. 9.7.1, and the
introduction of a transposition step. The round transformation of Square
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uses tables that require n× 256 bytes in total, for a block length of 8n. Note
that n has to be a square number. For Square, n has been fixed to 16.

Another improvement in Square concerns the implementations on pro-
cessors with limited RAM. These processors typically have no space for the
extended tables. By restricting the coefficients in the mixing step to small
values, the performance on these limited processors becomes acceptable for
practical applications.

A fourth improvement in Square is the introduction of an efficient and
elegant key schedule.

BKSQ. The cipher BKSQ was published in [48]. In this cipher, the round
transformation structure of Square is further generalized. The state is no
longer ‘square’, but can become ‘rectangular’. This allows ciphers with block
lengths of 8n1n2 bits to be defined.

A second modification with respect to Square is the introduction of non-
linearity in the key schedule.

11.1.2 The Round Transformation

SHARK, Square, BKSQ and Rijndael are key-iterated block ciphers: they
consist of the alternation of a key-independent round transformation ρ with a
key addition, here denoted by σ[k]. The round transformation is the sequence
of a nonlinear bricklayer permutation, here denoted by γ, and a linear step,
here denoted by λ. The three operations σ[k], γ and λ can be ordered in six
different ways in the round transformation. However, we will show that with
respect to security, all the orderings are equivalent.

Equivalence of orderings. Firstly, we recall from Sect. 3.7.2 that

σ[λ(k)] ◦ λ ≡ λ ◦ σ[k]. (11.1)

Both orderings can be chosen in the definition of the cipher’s round transfor-
mation, without making a difference in the security analysis or performance
of the cipher.

Secondly, consider the following key-dependent round transformations
that are rotated versions of one another:

ρ1 = σ[k] ◦ λ ◦ γ (11.2)

ρ2 = λ ◦ γ ◦ σ[k]. (11.3)

A cipher defined as the iteration of R ρ1 round transformations can also be
described as an iteration of ρ2 round transformations, with a special definition
for the first round and the last round.

We conclude that the same ordering of operations in the cipher can fol-
low from different definitions of the round transformation. In fact, from the
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previous arguments it follows that all six orderings of the operations in the
round transformation result in equivalent ciphers, except for the definition of
the key schedule and the definition of the first and the last round.

Boundary effects. The first and/or the last round of the ciphers can differ
from the other rounds in several ways. Firstly, operations performed before
the first key application or after the last key application can usually be fac-
tored out by the cryptanalyst and hence do not contribute to the security
of the cipher. The only exceptions to this rule are the modes of operation
where only a part of the state may be output. Therefore, if in the definition
of the cipher, the round transformation does not start (end) with a round key
application, an extra round key application has to be added to the beginning
(end) of the cipher.

Secondly, because of (11.1) it is usually possible to leave out one applica-
tion of λ in the first or the last round, since it does not improve the security
of the cipher. Removing one application of λ usually helps to give the inverse
of the cipher the same structure as the cipher.

11.2 SHARK

Both the block length and the key length of SHARK can easily be varied.
In [132] it is proposed to use a block length of 8 bytes, or 64 bits. Let the
number of bytes in the input be denoted by n. For a block length of 64 bits,
n = 8.

The structure. The round transformation of SHARK has the simple γλ
structure, as defined in Sect. 9.2.1. The elements of a state a are denoted by
ai, 0 ≤ i < n. The cipher consists of eight rounds.

The linear transformation. The mixing step of SHARK is derived from a
linear code over GF(28) with length 2n, dimension n and minimal distance n+
1. This construction corresponds to the one-dimensional structure discussed
in Sect. 9.7.1. The transformation is denoted by λ. For n = 8, we have

λ(a) =
[
a0 a1 a2 a3 a4 a5 a6 a7

]×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

CE 95 57 82 8A 19 B0 01

E7 FE 05 D2 52 C1 88 F1

B9 DA 4D D1 9E 17 83 86

D0 9D 26 2C 5D 9F 6D 75

52 A9 07 6C B9 8F 70 17

87 28 3A 5A F4 33 0B 6C

74 51 15 CF 09 A4 62 09

0B 31 7F 86 BE 05 83 34

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (11.4)

The branch number of λ is 9 (= n+ 1).
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As explained in Chap. 4, λ can be implemented efficiently by extending
the tables that specify the substitution boxes. In SHARK, there are n tables,
requiring n× 256 bytes of memory each. When n = 8, this gives a total of 16
kB.

The nonlinear transformation. The nonlinear transformation is a brick-
layer permutation of S-boxes operating on bytes, denoted by γ. The same
S-box is used for all byte positions. We have

γ : b = γ(a) ⇔ bi = Sγ(ai), (11.5)

where Sγ is an invertible 8-bit substitution table or S-box.

As in Rijndael, the S-box of SHARK is based on the function F (x) = x−1

over GF(28), as proposed by K. Nyberg in [120]. An affine transformation
is added in order to make the description of the S-boxes less simple. This
transformation is not equivalent to the transformation that is applied in the
S-boxes of Rijndael.

The round key application. In [132], two alternative ways to introduce
the round key in the round transformation are proposed. The first is a key
addition in the form of a bitwise XOR of the state with a round key; the
second version uses a key-controlled affine transform.

XOR. In the first alternative, the 64 state bits are modified by means of
an XOR with a 64-bit round key. This operation is denoted σ+[k

(r)]. The
resulting cipher is a key-iterated cipher with all its advantages; see Chap. 9.
A limitation of the simple scheme is that the entropy of the round key is
‘only’ 64 bits.

Affine transformation. Let κ(t) be a key-dependent invertible 8 × 8 matrix
over GF(28). The second alternative for the key application is then denoted
by σAT[κ

(t),k(t)] and defined as

σAT[κ
(t),k(t)] : b = σAT[κ

(t),k(t)](a) ⇔ b = κ(t) × a+ k(t). (11.6)

The resulting operation on the state is linear. Since the operation has to be
invertible, it must be ensured that all κ(t) are invertible matrices. Each round
now introduces more key material, increasing the number of round key bits
introduced in the key application to 9×64 bits. The computational overhead
of this operation is very high. We can restrict the κ(t) to a certain subspace,
for instance by letting the κ(t) be diagonal matrices. The number of round
key bits introduced in the key application then becomes close to 2× 64 bits.

The cipher. The round transformation, denoted by ρ, consists of a sequence
of two steps:

ρ = λ ◦ γ. (11.7)

SHARK is defined with seven rounds, followed by a final round where the
mixing step is absent. The applications of the round transformation are in-
terleaved with nine round key applications.
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The key schedule. The key schedule expands the key K to the round keys
K(t). The key schedule of SHARK operates in the following way. The cipher
key is concatenated with itself until it has a length of 9× 64 bits, or 9× 128
bits for the extended version. This string is encrypted with SHARK in CFB
mode, using a fixed key. The first 448 bits of the output form the round
keys k(t). For the extended version, the next 448 bits are used to form the
diagonal elements of the matrices κ(t). If one of these elements is zero, then
it is discarded and all the following values are shifted down one place. An
extra encryption of the all-zero string is added at the end to provide the extra
diagonal elements. The fixed key used during the key schedule is formed in
the following way. The matrices κ(t) are equal to the identity matrix. The
vectors k(t) are taken from an expanded substitution table, which is used in
the combined implementation of the nonlinear step and the mixing step.

While this mechanism for round key generation in principle makes it pos-
sible to use a key of 64×9(×2) bits, it is suggested that the key length should
not exceed 128 bits.

11.3 Square

Square can be considered as an extension of the simple SHARK variant where
the mixing step is changed, a byte transposition step has been introduced,
and an efficient and elegant key schedule has been introduced. Square has a
block length of 128 bits and a key length of 128 bits.

The structure. The round transformation of Square is almost identical to
the round transformation of Rijndael when the block length equals 128 bits.
The round transformation consists of a sequence of three distinct steps that
operate on the state: a 4× 4 array of bytes. The element of a state a in row
i and column j is specified as ai,j . Both indices start from 0. The steps are
illustrated in Fig. 11.1.

The mixing step. The mixing step θ is similar to MixColumns in Rijndael,
except that it operates on the rows of the state instead of the columns. We
have

θ(a) =

⎡
⎢⎢⎣
a0,0 a0,1 a0,2 a0,3
a1,0 a1,1 a1,2 a1,3
a2,0 a2,1 a2,2 a2,3
a3,0 a3,1 a3,2 a3,3

⎤
⎥⎥⎦×

⎡
⎢⎢⎣
2 1 1 3

3 2 1 1

1 3 2 1

1 1 3 2

⎤
⎥⎥⎦ , (11.8)

where the multiplication is in GF(28). The coefficients have been chosen to
maximize the branch number of θ, and to facilitate the implementation on
8-bit processors.
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Fig. 11.1. The basic operations of Square. θ is a mixing step with four parallel
linear transformations. γ consists of 16 separate substitutions. π is a transposition
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The byte transposition. The byte transposition π interchanges rows and
columns of a state. If the state is considered as a matrix, it corresponds to
the matrix transposition operation. We have

π : b = π(a) ⇔ bi,j = aj,i. (11.9)

π is an involution, hence π−1 = π.

The nonlinear step. The nonlinear step γ is a bricklayer permutation op-
erating on bytes. We have

γ : b = γ(a) ⇔ bi,j = Sγ(ai,j), (11.10)

where Sγ is an invertible 8-bit substitution table or S-box. The S-box of
Square is exactly the same as the S-box of SHARK.

The key addition. The key addition with round key k(t) is denoted by
σ[k(t)]. It is identical to the key addition in Rijndael, and the simple key
application of SHARK.

The cipher. The round transformation ρ is a sequence of three steps:

ρ = π ◦ γ ◦ θ. (11.11)

Square is defined as eight rounds interleaved with nine key addition steps.
These transformations are preceded by an initial application of θ−1. Note
that the θ−1 before σ[k(0)] can be incorporated in the first round. The initial
θ−1 can be discarded by omitting θ in the first round and applying θ(k(0))
instead of k(0). The same simplification can be applied to the algorithm for
decryption.

The key schedule. The key schedule is linear. It is defined in terms of the
rows of the key. We can define a left byte-rotation operation rotl(ai) on a row
as

rotl[ai,0ai,1ai,2ai,3] = [ai,1ai,2ai,3ai,0] (11.12)

and a right byte-rotation rotr(ai) as its inverse.

The round keys k(t) are derived from the cipher key K in the following
way. k(0) equals the cipher key K. The other round keys are derived itera-
tively by means of an invertible affine transformation, called ‘the round key
evolution’ and denoted by ψ:

ψ : k(t) = ψ(k(t−1)). (11.13)

The round key evolution ψ is defined by
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k
(t+1)
0 = k
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0 + rotl(k

(t)
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1 = k
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(t+1)
2 = k

(t)
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(t+1)
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(t+1)
3 = k

(t)
3 + k

(t+1)
2 .

(11.14)

The round constants C(t) are also defined iteratively. We have C(0) = 1 and
C(t) = 2 · C(t−1).

11.4 BKSQ

BKSQ is an iterated block cipher with a block length of 96 bits and a key
length of 96, 144 or 192 bits. Its intended use case was that of a (second)
pre-image resistant one-way function in a lightweight hash signature scheme
offering about 96 bits of security. Most available block ciphers have block
lengths of 64 or 128 bits. A block length of 64 bits would only offer 64 bits
of security. A block length of 128 bits would be overkill. BKSQ is tailored
towards these applications. Still, it can also be used for efficient MACing and
encryption on a smart card.

The structure. Let the input of the cipher be denoted by a string of 12
bytes: p0p1 . . . p11. These bytes can be rearranged into a 3× 4 array, or state
a:

a =

⎡
⎣a0,0 a0,1 a0,2 a0,3
a1,0 a1,1 a1,2 a1,3
a2,0 a2,1 a2,2 a2,3

⎤
⎦ =

⎡
⎣ p0 p3 p6 p9
p1 p4 p7 p10
p2 p5 p8 p11

⎤
⎦ . (11.15)

The basic building blocks of the cipher operate on this array. Figure 11.2
gives a graphical illustration of the building blocks.

The linear transformations. BKSQ uses two linear transformations. The
first transformation is similar to MixColumns in Rijndael, except that it op-
erates on columns of length 3 instead of length 4. This transformation is
denoted by θ. We have

θ(a) =

⎡
⎣3 2 2

2 3 2

2 2 3

⎤
⎦×

⎡
⎣a0,0 a0,1 a0,2 a0,3
a1,0 a1,1 a1,2 a1,3
a2,0 a2,1 a2,2 a2,3

⎤
⎦ . (11.16)

This choice for the coefficients makes it possible to implement θ very effi-
ciently on an 8-bit processor with limited working memory.

The second linear transformation is a byte permutation, denoted by π.
The effect of π is a shift of the rows of a state. Every row is shifted a different
amount. We have
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Fig. 11.2. The basic operations of BKSQ. θ is a mixing step with four parallel
linear transformations. γ consists of 12 separate substitutions. π is a shift of the
rows
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π : b = π(a) ⇔ bi,j = ai,j−i. (11.17)

The effect of π is that for every column of a, the three elements are moved
to three different columns in π(a).

The nonlinear transformation. The nonlinear transformation is a brick-
layer permutation operating on bytes, denoted by γ. It operates on all bytes
in the same way. We have

γ : b = γ(a) ⇔ bi,j = Sγ(ai,j), (11.18)

where Sγ is an invertible 8-bit substitution table or S-box. The inverse of γ
consists of the application of the inverse substitution S−1

γ to all bytes of a
state. The S-box of BKSQ is exactly the same as the S-box of Rijndael.

The key addition. The key addition with key k(t) is denoted by σ[k(t)]. It
is defined analogously to the key addition of Square and Rijndael.

The cipher. The round transformation denoted by ρ is a sequence of three
steps:

ρ = π ◦ γ ◦ θ. (11.19)

BKSQ is defined as R times the round operation, interleaved with R + 1
applications of the key addition and preceded by θ−1:

BKSQ[k] = σ[k(R)] ◦ ρ ◦ σ[k(R−1)] ◦ ρ ◦ · · · ◦ ρ ◦ σ[k(0)] ◦ θ−1. (11.20)

The number of rounds R depends on the key length that is used. For 96-
bit keys, there are 10 rounds; for 144-bit keys, there are 14 rounds; and for
192-bit keys, the number of rounds is 18.

The key schedule. The derivation of the round keys k(t) from the cipher
key K is very similar to the key schedule of Rijndael. The round keys k(t)

are extracted from an expanded key array, denoted by W:

k(t) = W[·][4t] ‖ W[·][4t+ 1] ‖ W[·][4t+ 2] ‖ W[·][4t+ 3]. (11.21)

As in Rijndael, the expansion of the cipher key K into the expanded key
array W depends on the length of the cipher key. Let L denote the key
length divided by 24. The array is constructed by repeated application of an
invertible nonlinear transformation ψ: the first L columns are the columns
of K, the next L are given by ψ(K), the following columns are given by
ψ(ψ(K)), etc. The transformation ψ operates on blocks of L columns and is
defined in terms of the XOR operation, a byte-rotation rot that rotates the
bytes of a column, and a nonlinear substitution γ′ that operates in exactly
the same way as γ, but takes as argument column vectors instead of arrays.
For a detailed description of the key schedule, we refer to [48].
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11.5 Conclusion

Rijndael is the result of a long design process with continuous improvements
along the way. The earliest related design, SHARK, dates back to 1995. Most
of the predecessors of Rijndael have been scrutinized intensively by cryptan-
alysts looking for security flaws, and by programmers interested in efficient
implementations. The result of all this work has been taken into account in
the design of Rijndael.

The design approach we used for Square and Rijndael has been adopted
enthusiastically by a number of cipher designers all over the world. This
demonstrates a worldwide belief that the strategy used is sound.



12. Correlation Analysis in GF(2n)

This chapter is based on Appendix A of the first edition of this book and [52].
In the specification of Rijndael in Chap. 3, we have extensively used opera-
tions in a finite field, where the bytes of the state and key represent elements
of GF(28). Still, as for most block ciphers, Rijndael operates on plaintext
blocks, ciphertext blocks and keys that are strings of bits. Apart from some
exceptions such as interpolation attacks [73] and algebraically oriented anal-
ysis [61, 115], cryptanalysis of ciphers is also generally conducted at the bit
level. In particular, linear cryptanalysis exploits high correlations between
linear combinations of bits of the state in different stages of the encryption
process; see Chap. 7. Differential cryptanalysis (see Chap. 8) exploits high
propagation probabilities between bitwise differences in the state in different
stages of the encryption.

In Section 12.4, we demonstrate how Rijndael can be specified completely
with algebraic operations in GF(28). How the elements of GF(28) are repre-
sented in bytes can be seen as a detail of the specification. Addressing this
representation issue in the specification is important for different implemen-
tations of Rijndael to be interoperable, but not more so than for instance the
ordering of the bits within the bytes, or the way the bytes of the plaintext
and ciphertext blocks are mapped onto the state bytes.

We can abstract away from the representation of the elements of GF(28)
and consider a block cipher that operates on strings of elements of GF(28). We
call this generalization Rijndael-GF. Rijndael can be seen as an instance of
Rijndael-GF where the representation of the elements has been specified.
In principle, this can be applied to most block ciphers. Each block cipher
with block length and key length that are a multiple of n can in principle
be generalized to operate on strings of elements of GF(2n). However, unlike
for Rijndael, the specification of these generalized ciphers may become quite
complicated.

Intuitively, it seems obvious that if Rijndael has a cryptographic weak-
ness, this is inherited by Rijndael-GF and any instance of it, whatever the
representation of the elements of GF(28). Still, in the correlation analysis
as described in Chap. 7, we work at the bit level and must assume a spe-
cific representation to study the propagation properties. In this chapter, we
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demonstrate how to conduct correlation analysis at the level of elements of
GF(2n), without having to deal with representation issues.

This chapter is devoted to functions over fields with characteristic two.
However, building on the generalization of linear cryptanalysis published in
[8] all properties and theorems can be generalized to finite fields with odd
characteristic.

We start by describing correlation properties of functions over GF(2)
n

and of functions over GF(2n), with the focus on linear functions. This is fur-

ther generalized to functions over GF(2n)
�
. We then discuss representations

and bases in GF(2)
n
and show how propagation in functions over GF(2n)

maps to propagation in Boolean functions by the choice of a basis. Subse-
quently, we prove two theorems that relate representations of linear functions
in GF(2)

n
and functions in GF(2n) that are linear over GF(2). Finally we

specify Rijndael-GF.

12.1 Description of Correlation in Functions over
GF(2n)

In this section we study the correlation properties of the functions over
GF(2n):

f : GF(2n) → GF(2n) : a �→ b = f(a).

For Boolean functions, correlation is defined between parities. For a func-
tion over GF(2n), individual bits cannot be distinguished without adopting
a representation, and hence speaking about parities does not make sense. A
parity is a function that maps GF(2)

n
to GF(2) and is linear over GF(2). In

GF(2n), we can find functions with the same properties. For that purpose,
we use the trace function in a finite field (see Section 2.1.8).

It follows that the functions of the form

f(a) = Tr(wa)

with w ∈ GF(2n) are linear functions mapping GF(2n) to GF(2). There are
exactly 2n such functions, one for each value of w. We call the function Tr(wa)
a trace parity, and the corresponding value w a trace mask.

In the analysis of correlation properties of functions over GF(2n), trace
parities play the role that is played by the parities in the correlation analysis
of Boolean functions, where n = 1. When a representation is chosen, these
functions can be mapped one-to-one to parities (see Sect. 12.3.1).

By working with trace masks, it is possible to study correlation proper-
ties in functions over GF(2n) without having to specify a basis. Hence, the
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obtained results are valid for all choices of basis. Once a basis is chosen, trace
masks can be converted to the usual masks, which we will call selection masks
in this chapter (see Theorem 12.3.1).

For a function f over GF(2n), we denote the correlation between an input

trace parity Tr(wa) and an output trace parity Tr(uf(a)) by C
(f)
u,w. We have

C(f)
u,w = 2−n

∑
a

(−1)Tr(wa)(−1)Tr(uf(a))

= 2−n
∑
a

(−1)Tr(wa)+Tr(uf(a))

= 2−n
∑
a

(−1)Tr(wa+uf(a)).

The value of this correlation is determined by the number of values a that
satisfy

Tr(wa+ uf(a)) = 0. (12.1)

If this equation is satisfied by r such values, the correlation C
(f)
u,w is equal to

21−nr − 1. If it has no solutions, the correlation is −1; if it is satisfied by
all values a, the correlation is 1; and if it is satisfied by exactly half of the
possible values a, the correlation is 0. By using the polynomial expression for
f , (12.1) becomes a polynomial equation in a (see Section 2.1.8):

Tr(wa+ u
∑
i

cia
i) = 0.

For some cases the number of solutions of these polynomials can be analyt-
ically determined, providing provable bounds for correlation properties. See
for example the results on Kloosterman sums in [92] that provide bounds on
the input-output correlation of the multiplicative inverse in GF(2n).

Example 12.1.1. Let us consider the following operation:

b = f(a) = a+ c,

where c is a constant. We can determine the correlation by finding the number
of solutions of

Tr(wa+ u(a+ c)) = 0.

This is equivalent to

Tr((w + u)a+ uc) = 0.

If w + u is different from 0, the trace is zero for exactly half of the values of
a, and the correlation is 0. If w = u this becomes



184 12. Correlation Analysis in GF(2n)

Tr(uc) = 0.

This equation is true for all values of a if Tr(uc) = 0, and has no solutions
if Tr(uc) = 1. It follows that the addition of a constant has no effect on the

trace mask and that the sign of the correlation is equal to (−1)Tr(uc).

12.1.1 Functions That Are Linear over GF(2n)

The functions of GF(2n) that are linear over GF(2n) (see Sect. 2.1.2) are of
the form

f(a) = l(0)a,

where l(0) is an element of GF(2n). Hence, there are exactly 2n functions over
GF(2n) that are linear over GF(2n).

To determine the correlation we can find the number of solutions of

Tr(wa+ ul(0)a) = Tr((w + ul(0))a) = 0.

If the factor of a is different from 0, the correlation is 0. The correlation
between Tr(wa) and Tr(uf(a)) is equal to 1 iff

w = l(0)u.

12.1.2 Functions That Are Linear over GF(2)

A function over GF(2n) is linear over GF(2) if it satisfies the following:

∀ x, y ∈ GF(2n) : f(x+ y) = f(x) + f(y) .

Observe that the functions that are linear over GF(2n) are a subset of the
functions that are linear over GF(2). For example, the function f(x) = x2 is
linear over GF(2), but not over GF(2n):

f(x+ y) = (x+ y)2 = x2 + xy + yx+ y2 = x2 + y2

= f(x) + f(y)

f(ax) = a2f(x) = af(x) if a ∈ GF(2).

In general, the functions of GF(2n) that are linear over GF(2) are the so-
called linearized polynomials [95]:

f(a) =

n−1∑
t=0

l(t)a2
t

, with l(t) ∈ GF(2n). (12.2)

The relation between the trace mask at the input and the trace mask at
the output is not trivial.
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Theorem 12.1.1. For a function b =
∑n−1

t=0 l(t)a2
t

an output trace parity
Tr(ub) is correlated to input trace parity Tr(wa) with a correlation of 1 iff

w =
n−1∑
t=0

(l(n−t mod n)u)2
t

. (12.3)

Proof. We will prove that Tr(wa) = Tr(ub) and hence that Tr(wa+ ub) = 0
for all values of a if w is given by (12.3). All computations with variables t, s
and r are performed modulo n, and all summations are from 0 to n− 1.

Tr(wa) = Tr(ub)

Tr

(∑
t

(l(n−t)u)2
t

a

)
= Tr

(
u
∑
t

l(t)a2
t

)

∑
s

(∑
t

l(n−t)2
t

u2ta

)2s

=
∑
s

(∑
t

l(t)ua2
t

)2s

∑
s

∑
t

l(n−t)2
s+t

u2s+t

a2
s

=
∑
s

∑
t

l(t)
2s

u2sa2
s+t

∑
s

∑
t

l(n−t)2
s+t

u2s+t

a2
s

=
∑

r=s+t

∑
t

l(t)
2r−t

u2r−t

a2
r

∑
s

∑
r=n−t

l(r)
2s−r

u2s−r

a2
s

=
∑
s

∑
t

l(t)
2s−t

u2s−t

a2
s

∑
s

∑
t

l(t)
2s−t

u2s−t

a2
s

=
∑
s

∑
t

l(t)
2s−t

u2s−t

a2
s

.

��

We illustrate this with the following example.

Example 12.1.2. We consider two transformations f and g over GF(23), de-
fined by

f(a) = αa

g(a) = a4 + (α2 + α+ 1)a2.

For both functions, we want to derive a general expression that for any output
trace mask u gives the input trace mask w it correlates with. We denote these
expressions by fd and gd, respectively. Applying Theorem 12.1.1, we obtain
for f(a)

l(0) = α, l(1) = l(2) = 0,

and hence
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w = fd(u) = αu. (12.4)

Similarly, for g(a) we have

l(0) = 0, l(1) = α2 + α+ 1, l(2) = 1,

and hence

w = gd = u2 + ((α2 + α+ 1)u)4 = u2 + (α2 + 1)u4. (12.5)

12.2 Description of Correlation in Functions over
GF(2n)�

In this section we treat the correlation properties of functions that operate
on arrays of � elements of GF(2n). We denote the arrays by

A = [a1 a2 a3 . . . a� ]
T
,

where the elements ai ∈ GF(2n). We have

Q : GF(2n)
� → GF(2n)

�
: A �→ B = F (A).

The trace parities can be extended to vectors. We can define a trace mask
vector as

W = [w1 w2 w3 . . . w�]
T
,

where the elements wi ∈ GF(2n). The trace parities for a vector are of the
form

∑
Tr(wiai) = Tr

(∑
i

wiai

)
= Tr(WTA).

We can define a correlation between an input trace parity Tr(WTA) and an
output trace parity Tr(UTQ(A)):

C
(F )
U,W = 2−n�

∑
A

(−1)Tr(W
TA)(−1)Tr(U

TQ(A))

= 2−n�
∑
A

(−1)Tr(W
TA)+Tr(UTQ(A))

= 2−n�
∑
A

(−1)Tr(W
TA+UTQ(A)).
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12.2.1 Functions That Are Linear over GF(2n)

If F is linear over GF(2n), it can be denoted by a matrix multiplication. We
have⎡

⎢⎢⎢⎢⎢⎣

b1
b2
b3
...
b�

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎣

l1,1 l1,2 l1,3 · · · l1,�
l2,1 l2,2 l2,3 · · · l2,�
l3,1 l3,2 l3,3 · · · l3,�
...

...
...

. . .
...

l�,1 l�,2 l�,3 · · · l�,�

⎤
⎥⎥⎥⎥⎥⎦×

⎡
⎢⎢⎢⎢⎢⎣

a1
a2
a3
...
a�

⎤
⎥⎥⎥⎥⎥⎦ .

Or for short B = LA. The elements of the matrix are elements of GF(2n).

For the correlation, we have

Tr(WTA+UTLA) = Tr(WTA+ (LTU)TA)

= Tr((W + LTU)TA).

Hence, the correlation between Tr(WTA) and Tr(UTB) is equal to 1 if

W = LTU. (12.6)

12.2.2 Functions That Are Linear over GF(2)

Generalizing equation (12.2) to vectors of GF(2n) yields

bi =
∑
j

∑
t

l
(t)
i,ja

2t

j 0 ≤ i < n.

If we introduce the following notation:

A2t =
[
a2

t

1 a2
t

2 a2
t

3 . . . a2
t

�

]
,

this can be written as

B =
∑
t

L(t)A2t .

For the relation between the input trace mask and the output trace mask,
it can be proven that

W =
∑
t

(L(n−t mod n)TU)2
t

.
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12.3 Boolean Functions and Functions in GF(2n)

12.3.1 Relationship Between Trace Masks and Selection Masks

If we study correlations in GF(2)
n
, then we have to use selection masks, and

we need to specify a basis. We can avoid specification of a basis if we study
instead the correlations in GF(2n), and work with trace masks. Since there
exists an isomorphism between GF(2)

n
and GF(2n), we can expect that for

every selection mask w there exists a trace mask w, and vice versa.

Since generally Tr(wa) = φe(w)
T
a, a selection mask w = φe(w), with φ

defined in Sect. 2.1.9, usually does not correspond to the trace mask w. This
is illustrated by the example below.

Example 12.3.1. We use basis e defined in Example 2.1.10. We take w = α,
hence wT = [011]. Then it follows from Table 12.1 that Tr(wa) = wTa.

Table 12.1. Tr(wa) �= wTa

a aT Tr(αa) [011]Ta

0 000 0 0

1 001 0 1

α+ 1 010 0 1

α 011 0 0

α2 + α+ 1 100 1 0

α2 + α 101 1 1

α2 110 1 1

α2 + 1 111 1 0

In the following theorem, we give and prove the correct relation between
trace masks and selection masks.

Theorem 12.3.1. Let a =e (a). Then the trace mask w corresponds to φd(w)
with d the dual basis of e.

Proof. We prove that

Tr(wa) = wd
Ta,

and hence that the correlations in GF(2)
n
and GF(2n) have the same value

if the relation between the masks is satisfied. Applying (2.42) to w and a, we
get

Tr(wa) = Tr

⎛
⎝
⎛
⎝∑

i

Tr(e(i)w)d(i)

⎞
⎠
⎛
⎝∑

j

Tr(d(j)a)e(j)

⎞
⎠
⎞
⎠ .
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Since the output of the trace map lies in GF(2), and since the trace map is
linear over GF(2), we can convert this to

Tr(wa) =
∑
i

Tr(e(i)w)
∑
j

Tr(d(j)a)Tr(d(i)e(j))

=
∑
i

Tr(e(i)w)
∑
j

Tr(d(j)a)δ(i⊕ j)

=
∑
i

Tr(e(i)w)Tr(d(i)a).

Applying (2.41) twice completes the proof. ��

12.3.2 Relationship Between Linear Functions in GF(2)
n

and
GF(2n)

A linear function of GF(2)
n
is completely specified by an n× n matrix M:

b = Ma.

A linear function of GF(2n) is specified by the n coefficients l(t) ∈ GF(2n) in

b =

n−1∑
t=0

l(t)a2
t

.

After choosing a basis e over GF(2n), these two representations can be con-
verted to one another.

Theorem 12.3.2. Given the coefficients l(t) and a basis e, the elements of
the matrix M are given by

Mij =

n−1∑
t=0

Tr

(
l(t)d(i)e(j)

2t
)
.

Proof. We will derive an expression of bi as a linear combination of aj in
terms of the factors l(t). For a component bi we have

bi = Tr(bd(i))

= Tr

(∑
t

l(t)a2
t

d(i)

)

=
∑
t

Tr(l(t)a2
t

d(i)). (12.7)

The powers of a can be expressed in terms of the components aj :
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a2
t

=

⎛
⎝∑

j

aje
(j)

⎞
⎠

2t

=
∑
j

aje
(j)2

t

, (12.8)

where we use the fact that exponentiation by 2t is linear over GF(2) to obtain
(12.8). Substituting (12.8) in (12.7) yields

bi =
∑
t

Tr

⎛
⎝l(t)

∑
j

aje
(j)2

t

d(i)

⎞
⎠

=
∑
t

∑
j

Tr

(
l(t)e(j)

2t

d(i)aj

)

=
∑
j

(∑
t

Tr(l(t)e(j)
2t

d(i))

)
aj .

It follows that

Mij =
∑
t

Tr

(
l(t)e(j)

2t

d(i)
)
,

proving the theorem. ��

Theorem 12.3.3. Given matrix M and a basis e, the elements l(t) are given
by

l(t) =

n∑
i=1

n∑
j=1

Mijd
(j)2

t

e(i).

Proof. We will express b as a function of powers of a in terms of the elements
of the matrix M. We have

b =
∑
i

bie
(i), (12.9)

and

bi =
∑
j

Mijaj

=
∑
j

MijTr(ad
(j))

=
∑
j

Mij

∑
t

a2
t

d(j)
2t

. (12.10)
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a

b =
∑

t l
(t)a2t

b

�a = aTe

b = bTe

a

b = Ma

b

Tr(wa)

w =
∑

t

(
l(n−t)u

)2t

Tr(ub)

� w = wT
d d

u = uT
d d

wT
d a

wd = MTud

uT
d b

choice of basis e and its dual basis d

	 �(12.6)

	 �(12.3)

Fig. 12.1. The propagation of selection and trace masks through a function that
is linear over GF(2)

Substituting (12.10) into (12.9) yields

b =
∑
i

∑
j

Mij

∑
t

a2
t

d(j)
2t

e(i)

=
∑
t

⎛
⎝∑

i

∑
j

Mijd
(j)2

t

e(i)

⎞
⎠ a2

t

.

It follows that

l(t) =
∑
i

∑
j

Mijd
(j)2

t

e(i),

proving the theorem. ��

Figure 12.1 illustrates the relations between the selection mask and trace
mask at the input and output of linear functions in GF(2n). Remember that
we always express the input mask w as a function of the output mask u.

We illustrate this in the next example.

Example 12.3.2. We take the functions f and g of Example 12.1.2 and the
bases e and d of Example 2.1.10. Table 12.2 shows the coordinates of the
elements of GF(23), as well as the coordinates of the images of f and g with
respect to e.
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Table 12.2. Coordinates of the field elements, and the images of f and g with
respect to the basis e

a a b = f(a) b = g(a)

0 000 000 000

1 001 011 101

α+ 1 010 101 001

α 011 110 100

α2 + α+ 1 100 111 100

α2 + α 101 100 001

α2 110 010 101

α2 + 1 111 001 000

Once the coordinates of the inputs and outputs of f and g have been
determined, we can derive the matrices M and N that describe the functions
f and g in the vector space:

M =

⎡
⎣ 1 1 0
1 0 1
1 1 1

⎤
⎦ , N =

⎡
⎣ 1 0 1
0 0 0
0 1 1

⎤
⎦ .

The transformations to derive input selection masks from output selection
masks are determined by MT and NT:

fd(ud) = MTud (12.11)

gd(ud) = NTud. (12.12)

Table 12.3 shows for all the elements of GF(23) the coordinates with respect
to basis d in the first column, and the coordinates of the images of fd and gd

calculated according to (12.11) and (12.12) in the second and third column.
The fourth column gives the elements of GF(23), the fifth and the sixth
column give the functions f and g according to (12.4)–(12.5). It can now
be verified that the coordinates in the second, respectively the third column
correspond to the field elements in the fifth, respectively the sixth column.

12.4 Rijndael-GF

We will now define Rijndael-GF. This is a block cipher very much like
Rijndael, but with keys, plaintext and ciphertexts that consist of sequences
of elements of GF(28) rather than bytes. We will express constants in this
specification by powers of α, where α is a root of the primitive polynomial
x8 + x4 + x3 + x2 + 1 and hence a generator of the multiplicative group of
GF(28).

We will first specify the Rijndael-GF round transformation. It operates
on a state in GF(28)

nt where nt ∈ {16, 20, 24, 28, 32}.
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Table 12.3. The functions fd and gd

ud wd = fd(ud) wd = gd(ud) u w = fd(u) w = gd(u)

000 000 000 0 0 0

001 111 011 α2 + 1 1 α+ 1

010 101 000 α2 + α α2 + α+ 1 0

011 010 011 α+ 1 α2 + α α+ 1

100 110 101 α α2 α2 + α+ 1

101 001 110 α2 + α+ 1 α2 + 1 α2

110 011 101 α2 α+ 1 α2 + α+ 1

111 100 110 1 α α2

The step SubBytes-GF operates on the individual elements of the state.
It is composed of two sub-steps. The first step is taking the multiplicative
inverse in GF(2n):

g(a) = a−1, (12.13)

with 0 mapping to 0. The second sub-step consists of applying the following
linearized polynomial:

f(a) = α2a+α199a2+α99a2
2

+α185a2
3

+α197a2
4

+a2
5

+α96a2
6

+α232a2
7

,

(12.14)

followed by the addition of the constant α195.

The step ShiftRows-GF is a transposition that does not modify the values
of the elements in the state but merely changes their positions. It is the same
as in Rijndael.

The mixing step MixColumns-GF operates independently on four-element
columns and mixes them linearly by multiplication with the following matrix:⎡

⎢⎢⎣
α25 α 1 1
1 α25 α 1
1 1 α25 α
α 1 1 α25

⎤
⎥⎥⎦

Finally, the addition of a round key AddRoundKey-GF consists of the ad-
dition of a round key by a simple addition in GF(28).

The key expansion is the same as that in Rijndael, with the exception
that the Rijndael S-boxes are replaced by the Rijndael-GF S-box and the
round constants defined as RC[i] = α25(i−1).

Rijndael-GF, together with the choice of a representation of the ele-
ments of GF(28) as bytes constitutes a block cipher operating on bit strings.
We can now show that Rijndael-GF is equivalent to Rijndael. As a matter
of fact, the choice of the following basis converts Rijndael-GF into Rijndael:



194 12. Correlation Analysis in GF(2n)

e =
(
1, α25, α50, α75, α100, α125, α150, α175

)
.

We can compute the corresponding dual basis d by solving (2.40). This yields:

d =
(
α166, α187, α37, α26, α236, α191, α196, α48

)
.

In Rijndael the second sub-step of the S-box is specified as the multiplication
with a binary matrix. This matrix can be reconstructed by applying Theo-
rem 12.3.2 to (12.14) using these bases. The equivalence of the matrices of
MixColumns and MixColumns-GF follows from the fact that φ−1

e (02) = α25

and φ−1
e (03) = 1 + α25 = α.



13. On the EDP and the ELP of Two and Four
Rijndael Rounds

In Chaps. 7 and 8 we explain how the correlation and the difference propa-
gation over a number of rounds of an iterative block cipher are composed of
a number of linear trails and differential trails respectively. We show that in
key-alternating ciphers the LP of linear trails and the weight of differential
trails are both independent of the value of the key. Section 9.1 explains how
to choose the number of rounds of a key-alternating cipher to offer resistance
against linear and differential cryptanalysis. Although the existence of high
correlations and difference propagation probabilities cannot be avoided, tak-
ing a number of rounds so that the contributions of the individual trails are
below some limit makes the values of the patterns that exhibit large differ-
ence propagation probabilities or correlations very key-dependent. We count
on this key-dependence to make the exploitation of these high correlations
and difference propagation probabilities in cryptanalysis infeasible.

In our analysis in Sect. 9.1, we have neglected possible trail clustering: the
fact that sets of trails tend to propagate along common intermediate patterns.
If clustering of trails occurs, the small contributions of the individual trails
may be compensated for by the fact that there are so many trails between
an input pattern and an output pattern. The structure of Rijndael, and any
cipher that operates on tuples rather than bits, can be suspected of trail
clustering.

In this chapter we prove some properties of Boolean transformations with
a maximum branch number. Subsequently, we give provable upper bounds
for the EDP of differentials and ELP of linear hulls over two rounds and four
rounds of ciphers with the Rijndael structure.

13.1 Properties of MDS Mappings

Consider a Boolean transformation F operating on vectors of nt tuples. We
have[

b(1) b(2) b(3) . . . b(nt)

]T
= F(a(1), a(2), a(3), . . . , a(nt)). (13.1)

Figure 13.1 illustrates this with an example.
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a(1) a(2) a(3) a(4) a(5)

F

�

�

�

�

�

�

�

�

�

�
b(1) b(2) b(3) b(4) b(5)

Fig. 13.1. Boolean transformation F operating on 5-byte vectors

Consider the following equation:

F(x(1), x(2), x(3), . . . , x(nt)) =
[
x(nt+1) x(nt+2) x(nt+3) . . . x(2nt)

]T
(13.2)

Clearly, (13.2) has exactly 2nsnt solutions, one for each choice of the vector
[x(1) x(2) x(3) . . . x(nt)].

We consider a partition Ξ of the set {1, 2, 3, . . . , 2nt} that divides the set
of indices into two equally sized subsets ξ and ξ̄. We denote the vector with
components xi with i ∈ ξ by xξ. Given such a partition and a value for xξ,
we define the following set of equations:{

F(y(1), y(2), . . . , y(nt)) =
[
y(nt+1) y(nt+2) . . . y(2nt)

]T
yξ = xξ

. (13.3)

Theorem 13.1.1. A Boolean transformation F has a maximum differential
branch number, i.e. B(F) = nt+1, iff any set of equations of the form (13.3)
has exactly one solution, whatever the choice of ξ (with #ξ = nt) and xξ.

Proof.

⇒ Assume that B(F) = nt+1, and that there is a choice of ξ and a value of
xξ for which (13.3) has more than one solution. The solutions can only
differ in at most nt bytes, since the nt components of yξ are fixed by
yξ = xξ. However, if F has a differential branch number equal to nt + 1,
(13.2) cannot have two solutions that differ in less than nt + 1 bytes.
Hence, (13.3) has at most one solution.

Now consider the 2ntns solutions of (13.2). For some given choice of ξ,
each of these solutions a is also a solution of exactly one set of equations
of type (13.3), i.e. the one with xξ = aξ. As each set of equations (as
in Eq. 13.3) has at most one solution and as the total number of sets
of equations of type (13.3) for a given ξ is 2ntns , each of these sets has
exactly one solution.
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⇐ Assume the Boolean transformation F has a differential branch number
that is smaller than nt+1. This implies that there must exist at least two
solutions of (13.2) that differ in at most nt bytes. We can now construct
a set of equations (as in Eq. 13.3) that has two solutions as follows. We
choose ξ to contain only byte positions in which the two solutions are the
same, and xξ the vector containing the value of those bytes for the two
solutions. This contradicts the premise and hence our initial hypothesis
is proven to be false. ��

Corollary 13.1.1. For a Boolean transformation operating on nt-byte vec-
tors and with a maximum branch number, any set of nt input and/or output
bytes determines the remaining nt output and/or input bytes completely.

Hence, if we have a Boolean transformation F with a maximum branch
number, any partition Ξ that divides the input and output bytes into two
sets with an equal number of elements ξ and ξ̄ also defines a Boolean trans-
formation. We call this function Fξ. This is illustrated with an example in
Fig. 13.2. As for any value of ξ both Fξ and Fξ̄ are Boolean tranformations, it
follows that all Fξ are Boolean permutations. Note that with this convention,
the permutation F corresponds to Fξ with ξ = {1, 2, 3, . . . , nt}, and its inverse
F−1 with F−1

ξ with ξ = {nt + 1, nt + 2, nt + 3, . . . , 2nt}.
In [144], S. Vaudenay defines the similar concept of multipermutations. An

(r, n)-multipermutation is a function that maps a vector of r bytes to n bytes
with a differential branch number that is larger than r. A Boolean trans-
formation F with maximum differential branch number is hence an (nt, nt)-
multipermutation. The name multipermutation is very appropriate for such
a transformation, since it defines a permutation from any set of nt input
and/or output bytes to the complementary set.

x(1) y(2) x(3) y(4) y(5)

�
�

�
� �

Fξ with ξ = {1, 3, 6, 7, 8}

� � �
� �

x(6) x(7) x(8) y(9) y(10)

Fig. 13.2. Boolean function F
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Theorem 13.1.2. A Boolean transformation F has a maximum differential
branch number iff it has a maximum linear branch number.

Proof.

⇒ Assume that F has a maximum differential branch number and not a
maximum linear branch number. Consider now (13.2). If F does not have
a maximum linear branch number, there is a mask w with a byte weight
of less than nt + 1 such that the parity wTx is correlated to 0. If we
now consider Fξ with only positions in ξ for which wi = 0, this implies
that a parity of output bits of Fξ is correlated to 0, or in other words,
is unbalanced. As F has a maximum differential branch number, any
Fξ must be a permutation and hence according to Theorem 7.5.1 all
its output parities must be balanced. It follows that F cannot have a
maximum differential branch number and a non-maximum linear branch
number.

⇐ Assume that F has a maximum linear branch number and not a maximum
differential branch number. If F does not have a maximum differential
branch number, (13.2) has at least two solutions that differ in at most
nt bytes. If we choose ξ such that the byte positions in which these two
solutions differ are all in ξ, this means that the function Fξ has two
inputs with the same output and hence is no permutation. According
to Theorem 7.5.1, this Fξ must have output parities wξ̄

Txξ̄ that are not
balanced. Hence, F must have a linear branch number that is maximally
nt. It follows that F cannot have a maximum linear branch number and
a non-maximum differential branch number. ��

13.2 Bounds for Two Rounds

For a cipher with a γλ round structure we can prove upper bounds for the
EDP of differentials and the ELP of linear hulls (see Sect. 7.9.3) over two
rounds.

Figure 13.3 depicts the sequence of steps in two rounds of a cipher with
the γλ round structure. We study the probability of propagation of a differ-
ence in a(1) to a difference in a(3). The difference pattern in a(3) completely
determines the difference pattern in b(2). Hence for this study we only have
to consider the first round and the nonlinear step of the second round. For
the correlation potentials, we study the correlation between parities of a(3)

and parities of a(1). A parity of a(3) is correlated to exactly one parity of b(2)

with a correlation of 1 or −1 depending on the value of a parity of round
key k(2). As we are not interested in the sign, again we can limit ourselves to
studying the first round and the nonlinear step of the second round.
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a(1)

γ

b(1)

�	 λ

c(1)

σ[k(1)]

a(2)

γ

b(2)

�	 λ

c(2)

σ[k(2)]

a(3)

Fig. 13.3. Two rounds of a cipher with the γλ round structure

Figure 13.4 depicts the sequence of steps relevant in our analysis of differ-
ence and linear propagation over two rounds. In the remainder of this section
we denote the difference patterns and masks in the state at the different
intermediate stages by a,b,d and e.

a

γ

b

�	 λ

σ[k(1)]

d

γ

e

Fig. 13.4. Steps relevant in the study of two-round difference propagation
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13.2.1 Difference Propagation

In this section we will denote the difference propagation probabilities of the
γ S-box by DP(s)(x, y). Moreover, we will assume that these difference prop-
agation probabilities are below an upper bound, denoted MDP.

Consider now a differential trail from a difference pattern a to a difference
pattern e. We denote the set of positions with active bytes in a by α, and
the set of positions with active bytes in e by δ. The number of active bytes
in a is denoted by #α, and the number of active bytes in e is denoted by #δ.
The active bytes of a propagate to active bytes in b through the γ S-boxes.
The difference pattern b fully determines d by d = λ(b). The difference
pattern d propagates to e through the γ S-boxes. The difference patterns d
and e have active bytes in the same positions. As b completely determines
the trail, together with a and e, we denote this trail by (a,b, e). The weight
wr(a,b, e) of this differential trail is the sum of the weights of the difference
propagation over active S-boxes corresponding to the active bytes in a (or
equivalently b) and d (or equivalently e). The sum of the number of active
bytes in b and d is lower bounded by B(λ). Since a and e have active bytes
at the same positions as b and d, respectively, it follows that #α + #δ is
lower bounded by B(λ). An approximation for the probability of a differential
trail is 2−wr(a,b,e). This approximation should be interpreted with care, as it
is obtained under the assumption that the restrictions are independent (see
Sect. 8.4.2). We have

EDP(a,b, e) =
∏
i∈α

DP(s)(ai, bi)
∏
j∈δ

DP(s)(dj , ej). (13.4)

and

EDP(a, e) =
∑
b

EDP(a,b, e). (13.5)

Example 13.2.1. Consider the propagation from a difference pattern a with
a single active byte, in position 1. Equation (13.4) simplifies to

EDP(a,b, e) = DP(s)(a1, b1)
∏
j∈δ

DP(s)(di, ei). (13.6)

By using the upper bound for the difference propagation probability for the
S-box, DP(s)(x, y) ≤ MDP, this can be reduced to

EDP(a,b, e) ≤ DP(s)(a1, b1)MDP#δ. (13.7)

Substitution into (13.5) yields

EDP(a, e) ≤
∑
b1

DP(s)(a1, b1)MDP#δ. (13.8)
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By using the fact that
∑

y DP(s)(x, y) = 1, we obtain

EDP(a, e) ≤ MDP#δ. (13.9)

Since #δ + 1 is the sum of the number of active S-boxes of b and d, it is
lower bounded by B(λ). It follows that

EDP(a, e) ≤ EDPB−1. (13.10)

We can now prove the following theorem.

Theorem 13.2.1. If λ has a maximum branch number, the EDP of differ-
entials over two rounds is upper bounded by MDPnt .

Proof. Clearly #α+#δ is lower bounded by nt+1. Let us now partition the
byte positions of b and d into two equally sized sets ξ and ξ̄, such that ξ̄ has
only active bytes. This is always possible as there must be at least nt+1 active
bytes in b and d together. We have d = λ(b), and that λ has a maximum
differential branch number. Hence according to Theorem 13.1.1, the values
of the bytes of b and d that are in positions in ξ completely determine the
values of the bytes with positions in ξ̄.

We can convert (13.4) into

EDP(a,b, e) =
∏

i∈α∩ξ

DP(s)(ai, bi)
∏

j∈δ∩ξ

DP(s)(dj , ej)× (13.11)

∏
i∈α∩ξ̄

DP(s)(ai, bi)
∏

j∈δ∩ξ̄

DP(s)(dj , ej). (13.12)

Since all bytes in positions in ξ̄ are active, the factor (13.12) is upper bounded
by MDPnt . We obtain

EDP(a,b, e) ≤ MDPnt
∏

i∈α∩ξ

DP(s)(ai, bi)
∏

j∈δ∩ξ

DP(s)(dj , ej). (13.13)

The EDP of the differential (a, e) can be found by summing over all possible
trails. In this case, this implies summing over all possible values of the active
bytes in b and d that have positions in ξ. We have

EDP(a, e) ≤ MDPnt
∏

i∈α∩ξ

∑
bi

DP(s)(ai, bi)
∏

j∈δ∩ξ

∑
dj

DP(s)(dj , ej).(13.14)

We can apply
∑

y DP(s)(x, y) = 1 to the factors
∑

bi
DP(s)(ai, bi). Moreover,

as the S-box is invertible, we also have
∑

x DP(s)(x, y) = 1. This can be

applied to the factors
∑

dj
DP(s)(dj , ej). We obtain

EDP(a, e) ≤ MDPnt ,

proving the theorem. ��
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More generally, [126] proves that the EDP of differentials over two rounds is

upper bounded by MDP(B−1).

13.2.2 Correlation

In this section we will denote the square input-output correlations of the γ
S-box by C2(x, y). We will assume that these correlation potentials are below
an upper bound, denoted MLP. For an introduction to correlation potentials
we refer to Chap. 7.

Consider now a linear trail from a mask a to a mask e. We denote the
set of positions with active bytes in a by α, and the set of positions with
active bytes in e by δ. The active bytes of a propagate to active bytes in b
through the γ S-boxes. Since λ is linear, the mask b fully determines d. The
mask d propagates to e through nt S-boxes. The masks d and e have active
bytes in the same positions. The correlation potential of this linear trail is
the product of the correlation potentials of the active S-boxes corresponding
to the active bytes in a (or equivalently b) and d (or equivalently e). The
sum of the number of active bytes in b and d is lower bounded by B(λ). Since
a and e have active bytes at the same positions as b and d, respectively, it
follows that #α+#δ is lower bounded by B(λ). We have

LP(a,b, e) =
∏
i∈α

C2(ai, bi)
∏
j∈δ

C2(dj , ej), (13.15)

and

ELP(a, e) =
∑
b

LP(a,b, e). (13.16)

We can now prove the following theorem.

Theorem 13.2.2. If λ has a maximum branch number, the ELP of linear
hulls over two rounds is upper bounded by MLPnt .

Proof. Clearly #α + #δ is lower bounded by nt + 1. Let us now partition
the byte positions of b and d into two equally sized sets ξ and ξ̄ such that
ξ̄ has only active bytes. This is always possible as there must be at least
nt +1 active bytes in b and d together. As λ is a linear transformation with
a maximum branch number, according to Theorem 13.1.1 the values of the
bytes of b and d that are in positions in ξ completely determine the values
of the bytes with positions in ξ̄. We can convert (13.15) to

LP(a,b, e) =
∏

i∈α∩ξ

C2(ai, bi)
∏

j∈δ∩ξ

C2(dj , ej)× (13.17)

∏
i∈α∩ξ̄

C2(ai, bi)
∏

j∈δ∩ξ̄

C2(dj , ej). (13.18)
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As all bytes in positions in ξ̄ are active, the factor (13.18) is upper bounded
by MLPnt . We obtain

LP(a,b, e) ≤ MLPnt
∏

i∈α∩ξ

C2(ai, bi)
∏

j∈δ∩ξ

C2(dj , ej). (13.19)

The ELP of a hull (a, e) can be found by summing over all possible trails. In
this case, this implies summing over all possible values of the active bytes in
b and d that have positions in ξ. We have

ELP(a, e) ≤ MLPnt
∏

i∈α∩ξ

∑
bi

C2(ai, bi)
∏

j∈δ∩ξ

∑
dj

C2(dj , ej). (13.20)

Applying Parseval’s theorem to the γ S-box yields
∑

y C
2(x, y) = 1 and

applying it to the inverse of the γ S-box yields
∑

x C
2(x, y) = 1. Using this,

we obtain

ELP(a, e) ≤ MLPnt ,

proving the theorem. ��

13.3 Bounds for Four Rounds

For key-iterated ciphers with a γπθ round structure, we can prove similar
bounds for four rounds. In Theorem 9.5.1 we have shown that the analysis of
such a cipher can be reduced to the analysis of a key-alternating cipher with
two round transformations. In this section, we will study this key-alternating
cipher structure.

As illustrated in Fig. 13.5, the relevant steps of four rounds can be grouped
into a number of supersteps. The first step and last step consist of an appli-
cation of γ, θ, key addition and again γ. This step operates independently
on the columns of the state and can be considered as a γ step with big S-
boxes. These big S-boxes are exactly the super boxes defined in Sect. 3.4.5. If
θ has a maximum branch number at the level of the columns, the theorems
of Sect. 13.2 provide upper bounds for the super box. The EDP is upper
bounded by MDPB−1 and the ELP by MLPB−1.

In the four-round structure, the two steps in-between are a linear mixing
step and a key addition. If the mixing step has a maximum branch number at
the level of the columns, the theorems of Sect. 13.2 are also applicable at this
level, giving upper bounds for four rounds. The EDP is upper bounded by

MDP′B′−1
and the ELP is upper bounded by MLP′B′−1

. In these expressions
B′ is the branch number of Θ, and MDP′ and MLP′ refer to the S-boxes of
Γ . By substituting the values for the Γ S-boxes, we obtain upper limits of

MDP(B′−1)(B−1) and MLP(B′−1)(B−1). In the case where the branch number
of Θ and θ is the same, this is reduced to MDP(B−1)2 and MLP(B−1)2 . This
applies to Rijndael with a block length of 128 bits.
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Fig. 13.5. Steps relevant in the study of upper bounds for four rounds

13.4 Conclusions

If we apply Theorems 13.2.1 and 13.2.2 to Rijndael, we find that the EDP
of differentials and ELP of linear hulls over two rounds are upper bounded
by 2−24, and over four rounds by 2−96. These upper bounds are however not
tight. For the EDP it was proven in [80] that for two rounds the maximum is
13.25× 2−32, implying an upper bound on the EDP of four rounds of about
2−113. For the ELP it was proven in the same paper that the maximum ELP
for two rounds is 109, 953, 193× 2−54, implying an upper bound on the ELP
of four rounds of about 2−109.

In the next chapter we will use the specific properties of the Rijndael
components to explain the value of the EDP over two rounds.



14. Two-Round Differential Trail Clustering

This chapter is based on material that appeared earlier in [50]. Bounds on the
EDP of trails are proven in Sect. 9.5.2. Bounds on the EDP of differentials
have been investigated in Chap. 13 and [79, 126, 127]. The EDP value of
differentials is important in the resistance against differential cryptanalysis.
In general, the EDP of differentials over multiple rounds of Rijndael is difficult
to compute. In this chapter we study the probability of differentials and
trails over two rounds of Rijndael with the objective to understand how the
components of the Rijndael round transformation interact in this respect. We
believe the analysis in this chapter can be used to obtain tighter bounds for
the EDP over four rounds of Rijndael and generally a better understanding
of its distribution. For this we concentrate on the Rijndael super box as
introduced in Sect. 3.4.5.

In Sect. 14.1 we extend and correct the analysis of the differential prop-
erties of the multiplicative inverse in GF(2n) given in [120]. In Sect. 14.2
we introduce the concept of bundles of trail cores, which forms the basis of
our analysis. The bundles partition the trails into sets that share important
characteristics. In Sect. 14.3 we express the conditions for a trail core in a
bundle to contribute to the EDP of a differential. In Sect. 14.4 we use these
characteristics to derive expressions for the number of trails in such a bun-
dle and report on experiments confirming these expressions. In Sect. 14.5 we
convert the results on number of trails per bundle to their EDP by taking
into account the DP of S-box differentials, and we discuss the impact of the
presence of the affine mapping in the S-box. In Sect. 14.6 we study the distri-
butions of the EDP in differentials and finally in Sect. 14.7 we show how the
differentials with maximum EDP over two-round Rijndael can be explained
with our results.

14.1 The Multiplicative Inverse in GF(2n)

In this section we discuss the differential properties of the single component
in Rijndael that is nonlinear over GF(2): the multiplicative inverse in GF(2n),
extended with 0 being mapped to 0. In fact this is the operation of raising
to the power 2n − 2. For readability we use the notation x−1 rather than
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x2n−2. Differential properties of this map were previously studied in [120].
In the following, a and b denote arbitrary non-zero differences. We denote
the probability of a differential (a, b) over the multiplicative inverse map as

DP(i)(a, b). This differential probability is non-zero if and only if the equation

(x+ a)−1 + x−1 = b (14.1)

has solutions. If x = a or x = 0 is a solution of (14.1), we have b = a−1 and
both are solutions. Otherwise, we can transform (14.1) by multiplying with
b−1x(x+ a), yielding

x2 + ax+ ab−1 = 0.

If we substitute x by a−1y, this becomes

y2 + y + (ab)−1 = 0. (14.2)

To investigate the condition for this equation to have solutions we have the
following lemma.

Lemma 14.1.1 ([95, Theorem 2.25]). Tr(t) = 0 iff t = zp − z for some
z ∈ GF(pn).

Taking p = 2, we easily obtain the following.

Lemma 14.1.2. For b = a−1, equation (14.1) has two solutions if Tr((ab)−1) =
0, and zero solutions otherwise.

Consider now the case b = a−1. Let ν and ν2 denote the elements of GF(2n)
of order 3. Then ν2 + ν = 1 and GF(22) = {0, 1, ν, ν2}.

Lemma 14.1.3. For even n, the solutions of

(x+ a)−1 + x−1 = a−1 (14.3)

form the set Ta = {0, a, νa, ν2a}.

Proof. x = a and x = 0 are solutions of (14.3). Assume there are other
solutions. We can write such a solution as a product of a with an element z
different from 0 or 1. We have

(za+ a)−1 + (za)−1 = a−1 . (14.4)

Or, equivalently,

(z + 1)−1 + z−1 = 1 . (14.5)

Multiplication with z(z + 1) yields
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z2 + z + 1 = 0 . (14.6)

According to Lemma 14.1.1, Equation (14.6) has two solutions iff Tr(1) = 0
and none otherwise. Tr(1) = 0 iff n is even. Since a solution of (14.6) satisfies
z3 = 1, its solutions are the two elements of GF(2n) of order 3. ��

From these lemmas follow several corollaries.

Corollary 14.1.1 ([120]). For odd n,

(x+ a)−1 + x−1 = a−1

has two solutions: 0 and a.

Corollary 14.1.2. For even n, the possible output differences b for a given
input difference a are those with Tr((ab)−1) = 0 except b = 0. For odd n,
the possible output differences b for a given input difference a are those with
Tr((ab)−1) = 0 except b = 0 and extended with b = a−1.

Together with the fact that (14.1) has four solutions only if b = a−1, this
leads to the following corollary.

Corollary 14.1.3. For all non-zero c ∈ GF(2n) and for all positive integers
t:

DP(i)(a, b) = DP(i)(b, a) = DP(i)(ca, bc−1) = DP(i)(a2
t

, b2
t

).

14.2 Bundles in the Rijndael Super Box

14.2.1 Differentials, Trails and Trail Cores

We study differentials and trails through the Rijndael super box, as depicted
in Fig. 14.1. A trail through the Rijndael super box consists of a sequence of
five differences: a, b, c, d and e.

We can partition the set of 4-byte vectors by considering truncated dif-
ferences [84]. All vectors in a given equivalence class have zeroes in the same
byte positions and non-zero values in the other byte positions. An equivalence
class is characterized by an activity pattern. The activity pattern has a single
bit for each byte position indicating whether its value must be 0 (passive) or
not (active). The activity pattern of a differential (a, e) is the couple of the
activity patterns of a and e. We say that two differences are compatible if
they have the same activity pattern. Due to the diffusion properties of Mc,
activity patterns of differentials must have a minimum of five active positions.
In total there are 93 such activity patterns.
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We denote by DP(s)(a,b) the differential probability of (a,b) over the

transformation SubBytes. Since SRD is invertible, DP(s)(a,b) can be non-
zero only if a and b are compatible. Other necessary conditions to have
EDP > 0 are c = d, d = Mcb, and d must be compatible with e. Moreover,
all components of a and b must satisfy DP(s)(ai, bi) > 0, with DP(s)(ai, bi)
denoting the differential probability of a differential over SRD. The same goes
for d and e.

In the rest of this chapter we use the term trail only when EDP > 0 and
we will omit c from the notation, specifying a trail as (a,b,d, e). Such a
trail is fully determined by the differential (a, e) it is in and the intermediate
difference b. We call a sequence of intermediate differences [b,d] with d =
Mcb a trail core. A trail core [b,d] contributes to a differential (a, e) if for

all i we have DP(s)(ai, bi) > 0 and DP(s)(di, ei) > 0. If that is the case, we
say the trail core [b,d] extends to a trail in differential (a, e). We denote the
number of trails in a differential (a, e) by Nt(a, e).

a

γ

b

�	 λ

σ[k(1)]

d

γ

e

Fig. 14.1. Difference propagation over the Rijndael super box. Active bytes are
indicated with bullets

In Chap. 12 we have shown that L is a linearized polynomial and hence it
is not linear over GF(28). We denote its inverse by Li. The additive group of
the finite field GF(28) forms a vector space. We will sometimes tacitly switch
from one representation to another.

For the EDP of a differential over the Rijndael super box, we have
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EDP(a, e) =
∑
b

EDP(a,b,Mcb, e)

=
∑
b

DP(s)(a,b)DP(s)(Mcb, e)

=
∑
b

(∏
i

DP(s)(ai, bi)
∏
i

DP(s)(di, ei)

)
.

In order to compute the EDP of a differential, we first determine the number
of trails in the differential. To ease this task, we partition trail cores into
so-called bundles, defined below. We start with an example.

Example 14.2.1. Consider a trail in a differential (a, e) with a = [a0, 0, 0, 0]
T.

Then clearly we must have b = [b0, 0, 0, 0]
T and thanks to MixColumns

we have d0 = 2b0, d1 = b0, d2 = b0 and d3 = 3b0, or equivalently
d = b0[2, 1, 1, 3]

T, where b0[2, 1, 1, 3]
T denotes the scalar multiplication of

the vector [2, 1, 1, 3]T with the (non-zero) scalar b0. For each non-zero value
of b0, there may be a trail in the differential, so there are at most 255.

This can be generalized to any Rijndael super box differential with five
active S-boxes. If Q = (a,b,d, e) and Q′ = (a,b′,d′, e) are two trails in the
same differential with five active S-boxes, then there exists a γ such that for
all positions i: bi = γb′i and di = γd′i.

14.2.2 Bundles

We define a bundle as follows.

Definition 14.2.1. The bundle B([b,d]) defined by a trail core [b,d] is a
set of 255 trail cores:

B([b,d]) = {γ[b,d]|γ ∈ GF(28) and γ = 0} .

The linearity of MixColumns over GF(28) implies that Mc(γb) = γ(Mcb) and
hence multiplication of a trail core with a non-zero scalar γ results in another
trail core. Moreover, scalar multiplication does not change the activity pat-
tern of a trail core, hence if [b,d] is compatible with a differential (a, e), then
all trail cores in B([b,d]) are. Hence, the bundles form a partition of the set
of trail cores compatible with (a, e).

We will represent a bundle with a canonical representative [b,d] and
denote trail cores as γ[b,d] with [b,d] a canonical representative of its bundle.

We can count the number of trails in differential (a, e) by counting the
number of trails in each bundle and adding the results. In the following, we
will explain how the number of trails in a bundle can be counted.
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Table 14.1. Activity patterns with five active S-boxes and the corresponding
canonical trail cores [b,d] (in hexadecimal notation)

Activity Pattern b d

(1000; 1111) [1, 0, 0, 0]T [2, 1, 1, 3]T

(1100; 1011) [2, 1, 0, 0]T [7, 0, 3, 7]T

(0110; 1110) [0, 1, 1, 0]T [2, 1, 3, 0]T

(0011; 1011) [0, 0, 1, 3]T [2, 0, 7, 7]T

(1001; 1110) [2, 0, 0, 3]T [7, 1, 7, 0]T

(1010; 1101) [2, 0, 1, 0]T [5, 1, 0, 7]T

(0101; 0111) [0, 1, 0, 3]T [0, 1, 4, 7]T

(1101; 1010) [5, 1, 0, 7]T [E, 0, D, 0]T

(0111; 0101) [0, 1, 4, 7]T [0, 9, 0, B]T

(1110; 1001) [7, 1, 3, 0]T [E, 0, 0, B]T

(1011; 0011) [2, 0, 3, 7]T [0, 0, D, B]T

(1110; 0110) [2, 1, 7, 0]T [0, 9, D, 0]T

(1011; 1100) [7, 0, 7, 7]T [E, 9, 0, 0]T

(1111; 1000) [E, 9, D, B]T [1, 0, 0, 0]T

14.2.3 Number of Bundles with a Given Number of Active Bytes

As explained in our example, a differential with five active S-boxes only has
a single bundle of trail cores. Table 14.1 lists the activity patterns with five
active S-boxes and the corresponding canonical trail cores [b,d] we have
chosen. In total there are 56 patterns. They can be derived by rotation of the
14 patterns listed.

For the bundles with six active positions, we can construct canonical
representatives by taking (almost) all possible combinations of two canonical
trail cores with five active positions. We illustrate this with an example.

Example 14.2.2. For activity pattern (1110; 1110) we combine the canonical
trail cores for (1010; 1110) and (0110; 1110) as given by Table 14.1. This
gives b = [1, 0, 3, 0]T + z[0, 1, 1, 0]T = [1, z, 3 + z, 0]T and d = [1, 4, 7, 0]T +
z[2, 1, 3, 0]T = [1 + 2z, 4+ z, 7+ 3z, 0]T.

This results in 255 different bundles, one for each non-zero value of z.
However, for [b,d] to have activity pattern (1110; 1110) the value of z must be
different from 3, 1/2, 4 and 7/3, where x/y denotes x.y−1 in GF(28). Hence,
for a given activity pattern with six active S-boxes, there are 255− 4 = 251
bundles of trail cores.

In general, the number of bundles with a given activity pattern is fully
determined by the Hamming weight of that pattern. The total number of
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trail cores is 232 − 1. Each bundle groups 255 trail cores, so the total number
of bundles is

232 − 1

28 − 1
= 224 + 216 + 28 + 1 .

The bundles with a given activity pattern A with Hamming weight ν ≥ 5
are those with activity patterns B that are zero in the positions where A
is zero, minus the bundles with those activity patterns B that differ from
A. The former is 255ν−5 and the latter correspond to activity patterns with
smaller Hamming weight. This allows the number of bundles to be computed
recursively. To build the canonical trail cores for a given activity pattern
with Hamming weight ν takes the linear combination of ν − 4 canonical trail
cores with weight 5. Each of these has ν − 4 positions that cannot become 0.
There remain four positions that can become zero and hence these must be
excluded. If we denote the number of bundles for an activity pattern with x
active S-boxes by BN(x), we have

BN(5) = 1

BN(6) = 255−
(
4

1

)
BN(5) = 251

BN(7) = 2552 −
(
4

1

)
BN(6)−

(
4

2

)
BN(5) = 64, 015

BN(8) = 2563 −
(
4

1

)
BN(7)−

(
4

2

)
BN(6)−

(
4

3

)
BN(5) = 16, 323, 805

The number of trails with ν active S-boxes is(
8

ν

)
255BN(ν)127ν .

This results in a total of about 2.8× 1026 trails.

14.3 Conditions for a Trail Core to Extend to a Trail

A trail core [b,d] extends to a trail in differential (a, e) if both (a,b) and

(d, e) are differentials over SubBytes with DP(s) > 0. We will now study the
conditions this imposes on the trail cores within a bundle.

14.3.1 The Naive Super Box

We will first study a simplified version of the super box, where we remove
the affine mapping from the SubBytes S-box. We call this the naive super
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box. Assume we have a differential (a, e) and a bundle B([b,d]) compatible
with it. We can formulate conditions for a trail core γ[b,d] in this bundle to
extend to a trail in the differential.

We denote by DP(i)(a,b) the differential probability of (a,b) over four
parallel applications of the multiplicative inverse in GF(28). We have from
Corollary 14.1.2

DP(i)(a, γb) > 0 ⇔
{
Tr((aibiγ)

−1) = 0
ai = 0 iff bi = 0

, 0 ≤ i < 4, (14.7)

and

DP(i)(d, γe) > 0 ⇔
{
Tr((dieiγ)

−1) = 0
ai = 0 iff bi = 0

, 0 ≤ i < 4. (14.8)

In these equations ai, bi, di and ei are constants and γ is a variable.

Let x be γ−1 and let V be the set of constants (aibi)
−1 where ai (and bi)

are non-zero and (diei)
−1 where di (and ei) are non-zero. The equations now

become

DP(a, γb, γd, e) > 0 ⇔ Tr(Vjx) = 0 for all j. (14.9)

Thanks to the linearity of the trace map over GF(2), the solution space
of Tr(V0x) = 0 is a vector space of dimension 7 over GF(2). The intersection
of Tr(V0x) = 0 and Tr(V1x) = 0 is a vector space of dimension 6 or 7.
If the dimension is 7, this implies V0 = V1. In general, the dimension of
the intersection of a system of equations Tr(Vjx) = 0 is equal to 8 − α
with α the dimension of the vector space generated by the elements Vj . For
example, the solution space of Tr(V0x) = Tr(V1x) = Tr(V2x) = 0 with
V0 = V1 = V2 = V0 has dimension 6 if V2 = V0 + V1 and dimension 5
otherwise. The number of non-zero solutions equals 28−α − 1.

14.3.2 Sharp Conditions and Blurred Conditions

If we consider differentials over SubBytes then we have to take into account
the effect of the linear transformation Li in the Rijndael S-box. In order to
determine the number of trail cores [b,d] that may lead to a given output
difference e, it suffices to replace V by

Va = {(d0Li(e0))
−1, (d1Li(e1))

−1, (d2Li(e2))
−1, (d3Li(e3))

−1} . (14.10)

We call the corresponding conditions on γ the sharp conditions on trails.

When determining the number of trail cores [b,d] that may result from
a given input difference a, (14.7) becomes

Tr((aiLi(γbi))
−1) = 0 , 0 ≤ i < 4 .

Equations of this type cannot easily be reworked and are hard to analyze.
Therefore we call these conditions the blurred conditions.
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14.4 Number of Trail Cores in a Bundle Extending to a
Trail

The number of trail cores in a bundle B([b,d]) that extend to trails in a given
differential (a, e) is the number of γ values that satisfy the sharp conditions
due to (γd, e) over SubBytes and the blurred conditions due to (a, γb) over
SubBytes. In this section we first derive formulas to estimate the number of
trails in B([b,d]) for the special case of a differential with one active S-box
in the first round. Then we will derive formulas for the general case.

14.4.1 Bundles with One Active S-Box in the First Round

Consider a differential (a, e) with activity pattern (1000; 1111). There is a
single bundle B([b,d]) with b = [1, 0, 0, 0]T and d = [2, 1, 1, 3]T. The sharp
conditions become

Tr((2Li(e0))
−1γ−1) = 0

Tr((Li(e1))
−1γ−1) = 0

Tr((Li(e2))
−1γ−1) = 0

Tr((3Li(e3))
−1γ−1) = 0 .

If e = [L(z/2), L(z), L(z), L(z/3)]T with z a non-zero value, then Va =
{z−1}. This implies α = 1 and hence there are 127 trail cores satisfying
the sharp conditions.

The presence of the blurred condition does not allow us to determine the
number of trails from just the values of a0 and e. However, for a given e,
we can say something about the distribution of the number of trails over the
values of a0. To obtain that distribution, we model the effect of the blurred
condition as a sampling process.

The space sampled is the set of 255 trail cores B([b,d]). Of these 255
trail cores, 127 satisfy the blurred condition and the remaining 128 do not.
We call the former the good ones and the latter the bad ones. The joint sharp
conditions take a sample with size 28−α−1. This gives rise to a hypergeometric
distribution H(Nt;n,m,N) [148] with the following parameters:

– Number of ways for a good selection n = 127.

– Number of ways for a bad selection m = 255− 127 = 128.

– Sample size N : 28−α − 1.

In [148] we can read that this distribution has mean

E [Nt] =
n

m+ n
N =

127

255
(28−α − 1),
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and variance

σ2(Nt) =
mnN(m+ n−N)

(m+ n)2(m+ n− 1)
=

128× 127(28−α − 1)(256− 28−α)

2552254
.

14.4.2 Any Bundle

A differential (a, e) imposes on γ a number of sharp conditions, determined
by e and d, and a number of blurred conditions, determined by a and b.
Following (14.10), the sharp conditions state that γ−1 has to be orthogonal
to

Va = {v0, v1, v2, v3},
with v−1

i = diLi(ei). The parameter α is defined as the dimension of Va.
Hence γ−1 is in a vector space of dimension 8− α ranging from 4 to 7.

The number of blurred conditions is denoted by β, and given by the
number of different non-zero elements in the following set of couples:

{(a0, b0), (a1, b1), (a2, b2), (a3, b3)}.
For the vast majority of differentials, β equals the number of active S-boxes
in a. β is smaller only when two ai values are the same and the corresponding
bi in the bundle are also equal. Hence a reduction of β occurs much less often
than a reduction of α. Both α and β range from 1 to 4.

We can now generalize the approach of Sect. 14.4.1 to determine the
distribution of Nt over all bundles with given values of α and β.

Lemma 14.4.1. If the blurred conditions are independent, the number of
trails in the bundle B([b,d]) is a stochastic variable with expected value and
variance given by

E [Nt] =

(
127

255

)β

(28−α − 1) , (14.11)

σ2(Nt) = E [Nt]×
[
1−

(
127

255

)β

+ (28−α − 2)

((
63

127

)β

−
(
127

255

)β
)]

.

(14.12)

Proof. We generalize the sampling model introduced in Sect. 14.4.1. The
space sampled is now the set of β-component vectors where each of the com-
ponents can take any non-zero value in GF(28). There are 255β such vectors.
In a good selection the first component satisfies the first condition, the sec-
ond component satisfies the second condition and so on. There are 127β such
vectors. This gives rise to a hypergeometric distribution H(Nt;n,m,N) with
the following parameters:
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Table 14.2. Mean of the number of trails for a differential given α and β

α, β 1 2 3 4
1 63.25 31.50 15.69 7.81
2 31.38 15.63 7.78 3.88
3 15.44 7.69 3.83 1.91
4 7.47 3.72 1.85 0.92

Table 14.3. Variance of the number of trails for a differential given α and β

α, β 1 2 3 4
1 16.00 15.89 10.86 6.38
2 11.91 9.85 6.11 3.40
3 6.83 5.33 3.19 1.73
4 3.54 2.70 1.59 0.85

– Number of ways for a good selection n = 127β .

– Number of ways for a bad selection m = 255β − 127β .

– Sample size N : 28−α − 1.

Filling in these values of n,m and N in the expressions for the mean yields
(14.11) and in the expressions for the variance yields (14.12). ��

The numerical values computed with these formulas are given in Ta-
ble 14.2 and Table 14.3. We have conducted a large number of experiments
that confirm the mean and variance predicted by (14.11) and (14.12) for any
combination of α and β.

14.4.3 Experimental Verification

We have experimentally verified the distributions of the number of trails
per differential for all 16 combinations of α and β. For the combination of
(α, β) equal to (1, 1), (2, 1), (3, 1), (4, 1) and (1, 2) we were able to do this
exhaustively, covering all possible cases. As a side result we found for these
values of (α, β) the minimum and maximum values for the number of trails
per differential, which are listed in Table 14.4.

For the other values of (α, β), the number of combinations becomes too
large to compute exhaustively. Still, our sampling experiments confirm the
shape predicted by formulas (14.11) and (14.12). As α and β grow, the mean
and variance of the distributions shrink. Clearly, the majority of differen-
tials with five active S-boxes and α = 1 and β = 1 have more trails than
any differential with five active S-boxes where α + β has a higher value.
Figure 14.2 depicts the four distributions for β = 1 on a logarithmic scale.
The distributions appear as slightly skewed parabolas, the typical shape of
hypergeometric distributions.
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Table 14.4. Minimum and maximum number of trails in differentials with five
active S-boxes given (α, β)

(α, β) minimum maximum
(1, 1) 48 82
(2, 1) 14 48
(3, 1) 3 29
(4, 1) 0 15
(1, 2) 10 56
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0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85

Fig. 14.2. Distributions of the number of trails per differential for β = 1 and for
α ranging from 4 (leftmost) to 1 (rightmost)

14.5 EDP of a Bundle

The distributions for the number of trail cores in a bundle that extend to
trails in a differential can be converted to distributions of the EDP contribu-
tion of a bundle to that differential by taking into account the EDP of the
trails. The EDP of a trail is the product of the DP values of its active S-box
differentials. If we apply Sect. 14.1 to the Rijndael S-box, we see that for an
S-box differential with given input (output) difference, there are 126 output
(input) differences with DP = 2−7 and a single output (input) difference with
DP = 2−6 = 2× 2−7. We call the latter a double differential. It follows that
the EDP of a trail is 2m2−7s with s the number of active S-boxes and m the
number of double differentials. One could say that the presence of m double
differentials multiplies the EDP of the trail by a factor 2m.
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A trail core γ[b,d] has a double differential in the ith S-box of the first
round if and only if

γbi = L(ai
−1) ⇔ γ = (bi)

−1
L(ai

−1). (14.13)

The condition for a double differential in the second round is:

γdj = Li(ej)
−1 ⇔ γ = (djLi(ej))

−1
. (14.14)

Hence each double differential occurs in exactly one trail core of the bundle.
Two observations can be made here.

14.5.1 Multiple Solutions

The EDP of a trail core γ[b,d] increases with the number of equations in
(14.13) and (14.14) that it satisfies, provided it extends to a trail. Consider
for example a differential with five active S-boxes. There are seven different
cases, with the following two as extremes:

‘Poker’: the double differentials are all in the same trail core,

‘No Pair’: the double differentials occur in five different trail cores.

The other five cases are ‘One Pair’, ‘Two Pairs’, ‘Three of a Kind’, ‘Full
House’ and ‘Four of a Kind’. The occurrence of these cases is related to the
values of α and β. The number of different solutions for (14.14) equals the
number of different elements in Va. If α is 1 or 4, this number is equal to α. If
α is 2 or 3 and the number of active S-boxes in e is higher than α, the number
of solutions can also be α + 1. The number of solutions for (14.14) usually
equals β, but it can also be smaller. It follows that the double differentials
tend to cluster together if α and β are small.

In any case, for a given input difference a there can be at most one output
difference e with all double differentials in the same trail.

14.5.2 Occurrence in Trails

The solutions of (14.13) and (14.14) still have to satisfy the remaining sharp
conditions and blurred conditions in order for the trail core to extend to a
trail. Clearly, the expected number of trail cores satisfying the remaining con-
ditions decreases when there are more conditions, i.e. when α and β increase.
A ‘Poker’ trail core, i.e. one in which the differentials over all active S-boxes
are double, always extends to a trail.
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14.5.3 How Li Makes a Difference

If we remove Li from the S-box, the set of blurred conditions is replaced by a
second set of sharp conditions. The number of trails in a bundle is then given
by 28−α − 1, with 1 ≤ α < 8. The maximum EDP occurs for differentials
with five active S-boxes and α = 1. There are 56 × 255 such differentials in
the super box. For these, the double differentials are in the same trail and
hence the EDP is equal to 25 × 2−35 + 126× 2−35 = 19.75× 2−32, where for
Rijndael this is 13.25× 2−32 [80].

14.6 EDP of a Differential

Differentials with five active S-boxes contain only a single bundle, hence they
are covered by the previous sections. For differentials with more active S-
boxes, there are more bundles. Given a differential (a, e), we can compute
for each of its bundles the value of (α, β). With α and β we can estimate the
number of trails in a bundle by the mean and variance of its distribution.
The mean number of trails in a differential is the sum of the mean number
of trails in these bundles. For the variance of the number of trails, the sum
of the variances in the bundles gives a good idea.

The values of the differences a and e determine the distribution of α and
β over the different bundles in the differential (a, e). As the number of active
S-boxes grows, the analysis becomes more and more involved. Therefore we
start with an example.

14.6.1 Differentials with Activity Pattern (1110; 1110)

There are in total 251 bundles with activity pattern (1110; 1110). The dis-
tribution of α over the 251 bundles in (a, e) is completely determined by e,
or more specifically, by the couple (Li(e1)/Li(e0), Li(e2)/Li(e0)). Table 14.5
lists the seven distributions that are possible and gives for each of them the
number of output differences e for which they occur.

The distribution of β depends on the values of a0, a1 and a2. If they
are three different values, then β is equal to 3 for all bundles. For this case,
Table 14.5 gives the theoretical mean and standard deviation of the number
of trails (assuming independence between the bundles). If two of the values
a0, a1 and a2 are equal, then β will be 2 for at most one bundle and 3 for
all other bundles. If they are all three equal, then either β will be 2 for at
most three bundles, or β will be 1 for at most one bundle and 3 for all other
bundles.

In principle, the distributions for α and β combine to form a two-
dimensional distribution. In the worst case, the small values of β occur in
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Table 14.5. Distribution of α for differentials with activity pattern (1110; 1110)

α distribution # couples mean standard deviation
(Li(e1)/Li(e0),

α = 3 α = 2 α = 1 Li(e2)/Li(e0)) theory experim.

250 1 0 21 965.2 28.42 25.65
249 2 0 1501 969.1 28.47 25.14
248 3 0 31170 973.1 28.53 25.15
247 4 0 2175 977.0 28.58 25.16
246 5 0 29907 981.0 28.63 25.23
250 0 1 3 973.1 28.42 23.28
249 1 1 248 977.0 28.47 25.01

bundles with a small value of α. All in all, there are only few bundles where
β is smaller than 3, hence we can approximate by working with β = 3 for all
bundles.

We have experimentally verified this theory by computing the number of
trails for a large set of differentials with six, seven and eight active S-boxes.
The measured mean values coincide with the theoretically predicted values.
The measured standard deviations, also listed in Table 14.5, are systemati-
cally smaller than the theoretical ones, implying that the numbers of trails
in the bundles of a differential are not independent.

14.6.2 A Bound on the Multiplicity

In Sect. 14.2.2 we have shown that the bundles with activity pattern
(1110; 1110) can be enumerated by b = [1, z, 3+ z, 0]T and d = [1 + 2z, 4+
z, 7+ 3z, 0]T with z different from 0, 3, 1/2, 4 and 7/3.

Lemma 14.6.1. If two double differentials occur in the same trail core of
one bundle with activity pattern (1110; 1110), then they occur in different
trail cores for the 250 other bundles with the same activity pattern.

Proof. Assume we have a bundle where the double differentials in the first
and the second S-box of the second round occur in the same trail core. Then
we have from (14.14):

((1+ 2z)Li(e1))
−1 = ((4+ 7z)Li(e2))

−1 .

This equation is linear in z and has at most one solution. Hence the double
differentials cannot be in the same trail core for any other bundle. The same
holds for any other pair of active S-box positions. ��

The expected contribution of the double differentials to the EDP of a
differential is maximum when there is a bundle in which they are all six in
the same trail. This trail contributes 64×2−42 to the EDP of the differential.
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Lemma 14.6.1 implies that in the remaining 250 bundles, there can be no
trails with more than one double differential. Hence each of these bundles
will contribute at most (Nt +min(6,Nt))2

−42 to the EDP of the differential.
On the average the presence of the double differentials makes the contribution
of these trails only rise from Nt2

−42 for the hypothetical case where no double
differentials exist to (132/127)Nt2

−42.

We conclude that for this type of differential, the distribution of the EDP
values is much more centered around its mean value than is the case for dif-
ferentials with five active S-boxes. This is mainly due to the fact that the
distribution of the EDP of the differential is the convolution of the distri-
butions of many bundles. Moreover, Lemma 14.6.1 implies that the different
bundles compensate for one another.

The same phenomenon can be observed for the other types of differentials
with six active S-boxes. For differentials with seven or eight active S-boxes
the average number of trails is even much higher and the EDP values much
smaller. Furthermore, the individual trails all have very small EDP values.
This all means that the EDP values of differentials with six or more active
S-boxes have a very narrow distribution.

14.7 Differentials with the Maximum EDP Value

The maximum EDP value obtained in [80] occurs for exactly 12 differentials
over the Rijndael super box. Due to the rotational symmetry of the Rijndael
super box, they come in three sets, where the differentials in a set are just
rotated versions of each other. It is no surprise that they are differentials
with five active S-boxes, where the deviations from the average value 2−32

are largest. Moreover, they have α = 1 and β = 1 for which the expected
number of trails is the highest over all differentials with five active S-boxes,
as is clear from Figure 14.2 in Sect. 14.4.3. The differentials are the following:(

[x, 0, 0, 0]T, [L(y/2), L(y), L(y), L(y/3)]T
)
,(

[x, x, 0, 0]T, [L(y), L(y/3), 0, L(y/2)]T
)
,(

[x, x, x, 0]T, [0, 0, L(y/2), L(y/3)]T
)
,

with x = 75 and y = 41. For these differentials, the number of trails is 75:
74 trails with EDP 2−35 and one with EDP 2−30, resulting in EDP value
2−30 + 74 × 2−35 = 13.25 × 2−32. Clearly all five double differentials are in
the same trail. Note that there are differentials with five active S-boxes that
have 82 trails (see Sect. 14.4.3) but these have a lower EDP value due to the
fact that the double differentials are not in the same trail.

To prove the correctness of the maximum EDP value, [80] uses so-called
5-lists, a concept similar to, but different from, the bundles defined in this
chapter. Both bundles and 5-lists group sets of 255 b-differences. Bundles
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with five active S-boxes correspond to the 5-lists of type 1. In bundles with
more than five active S-boxes the ratios between the components of the trail
cores are fixed, while in 5-lists of type 2, a number of components of the
trail cores are fixed. Their goal is also different: the concept of 5-lists helps
in efficiently finding bounds, while bundles help us to gain insight into the
distribution of trails in differentials.

14.8 Conclusions

The Rijndael super box can be compared with an idealized keyed 32-bit map
constructed as a family of 232 randomly selected permutations (one permu-
tation for each value of the key). In this idealized model, the distribution of
the EDP over all differentials (a,b) with both a and b different from zero
has a normal distribution with expected value 2−32 and standard deviation
2−47.5.

The Rijndael super box differentials deviate from the idealized model:
differentials with four or fewer active S-boxes have EDP = 0, and differentials
with five active S-boxes can have EDP values as large as 13.25×2−32 [80]. Our
results on differentials with six active S-boxes indicate that for differentials
with six or more active S-boxes the distribution of the EDP is very narrowly
centered around 2−32. Further analysis can lead to strict bounds.

Clearly, the linear transformation Li in the Rijndael S-box does not influ-
ence the DP(s) histograms of S-box differentials and the bounds on the EDP
of trails. Our results explain how the presence of Li influences the EDP of
two-round differentials.

Bounds on the EDP of two-round differentials can be used to derive
bounds on the EDP of four-round differentials [79]. Our results allow us
to describe the full distribution of the EDP of two-round differentials. We
expect that this information can be used to derive sharper bounds on the
EDP of four-round differentials.



15. Plateau Trails

This chapter is based on our work in [50] and [51]. It has been reported
before that the fixed-key probability of trails depends on the value of the key
[14, 38, 6]. We define plateau trails, where the dependency on the value of the
key is very structured. The fixed-key probability of these trails is either zero
or 2h, with h a value that depends only on the trail and not on the key. We
show that for a large class of ciphers, all two-round trails and a fraction of
the more-round trails are plateau trails. This fraction is very close to 100%
for Rijndael. Our results show that the distribution of the key-dependent
probability DP[k] is not narrow and hence the widely made assumption that
it can be approximated by the EDP is not justified.

Applying our results to Rijndael, we see that for almost all values of the
key there are two-round trails with a fixed-key probability equal to 32/232,
while the EDP of two-round trails is at most 4/232 (cf. Sect. 9.5) and the
EDP of two-round differentials [93] is at most 13.25/232 (cf. Chap. 14 and
[80, 126, 127]).

15.1 Motivation

When we examine the resistance of Rijndael and related ciphers against dif-
ferential cryptanalysis, we cannot ignore the difference between the fixed-
key probability (DP) of trails and their average probability (EDP). For in-
stance, for trails over four or more rounds, the EDP values are already below
2−150, which is much smaller than the smallest possible non-zero DP-value
(21−nb = 2−127). In this chapter we describe completely the distribution of
DP of all trails over two rounds of Rijndael. We also give results for four and
more rounds. The following example illustrates in a simple way the effects
we want to examine for Rijndael.

Example 15.1.1. Consider the keyed map E[k], defined as

E[k](x) = ρ−1(k+ ρ(x)), (15.1)

where ρ is an arbitrary invertible transformation [59]. Since E[0] is the iden-
tity transformation, for all differences a the differential (a, a) over the map
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E has fixed-key probability DP[0](a,a) = 1. This property holds whatever
value EDP(a,a) takes.

This example is contrived. In practice we do not expect DP[k] to deviate
this strongly from EDP. However, we observe effects that go in this direction.
We found that for several ciphers, including Rijndael, DP[k] has a distribution
with a surprisingly rich structure.

15.2 Two-Round Plateau Trails

For a large class of ciphers, two-round trails have a DP[k] that can take only
two values.

15.2.1 Planar Differentials and Maps

As customary, we consider ordered pairs of inputs [26], but we denote them
using curled braces ‘{}’ in order to avoid confusion with differentials. Let
F(a,b) denote the set containing the inputs x for which the pair {x,x + a}
follows the differential (a,b) over an unkeyed map. Let G(a,b) denote the set
containing the corresponding outputs. Similarly, let FQ[k] denote the set con-
taining the inputs x for which the pair {x,x+a} is a pair that follows the trail
Q over a keyed map. Let GQ[k] denote the set containing the corresponding
outputs. We introduce the concept of planar differentials.

Definition 15.2.1. A differential (a,b) is planar if F(a,b) and G(a,b) form
affine subspaces:

F(a,b) = u+ U(a,b)

G(a,b) = v + V(a,b)

with U(a,b) and V(a,b) vector spaces, u any element in F(a,b) and v any ele-
ment in G(a,b).

If F(a,b) contains an element x, then it also contains x+ a. Hence if F(a,b) is

not empty, then a ∈ U(a,b). The number of elements in F(a,b) is 2
dim(U(a,b)), so

dim(U(a,b)) = nb −wr(a,b). Similarly, we have b ∈ V(a,b) and dim(V(a,b)) =
nb − wr(a,b). We can now prove the following lemmas.

Lemma 15.2.1. A differential (a,b) that is followed by exactly two pairs is
planar.

Proof. Denote the pairs by {p,p+ a}, {p+ a,p}. The elements p and p+ a
form an affine subspace of dimension 1 with offset u = p and the basis of
U(a,b) equal to (a). A similar argument is valid for the elements of the pairs
at the output. ��
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Lemma 15.2.2. A differential (a,b) that is followed by exactly four pairs is
planar.

Proof. Denote the inputs of the pairs by p,p + a,q and q + a. These four
elements lie in an affine subspace of dimension 2 with offset u = p and the
basis of U(a,b) equal to (a,p+q). A similar argument is valid for the elements
of the pairs at the output. ��

Lemma 15.2.3. Any differential with DP = 1 is a planar differential.

Proof. F(a,b) and G(a,b) form the complete input space and output space
respectively. ��

Examples of differentials with DP = 1 are the trivial differential (0, 0)
and differentials over linear maps. If DP(a,b) = 2t−nb , with t ∈ {1, 2, nb},
the differential may or may not be planar.

Definition 15.2.2. A map is planar if all differentials over it are planar.

Any map for which all non-trivial differentials have DP(a,b) ≤ 22−nb is
planar. Such maps are called differentially 4-uniform [120]. Now we give two
lemmas on planar differentials over composed maps. The first lemma applies
for instance to a substitution step in a block cipher, consisting of the parallel
application of some S-boxes.

Lemma 15.2.4. Let y = α(x) be a map consisting of a set of parallel maps
yi = αi(xi) with x = (x0,x1, . . . ,xt) and y = (y0,y1, . . . ,yt). A differential
(a,b) for which the differentials (ai,bi) are planar, is planar.

We have

U(a,b) = U(a0,b0) × U(a1,b1) × · · · × U(at,bt)

V(a,b) = V(a0,b0) × V(a1,b1) × · · · × V(at,bt)

with × denoting the direct product. The following lemma applies to a se-
quence of maps.

Lemma 15.2.5. If (a,b) is a planar differential of α, then for any pair of
affine maps L1 and L2 with L1 invertible, the differential (L1(a), L2(b)) is
planar over L2 ◦ α ◦ L−1

1 .

Examples of ciphers in which single-round differentials are planar are Rijndael,
but also 3-Way [43], SHARK (Sect. 11.2), Square (Sect. 11.3), Camellia [7],
Serpent [4] and Noekeon [46]. Some other popular maps that are planar are
the bitwise majority function f(x,y, z) = xy + xz + yz and the bitwise ‘if’
function g(x,y, z) = xy + (¬x)z.
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15.2.2 Plateau Trails

Similar to the concept of plateaued functions [150], for which the Walsh
spectrum takes only two values (in absolute value), we introduce here plateau
trails as trails for which the DP[k] takes only two values (where one value is
always zero). The height of a plateau trail determines how high the non-zero
DP[k] value of the plateau trail is.

Definition 15.2.3. A trail Q is a plateau trail with height height(Q) if and
only if the following holds:

1. For a fraction 2nb−(wr(Q)+height(Q)) of the keys, DP[k](Q) = 2height(Q)−nb ,
and

2. For all other keys, DP[k](Q) = 0.

The height of a plateau trail can be bounded as follows. Firstly, height(Q) ≤
nb. Secondly, height(Q) is maximal when all but one key have DP equal
to zero. Denoting the number of keys by 2nκ , we obtain that in this case
the EDP equals 2−nκ times the non-zero DP value. Taking the logarithm,
we obtain −wr(Q) = −nκ + height(Q) − nb. Hence, we have in all cases
height(Q) ≤ nκ + nb − wr(Q). We can now prove the following result on an
nb-bit map consisting of two steps and an addition with an nb-bit key in
between (hence nκ = nb).

Theorem 15.2.1 (Two-Round Plateau Trail Theorem). A trail Q =
(a,b, c) over a map consisting of two steps with a key addition in between,
and in which the differentials (a,b) and (b, c) are planar is a plateau trail
with height(Q) = dim(V(a,b) ∩ U(b,c)).

Proof. The proof is based on geometrical arguments. For pairs that follow
the trail the values at the output of the first step are in G(a,b). The values
at the input of the second step are in F(b,c), or equivalently, the values at
the output of the first step are in k+F(b,c). It follows that the values at the
output of the first step are in

H = G(a,b) ∩ (k+ F(b,c)) .

Since both differentials are planar, there exist offsets u,v such that

H = (v + V(a,b)) ∩ (k+ u+ U(b,c)) ,

with V(a,b) and U(b,c) vector spaces. We start by deriving the condition that
H is non-empty. First we translate the affine subspaces in the equation by
the vector v:

v +H = V(a,b) ∩ (k+ u+ v + U(b,c)) .
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v+H is a translated version of H and has the same number of elements. Now
v + H is non-empty iff there is a vector x ∈ V(a,b) and a vector y ∈ U(b,c)

such that x = k+ u+ v + y or formally, iff

∃x ∈ V(a,b),y ∈ U(b,c) : k+ u+ v = x+ y .

This is equivalent to saying that (k+u+ v) ∈ (V(a,b) +U(b,c)). If we denote
u + v + (V(a,b) + U(b,c)) by KQ, this corresponds to saying that H is non-
empty iff k ∈ KQ. Consider now the case that H is non-empty and let w
be an element of H. Clearly, w is an element of both G(a,b) and k + F(b,c).
It follows that w + k + F(b,c) = U(b,c) and hence G(a,b) = w + V(a,b) and
k+ F(b,c) = w + U(b,c). We have

H = (w + V(a,b)) ∩ (w + U(b,c)) .

Translation by w yields

w +H = V(a,b) ∩ U(b,c) .

Let WQ = V(a,b) ∩ U(b,c). The number of pairs in H is 2dim(WQ) if k ∈
KQ and zero otherwise. The number of elements in KQ is determined by
the dimension of V(a,b) + U(b,c). We use the subspace dimension theorem:
dim(U) + dim(V ) = dim(U + V ) + dim(U ∩ V ). This gives

dim(V(a,b) + U(b,c)) = dim(V(a,b)) + dim(U(b,c))− dim(V(a,b) ∩ U(b,c))

= (dim(V(a,b)) + dim(U(b,c)))− dim(V(a,b) ∩ U(b,c))

= (2nb − wr(Q))− dim(WQ)

If we now denote height(Q) = dim(WQ), we have DP(Q) = 2height(Q)−nb for
22nb−wr(Q)−height(Q) keys on the total number of 2nb keys, and zero for all
other keys. ��

This theorem is valid for all ciphers in which single-round differentials
are planar and round keys are applied with XOR. This includes all ciphers
mentioned in Sect. 15.2.1.

Like any other trail, a plateau trail has EDP(Q) = DP(a,b)DP(b, c) =
2−wr(Q). Only if height(Q) = nb − wr(Q), it holds that DP[k](Q) = EDP(Q)
for all keys. This can only be the case for trails with wr(Q) < nb.

15.2.3 Plateau Trails in Super Boxes

Let Q be a plateau trail in a super box where the linear map has the maximal
branch number, i.e. nt +1. Then we can prove the following upper bound on
height(Q).
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Theorem 15.2.2. Let Q be a plateau trail over a super box. Let the sets γj
denote all possible selections of nt S-boxes from the super box. Then

height(Q) ≤ nb −max
j

⎛
⎝∑

i∈γj

wr(xi,yi)

⎞
⎠ ,

where (xi,yi) denotes a differential over an S-box.

Proof. Since height(Q) = dim(V(a,b)∩U(d,e)), we have height(Q) ≤ dim(V(a,b)).
Taking for γ1 the selection of the nt S-boxes of the first step, we have from
Definition 15.2.1:

dim(V(a,b)) = nb − wr(a,b) = nb −
nt∑
i=1

wr(ai,bi) . (15.2)

Secondly, observe that the vectors (b,d)T = (b,M(b))T are code vectors of a
linear code over GF(2ns) with length 2nt and dimension nt. Since the branch
number of M equals nt + 1, the minimal distance between code vectors is
nt + 1, hence the code is MDS. Any nt symbols of the codewords may be
taken as message symbols [100]. Hence, we can always pick nt out of the
symbols, consider them as the message symbols (input) and compute the
check symbols (output) from them. This leads to the definition of alternative
vector spaces V ′ that bound height(Q) as before. The new definition of input
and output leads to a new definition of input difference a′, output difference
e′ and intermediate differences b′,d′. This in turn leads to a definition of a
new vector space V ′ = Va′,b′ , which bounds height(Q) in the same way as in
(15.2). ��

Hence, given a trail over a super box, one chooses the nt S-box differentials
with the highest weight and adds them. The bound for the height is nb minus
this weight.

Theorem 15.2.3. Consider a super box with nt = 4. Then we have the
following bounds on the height of trails where all active S-boxes have weight
ns − 1:

5 active boxes: height(Q) ≤ 3

6 active boxes: height(Q) ≤ 2

7 or 8 active boxes: height(Q) = 1.

The theorem can be proven by going through all possibilities and counting.
There is also a link to the existence of codes: a trail with i active boxes and
height h exists only if there is a binary linear code with length i, distance
i− 3 and dimension h that contains the vector (1, 1, 1, . . . , 1).
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15.3 Plateau Trails over More Than Two Rounds

In this section we derive conditions for trails over more than two rounds to
be plateau trails. For ciphers with a Rijndael-like block structure (Rijndael,
Square, SHARK, . . . ), the results of this section cover the majority of the
trails. For ciphers without the block structure (3-Way, Serpent, Noekeon,
. . . ), only a small fraction of the trails is covered.

We can extend the planar property of differentials to trails.

Definition 15.3.1. A trail Q is input-planar (respectively output-planar) if
for all values of the key it holds that FQ[k] (respectively GQ[k]) is either ∅ or
an affine subspace.

Lemma 15.3.1. Plateau trails with height 1 or 2 are both input-planar and
output-planar.

Proof. Let Q be a plateau trail. Then FQ[k] = GQ[k] = ∅ or #FQ[k] =
#GQ[k] = 2height(Q). If height(Q) is 1 or 2, then the proofs of Lemma 15.2.1
and Lemma 15.2.2 can be extended to the case of trails. ��

For a cipher with S-boxes that are differentially 4-uniform or differentially
2-uniform we have the following result.

Theorem 15.3.1 (Planar Trail Extension Theorem). Let Q = (Q1,qn)
be a trail composed of an output-planar trail Q1 = (q0, . . . ,qn−1), followed by
a (one-step) differential (qn−1,qn). If all S-boxes in (qn−1,qn) are active,
then Q is output-planar.

Proof. In this proof, we drop [k] from the notation, which we illustrate in
Fig. 15.1. If we look at the output of Q1, the elements of the pairs that
follow Q1 form the affine subspace VQ1

. Since the differential (qn−1,qn) is
planar, the elements of the pairs that follow Q form an affine subspace H =
VQ1

∩ U(qn−1,qn). We denote by Hi, 0 ≤ i < nt, the projection of H onto
the coordinate i: Hi contains the inputs of one S-box in the last step, for
the pairs that follow Q. Since Hi is a projection of an affine subspace, it is
also an affine subspace. We denote by Oi the corresponding outputs of the
S-box. The set Oi is nothing else than the projection of the set GQ onto the
coordinate i.

Since the S-boxes are differentially 4-uniform (or 2-uniform), Hi and Oi

contain one, two or four elements and Oi is also an affine subspace. Using
Lemma 15.2.4, we conclude that GQ is also an affine subspace. ��

Note that this theorem also holds for a trail composed of a planar differ-
ential in which all S-boxes are active followed by an input-planar trail. Planar
plateau trails can be composed to plateau trails. Theorem 15.2.1 can easily
be extended.
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Q1 (qn−1,qn)
FQ1 −→ GQ1 F(qn−1,qn) −→ G(qn−1,qn)

H = GQ1 ∩ F(qn−1,qn) −→ GQ ⊆ G(qn−1,qn)

proj. ↓ ↓ proj.
Hi −→ Oi

Fig. 15.1. Notation used in the proof of Theorem 15.3.1

Theorem 15.3.2 (Planar Trail Composition Theorem).
Let Q = (q0,q1, . . . ,qi−1,qi, . . . ,qn) be a trail over a map consisting of n
steps with a key addition as ith step. If the trails Q1 = (q1,q2, . . . ,qi−1)
and Q2 = (qi, . . . ,qn) are plateau trails with Q1 output-planar and Q2 input-
planar, then Q is a plateau trail with height(Q) = dim(VQ1

∩ UQ2
).

The proof is similar to the proof of Theorem 15.2.1. From this theorem follows
this corollary.

Corollary 15.3.1. Let Q = (Q1,qn) be a trail composed of a trail Q1 =
(q0, . . . ,qn−1), followed by a (one-round) planar differential (qn−1,qn). If
Q1 is a plateau trail with height 1 or 2, then Q is a plateau trail.

This is a special case of Theorem 15.3.2: according to Lemma 15.3.1, Q1 is
output-planar and the differential can be seen as a (one-round) input-planar
plateau trail.

This extension of a plateau trail by a single round can be performed
iteratively: an r-round plateau trail with height 1 or 2 can be extended by an
arbitrary number of rounds, as long as the appended differentials are planar.

Plateau trails with height larger than 2 are in general neither input-planar
nor output-planar. For instance, assume that we have a plateau trail Q con-
sisting of an output-planar trail Q1 followed by an input-planar trail Q2 with
Q = (Q1,Q2). Then it follows from the proof of Theorem 15.2.1 that the ele-
ments of the pairs that follow Q form an affine subspace H at the junction of
Q1 and Q2. The set H is transformed into the set GQ[k] at the output. GQ[k]
is a subset of GQ2

[k]. GQ2
[k] is an affine subspace, but GQ[k] in general is

not an affine subspace.

15.4 Further Observations

15.4.1 Effect of the Key Schedule

When we consider more than two rounds, the round keys are typically not
independent. They are related by means of the key schedule. The key schedule
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doesn’t change whether a trail is a plateau trail. The only visible effect of
the key schedule is on the size of the set KQ, which contains the keys for
which DP[k](Q) > 0 (see the proof of Theorem 15.2.1). The key schedule
determines which values are possible for the expanded key. If relatively many
of the expanded keys are in KQ, then the average of DP[k](Q) will be larger
than EDP(Q).

15.4.2 Impact on the DP of Differentials

The dependence of the DP of trails on the key value means that the DP
of differentials also depends on the key. Assume we have a differential for
which all trails are plateau trails. If we denote the trails that contribute to a
differential (a,b) by Qi we have

DP[k](a,b) = 2−nb

∑
i|k∈KQi

2height(Qi) . (15.3)

Hence this value varies per key k depending on the number of affine subspaces
KQi

it is in.

15.5 Two-Round Trails in Rijndael

We now apply the results of the previous sections to Rijndael. We also com-
pute the heights of all two-round trails for Rijndael and for a simplified vari-
ant. Since the sequence of two rounds of Square is equivalent to the sequence
of two rounds of Rijndael, the distribution of the heights of trails is the same
in both cases.

15.5.1 Trails in the Rijndael Super Box

A differential trail through the Rijndael super box (cf. Sect. 3.4.5 and
Sect. 14.2) consists of a sequence of five differences: a, b, c, d and e. In
a trail through the Rijndael super box, we always have c = d (so we omit c)
and d = Mcb. We denote these trails by (a,b,d, e).

The Rijndael super box satisfies the criteria of Theorem 15.2.1 and hence
all trails Q in the Rijndael super box are plateau trails. DP[k](Q) can be
described by defining W = V(a,d) ∩ U(d,e) and V(a,d) = Mc(V(a,b)), where
Mc(V ) = {Mcv|v ∈ V }.

Applying Theorem 15.2.2 to Rijndael results in the following bounds. It
holds always that height(Q) ≤ 8. If all active S-boxes have weight 7, then
height(Q) ≤ 4. Only if at most three S-boxes have weight 7, height(Q) can be
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larger than 4. Theorem 15.2.3 further decreases the bounds when all S-boxes
have weight 7.

We have determined the weight and height of all trails over the Rijndael
super box. An overview of the results is given in Table 15.1. Because of the
large number of trails, the entries in the table were not computed by checking
the height of each trail individually. We used the following observations to
speed up the computations. Let Q = (a,b,d, e) be a trail over the super box.

Lemma 15.5.1. For all non-zero a,b: a ∈ U(a,b) and b ∈ V(a,b).

Lemma 15.5.2. For differentials with weight 7 over a single S-box U(a,b) =
{0, a} and V(a,b) = {0,b}.

Hence U(a,b) is independent of the output difference b and V(a,b) of the input
difference a.

Lemma 15.5.3. Let Q′ = (a′,b,d, e′) be a trail in which all S-box differen-
tials have weight 6. Then for all Q = (a,b,d, e),

WQ ⊆ WQ′ .

Proof. Remember that WQ = Mc(V(a,b)) ∩ U(d,e). From Lemma 15.5.1 and
Lemma 15.5.2, we have that V(a,b) ⊆ V(a′,b) and U(d,e) ⊆ U(d′,e). ��

Consequently, it is only needed to check the height of each trail with (a, e)
chosen such that all active S-boxes have weight 6, and then to evaluate the
effect of increasing the weight of the active S-boxes by one. For this last step,
only one out of the 126 possible differences ai, respectively ei, needs to be
tried for each active S-box.

15.5.2 Observations

We see in Table 15.1 that the trail weight ranges from 30 to 56 and the height
from 1 to 5. It follows from the data in the table that the ratio

DP[k](Q)/EDP(Q) = 2height(Q)−32+wr(Q) (15.4)

ranges from 1 to 225. We call trails for which the ratio is 1 flat trails because
for these the equality DP[k](Q) = EDP(Q) holds for all keys. Table 15.1
shows that there are in total 220.9 flat trails: those with weight 30 and height
2, and those with weight 31 and height 1.

The trails for which the ratio is 225 are the trails with weight 56 and
height 1. Only for a fraction 2−32.9 of the trails this ratio is smaller than 225.
Since the sequence of two Rijndael rounds can be described as the parallel
application of four super boxes, it follows that for most trails over two rounds
of Rijndael there are keys with DP[k](Q) = 2100EDP(Q). The trails that are
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Table 15.1. Number of trails (binary logarithm) per number of active S-boxes,
weight and height for the Rijndael super box

No. active trail height
S-boxes weight 1 2 3 4 5

5 30 — 12.6 12.6 10.6 6.2
31 20.9 22.1 21.2 18.1 11.0
32 29.8 30.0 28.2 23.4 —
33 37.1 36.9 33.7 26.4 —
34 43.2 42.9 36.2 — —
35 48.0 47.5 — — —

6 36 20.7 15.6 8.3 3.8 —
37 30.3 24.2 16.3 11.6 —
38 38.6 31.5 23.1 17.5 —
39 46.1 38.1 28.9 — —
40 52.6 44.0 33.4 — —
41 58.3 49.3 — — —
42 62.7 53.4 — — —

7 42 27.0 15.7 5.3 — —
43 36.8 24.3 13.1 — —
44 45.3 31.7 19.5 — —
45 53.1 38.0 24.9 — —
46 60.0 43.5 — — —
47 66.3 48.0 — — —
48 71.7 50.9 — — —
49 75.9 — — — —

8 48 32.0 14.7 1.0 — —
49 41.9 23.7 9.0 — —
50 50.7 31.4 15.0 — —
51 58.7 38.3 — — —
52 66.0 44.5 — — —
53 72.7 49.9 — — —
54 78.7 54.1 — — —
55 83.7 — — — —
56 87.9 — — — —

total 87.9 55.0 36.6 26.6 11.0
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the most interesting for standard differential attacks are the trails with the
lowest weight. They are in the top rows of the table. We see that exactly these
trails have the highest heights, hence the most variation between DP values
for different keys. Trails with height 5 have a DP equal to 32/232, which is
almost three times higher than the maximal EDP of a differential (13.25/232

[80, 126, 127]).

There are 72 trails of height 5 and weight 30. These trails have non-zero
DP[k] for a fraction 232−30−5 = 2−3 of all keys. For a given key this results
in an expected value of nine such trails with DP[k] = 25/232. Similarly, there
are 211 trails of height 5 and weight 31 resulting in an expected value of
27 such trails with DP[k] = 25/232. This totals to an expected number of
137 trails with DP[k] = 25/232 per key for the Rijndael super box. For two
Rijndael rounds, this is 548.

The table shows also that it is easy to find trails Q1,Q2 with EDP(Q1) <
EDP(Q2) and height(Q1) > height(Q2).

15.5.3 Influence of L

If we remove the linear transformation L and the constant q from the S-box,
we obtain a super box with a simpler algebraic structure than the Rijndael
super box (the naive super box ). We computed the heights of all trails over the
naive super box. The results are summarized in Table 15.2. The comparison
with the results in Table 15.1 shows us something about the effect of adding
L. (It can be shown that the choice of q has no impact here.) For instance, we
see that for the naive super box, there are no trails with height 5. Trails where
all active S-boxes have weight 6 always have an even-numbered height, and
those with exactly one S-box with weight 7 always have an odd-numbered
height.

15.6 Trails over Four or More Rounds in Rijndael

Four-round Rijndael can be described with a super box-like structure, where
again nt = 4 but now the elements are 32-bit words [130, 42]. The Rijndael
super boxes we defined before serve now as (key-dependent) S-boxes. A trail
through such a super box-like structure consists of five to eight smaller trails,
each over a Rijndael super box. If the trails over the Rijndael super boxes of
the first step are output-planar and the trails over the Rijndael super boxes
of the second step are input-planar, then according to Theorem 15.3.2 the
four-round trail is a plateau trail. These conditions are fulfilled if the trails
over the Rijndael super boxes

– have height 1 or 2 (by Lemma 15.3.1), or
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Table 15.2. Number of trails (binary logarithm) per number of active S-boxes,
weight and height for the naive super box

No. active trail height
S-boxes weight 1 2 3 4

5 30 — 12.6 — 13.0
31 21.9 — 22.3 —
32 29.9 29.6 28.8 —
33 37.1 37.0 33.5 —
34 43.2 42.9 — —
35 48.0 47.5 — —

6 36 — 20.8 — 12.8
37 30.3 — 22.4 —
38 38.7 30.1 29.0 —
39 46.1 37.7 34.2 —
40 52.6 44.0 — —
41 58.3 49.3 — —
42 62.7 53.4 — —

7 42 — 27.0 — 11.0
43 36.8 — 20.8 —
44 45.3 28.9 27.3 —
45 53.1 36.4 31.9 —
46 60.0 42.4 — —
47 66.3 46.9 — —
48 71.7 — — —
49 75.9 — — —

8 48 — 32.0 — 13.0
49 41.9 — 23.0 —
50 50.7 31.4 29.6 —
51 58.7 39.0 34.7 —
52 66.0 45.3 — —
53 72.7 50.6 — —
54 78.7 54.4 — —
55 83.7 — — —
56 87.9 — — —

total 87.9 55.1 36.0 14.6
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– have four active S-boxes at the output, respectively at the input (by The-
orem 15.3.1).

This implies that most of the four-round trails over Rijndael are plateau trails.
We have not determined the distribution of the heights, but Theorem 15.2.2
and a straightforward generalization of Theorem 15.2.3 apply. Since the over-
whelming majority of the trails over the Rijndael super box have height 1, we
expect that also the vast majority of the trails over four rounds of Rijndael
will have height 1. Corollary 15.3.1 would then imply that the vast majority
of trails over more than four Rijndael rounds are plateau trails with height
1.

15.7 DP of Differentials in Rijndael

The exact distribution of DP[k](a,b) depends on the relative positions of the
affine subspaces KQi

and the height of the trails. Flat trails add a constant
term and do not contribute to the variability. The larger the height of a trail,
the more it contributes to the variability. In the Rijndael super box there is
at most one flat trail per differential with five active S-boxes and none for
differentials with more than five active S-boxes.

Rijndael has no flat plateau trails over four rounds or more, and the vast
majority of trails have height equal to 1. Under the assumption that the
affine subspaces KQi

are independent, the distribution of the DP[k] of any
four-round differential is the convolution of a huge number of distributions
with a high peak in 0 and a very small peak in 2−127. We conjecture that
this gives rise to a Poisson distribution.

15.8 Related Differentials

In this section we define related differences and related differentials. We show
that the existence of related differentials influences the height of the trails
through super boxes, and this is independent of the choice of S-boxes. While
in the previous sections of this chapter, x denoted a binary vector, i.e. with
coordinates in GF(2), in the remainder of this chapter x denotes a vector
with coordinates in GF(28).

15.8.1 Definitions

Definition 15.8.1. Two vectors x, x� each containing nt elements of ns bits
are related if and only if

xjx
�
j (xj + x�

j ) = 0, for j = 0, 1, 2, . . . , nt − 1. (15.5)
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The all-zero vector is trivially related to all vectors, and we exclude it from
now on. If x, x� are two related differences, then the differences x,x+x� are
also related. The following condition is equivalent to (15.5):

xj = 0 or x�
j = tjxj , tj ∈ {0, 1}, j = 0, 1, . . . , nt − 1. (15.6)

Two related differences define a special type of second-order differential [84].
Any second-order differential defines quartets {p,p+ x,p+ x�,p+ x+ x�}.
If the differences x and x� are related, then it follows that the sets

{pj , pj + xj , pj + x�
j , pj + xj + x�

j}, j = 0, 1, . . . , nt − 1

contain only two different elements. This is illustrated in Fig. 15.2. Related
differences can be combined into related differentials.

Definition 15.8.2. Two differentials (b, c), (b�, c�) for a linear map M are
related differentials if and only if c = M(b), c� = M(b�), the differences
b,b� are related differences and the differences c, c� are related differences.

The following differentials are related differentials over the map c = Mcb:

b = [0, 1, 4, 7]T, c = Mcb = [0, 9, 0, B]T

b� = [5, 1, 0, 7]T, c� = Mcb
� = [D, 0, E, 0]T

b+ b� = [5, 0, 4, 0]T, c+ c� = Mc(b+ b�) = [D, 9, E, B]T.
(15.7)
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pj pj + xj

pj + x�
j pj + xj + x�
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x�
j x�

j

Fig. 15.2. A second-order differential and the associated quartet can be represented
by a square. If one of the differences xj , x

�
j or xj + x�

j equals zero, then the square
collapses to a line

15.8.2 Related Differentials and Plateau Trails

Theorem 15.8.1. Let Q = (a,b,d, e) be a trail through a super box with
EDP(Q) > 0. If (b,d) is in a set of related differentials over the mixing map,
then Q is a plateau trail with height(Q) ≥ 2.
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Proof: Theorem 15.2.1 states that all trails through a super box are plateau
trails. Hence we only need to show that for each pair Px = {x,x + a} that
follows Q for a certain round key value k, there exists a pair

Py = {x+ a�,x+ a� + a} = {x+ a,x}

that also follows Q for the same value of the round key. Let (b�,d�) denote a
differential that is related to (b,d). Define the difference a� to be the solution
of

S(x+ a�) + S(x) = b� ⇔ a� = S−1(b� + S(x)) + x. (15.8)

Then the pair Py follows Q because of the following:

– If S were a linear map, then (15.8) would imply that S(x+a+a�)+S(x+
a) = b� and we would have

S(x+a�)+S(x+a�+a) = (S(x)+b�)+(S(x+a)+b�) = S(x)+S(x+a) = b.

(15.9)

Since S is not linear, the equality doesn’t hold for all a�. However, because b
and b� are related differences, for each j at least one of the three differences
bj , b

�
j and bj + b�j equals zero. Since S uses invertible S-boxes, it follows

that for each j also at least one of the three differences aj , a
�
j and aj + a�j

equals zero. Hence the sets

{xj , xj + aj , xj + a�j , xj + aj + a�j , }, j = 0, 1, 2, . . . , nt − 1

contain only two different elements. Consequently, (15.9) holds and Py

follows Q through the first substitution step.

– Py follows Q through the mixing step:

M(S(x+a�))+M(S(x+a�+a)) = M(S(x+a�)+S(x+a�+a)) = M(b) = d.

– Let v denote the vector M(S(x)) + k, which is the output of the round
key addition for the input x. Since x is in the pair Px, which follows Q,
we know that v ∈ F(d,e). From the previous steps, it follows also that
S(x+ a�) + S(x) = b� and

M(S(Py)) + k = {v + d�,v + d� + d}.

Now we use the fact that d and d� are related differences and by following
reasoning similar to the first substitution step, we conclude that Py follows
Q through the last substitution step and hence it follows Q through the
super box.
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15.9 Determining the Related Differentials

In this section, we derive an algorithm that for a given linear mixing map
produces all the sets of related differentials. To simplify the description, we
will assume that the linear map consists of multiplication by an nt×nt matrix
Mc and that the associated linear code is an MDS code. We start with an
example.

15.9.1 First Example

Assume we have a differential (b,d) with d = Mcb through the mixing map
of the Rijndael super box with activity pattern (0111; 0101). We want to
determine whether there exist differences b�,d� = Mcb

� satisfying (15.5).

Firstly, we know that the linear code associated with MixColumns has
minimal distance 5, and hence if b0 = d0 = d2 = 0, then all other bj , dj are
different from zero. Equation (15.5) doesn’t put any constraints on b�0, d

�
0,

and d�2. From d� = Mcb
� we can derive one equation from which these three

elements are eliminated:

3d�1 + d�3 = 7b�1 + 4b�2 + b�3.

Using (15.6) we obtain

3t5d1 + t7d3 = 7t1b1 + 4t2b2 + t3b3, tj ∈ {0, 1}. (15.10)

Secondly, we know from Sect. 14.2.2 that there is only one bundle with ac-
tivity pattern (0111; 0101). Hence

(b,d)T = ([0, γ, 4γ, 7γ], [0, 9γ, 0, Bγ]) with γ ∈ GF(28) \ {0}. (15.11)

Combining (15.10) and (15.11) gives

7γt1 + 10γt2 + 7γt3 + 1Bγt5 + Bγt7 = 0.

For any value of γ, we obtain a system of linear equations over GF(2). The five
unknowns are t1, t2, t3, t5, t7. The number of independent solutions depends
on the dimension of the vector space spanned by

{7γ, 10γ, 7γ, 1Bγ, Bγ}.
Note that the dimension here is determined over GF(2): linear dependencies
between vectors must have binary coefficients. This dimension is always at
most 4, since we know that setting all tj = 1 gives the solution (b,d). In this
case, the dimension equals 3, which means that there is one other solution
(b�,d�), hence the weight of a trail with (b,d) as input, respectively output
difference for MixColumns has height at least two.
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15.9.2 For Any Given Differential

Let (b,d) be the given differential for which we want to find a related differ-
ential over a given linear map. Denote by z the number of non-zero elements
in (b,d), minus nt. This implies that the number of zero elements in (b,d)
equals nt−z. Denote by H the check matrix of the linear code associated with
the linear map. We know that (b,d) and the related differential(s) (b�,d�)
must correspond to vectors of the associated code:

H(b,d) = H(b�,d�) = 0.

This defines a first set of nt constraints, one in each row of H. Secondly, for the
indices j where bj or dj are different from zero, we get the conditions (15.6)
on tj . Every time we have a bj or dj equal to zero, we have no condition on
the corresponding b�j or d�j . Therefore we eliminate these unknowns from the
set of conditions.

We denote by Hp the check matrix of a new linear code, where the code
vectors can take any value in the positions where the activity pattern of (b,d)
is zero, and where the conditions on the values in the other positions are the
same as in the code associated with the linear map. We denote the elements
of Hp by hi,j and write∑

j

hi,jb
�
j +

∑
j

hi,j+nt
d�j = 0, i = 0, . . . , z − 1.

In these equations, we fill out (15.6) and obtain

nt−1∑
j=0,bj 	=0

hi,jbjtj +

nt−1∑
j=0,dj 	=0

hi,j+nt
djtj+nt

= 0, i = 0, . . . , z − 1.

The solutions tj are the codewords of the binary code with check matrix

Dp =

⎡
⎢⎢⎣

h0,0b0 h0,1b1 . . . h0,2nt−1dnt−1

h1,0b0 h1,1b1 . . . h1,2nt−1dnt−1

. . . . . . . . . . . .
hz−1,0b0 hz−1,1b1 . . . hz−1,2nt−1dnt−1

⎤
⎥⎥⎦ , (15.12)

except for the codeword (1 1 . . . 1), which corresponds to the original dif-
ference (b,d). The number of independent solutions for this set of equations
depends on the rank of Dp: if rank(Dp) < z + m − 1, then related differ-
entials exist. Note that Dp is a matrix containing elements of GF(2ns), but
we determine the rank over GF(2): linear dependencies must have binary
coefficients.
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15.9.3 For All Differentials with the Same Activity Pattern

The previous method can be done in parallel for all differences with a given
activity pattern p. Denote by G the generator matrix of the associated linear
code. Each differential can be written as the transpose of a linear combination
of rows of G. The differentials with activity pattern p (plus the zero vector)
form a subspace of the linear code. The subspace contains only the code
vectors that are zero in the positions where the activity pattern is zero. We
denote the generator matrix for this subspace by Gp.

We now define z parameters εk, write (b;d)T = (ε0, . . . , εz−1)Gp = εGp

and apply the method described in Sect. 15.9.2 to determine related differ-
entials. The elements of matrix Dp of (15.12) now depend on the vector ε.
Denoting the elements of Gp by gi,j and the elements of Dp(ε) by di,j , we
obtain

di,j = hij

z−1∑
k=0

εkgkj .

The number of dependent columns in Dp(ε) may depend on ε. Any non-
zero vector ε for which there are more than two codewords in the binary
code with Dp(ε) as check matrix defines a difference (b,d) for which there
exists a related differential. The related differential is again determined by
the codeword that is different from (1, 1, . . . , 1). Figure 15.3 summarizes the
algorithm.

15.9.4 Second Example

We now illustrate the algorithm described in Fig. 15.3. Consider the activity
pattern p = (1010; 1111) for the mixing map of the Rijndael super box. We
have z = 2 and

H =

⎡
⎢⎢⎣
2 3 1 1 1 0 0 0

1 2 3 1 0 1 0 0

1 1 2 3 0 0 1 0

3 1 1 2 0 0 0 1

⎤
⎥⎥⎦ , SH =

⎡
⎢⎢⎣
7 0 7 1 2 3 0 0

3 1 2 0 1 1 0 0

B 0 9 0 7 4 1 0

E 0 D 0 5 7 0 1

⎤
⎥⎥⎦ ,

Hp =

[
B 0 9 0 7 4 1 0

E 0 D 0 5 7 0 1

]
.

Further,

G =

⎡
⎢⎢⎣
1 0 0 0 2 1 1 3

0 1 0 0 3 2 1 1

0 0 1 0 1 3 2 1

0 0 0 1 1 1 3 2

⎤
⎥⎥⎦ = TG, Gp =

[
1 0 0 0 2 1 1 3

0 0 1 0 1 3 2 1

]
.
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Input: nt × nt matrix Mc defining the linear map, activity pattern p.
Output: Related differentials (b,d) (with activity pattern p) and (b�,d�).
Algorithm:

1. Compute G = [I Mc] and H = [Mc
T I]. Let z = wh(p)− nt.

2. Perform elementary row operations on H to compute an equivalent matrix SH
where z rows have zeroes in the nt − z columns corresponding to the zero bits
in p. Denote the submatrix of SH consisting of these rows by Hp, with elements
hi,j .

3. Similarly, perform elementary row operations on G to compute an equivalent
matrix TG where z rows have zeroes in the nt − z columns corresponding to the
zero bits in p. Denote the submatrix of TG consisting of these rows by Gp, with
elements gi,j .

4. Define the matrix D(ε) as follows:

di,j = hi,j

z−1∑
k=0

εkgkj ,

where ε = (ε0, ε1, . . . , εz−1) is a vector of parameters.
5. Compute the values of ε for which the rank of Dp(ε) is below z +m− 1.
6. For each of the outputs of the previous step compute (b; c)T = εGp. Compute

the binary codeword t = (t0, . . . , t2nt−1) from Dpt = 0 and t �= (1, . . . , 1). For
the positions where bj , cj �= 0, compute b�j = tjbj , d

�
j = tj+ntdj . Determine the

remaining b�j , d
�
j such that H(b�j , d

�
j ) = 0.

7. Output (b,d) and (b�,d�).

Fig. 15.3. Algorithm to compute related differentials where one of the differentials
has a given activity pattern p. If the algorithm terminates without finding related
differentials, then there exist none for this activity pattern
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This gives

Dp =

[
Bε0 0 9ε1 0 (2ε0 + ε1)7 (ε0 + 3u1)4 ε0 + 2ε1 0

Eε1 0 Dε1 0 (2ε0 + ε1)5 (ε0 + 3ε1)7 0 3ε0 + ε1

]
.

For all values of the parameters ε0, ε1, the eight columns sum to zero. The
sum of the third, the sixth and the eighth column equals[

4ε0 + (9+ 3 · 4)ε1
(7+ 3)ε0 + (D+ 3 · 7+ 1)ε1

]
=

[
4ε0 + 5ε1
4ε0 + 5ε1

]
.

Hence for 4ε0 = 5ε1, these three columns are dependent. A non-trivial solu-
tion is t2 = t5 = t7 = 1, t0 = t4 = t6 = 0. This gives

(b�,d�)T = ([0, b�1, b2, b
�
3], [0, d1, 0, d3])

(b,d)T + (b�,d�)T = ([b0, b
�
1, 0, b

�
3], [d0, 0, d2, 0]).

Filling out 4ε0 = 5ε1, we see that we obtain again the vectors of the previous
example.

15.9.5 A Combinatorial Bound

If we want to check the existence of related differentials for a given map,
then in principle we need to repeat the algorithm of Fig. 15.3 for all possible
activity patterns. We present here an observation that reduces the number
of activity patterns that need to be considered if the linear code associated
with the map is an MDS code.

The three differentials (b,d), (b�,d�) and (b+b�,d+d�) correspond to
vectors of an MDS code with minimal distance nt+1. Hence they can have at
most nt−1 components equal to zero. On the other hand, from (15.5) we see
that we need to distribute at least 2nt zeroes over these three differentials.
A simple counting argument results in the following bound.

Lemma 15.9.1. If (b,d), (b�,d�) are related differentials over a linear map
with an associated code that is an MDS code with length 2nt and distance
nt + 1, then

min {wt(b,d),wt(b
�,d�),wt(b+ b�,d+ d�)} ≤ nt + �nt/3�.

This means that if related differentials exist, they will be revealed when we
check all the differentials with weights up to nt + �nt/3�. For instance, if
nt = 4, then two of the three differentials need to have zeroes in at least
three positions. Consequently, if we check all activity patterns of weight 5 for
the existence of related differentials, then we have determined all the related
differentials. Table 15.3 lists for nt = 4, 5, 6, 7, 8, 9 the possible distributions
of 2nt zeroes and the differentials that need to be checked for related differ-
entials.
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Table 15.3. Possible distributions of 2nt zeroes over three vectors, where each
vector counts at most nt − 1 zeroes. The last column gives the weights of the
activity patterns that need to be checked in order to determine all sets of related
differentials

nt possible distributions weights of activity patterns
of zeroes to be checked

4 (3,3,2) 5
5 (4,4,2), (4,3,3) 6
6 (5,5,2), (5,4,3), (4,4,4) 7, 8
7 (6,6,2), (6,5,3), (6,4,4), (5,5,4) 8, 9
8 (7,7,2), (7,6,3), (7,5,4), (6,6,4), (6,5,5) 9, 10
9 . . . 10, 11, 12

15.10 Implications for Rijndael-Like Super Boxes

15.10.1 Related Differentials over Circulant Matrices

The fact that MixColumns has related differentials is no coincidence. This can
be understood easily if we write out the equivalent of Table 14.1 for a general
4× 4 circulant matrix. Denote the matrix and its inverse by

Mc =

⎡
⎢⎢⎣
a b c d
d a b c
c d a b
b c d a

⎤
⎥⎥⎦ , Mc

−1 =

⎡
⎢⎢⎣
e f g h
h e f g
g h e f
f g h e

⎤
⎥⎥⎦ . (15.13)

Table 15.4 gives the bundles for a mixing map using this matrix. Looking at
the second and third row, respectively 12th and 13th row, we notice that they
define related differentials. All rotations of these bundles also define related
differentials, as do all scalar multiples.

15.10.2 Related Differentials in MixColumns

Besides the related differentials described in the previous section, MixColumns
has eight more. Table 15.5 lists the four pairs of bundles from which all
related differentials can be derived by means of rotation and/or multiplication
by a scalar. We know from Sect. 14.2.2 that a differential with weight 5 is
determined uniquely by its activity pattern. This implies that 3/7 of the
differentials with wt(b,d) = 5 form part of a set of related differentials.

Four rounds of Rijndael are, up to a linear transformation, equivalent to
a large super box structure where the S-boxes are exactly the super boxes we
described before. The mixing transformation of this large super box structure
is equivalent to the sequence Shiftrows followed by MixColumns followed by
ShiftRows. Also this map has related differentials, and their activity patterns
are the same as the activity patterns of the differentials in Table 15.5. Hence,
also a large set of trails over four rounds of Rijndael has height at least 2.
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Table 15.4. Bundles for a mixing map based on the circulant matrix defined in
(15.13)

bT dT

1 0 0 0 a b c d
a 0 c 0 a2 + c2 ab+ cd 0 ad+ bc
0 b 0 d 0 ab+ cd b2 + d2 ad+ bc
a 0 0 d a2 + bd ab+ cd d2 + ac 0
a b 0 0 a2 + bd 0 b2 + ac ad+ bc
0 b c 0 c2 + bd ab+ cd b2 + ac 0
0 0 c d c2 + bd 0 d2 + ac ad+ bc

e2 + fh ef + gh h2 + eg 0 e 0 0 h
e2 + fh 0 f2 + eg eh+ fg e f 0 0
g2 + fh ef + gh f2 + eg 0 0 f g 0
g2 + fh 0 h2 + eg eh+ fg 0 0 g h
e2 + g2 ef + gh 0 eh+ fg e 0 g 0

0 ef + gh f2 + h2 eh+ fg 0 f 0 h
e f g h 1 0 0 0

Table 15.5. The sets of related differentials over MixColumns

bT dT b�T d�T (b+ b�)T (d+ d�)T

[0, 1, 4, 7] [0, 9, 0, B] [5, 1, 0, 7] [E, 0, D, 0] [5, 0, 4, 0] [E, 9, D, B]
[0, 1, 0, 3] [0, 1, 4, 7] [2, 0, 1, 0] [5, 1, 0, 7] [2, 1, 1, 3] [5, 0, 4, 0]
[7, 0, 7, 7] [E, 9, 0, 0] [7, 7, 7, 0] [0, 0, E, 9] [0, 7, 0, 7] [E, 9, E, 9]
[0, 3, 2, 0] [7, 0, 7, 1] [2, 0, 0, 3] [7, 1, 7, 0] [2, 3, 2, 3] [0, 1, 0, 1]

15.10.3 Avoiding Related Differentials

There exist 4 × 4 matrices over GF(28) without related differentials, even
matrices with special structure, for instance matrices with the Hadamard
structure, as in Anubis [9]. Denote a 4× 4 Hadamard matrix and its inverse
as follows:

Mc =

⎡
⎢⎢⎣
a b c d
b a d c
c d a b
d c b a

⎤
⎥⎥⎦ , Mc

−1 =

⎡
⎢⎢⎣
e f g h
f e h g
g h e f
h g f e

⎤
⎥⎥⎦ . (15.14)

Table 15.6 gives the bundles for this matrix. It can be seen that, in general,
there are no related differentials with five active positions. From Lemma 15.9.1
we know that this means there are in general no related differentials. Anubis
uses
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MAnubis =

⎡
⎢⎢⎣
1 2 4 6

2 1 6 4

4 6 1 2

6 4 2 1

⎤
⎥⎥⎦ .

This matrix has related differentials ([0, 0, 4, 6]T, [4, 0, 8, E]T) and ([8, E, 4, 0]T,
[4, 6, 0, 0]T) (and their sum ([8, E, 0, 6]T, [0, 6, 8, E]T)). However, if the four 6s
are replaced by 9s, then there are no related differentials.

Table 15.6. Bundles for a mixing map based on the Hadamard matrix defined in
(15.14)

bT dT

1 0 0 0 a b c d
a b 0 0 a2 + b2 0 ac+ bd ad+ bc
0 0 c d c2 + d2 0 ac+ bd ad+ bc
a 0 c 0 a2 + c2 ab+ cd 0 ad+ bc
0 b 0 d b2 + d2 ab+ cd 0 ad+ bc
a 0 0 d a2 + d2 ab+ cd ac+ bd 0
0 b c 0 b2 + c2 ab+ cd ac+ bd 0

f2 + g2 ef + gh eg + fh 0 0 f g 0
e2 + h2 ef + gh eg + fh 0 e 0 0 h
f2 + h2 ef + gh 0 eh+ fg 0 f 0 h
e2 + g2 ef + gh 0 eh+ fg e 0 g 0
g2 + h2 0 eg + fh eh+ fg 0 0 g h
e2 + f2 0 eg + fh eh+ fg e f 0 0

e f g h 1 0 0 0

15.11 Conclusions and Further Work

We believe that an analysis of resistance against differential cryptanalysis
needs to take into account more than the average behavior of a key-dependent
map. Currently, no attacks on block ciphers are known that exploit non-
uniformities in the distribution of the DP[k] values. However, in the case of it-
erated mappings without a key, for instance hash functions, they are relevant.
For example, they influence the complexity of rebound attacks (Sect. 10.7,
[94]).

We showed that the DP[k] of certain trails is distributed in a very
structured way. For trails over the Rijndael super box, we showed that
DP[k] ∈ 0, 2h−32, with h an integer value between 1 and 5. We think that
the results are somewhat surprising and deserve to be investigated in further
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detail. We have illustrated our analysis only on Rijndael, but several other
ciphers using differentially 4-uniform S-boxes will show a similar behavior.

The presence of related differentials in MixColumns is one reason why such
high values for the height occur for so many trails. We studied how related
differentials can be discovered for any given linear map.

It would be interesting to find out what the maximum DP[k] is for trails
over more than two rounds. If the impact on the DP[k] of differentials over
more than two rounds can be investigated, then this could lead to new insights
about the security margin of Rijndael and other ciphers.



A. Substitution Tables

In this appendix, we list some tables that represent various mappings used
in Rijndael.

A.1 SRD

This section includes several representations of SRD and related mappings.
More explanation about the alternative representations for the mappings used
in the definition of SRD can be found in Sect. 3.4.1. Tabular representations
of SRD and SRD

−1 are given in Tables A.1 and A.2.

Table A.1. Tabular representation of SRD(xy)

y
0 1 2 3 4 5 6 7 8 9 A B C D E F

0 63 7C 77 7B F2 6B 6F C5 30 01 67 2B FE D7 AB 76
1 CA 82 C9 7D FA 59 47 F0 AD D4 A2 AF 9C A4 72 C0
2 B7 FD 93 26 36 3F F7 CC 34 A5 E5 F1 71 D8 31 15
3 04 C7 23 C3 18 96 05 9A 07 12 80 E2 EB 27 B2 75
4 09 83 2C 1A 1B 6E 5A A0 52 3B D6 B3 29 E3 2F 84
5 53 D1 00 ED 20 FC B1 5B 6A CB BE 39 4A 4C 58 CF
6 D0 EF AA FB 43 4D 33 85 45 F9 02 7F 50 3C 9F A8
7 51 A3 40 8F 92 9D 38 F5 BC B6 DA 21 10 FF F3 D2

x 8 CD 0C 13 EC 5F 97 44 17 C4 A7 7E 3D 64 5D 19 73
9 60 81 4F DC 22 2A 90 88 46 EE B8 14 DE 5E 0B DB
A E0 32 3A 0A 49 06 24 5C C2 D3 AC 62 91 95 E4 79
B E7 C8 37 6D 8D D5 4E A9 6C 56 F4 EA 65 7A AE 08
C BA 78 25 2E 1C A6 B4 C6 E8 DD 74 1F 4B BD 8B 8A
D 70 3E B5 66 48 03 F6 0E 61 35 57 B9 86 C1 1D 9E
E E1 F8 98 11 69 D9 8E 94 9B 1E 87 E9 CE 55 28 DF
F 8C A1 89 0D BF E6 42 68 41 99 2D 0F B0 54 BB 16

For hardware implementations, it might be useful to use the following
decomposition of SRD:

SRD[a] = Aff8(Inv8(a)), (A.1)

where Inv8(a) is the mapping

a → a−1 in GF(28) (A.2)
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Table A.2. Tabular representation of SRD
−1(xy)

y
0 1 2 3 4 5 6 7 8 9 A B C D E F

0 52 09 6a d5 30 36 a5 38 bf 40 a3 9e 81 f3 d7 fb
1 7c e3 39 82 9b 2f ff 87 34 8e 43 44 c4 de e9 cb
2 54 7b 94 32 a6 c2 23 3d ee 4c 95 0b 42 fa c3 4e
3 08 2e a1 66 28 d9 24 b2 76 5b a2 49 6d 8b d1 25
4 72 f8 f6 64 86 68 98 16 d4 a4 5c cc 5d 65 b6 92
5 6c 70 48 50 fd ed b9 da 5e 15 46 57 a7 8d 9d 84
6 90 d8 ab 00 8c bc d3 0a f7 e4 58 05 b8 b3 45 06
7 d0 2c 1e 8f ca 3f 0f 02 c1 af bd 03 01 13 8a 6b

x 8 3a 91 11 41 4f 67 dc ea 97 f2 cf ce f0 b4 e6 73
9 96 ac 74 22 e7 ad 35 85 e2 f9 37 e8 1c 75 df 6e
A 47 f1 1a 71 1d 29 c5 89 6f b7 62 0e aa 18 be 1b
B fc 56 3e 4b c6 d2 79 20 9a db c0 fe 78 cd 5a f4
C 1f dd a8 33 88 07 c7 31 b1 12 10 59 27 80 ec 5f
D 60 51 7f a9 19 b5 4a 0d 2d e5 7a 9f 93 c9 9c ef
E a0 e0 3b 4d ae 2a f5 b0 c8 eb bb 3c 83 53 99 61
F 17 2b 04 7e ba 77 d6 26 e1 69 14 63 55 21 0c 7d

extended with 0 → 0, and Aff8(a) is an affine mapping. Since Inv8(a) is
self-inverse, we have

SRD
−1[a] = Inv−1

8 (Aff−1
8 (a)) = Inv8(Aff−1

8 (a)). (A.3)

The tabular representations of Aff8, Aff
−1
8 and Inv8 are given in Tables A.3–

A.5.

Algebraic representations of SRD have also received a lot of attention
in the literature, especially in the cryptanalytic literature. Mappings over a
finite domain can always be represented by polynomial functions with a finite
number of terms. As a consequence, mappings from GF(28) to GF(28) can
always be represented by a polynomial function over GF(28). In Section 12.4
we derived expression (12.14), which we repeat here:

SRD[x] = α2x254 + α199x253 + α99x251 + α185x247

+ α197x239 + a223 + α96x191 + α232x127 + α195

with α a root of x8 + x4 + x3 + x2 + 1. Using the basis for GF(28) that is
employed in the Rijndael specification, we obtain

SRD[x] = 05 · x254 + 09 · x253 + F9 · x251 + 25 · x247

+ F4 · x239 + 01 · x223 + B5 · x191 + 8F · x127 + 63. (A.4)

The coefficients are elements of GF(28). Note that this representation can
also be derived by means of the Lagrange interpolation formula.
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Table A.3. Tabular representation of Aff8(xy)

y
0 1 2 3 4 5 6 7 8 9 A B C D E F

0 63 7C 5D 42 1F 00 21 3E 9B 84 A5 BA E7 F8 D9 C6
1 92 8D AC B3 EE F1 D0 CF 6A 75 54 4B 16 09 28 37
2 80 9F BE A1 FC E3 C2 DD 78 67 46 59 04 1B 3A 25
3 71 6E 4F 50 0D 12 33 2C 89 96 B7 A8 F5 EA CB D4
4 A4 BB 9A 85 D8 C7 E6 F9 5C 43 62 7D 20 3F 1E 01
5 55 4A 6B 74 29 36 17 08 AD B2 93 8C D1 CE EF F0
6 47 58 79 66 3B 24 05 1A BF A0 81 9E C3 DC FD E2
7 B6 A9 88 97 CA D5 F4 EB 4E 51 70 6F 32 2D 0C 13

x 8 EC F3 D2 CD 90 8F AE B1 14 0B 2A 35 68 77 56 49
9 1D 02 23 3C 61 7E 5F 40 E5 FA DB C4 99 86 A7 B8
A 0F 10 31 2E 73 6C 4D 52 F7 E8 C9 D6 8B 94 B5 AA
B FE E1 C0 DF 82 9D BC A3 06 19 38 27 7A 65 44 5B
C 2B 34 15 0A 57 48 69 76 D3 CC ED F2 AF B0 91 8E
D DA C5 E4 FB A6 B9 98 87 22 3D 1C 03 5E 41 60 7F
E C8 D7 F6 E9 B4 AB 8A 95 30 2F 0E 11 4C 53 72 6D
F 39 26 07 18 45 5A 7B 64 C1 DE FF E0 BD A2 83 9C

Table A.4. Tabular representation of Aff−1
8 (xy)

y
0 1 2 3 4 5 6 7 8 9 A B C D E F

0 05 4F 91 DB 2C 66 B8 F2 57 1D C3 89 7E 34 EA A0
1 A1 EB 35 7F 88 C2 1C 56 F3 B9 67 2D DA 90 4E 04
2 4C 06 D8 92 65 2F F1 BB 1E 54 8A C0 37 7D A3 E9
3 E8 A2 7C 36 C1 8B 55 1F BA F0 2E 64 93 D9 07 4D
4 97 DD 03 49 BE F4 2A 60 C5 8F 51 1B EC A6 78 32
5 33 79 A7 ED 1A 50 8E C4 61 2B F5 BF 48 02 DC 96
6 DE 94 4A 00 F7 BD 63 29 8C C6 18 52 A5 EF 31 7B
7 7A 30 EE A4 53 19 C7 8D 28 62 BC F6 01 4B 95 DF

x 8 20 6A B4 FE 09 43 9D D7 72 38 E6 AC 5B 11 CF 85
9 84 CE 10 5A AD E7 39 73 D6 9C 42 08 FF B5 6B 21
A 69 23 FD B7 40 0A D4 9E 3B 71 AF E5 12 58 86 CC
B CD 87 59 13 E4 AE 70 3A 9F D5 0B 41 B6 FC 22 68
C B2 F8 26 6C 9B D1 0F 45 E0 AA 74 3E C9 83 5D 17
D 16 5C 82 C8 3F 75 AB E1 44 0E D0 9A 6D 27 F9 B3
E FB B1 6F 25 D2 98 46 0C A9 E3 3D 77 80 CA 14 5E
F 5F 15 CB 81 76 3C E2 A8 0D 47 99 D3 24 6E B0 FA

Table A.5. Tabular representation of Inv8(xy)

y
0 1 2 3 4 5 6 7 8 9 A B C D E F

0 00 01 8D F6 CB 52 7B D1 E8 4F 29 C0 B0 E1 E5 C7
1 74 B4 AA 4B 99 2B 60 5F 58 3F FD CC FF 40 EE B2
2 3A 6E 5A F1 55 4D A8 C9 C1 0A 98 15 30 44 A2 C2
3 2C 45 92 6C F3 39 66 42 F2 35 20 6F 77 BB 59 19
4 1D FE 37 67 2D 31 F5 69 A7 64 AB 13 54 25 E9 09
5 ED 5C 05 CA 4C 24 87 BF 18 3E 22 F0 51 EC 61 17
6 16 5E AF D3 49 A6 36 43 F4 47 91 DF 33 93 21 3B
7 79 B7 97 85 10 B5 BA 3C B6 70 D0 06 A1 FA 81 82

x 8 83 7E 7F 80 96 73 BE 56 9B 9E 95 D9 F7 02 B9 A4
9 DE 6A 32 6D D8 8A 84 72 2A 14 9F 88 F9 DC 89 9A
A FB 7C 2E C3 8F B8 65 48 26 C8 12 4A CE E7 D2 62
B 0C E0 1F EF 11 75 78 71 A5 8E 76 3D BD BC 86 57
C 0B 28 2F A3 DA D4 E4 0F A9 27 53 04 1B FC AC E6
D 7A 07 AE 63 C5 DB E2 EA 94 8B C4 D5 9D F8 90 6B
E B1 0D D6 EB C6 0E CF AD 08 4E D7 E3 5D 50 1E B3
F 5B 23 38 34 68 46 03 8C DD 9C 7D A0 CD 1A 41 1C
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A.2 Other Tables

A.2.1 xtime

More explanation about the mapping xtime can be found in Sect. 4.1.1. The
tabular representation is given in Table A.6.

Table A.6. Tabular representation of xtime(xy)

y
0 1 2 3 4 5 6 7 8 9 A B C D E F

0 00 02 04 06 08 0A 0C 0E 10 12 14 16 18 1A 1C 1E
1 20 22 24 26 28 2A 2C 2E 30 32 34 36 38 3A 3C 3E
2 40 42 44 46 48 4A 4C 4E 50 52 54 56 58 5A 5C 5E
3 60 62 64 66 68 6A 6C 6E 70 72 74 76 78 7A 7C 7E
4 80 82 84 86 88 8A 8C 8E 90 92 94 96 98 9A 9C 9E
5 A0 A2 A4 A6 A8 AA AC AE B0 B2 B4 B6 B8 BA BC BE
6 C0 C2 C4 C6 C8 CA CC CE D0 D2 D4 D6 D8 DA DC DE
7 E0 E2 E4 E6 E8 EA EC EE F0 F2 F4 F6 F8 FA FC FE

x 8 1B 19 1F 1D 13 11 17 15 0B 09 0F 0D 03 01 07 05
9 3B 39 3F 3D 33 31 37 35 2B 29 2F 2D 23 21 27 25
A 5B 59 5F 5D 53 51 57 55 4B 49 4F 4D 43 41 47 45
B 7B 79 7F 7D 73 71 77 75 6B 69 6F 6D 63 61 67 65
C 9B 99 9F 9D 93 91 97 95 8B 89 8F 8D 83 81 87 85
D BB B9 BF BD B3 B1 B7 B5 AB A9 AF AD A3 A1 A7 A5
E DB D9 DF DD D3 D1 D7 D5 CB C9 CF CD C3 C1 C7 C5
F FB F9 FF FD F3 F1 F7 F5 EB E9 EF ED E3 E1 E7 E5

A.2.2 Round Constants

The key expansion routine uses round constants. Further explanation can be
found in Sect. 3.6. Table A.7 lists the first 30 round constants. Note that
RC[0] is never used. In the unlikely case that more values are required, they
should be generated according to (3.21).

Table A.7. Round constants for the key generation

i 0 1 2 3 4 5 6 7

RC[i] 00 01 02 04 08 10 20 40

i 8 9 10 11 12 13 14 15

RC[i] 80 1B 36 6C D8 AB 4D 9A

i 16 17 18 19 20 21 22 23

RC[i] 2F 5E BC 63 C6 97 35 6A

i 24 25 26 27 28 29 30 31

RC[i] D4 B3 7D FA EF C5 91 39



B. Test Vectors

B.1 KeyExpansion

In this section we give test vectors for the key expansion in the case where
both block length and key length are equal to 128. The all-zero key is ex-
panded into the following:

0 00000000000000000000000000000000
1 62636363626363636263636362636363
2 9B9898C9F9FBFBAA9B9898C9F9FBFBAA
3 90973450696CCFFAF2F457330B0FAC99
4 EE06DA7B876A1581759E42B27E91EE2B
5 7F2E2B88F8443E098DDA7CBBF34B9290
6 EC614B851425758C99FF09376AB49BA7
7 217517873550620BACAF6B3CC61BF09B
8 0EF903333BA9613897060A04511DFA9F
9 B1D4D8E28A7DB9DA1D7BB3DE4C664941
10 B4EF5BCB3E92E21123E951CF6F8F188E

B.2 Rijndael(128,128)

In this section we give test vectors for all intermediate steps of one encryption.
A 128-bit plaintext is encrypted under a 128-bit key. These test vectors are
a subset of the extensive set of test vectors generated by Brian Gladman.

LEGEND - round r = 0 to 10

input: cipher input

start: state at start of round[r]

s_box: state after s_box substitution

s_row: state after shift row transformation

m_col: state after mix column transformation

k_sch: key schedule value for round[r]

output: cipher output

PLAINTEXT: 3243f6a8885a308d313198a2e0370734
KEY: 2b7e151628aed2a6abf7158809cf4f3c

© Springer-Verlag GmbH Germany, part of Springer Nature 2020 
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ENCRYPT 16 byte block, 16 byte key
R[00].input 3243f6a8885a308d313198a2e0370734
R[00].k_sch 2b7e151628aed2a6abf7158809cf4f3c
R[01].start 193de3bea0f4e22b9ac68d2ae9f84808
R[01].s_box d42711aee0bf98f1b8b45de51e415230
R[01].s_row d4bf5d30e0b452aeb84111f11e2798e5
R[01].m_col 046681e5e0cb199a48f8d37a2806264c
R[01].k_sch a0fafe1788542cb123a339392a6c7605
R[02].start a49c7ff2689f352b6b5bea43026a5049
R[02].s_box 49ded28945db96f17f39871a7702533b
R[02].s_row 49db873b453953897f02d2f177de961a
R[02].m_col 584dcaf11b4b5aacdbe7caa81b6bb0e5
R[02].k_sch f2c295f27a96b9435935807a7359f67f
R[03].start aa8f5f0361dde3ef82d24ad26832469a
R[03].s_box ac73cf7befc111df13b5d6b545235ab8
R[03].s_row acc1d6b8efb55a7b1323cfdf457311b5
R[03].m_col 75ec0993200b633353c0cf7cbb25d0dc
R[03].k_sch 3d80477d4716fe3e1e237e446d7a883b
R[04].start 486c4eee671d9d0d4de3b138d65f58e7
R[04].s_box 52502f2885a45ed7e311c807f6cf6a94
R[04].s_row 52a4c89485116a28e3cf2fd7f6505e07
R[04].m_col 0fd6daa9603138bf6fc0106b5eb31301
R[04].k_sch ef44a541a8525b7fb671253bdb0bad00
R[05].start e0927fe8c86363c0d9b1355085b8be01
R[05].s_box e14fd29be8fbfbba35c89653976cae7c
R[05].s_row e1fb967ce8c8ae9b356cd2ba974ffb53
R[05].m_col 25d1a9adbd11d168b63a338e4c4cc0b0
R[05].k_sch d4d1c6f87c839d87caf2b8bc11f915bc
R[06].start f1006f55c1924cef7cc88b325db5d50c
R[06].s_box a163a8fc784f29df10e83d234cd503fe
R[06].s_row a14f3dfe78e803fc10d5a8df4c632923
R[06].m_col 4b868d6d2c4a8980339df4e837d218d8
R[06].k_sch 6d88a37a110b3efddbf98641ca0093fd
R[07].start 260e2e173d41b77de86472a9fdd28b25
R[07].s_box f7ab31f02783a9ff9b4340d354b53d3f
R[07].s_row f783403f27433df09bb531ff54aba9d3
R[07].m_col 1415b5bf461615ec274656d7342ad843
R[07].k_sch 4e54f70e5f5fc9f384a64fb24ea6dc4f
R[08].start 5a4142b11949dc1fa3e019657a8c040c
R[08].s_box be832cc8d43b86c00ae1d44dda64f2fe
R[08].s_row be3bd4fed4e1f2c80a642cc0da83864d
R[08].m_col 00512fd1b1c889ff54766dcdfa1b99ea
R[08].k_sch ead27321b58dbad2312bf5607f8d292f
R[09].start ea835cf00445332d655d98ad8596b0c5
R[09].s_box 87ec4a8cf26ec3d84d4c46959790e7a6
R[09].s_row 876e46a6f24ce78c4d904ad897ecc395
R[09].m_col 473794ed40d4e4a5a3703aa64c9f42bc
R[09].k_sch ac7766f319fadc2128d12941575c006e
R[10].start eb40f21e592e38848ba113e71bc342d2
R[10].s_box e9098972cb31075f3d327d94af2e2cb5
R[10].s_row e9317db5cb322c723d2e895faf090794
R[10].k_sch d014f9a8c9ee2589e13f0cc8b6630ca6
R[10].output 3925841d02dc09fbdc118597196a0b32
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B.3 Other Block Lengths and Key Lengths

The values in this section correspond to the ciphertexts obtained by encrypt-
ing the all-zero string with the all-zero key (values on the first lines), and
by encrypting the result again with the all-zero key (values on the second
lines). The values are given for the five different block lengths and the five
different key lengths. The values were generated with the program listed in
Appendix C.

block length 128 key length 128
66E94BD4EF8A2C3B884CFA59CA342B2E
F795BD4A52E29ED713D313FA20E98DBC

block length 160 key length 128
9E38B8EB1D2025A1665AD4B1F5438BB5CAE1AC3F
939C167E7F916D45670EE21BFC939E1055054A96

block length 192 key length 128
A92732EB488D8BB98ECD8D95DC9C02E052F250AD369B3849
106F34179C3982DDC6750AA01936B7A180E6B0B9D8D690EC

block length 224 key length 128
0623522D88F7B9C63437537157F625DD5697AB628A3B9BE2549895C8
93F93CBDABE23415620E6990B0443D621F6AFBD6EDEFD6990A1965A8

block length 256 key length 128
A693B288DF7DAE5B1757640276439230DB77C4CD7A871E24D6162E54AF434891
5F05857C80B68EA42CCBC759D42C28D5CD490F1D180C7A9397EE585BEA770391

block length 128 key length 160
94B434F8F57B9780F0EFF1A9EC4C112C
35A00EC955DF43417CEAC2AB2B3F3E76

block length 160 key length 160
33B12AB81DB7972E8FDC529DDA46FCB529B31826
97F03EB018C0BB9195BF37C6A0AECE8E4CB8DE5F

block length 192 key length 160
528E2FFF6005427B67BB1ED31ECC09A69EF41531DF5BA5B2
71C7687A4C93EBC35601E3662256E10115BEED56A410D7AC

block length 224 key length 160
58A0C53F3822A32464704D409C2FD0521F3A93E1F6FCFD4C87F1C551
D8E93EF2EB49857049D6F6E0F40B67516D2696F94013C065283F7F01

block length 256 key length 160
938D36E0CB6B7937841DAB7F1668E47B485D3ACD6B3F6D598B0A9F923823331D
7B44491D1B24A93B904D171F074AD69669C2B70B134A4D2D773250A4414D78BE

block length 128 key length 192
AAE06992ACBF52A3E8F4A96EC9300BD7
52F674B7B9030FDAB13D18DC214EB331
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block length 160 key length 192
33060F9D4705DDD2C7675F0099140E5A98729257
012CAB64982156A5710E790F85EC442CE13C520F

block length 192 key length 192
C6348BE20007BAC4A8BD62890C8147A2432E760E9A9F9AB8
EB9DEF13C253F81C1FC2829426ED166A65A105C6A04CA33D

block length 224 key length 192
3856B17BEA77C4611E3397066828AADDA004706A2C8009DF40A811FE
160AD76A97AE2C1E05942FDE3DA2962684A92CCC74B8DC23BDE4F469

block length 256 key length 192
F927363EF5B3B4984A9EB9109844152EC167F08102644E3F9028070433DF9F2A
4E03389C68B2E3F623AD8F7F6BFC88613B86F334F4148029AE25F50DB144B80C

block length 128 key length 224
73F8DFF62A36F3EBF31D6F73A56FF279
3A72F21E10B6473EA9FF14A232E675B4

block length 160 key length 224
E9F5EA0FA39BB6AD7339F28E58E2E7535F261827
06EF9BC82905306D45810E12D0807796A3D338F9

block length 192 key length 224
ECBE9942CD6703E16D358A829D542456D71BD3408EB23C56
FD10458ED034368A34047905165B78A6F0591FFEEBF47CC7

block length 224 key length 224
FE1CF0C8DDAD24E3D751933100E8E89B61CD5D31C96ABFF7209C495C
515D8E2F2B9C5708F112C6DE31CACA47AFB86838B716975A24A09CD4

block length 256 key length 224
BC18BF6D369C955BBB271CBCDD66C368356DBA5B33C0005550D2320B1C617E21
60ABA1D2BE45D8ABFDCF97BCB39F6C17DF29985CF321BAB75E26A26100AC00AF

block length 128 key length 256
DC95C078A2408989AD48A21492842087
08C374848C228233C2B34F332BD2E9D3

block length 160 key length 256
30991844F72973B3B2161F1F11E7F8D9863C5118
EEF8B7CC9DBE0F03A1FE9D82E9A759FD281C67E0

block length 192 key length 256
17004E806FAEF168FC9CD56F98F070982075C70C8132B945
BED33B0AF364DBF15F9C2F3FB24FBDF1D36129C586EEA6B7

block length 224 key length 256
9BF26FAD5680D56B572067EC2FE162F449404C86303F8BE38FAB6E02
658F144A34AF44AAE66CFDDAB955C483DFBCB4EE9A19A6701F158A66
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block length 256 key length 256
C6227E7740B7E53B5CB77865278EAB0726F62366D9AABAD908936123A1FC8AF3
9843E807319C32AD1EA3935EF56A2BA96E4BF19C30E47D88A2B97CBBF2E159E7



C. Reference Code

/* Rijndael code August ’01
*
* author: Vincent Rijmen,

* This code is based on the official reference code
* by Paulo Barreto and Vincent Rijmen
*
* This code is placed in the public domain.
* Without any warranty of fitness for any purpose.
*/

#include <stdio.h>

typedef unsigned char word8;
typedef unsigned int word32;

/* The tables Logtable and Alogtable are used to perform
* multiplications in GF(256)
*/

word8 Logtable[256] = {
0, 0, 25, 1, 50, 2, 26,198, 75,199, 27,104, 51,238,223, 3,

100, 4,224, 14, 52,141,129,239, 76,113, 8,200,248,105, 28,193,
125,194, 29,181,249,185, 39,106, 77,228,166,114,154,201, 9,120,
101, 47,138, 5, 33, 15,225, 36, 18,240,130, 69, 53,147,218,142,
150,143,219,189, 54,208,206,148, 19, 92,210,241, 64, 70,131, 56,
102,221,253, 48,191, 6,139, 98,179, 37,226,152, 34,136,145, 16,
126,110, 72,195,163,182, 30, 66, 58,107, 40, 84,250,133, 61,186,
43,121, 10, 21,155,159, 94,202, 78,212,172,229,243,115,167, 87,
175, 88,168, 80,244,234,214,116, 79,174,233,213,231,230,173,232,
44,215,117,122,235, 22, 11,245, 89,203, 95,176,156,169, 81,160,

127, 12,246,111, 23,196, 73,236,216, 67, 31, 45,164,118,123,183,
204,187, 62, 90,251, 96,177,134, 59, 82,161,108,170, 85, 41,157,
151,178,135,144, 97,190,220,252,188,149,207,205, 55, 63, 91,209,
83, 57,132, 60, 65,162,109, 71, 20, 42,158, 93, 86,242,211,171,
68, 17,146,217, 35, 32, 46,137,180,124,184, 38,119,153,227,165,

103, 74,237,222,197, 49,254, 24, 13, 99,140,128,192,247,112, 7};
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word8 Alogtable[256] = {
1, 3, 5, 15, 17, 51, 85,255, 26, 46,114,150,161,248, 19, 53,

95,225, 56, 72,216,115,149,164,247, 2, 6, 10, 30, 34,102,170,
229, 52, 92,228, 55, 89,235, 38,106,190,217,112,144,171,230, 49,
83,245, 4, 12, 20, 60, 68,204, 79,209,104,184,211,110,178,205,
76,212,103,169,224, 59, 77,215, 98,166,241, 8, 24, 40,120,136,

131,158,185,208,107,189,220,127,129,152,179,206, 73,219,118,154,
181,196, 87,249, 16, 48, 80,240, 11, 29, 39,105,187,214, 97,163,
254, 25, 43,125,135,146,173,236, 47,113,147,174,233, 32, 96,160,
251, 22, 58, 78,210,109,183,194, 93,231, 50, 86,250, 21, 63, 65,
195, 94,226, 61, 71,201, 64,192, 91,237, 44,116,156,191,218,117,
159,186,213,100,172,239, 42,126,130,157,188,223,122,142,137,128,
155,182,193, 88,232, 35,101,175,234, 37,111,177,200, 67,197, 84,
252, 31, 33, 99,165,244, 7, 9, 27, 45,119,153,176,203, 70,202,
69,207, 74,222,121,139,134,145,168,227, 62, 66,198, 81,243, 14,
18, 54, 90,238, 41,123,141,140,143,138,133,148,167,242, 13, 23,
57, 75,221,124,132,151,162,253, 28, 36,108,180,199, 82,246, 1};

word8 S[256] = {
99,124,119,123,242,107,111,197, 48, 1,103, 43,254,215,171,118,

202,130,201,125,250, 89, 71,240,173,212,162,175,156,164,114,192,
183,253,147, 38, 54, 63,247,204, 52,165,229,241,113,216, 49, 21,
4,199, 35,195, 24,150, 5,154, 7, 18,128,226,235, 39,178,117,
9,131, 44, 26, 27,110, 90,160, 82, 59,214,179, 41,227, 47,132,

83,209, 0,237, 32,252,177, 91,106,203,190, 57, 74, 76, 88,207,
208,239,170,251, 67, 77, 51,133, 69,249, 2,127, 80, 60,159,168,
81,163, 64,143,146,157, 56,245,188,182,218, 33, 16,255,243,210,

205, 12, 19,236, 95,151, 68, 23,196,167,126, 61,100, 93, 25,115,
96,129, 79,220, 34, 42,144,136, 70,238,184, 20,222, 94, 11,219,

224, 50, 58, 10, 73, 6, 36, 92,194,211,172, 98,145,149,228,121,
231,200, 55,109,141,213, 78,169,108, 86,244,234,101,122,174, 8,
186,120, 37, 46, 28,166,180,198,232,221,116, 31, 75,189,139,138,
112, 62,181,102, 72, 3,246, 14, 97, 53, 87,185,134,193, 29,158,
225,248,152, 17,105,217,142,148,155, 30,135,233,206, 85, 40,223,
140,161,137, 13,191,230, 66,104, 65,153, 45, 15,176, 84,187, 22};

word8 Si[256] = {
82, 9,106,213, 48, 54,165, 56,191, 64,163,158,129,243,215,251,

124,227, 57,130,155, 47,255,135, 52,142, 67, 68,196,222,233,203,
84,123,148, 50,166,194, 35, 61,238, 76,149, 11, 66,250,195, 78,
8, 46,161,102, 40,217, 36,178,118, 91,162, 73,109,139,209, 37,

114,248,246,100,134,104,152, 22,212,164, 92,204, 93,101,182,146,
108,112, 72, 80,253,237,185,218, 94, 21, 70, 87,167,141,157,132,
144,216,171, 0,140,188,211, 10,247,228, 88, 5,184,179, 69, 6,
208, 44, 30,143,202, 63, 15, 2,193,175,189, 3, 1, 19,138,107,
58,145, 17, 65, 79,103,220,234,151,242,207,206,240,180,230,115,

150,172,116, 34,231,173, 53,133,226,249, 55,232, 28,117,223,110,
71,241, 26,113, 29, 41,197,137,111,183, 98, 14,170, 24,190, 27,

252, 86, 62, 75,198,210,121, 32,154,219,192,254,120,205, 90,244,
31,221,168, 51,136, 7,199, 49,177, 18, 16, 89, 39,128,236, 95,
96, 81,127,169, 25,181, 74, 13, 45,229,122,159,147,201,156,239,

160,224, 59, 77,174, 42,245,176,200,235,187, 60,131, 83,153, 97,
23, 43, 4,126,186,119,214, 38,225,105, 20, 99, 85, 33, 12,125};
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word32 RC[30] = {
0x00,0x01,0x02,0x04,0x08,0x10,0x20,0x40,0x80,
0x1B,0x36,0x6C,0xD8,0xAB,0x4D,0x9A,0x2F,0x5E,
0xBC,0x63,0xC6,0x97,0x35,0x6A,0xD4,0xB3,0x7D,
0xFA,0xEF,0xC5};

#define MAXBC 8
#define MAXKC 8
#define MAXROUNDS 14

static word8 shifts[5][4] = {
0, 1, 2, 3,
0, 1, 2, 3,
0, 1, 2, 3,
0, 1, 2, 4,
0, 1, 3, 4};

static int numrounds[5][5] = {
10, 11, 12, 13, 14,
11, 11, 12, 13, 14,
12, 12, 12, 13, 14,
13, 13, 13, 13, 14,
14, 14, 14, 14, 14};

int BC, KC, ROUNDS;

word8 mul(word8 a, word8 b) {
/* multiply two elements of GF(256)
* required for MixColumns and InvMixColumns
*/
if (a && b) return Alogtable[(Logtable[a] + Logtable[b])%255];
else return 0;

}

void AddRoundKey(word8 a[4][MAXBC], word8 rk[4][MAXBC]) {
/* XOR corresponding text input and round key input bytes
*/

int i, j;

for(i = 0; i < 4; i++)
for(j = 0; j < BC; j++) a[i][j] ^= rk[i][j];

}

void SubBytes(word8 a[4][MAXBC], word8 box[256]) {
/* Replace every byte of the input by the byte at that place
* in the nonlinear S-box
*/

int i, j;

for(i = 0; i < 4; i++)
for(j = 0; j < BC; j++) a[i][j] = box[a[i][j]] ;

}
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void ShiftRows(word8 a[4][MAXBC], word8 d) {
/* Row 0 remains unchanged
* The other three rows are shifted a variable amount
*/

word8 tmp[MAXBC];
int i, j;

if (d == 0) {
for(i = 1; i < 4; i++) {

for(j = 0; j < BC; j++)
tmp[j] = a[i][(j + shifts[BC-4][i]) % BC];

for(j = 0; j < BC; j++) a[i][j] = tmp[j];
}

}
else {

for(i = 1; i < 4; i++) {
for(j = 0; j < BC; j++)

tmp[j] = a[i][(BC + j - shifts[BC-4][i]) % BC];
for(j = 0; j < BC; j++) a[i][j] = tmp[j];

}
}

}

void MixColumns(word8 a[4][MAXBC]) {
/* Mix the four bytes of every column in a linear way
*/
word8 b[4][MAXBC];
int i, j;

for(j = 0; j < BC; j++)
for(i = 0; i < 4; i++)

b[i][j] = mul(2,a[i][j])
^ mul(3,a[(i + 1) % 4][j])
^ a[(i + 2) % 4][j]
^ a[(i + 3) % 4][j];

for(i = 0; i < 4; i++)
for(j = 0; j < BC; j++) a[i][j] = b[i][j];

}

void InvMixColumns(word8 a[4][MAXBC]) {
/* Mix the four bytes of every column in a linear way
* This is the opposite operation of Mixcolumns
*/

word8 b[4][MAXBC];
int i, j;

for(j = 0; j < BC; j++)
for(i = 0; i < 4; i++)

b[i][j] = mul(0xe,a[i][j])
^ mul(0xb,a[(i + 1) % 4][j])
^ mul(0xd,a[(i + 2) % 4][j])
^ mul(0x9,a[(i + 3) % 4][j]);
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for(i = 0; i < 4; i++)
for(j = 0; j < BC; j++) a[i][j] = b[i][j];

}

int KeyExpansion (word8 k[4][MAXKC],
word8 W[MAXROUNDS+1][4][MAXBC]) {

/* Calculate the required round keys
*/

int i, j, t, RCpointer = 1;
word8 tk[4][MAXKC];

for(j = 0; j < KC; j++)
for(i = 0; i < 4; i++)

tk[i][j] = k[i][j];
t = 0;
/* copy values into round key array */
for(j = 0; (j < KC) && (t < (ROUNDS+1)*BC); j++, t++)

for(i = 0; i < 4; i++) W[t / BC][i][t % BC] = tk[i][j];

while (t < (ROUNDS+1)*BC) {
/* while not enough round key material calculated,
* calculate new values
*/

for(i = 0; i < 4; i++)
tk[i][0] ^= S[tk[(i+1)%4][KC-1]];

tk[0][0] ^= RC[RCpointer++];

if (KC <= 6)
for(j = 1; j < KC; j++)

for(i = 0; i < 4; i++) tk[i][j] ^= tk[i][j-1];
else {

for(j = 1; j < 4; j++)
for(i = 0; i < 4; i++) tk[i][j] ^= tk[i][j-1];

for(i = 0; i < 4; i++) tk[i][4] ^= S[tk[i][3]];
for(j = 5; j < KC; j++)

for(i = 0; i < 4; i++) tk[i][j] ^= tk[i][j-1];
}
/* copy values into round key array */
for(j = 0; (j < KC) && (t < (ROUNDS+1)*BC); j++, t++)

for(i = 0; i < 4; i++) W[t / BC][i][t % BC] = tk[i][j];
}

return 0;
}

int Encrypt (word8 a[4][MAXBC], word8 rk[MAXROUNDS+1][4][MAXBC])
{

/* Encryption of one block.
*/

int r;

/* begin with a key addition
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*/
AddRoundKey(a,rk[0]);

/* ROUNDS-1 ordinary rounds
*/

for(r = 1; r < ROUNDS; r++) {
SubBytes(a,S);
ShiftRows(a,0);
MixColumns(a);
AddRoundKey(a,rk[r]);

}

/* Last round is special: there is no MixColumns
*/
SubBytes(a,S);
ShiftRows(a,0);
AddRoundKey(a,rk[ROUNDS]);

return 0;
}

int Decrypt (word8 a[4][MAXBC], word8 rk[MAXROUNDS+1][4][MAXBC])
{

int r;

/* To decrypt:
* apply the inverse operations of the encrypt routine,
* in opposite order
*
* - AddRoundKey is equal to its inverse)
* - the inverse of SubBytes with table S is
* SubBytes with the inverse table of S)
* - the inverse of Shiftrows is Shiftrows over
* a suitable distance)
*/

/* First the special round:
* without InvMixColumns
* with extra AddRoundKey
*/

AddRoundKey(a,rk[ROUNDS]);
SubBytes(a,Si);
ShiftRows(a,1);

/* ROUNDS-1 ordinary rounds
*/

for(r = ROUNDS-1; r > 0; r--) {
AddRoundKey(a,rk[r]);
InvMixColumns(a);
SubBytes(a,Si);
ShiftRows(a,1);

}
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/* End with the extra key addition
*/
AddRoundKey(a,rk[0]);

return 0;
}

int main() {

int i, j;
word8 a[4][MAXBC], rk[MAXROUNDS+1][4][MAXBC], sk[4][MAXKC];

for(KC = 4; KC <= 8; KC++)
for(BC = 4; BC <= 8; BC++) {

ROUNDS = numrounds[KC-4][BC-4];
for(j = 0; j < BC; j++)

for(i = 0; i < 4; i++) a[i][j] = 0;
for(j = 0; j < KC; j++)

for(i = 0; i < 4; i++) sk[i][j] = 0;
KeyExpansion(sk,rk);
Encrypt(a,rk);
printf("block length %d key length %d\n",32*BC,32*KC);
for(j = 0; j < BC; j++)

for(i = 0; i < 4; i++) printf("%02X",a[i][j]);
printf("\n");

Decrypt(a,rk);
for(j = 0; j < BC; j++)

for(i = 0; i < 4; i++) printf("%02X",a[i][j]);
printf("\n");
printf("\n");

}

return 0;
}
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– number of, 42
– transformation, 27, 33, 170
round transformation, 27

S-box, 25, 84, 249
S/N ratio, 86
saturation attack, 37, 149
scalar, 12
– multiplication, 12
scope, 1
security, 4
security goals, 73
security margin, 42
selection mask, 183
selection pattern, 87
Serpent, 69
SHARK, 145, 169, 171
sharp conditions, 212
ShiftRows, 37
ShiftRows-GF, 193
shortcut attacks, 73
signal-to-noise ratio, 86
simplicity, 5, 34, 66
Singleton bound, 22
slide attack, 67
SPA, 165
spectrum, 93
SPRP, 74
Square, 145, 169, 173
Square attack, 149
SRD, 249
state, 23, 31

stochastic equivalence, 123
straightforward decryption algorithm,

46
structural attack, see saturation attack
SubBytes, 34
– implementation, 60
SubBytes-GF, 193
submission requirements, 2
suggested keys, 85
super box, 41
support space, 96
symmetry, 67

T -table, 58
test vectors, 253
timing attack, 164
trace, 17
trace mask, 182
trace mask vector, 186
trace parity, 182
trail, 122, 125, 126, 132, 143
– differential, 119
– linear, 105
trail clustering, 195
trail core, 208
transposition, 24
trivial
– characteristic, 86
– expression, 88
truncated differential, 149
truncated function, 103
truncating function, 117
tuple, 23
tuple partition, 23

unit element, 11

vector, 12
– addition, 12
vector space, 11
– basis, 12
– coordinates, 12
vector space representation, 18
versatility, 4, 66

Walsh-Hadamard, 93
weight
– of a correlation, 131
– of a difference propagation, 116
– of a trail, 120, 131
wide trail strategy, 128
wrong pairs, 85

XOR, 22
xtime, 53, 165, 252
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