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Abstract—Embedded cryptographic devices are vulnerable to
power analysis attacks. Threshold implementations (TIs) pro-
vide provable security against first-order power analysis attacks
for hardware and software implementations. Like masking, the
approach relies on secret sharing but it differs in the imple-
mentation of logic functions. While masking can fail to provide
protection due to glitches in the circuit, TIs rely on few assump-
tions about the hardware and are fully compatible with standard
design flows. We investigate two important properties of TIs
in detail and point out interesting trade-offs between circuit
area and randomness requirements. We propose two new TIs of
AES that, starting from a common previously published imple-
mentation, illustrate possible trade-offs. We provide concrete
ASIC implementation results for all three designs using the same
library, and we evaluate the practical security of all three designs
on the same FPGA platform. Our analysis allow us to directly
compare the security provided by the different trade-offs, and to
quantify the associated hardware cost.

Index Terms—AES, first-order differential power analysis,
glitches, higher-order differential power analysis, S-box, sharing,
threshold implementation (TI).

I. INTRODUCTION

AN INCREASING number of embedded devices imple-
ment some security functionality, for instance, smart

cards (banking, SIM, public transport, access control, pass-
ports), car keys, set-top boxes (pay TV), media players, mobile
phones, tablets, medical implants, etc. These devices use cryp-
tographic algorithms that are secure against mathematical
cryptanalysis. This means that a system’s security relies on
the secrecy of a so-called cryptographic key, and that there
are no mathematical short-cuts that allow to break the system.
However, in the late 90s, the security of such devices has been
shown to also depend on the algorithms’ implementation [1].
During the computation of an algorithm the device leaks
information, for instance, through its power consumption, elec-
tromagnetic emanations, etc. Side channel attacks (SCA) can
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reveal the key from these leakages and are often inexpen-
sive, hence they are among the most relevant threats for
the security of implementations of cryptographic algorithms.
Certain countermeasures against SCA aim to introduce noise
in the side channel, e.g., random delays, random-order exe-
cution, dummy operations, etc., while masking conceals all
sensitive intermediate values of a computation with random
data. Different masking schemes, like additive [2], [3] and
multiplicative [4], have been proposed in order to provide
security against differential power analysis (DPA) attacks. In
dth-order additive masking, each sensitive intermediate value
x of the algorithm is represented and processed in d+1 shares
x1, . . . , xd, xd+1 where the first d shares are chosen at random
and the last share is chosen such that x1 ⊕ . . . xd ⊕ xd+1 = x.
Masking allows one to formally argue the security it provides
against DPA.

However, it was shown [5]–[7] that masked hardware imple-
mentations can still be vulnerable to first-order DPA due to the
presence of glitches. One can try to eliminate the security rele-
vant glitches by carefully balancing signal propagation delays
or by using special “secure” logic styles, but this is not always
compatible with standard design flows, is poorly supported by
standard tools, requires expertise, time, iterations of design
and testing, and hence is expensive. As an alternative, new
masking schemes have been developed that provide provable
security for a circuit generated with a standard design flow
even if glitches occur in the circuit.

A. Related Work

In 2006, Nikova et al. [8] proposed such a scheme called
threshold implementation (TI). It is based on secret-sharing
and provides provable security against first-order DPA [9].
In 2011, Prouff and Roche [10] proposed a dth-order mask-
ing scheme, based on Shamir’s secret sharing, for which they
claim security even against higher-order attacks. It is a gen-
eral method that replaces every field multiplication by 4d3 field
multiplications and 4d3 additions, using 2d2 bytes of random-
ness. For resource constrained embedded applications this may
prove too costly or inefficient. Moreover, it has been shown
in [11] that straightforward implementations of this scheme
may not be secure in practice.

The TI technique is based on a specific type of multi-
party computation and applies Boolean masking. Interesting
properties of the technique are that it provides provable secu-
rity against first-order SCA, that it requires few assumptions
on the hardware leakage behavior, that it is fully compatible
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with standard CMOS and FPGA design flows, and that it
allows to construct realistic-size circuits without intervention
and design iterations. However, TIs can still be broken by
univariate mutual information analysis [9], [12] or univariate
higher-order attacks [13].

It has been shown that all 3× 3 and 4× 4 S-boxes have a
TI sharing with 3, 4, or 5 shares [14]. The TI approach has
been applied to only a few entire algorithms: PRESENT [15],
AES [16], [17], KECCAK [18], and Fides [19]. In AES,
the S-box is by far the most challenging part to share.
Moradi et al. [16] proposed a TI of this S-box, based on the
tower field approach [20], that constantly uses three shares.
They also use three shares for the AES implementation. In
contrast, Bilgin et al. [17] proposed to change the number of
shares for different stages of the tower field approach, and for
the AES implementation.

B. Contribution

This paper is an extended version of our paper at
AfricaCrypt’14 [17]. We proposed a TI of AES-128 encryption
that requires about 9 k gate equivalence (GE) with the library
that we use and 44 bits of additional randomness per S-box
calculation. We used the tower field approach over GF(24)

for the S-box and we adapted the number of shares for each
function in the S-box computation to minimize the overall
gate count of the S-box. We used only two shares for most of
the linear operations and hence had two sets of registers for
state update and key schedule. All functions were uniformly
shared and the number of shares went up to five in the S-box.
We used remasking to satisfy the uniformity in the whole cir-
cuit when the uniformly shared functions are combined. Our
practical security evaluation confirmed the expected first-order
DPA resistance and identified the linear part in two shares as
the most vulnerable part of the implementation.

In this extended version, we investigate the uniformity prob-
lem and the need for remasking in more detail. We prove that
under certain circumstances, it is enough to remask only a
fraction of the shares. Moreover, we argue that if there is
enough remasking, we do not need to share functions uni-
formly. This observation helps us to further reduce the area
and randomness requirements. We provide two new imple-
mentations. The first one is similar to the one in [17], but
it uses at least three shares in all the operations, including
the linear ones. We use it to investigate the increase in secu-
rity when moving from at least two to at least three shares,
and to quantify the associated cost. The second implementa-
tion is based on the one in [17] but modified according to
our findings regarding uniformity and remasking. It requires
only about 8 kGE with the library that we use and 32 bits
of additional randomness per S-box calculation. Our three
implementations need the same number of clock cycles to
complete the calculation, and allow us therefore to focus
on some trade-offs between area and additional randomness.
Moreover, we provide results of practical security evaluations
of all three implementations on the same FPGA platform and
under the same lab conditions. They confirm the theoretically
guaranteed first-order attack resistance for all implementations

and allow us to complement the study of trade-offs with an
analysis of our implementations’ security against higher-order
attacks.

II. THRESHOLD IMPLEMENTATIONS

We recall and clarify the definitions and security theorems
of TIs.

A. Notation and Definitions

Lower-case characters refer to elements of a finite field and
functions over finite fields, while upper-case characters are
used for stochastic variables. We denote a vector or a vector
function with bold characters. Let X ∈ Fm denote the input
of the (unshared) function f . A masking (share vector) X of
X is the result of a stochastic function that takes as inputs a
value x and some auxiliary values (random masks), and that
outputs a vector x containing shares x1, x2, . . . , xsx such that
the XOR-sum of the sx shares equals x. For all values x with
Pr(X = x) > 0, let Sh(x) denote the set of valid share vectors
x for x

Sh(x) = {
x ∈ Fmsx | x1 + x2 + · · · + xsx = x

}
.

Pr(X = x|X = x) denotes the probability that X = x when the
unshared input of the masking equals x, taken over all auxiliary
inputs of the masking. Similarly, we denote the output Y ∈ Fn,
and corresponding sy, y, and Sh(y). Let f denote the vec-
tor function composed of the component functions f1, . . . , fsy

operating on the share vector x and outputting y; we will call
it a sharing of the function.

The scheme, like most other masking schemes, requires
that the masking is uniform, in the sense of the following
definition.

Definition 1 (Uniform Masking): A masking X is uniform
if and only if there exists a constant p such that for all x we
have

if x ∈ Sh(x) then Pr(X = x|X = x) = p

else Pr(X = x|X = x) = 0

and
∑

x∈Sh(x)

Pr(X = x) = Pr(X = x).

In words, we call a masking uniform if for each value x of
the variable X, the corresponding vectors with masked values
occur with the same probability.

TIs use sharings that satisfy correctness and noncomplete-
ness properties which are defined as follows.

Definition 2 (Correctness): The sharing f is correct if and
only if ∀x ∈ Fm, ∀y ∈ Fn

∀x ∈ Sh(x),∀y ∈ Sh(y); f(x) = y⇔ f (x) = y.

Definition 3 (Noncompleteness): A sharing f is noncom-
plete if every component function of f is independent of at
least one share xi of x.
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B. Security Proofs

We start with a lemma proving that uniformity of a mask-
ing implies the independence that we need for the proof of
Theorem 1. Let Xī denote the vector obtained by removing Xi

from X.
Lemma 1: If the masking X of X is uniform, then Xī and X

are independent (for any choice of i).
Proof: Two stochastic functions are independent if and only

if their joint distribution equals the product of their marginal
distributions. Hence, we have to show for all i that

∀xī, x : Pr
(
X = x, Xī = xī

) = Pr
(
Xī = xī

)
Pr(X = x).

Since Pr(A, B) = Pr(B) Pr(A|B), it suffices to show that
∀xī, x : Pr(Xī = xī|X = x) = Pr(Xī = xī). We start from

Pr(X = x|X = x) = Pr
(
Xī = xī, Xi = xi|X = x

)

= Pr
(
X = x, Xī = xī, Xi = xi

)

Pr(X = x)

= Pr(X = x, Xī = xī, Xi = xi)

Pr
(
X = x, Xī = xī

)
Pr(X = x, Xī = xī)

Pr(X = x)

= Pr(Xī = xī|X = x) Pr
(
Xi = xi|X = x, Xī = xī

)
.

We know that the last factor equals 1 when x ∈ Sh(x) and
zero otherwise. Hence, we obtain

∀x : Pr
(
Xī = xī|X = x

) = p. (1)

Now, we can write (Bayes’ theorem)

Pr
(
Xī = xī

) =
∑

x

Pr(Xī = xī|X = x) Pr(X = x)

= p
∑

x

Pr(X = x) = p. (2)

The equality of (1) and (2) proves the claim.
It follows that p = |F |m(1−sx).
The security against first-order SCAs in circuits satisfying

correctness and noncompleteness follows now from two intu-
itively easy steps. We start from a result on the individual
component functions.

Theorem 1 [9]: If the masking X is uniform and the shared
function f (hence the circuit of f) is noncomplete, then any
single component function of f does not leak any information
on X.

The proof of this theorem is simple and intuitive (see [9]
for the formal proof). Every component function works on an
input Xī for some i. Lemma 1 states that such an input is
independent of X. In other words, a component function does
not get the information to determine the value of X. Since the
function does not know x, it cannot leak x. Note that, we do
not have to make any assumption on the physical behavior
of the hardware or software implementation of the component
functions.

Finally, we look at the whole circuit. Even though the
component functions of f can be made independent of X
individually, we cannot achieve independence for the whole
circuit. However, due to the linearity of the expectation oper-
ator, we can still prove independence of the average value and
therefore resistance against first-order attacks. Let L denote

TABLE I
NUMBER OF TIMES THAT A MASKING c1, c2, c3

OCCURS FOR A GIVEN INPUT (a, b)

a leakage signal of an implementation of the circuit f, be it
instantaneous or summed over an arbitrary period of time. We
require that the leakage of the whole circuit is the sum of the
leakages of the sub-circuits.

Theorem 2 [9]: If the masking X is uniform and the circuit
of f is noncomplete, then the expected value (average) of L is
constant.

The proof uses only elementary probability theory. Due to
the linearity of the expectation operator, the expected value
of L is the sum of the expected values of the leakages of
the component functions. Theorem 1 implies that the expected
values of the leakages of the component functions are constant.
Hence, so is the expected value of L.

Note that the only required assumption on the physical
behavior of the hardware or software implementation of f is
that the component functions can be implemented such that
the leakage from each of them is independent of at least one
share of X. In other words, the cross-talk between implemen-
tations of different components should be negligible. However,
the theorem claims results only on the expected value of L,
since higher-order statistical moments are not linear.

C. What Can Go Wrong Without Uniformity?

We show by means of a simple example what can go wrong
if a sharing is not uniform. Note that the nonuniform shar-
ing of the 5 × 5 S-box of the SHA-3 competition winner
Keccak [18], [21] has similar problems. Let (A, B) ∈ F

2
2 and

their product F
2 � C = f (A, B) = AB. Define f as follows:

C1 = f1(A2, A3, B2, B3) = A2B2 + A2B3 + A3B2

C2 = f2(A1, A3, B1, B3) = A3B3 + A1B3 + A3B1

C3 = f3(A1, A2, B1, B2) = A1B1 + A1B2 + A2B1. (3)

If the masking of the input (A, B) is uniform, then the masking
of C is distributed as shown in Table I. In order to satisfy the
uniformity of the masking of the output C, we would need
that the 16 nonzero values in the table were equal (specifi-
cally to 22(3−1)−1(3−1) = 4 as will be defined in Definition 4).
Theorem 2 implies that there is no leakage of information in
this circuit. However, if C is used as a input of a second cir-
cuit, then Theorem 2 does not apply anymore to the second
circuit (because its inputs are not uniform) and potentially the
second circuit might leak information.

Let E = D× C and let this multiplication be implemented
by similar formulas as above. For example, (3) becomes

E1 = f1(C2, C3, D2, D3) = C2D2 + C2D3 + C3D2. (4)

Assume that the masking of D is uniform but the masking
of C has the distribution given in Table I. Then, the masking
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TABLE II
NUMBER OF TIMES THAT A MASKING e1, e2, AND e3

OCCURS FOR A GIVEN INPUT (a, b, AND d)

of E will be distributed as shown in Table II. The average
Hamming weight of E1, E2, E3 in the seventh row ((a, b, d) =
(1, 1, 0)) equals 33/32, whereas it equals 27/32 in the first six
rows. This implies that some hardware implementations might
show a different average power consumption when (a, b, d) =
(1, 1, 0). Also, observe that the correlation between Ci and C
is 0.125. Hence, in the part of the circuit implementing (4),
the average of the leakage L can be correlated to C, since both
C2 and C3 are correlated to C.

D. Uniformity as Remedy

We can take different types of actions to remedy the problem
described in the previous section. First, we can apply remask-
ing as done by Moradi et al. [16]: by adding fresh masks to the
shares C1, C2, C3, we make the distribution uniform. A dis-
cussion on remasking is provided in Section II-F. Second, we
can impose an extra condition on f such that the distribution
of its output is always uniform. This extra condition is the
uniformity defined below.

Definition 4 [Uniform Sharing of a Function (Circuit)]:
The sharing f is uniform if and only if

∀x ∈ Fm,∀y ∈ Fn with f (x) = y,∀y ∈ Sh(y):

|{x ∈ Sh(x)|f(x) = y}| = |F |
m(sx−1)

|F |n(sy−1)
.

If sx = sy and m = n, this simplifies to

∀x, y ∈ Fm with f (x) = y,∀y ∈ Sh(y):

|{x ∈ Sh(x)|f(x) = y}| = 1.

It follows that a uniform circuit f is invertible if and only if f
is invertible. We now prove that the uniform circuit condition
is sufficient to achieve a uniform distribution at its output.

Theorem 3: If the masking X is uniform and the circuit
f is uniform, then the masking Y of Y = f (X), defined by
Y = f(X) is uniform.

Proof: In order to prove that Y is uniform, we need to show
that Pr(Y = y|Y = y) is equal to a constant p if y ∈ Sh(y)
and 0 otherwise by Definition 1. Considering y = f(x) and
y = f (x), we obtain

Pr(Y = y|Y = y)

=
∑

x∈Sh(x),
x,f (x)=y

Pr(Y = f(x)|Y = f (x)) Pr(X = x, X = x).

Using the equality

Pr(X = x, X = x) = Pr(X = x|X = x) Pr(X = x)

and Definition 1, the second factor becomes p′ Pr(X = x). The
proof of Lemma 1 implies that p′ = |F |−m(sx−1). Definition 4
implies that the first factor equals |F |m(sx−1)−n(sy−1) for all
y ∈ Sh(y). We obtain

Pr(Y = y|Y = y)

=
∑

x∈Sh(x),
x,f (x)=y

|F |−n(sy−1) Pr(X = x) = |F |−n(sy−1).

Hence, Pr(Y = y|Y = y) is equal to a constant p = |F |−n(sy−1)

if y ∈ Sh(y) and 0 otherwise satisfying a uniform masking.
Practice shows that adding the uniformity requirement to a

noncompletely shared function tends to blow up its mathemat-
ical complexity, as well as the cost of its implementation. In
some applications, it might be better to consider remasking,
for instance if random bits are available at low cost.

E. Uniformity for Cascaded and Parallel Functions

If the TI technique is used to protect cascaded functions,
then extra measures like the ones discussed in the previous
section need to be taken, such that the input for the follow-
ing nonlinear operation is again a uniform masking. A similar
situation occurs when the TI technique is used to protect sev-
eral functional blocks acting in parallel on (partially) the same
inputs. This occurs for example in implementations of the
AES S-box using the tower field approach. If no special care
is taken, then “local uniformity” of the distributions of the
outputs of the individual blocks will not lead to “global uni-
formity” for the joint distributions of the outputs of all blocks.
For example, let f, g be two functions acting on the same uni-
form input x. Then, even if f, g are uniform shared functions,
producing uniform y = f(x) and y′ = g(x), this does not imply
that (y, y′) is uniform. Like with cascaded functions, if each
of the parallel blocks satisfies the properties of correctness and
noncompleteness, there will be no leakage of signals within the
parallel blocks, but the lack of uniformity in the joint distribu-
tion of the output’s masking can lead to information leakage
if the outputs are combined as inputs to a following nonlin-
ear function. At this time, the only known solution for this
problem is remasking.

F. Reducing the Randomness Used in Remasking Step

As mentioned in the beginning of Section II-D, we can gen-
erate a uniform masking from any share vector X by remasking
all its shares Xi using fresh random masks. Hence, we stress
the following point.

Observation 1: A TI that uses remasking does not need
uniformly shared functions in order to resist first-order attacks.

However, remasking all the shares of a masking can be a
burden when generating fresh randomness is costly. The fol-
lowing theorem allows to reduce the amount of random bits
used by remasking steps of TIs: if (X1, . . . , Xt) of a masking
with s shares have a uniform distribution, only the remaining
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nonuniform fraction of the shares (Xt+1, . . . , Xs) needs to be
remasked.

Theorem 4: Let (X1, X2, . . . , Xs) be a masking of a
(stochastic) variable X ∈ Fm, where Pr(X1 = x1, . . . , Xt =
xt) = |F |−tm,∀(x1, . . . , xt) for some t with 1 ≤ t ≤ s. Then,
the masking (Y1, . . . , Ys), defined by Yi = Xi for 1 ≤ i ≤ t and
Yi = Xi + Ri for t < i ≤ s, is a uniform masking of X, i.e.,
Pr(Y1 = y1, Y2 = y2, . . . , Ys = ys|X = y1 + y2 + · · · ys) =
|F |m(1−s), provided that the Ri, i = t+ 1, . . . , s− 1 are inde-
pendently and uniformly distributed random variables and that
Rs = −(Rt+1 + · · · + Rs−1).

Proof: We give here a sketch of the proof. We have

Pr(Y1 = y1, . . . , Ys = ys|X = y1 + y2 + · · · ys)

= Pr(Y1 = y1, . . . , Yt = yt|X = y1 + y2 + · · · ys)

× Pr(Yt+1 = yt+1, . . . , Ys = ys ←↩

↪→ |X = y1 + · · · ys, Y1 = y1, . . . , Yt = yt). (5)

Since Yi = Xi for 1 ≤ i ≤ t, the first factor equals |F |−tm. For
the second factor, we recall the definition of Yt+1 to obtain that

Pr(Yt+1 = yt+1)

=
∑

xt+1

Pr(Xt+1 = xt+1) Pr(Rt+1 = yt+1 − xt+1)︸ ︷︷ ︸
|F |−m

.

The same holds for Yt+2, . . . , Ys−1 and since the Ri have
independent distributions, we can equate the second factor
of (5) to

|F |(1−s−t)m
∑

xt+1,...,xs−1

Pr(Xt+1 = xt+1, . . . , Xs−1 = xs−1

Ys = ys| ↪→ X = y1 + · · · + ys

X1 = x1, . . . , Xt = xt).

Recalling the definition of Ys completes the proof.
Clearly, the extra randomness required by the remasking

approach in some cases may be a worse problem than the
blow-up in gate count caused by the uniform sharing approach.

G. Consequences

Theorems 1 and 2 can be proven using Definitions 1 and 3.
Moreover, Definition 3 is required only for the sake of the
implementation’s correctness. In contrast, if several circuits
are cascaded (pipelined) or they run in parallel, the uniform
sharing in Definition 4 is also needed in order to satisfy
Definition 1 in the following circuit. However, using a uniform
circuit can be avoided with (partial) remasking. In other words,
if we consider first-order DPA only, then there is no need to
demand uniformity of a sharing that is followed by a remask-
ing step anyway. By relinquishing the uniformity requirement,
it is often possible to reduce the number of shares and the size
of the circuit as suggested in Theorem 4. This will be used
in the next section in order to reduce the number of shares in
the subcircuits of the AES S-box.

III. IMPLEMENTATION

In this section, we will discuss three different TIs
of AES which we refer to as raw, adjusted, and nim-
ble implementations. All implementations share the same

data flow and timing. The implementations differ mostly in
the S-box calculation and/or the number of shares that are
used in different blocks of the algorithm. The raw implemen-
tation is from our paper at AfricaCrypt’14 [17] and forms the
basis of the other two implementations. Hence, we will mainly
describe the raw implementation and point out the differences
with the other two. The main feature of the raw implementa-
tion is that it uses the smallest possible number of shares for
each function, except the linear transformations in the S-box,
provided that the shared functions are uniform. In other words,
all nonlinear operations are performed with n > 2 shares such
that the circuits are uniform and n is as small as possible. The
linear operations outside the S-box are performed with two
shares, whereas the linear operations in the S-box use two,
three, or four shares (see Section III-B).

The adjusted implementation on the other hand ensures that
at least three shares are used in every operation, including the
linear ones. With this implementation, we intend to observe
the effect of moving from at least two shares to at least three
shares in linear operations on the resistance against higher-
order DPA, and to quantify the associated cost. In the nimble
implementation, the number of shares is always minimal, i.e.,
n = d+1 where d is the degree of the unshared function, even
if the resulting shared function is not uniform. The uniformity
of the circuit is satisfied by remasking.

We will first describe the general data flow of our imple-
mentations in Section III-A. In Section III-B, we will introduce
different approaches to apply the TI to the AES S-box,
which is the only nonlinear layer of the block cipher. We
described the proposed designs in Verilog, separating com-
ponent functions in modules, and verified their functionality
with ModelSim. Then, we used a standard tool chain to syn-
thesize them using synopsys design vision D-201-.03-SP4 with
Faraday standard cell library FSA0A_C_generic_core, which
is based on UMC 0.18 μm generic II logic process with 1.8 V.
We will conclude this section by providing the area, timing,
and randomness requirements of our designs in Section III-C.
We look at the number of NAND GE for the area, represent the
timing with clock cycles and calculate the randomness require-
ment in bits. We compare our implementations with [16] which
uses a similar standard cell library based on UMC 0.18 μm
logic process with 1.8 V voltage.

A. General Data Flow

We use a serial implementation for round operations and
key schedule as proposed in [16] and [17] which requires only
one S-box instance and loads the plaintext and key byte-wise
in row-wise order. We also use one MixColumns instance
that operates on the whole column and provides an output
in one clock cycle. Due to this extreme serialization, one
round requires at least 21 clock cycles even for the unpro-
tected implementation [16]. All our TIs execute one round in
23 clock cycles. In the first 16 clock cycles, the plaintext is
XORed with the key and sent to the S-box. Its output will
be taken from the third to the 18th clock cycles and stored
in the state registers, i.e., the S-box is executed in three clock
cycles. The ShiftRows operation is performed in the 19th clock
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Fig. 1. Schematic of the serialized TI of raw AES-128.

cycle followed by four cycles of MixColumns calculation. The
S-box takes its input from the key schedule for four cycles
starting from the 18th cycle. In the 17th, 22nd, and 23rd clock
cycles, the S-box inputs and unused random bits are set to 0.
Therefore, the calculation of AES takes 23 × 10 + 16 = 246
clock cycles, including 16 cycles to output the ciphertext.

1) Raw Implementation: We use two sets of state registers,
each consisting of sixteen 16-bit registers, corresponding to
the two shares of the state. The MixColumns and the Key
XOR operations are also performed with two shares. This can
be seen in Fig. 1, as the key and the state registers are 256 bits
implying the two shares.

This TI of the S-box (details will be given in the following
section) requires four input shares, therefore, we initially share
the plaintext in four shares. We share the key in two shares
and XOR them with two of the plaintext shares before the
S-box operation. More details about the key scheduling will
be given later in this section. Besides the shared input, the
S-box needs 20-bits of randomness r. The first two output
shares sbout1,2 are written to the state register S33 (Fig. 2)
whereas the remaining share sbout3 is written to register P3.
The data in the state registers are shifted to the left for the
following 16 cycles so that the next output of the S-box can
be stored in the same registers. During this shift, the data in
P3 (pout in Fig. 1) is XORed with the second share of the
S-box output, which is in the state register S33, to reduce the
number of shares from three to two. To achieve this signal,
sig2 is active from the fourth to the 19th clock cycle.

The ShiftRows operation is performed in the 19th clock
cycle with an irregular horizontal shift. In the next four clock-
cycles, the data in the registers S00, S10, S20, and S30 are
sent to the MixColumns operation, the rest of the registers
are shifted to the left horizontally and the output of the
MixColumns operation is written to the registers S03, S13,
S23, and S33. The MixColumns operation is implemented
column-wise as in [16] and with two shares working in par-
allel. The registers except S10–S12 are implemented as scan
flip-flops (SFF) that are D-flip-flops (DFF) combined with
2-to-1 MUXes. They can operate with two inputs at reduced
area cost. A single 2-to-1 MUX costs 3.33 GE and one bit
register costs 5.33 GE whereas one bit SFF costs 6.33 GE in
our library.

In the following AES rounds, we increase the number of
shares of the S-box input from two to four, using 24 bits of

Fig. 2. Schematic of the state (top) and key (bottom) arrays for our raw
implementation where Si, Ki, and P0 hold two shares and P3 holds one share.
The registers P0 and P3 are used by the state and the key array. The XOR of
the value in P3 and S33 (resp. K30) is on one share of the value in register
S33 (resp. K30) whereas all the other combinational operations are on two
shares.

randomness (three bytes each of which is referred to as mi in
the figures), one clock cycle before the S-box operation. To
achieve this signal, sig1 is active for 16 clock cycles, start-
ing from the last clock-cycle of each round. We separate the
increase of the number of shares and the nonlinear operation
with registers to achieve the noncompleteness property. The
two additional shares are stored in P0. The two shares in S00
are XORed with the two shares of the corresponding round
key byte and sent to the S-box together with the two shares
in P0.

The registers P0 and P3 are used for both round transfor-
mations and key scheduling.

Similar to the state array, the key array also consists of
sixteen 16-bit registers, implemented as SFFs, each corre-
sponding to the two shares of a byte in the key schedule. The
round key is inserted from the register K33 in the first 16 clock
cycles of each round. For the next three clock cycles, the reg-
isters except the last column (K03, K13, K23, and K33) are not
clocked. The registers K03, K23, and K33 are also not clocked
in the 17th clock cycle. In that clock cycle, we increase the
number of shares in the register K13. In the following three
clock cycles, this resharing is done during the vertical shift
from the register K23 to K13, i.e., the resharing signal sig4
is active from the 17th to the 20th clock cycle. Signal sig5
is active from the 18th to the 21st clock cycle to reduce the
number of shares back to two. The registers K03, K13, K23,
and K33 are not clocked in the remaining two clock cycles
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of each round. We choose this way of irregular clocking to
avoid using extra MUXes in our design. Two shares of the
S-box output are XORed to the data in K00 in the last four
clock cycles of each round. In the 20th clock cycle, the round
counter rcon is additionally XORed to one of these shares.
The number of shares is reduced back to two by XORing the
share in P3 to one of the shares in K30. Signal sig3 is active
in the first 16 clock cycles except the 4th, 8th, 12th, and 16th
clock cycles. The round key is taken from the register K00 to
be XORed with the corresponding plaintext before going to
the S-box operation.

2) Adjusted Implementation: This version works on three
shares for both state and key schedule which increases the area
significantly. The S-box still requires four input shares and
outputs three shares, hence the register P0 is reduced to 8-bits
(one share) and the register P3 is not required. Similar to the
raw implementation, we use 24-bits of randomness to increase
the number of shares from three to four one cycle before the
S-box, i.e., each of the existing three shares is XORed with a
random byte and the sum of these random bytes is taken as the
fourth share. This also ensures uniformity of the S-box input.
Together with the state, the number of shares for MixColumns
and Key XOR increases to three.

3) Nimble Implementation: Similar to the raw implementa-
tion, this one also uses two shares for the state and key arrays.
The main difference is that the S-box needs three input shares
instead of four. Hence, the size of the register P0 is reduced
to 8-bits (one share). As a result, we need only 16-bits of ran-
domness to increase the number of shares from two to three
before the S-box operation, i.e., each share is XORed with
one byte of randomness and the XOR of the random bytes is
taken as the third share. The S-box requires 16-bits of extra
randomness per iteration and outputs three shares. Hence, the
logic of the register P3 to reduce the number of shares back
to two stays the same.

B. TI of the AES S-Box

The S-box implementations in [16] use the tower field
approach up to GF(22) for a small implementation. Therefore,
the only nonlinear operation is GF(22) multiplication which
must be followed by registers and remasking to avoid first-
order leakages.

We also chose to use the tower field approach, however,
we decided to go until GF(24) instead of GF(22). With this
approach, the GF(24) inverter (algebraic normal form provided
in the Appendix) can be seen as a four bit permutation and
the GF(24) multiplier (algebraic normal form provided in the
Appendix) as a four-bit multiplication both of which are well
studied in [22]. Therefore, we can find uniform TIs for each
of these nonlinear functions. This might allow us to reduce the
number of fresh random bits needed since we will have fewer
nonlinear blocks compared to [22] hence possibly require less
remasking in order to use their outputs. Moreover, with this
approach the S-box calculation takes three clock cycles instead
of five.

1) Raw Implementation (Fig. 3): The uniformity of each
function is individually satisfied. The uniform sharing with

Fig. 3. S-box of the raw implementation.

four input and three output shares that is used to share each
term in the multiplication is provided in the Appendix. For
the inversion, which belongs to class C4

282 [14], we consider
two options. Either using four shares, which is the minimum
number of shares necessary for a uniform implementation in
that class, and decomposing the function into three uniform
sub-functions as Inv(x) = F(G(H(x))), or using five shares
without any decomposition. Our experiments show that both
versions have similar area requirements but need a different
number of clock cycles. To reduce the number of cycles, we
chose the version with five shares, generated by applying the
formula in the Appendix to each term of the inversion. This
sharing is found by using the method described in [9] which is
slightly different from the direct sharing [14]. We chose this
sharing since it can be implemented in hardware with less
logic gates compared to the direct sharing.

Even though it is enough to use only two shares for linear
operations, we sometimes chose to work on more than two
shares to avoid the need of extra random bits. The linear map
of the tower-field S-box operates on four shares since the mul-
tiplication needs four input shares. The inverter requires five
input shares and the multiplication outputs only three shares,
therefore, we use two shares for the square scalar to have
five shares in the beginning of the second phase. We use three
shares for the inverse linear map of the tower-field S-box since
the multiplication outputs three shares. For all the linear oper-
ations, the shared functions are created as instantiations of the
unshared function for the first share and as unshared function
without the constant term for the other shares.

During the combination of these uniform circuits, we face
the challenges described in Section II-E to keep the unifor-
mity in the pipeline registers. We apply remasking on the first
pipeline register where we combine the two output shares of
the square scaler and the three output shares of the multiplier
to generate five shares. Note that this combination also acts as
the XOR of the outputs of the square scaler and the multiplier.
By Theorem 4, it is enough to remask only the output shares
of one of the functions to achieve uniformity. We choose to
remask the output of the square scaler since it operates on less
shares, hence requires less random bits. The correction mask,
i.e., the XOR of the masks, is XORed to one of the output
shares of the multiplier to achieve correctness.

An other challenge is to satisfy the uniformity of the cir-
cuit as we increase or decrease the number of shares. This is
achieved by introducing new masks before the S-box opera-
tion to increase from two to four shares and at the end of the
second phase to decrease from five to four shares. The output
of the third phase is not uniform when the three shares are
considered together. However, we verified by simulation that
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Fig. 4. S-box of the adjusted implementation.

Fig. 5. S-box of the nimble implementation.

each share individually is uniform, which implies that there is
no first-order leakage in the following registers. We combine
the first two shares with an XOR and keep the third share as
it is to go back to two shares. We also verified that, after we
decrease the number of shares to two, the output shares are
uniform.

We always keep the XOR of the masks in the pipeline reg-
isters and complete the remasking in the next clock cycle as
in [16]. Overall, we need 44 fresh random bits per S-box oper-
ation including increasing the number of shares of the S-box
input.

2) Adjusted Implementation (Fig. 4): As mentioned in the
earlier sections, the only difference between the raw and the
adjusted implementation is that the adjusted implementation
requires at least three shares for all the blocks including the lin-
ear operations in the S-box. For that reason, the shared square
scaler circuit is instantiated with three shares. This S-box also
requires 44-bits of randomness per iteration.

3) Nimble Implementation (Fig. 5): As can be observed in
Figs. 3 and 4, we use fresh randomness at the end of the
first phase to satisfy uniformity during the combination of
the square scaler’s and the multiplier’s outputs, and after the
inverter to break the dependency between the inputs of the
multipliers in the third phase. Since these remasking steps
conserve the uniformity property and the security of each
block is achieved only by the correctness and noncomplete-
ness properties (Observation 1), we can discard the uniformity
property and implement these nonlinear functions with the
smallest number of shares n s.t. n > d, i.e., n = d + 1,
where d is the degree of the unshared functions. We use the
sharing with three input and output shares provided in the
Appendix for each term of the multiplier and the sharing with
four input and output shares provided in the Appendix for
each term of the inverter. With this new construction, it is
enough to have three input shares to the S-box since the mul-
tiplier block requires only three shares. We need to reduce
the number of shares from five to four at the end of the first
phase for the inverter and from four to three at the end of the
second phase for the following multipliers. This construction

TABLE III
SYNTHESIS RESULTS FOR DIFFERENT VERSIONS OF S-BOX

TI WITH COMPILE/COMPILE_ULTRA COMMANDS

requires only 32-bits of extra randomness per S-box cal-
culation, including increasing the number of shares for the
S-box input.

C. Performance

Like any other DPA countermeasure, TI also allows trade-
offs between area, randomness, and the resistance against
DPA. In Table III, we provide the area costs (GE) and
randomness requirements (bits) for the different S-box imple-
mentations. For all the implementations, we performed two
different compilation methods. The first one is a regular com-
pilation with the compile command, that does not optimize or
merge modules, performed on the whole implementation. The
second method on the other hand uses the compile_ultra com-
mand for each module to let the tool optimize each of them
individually and combine the result. It is very important that
the modules are not merged for area optimization in this step,
to not violate the noncompleteness property.

The total area results in Table III show that using nonuni-
formly shared functions as in the nimble implementation
reduces the area cost significantly compared to the uniformly
shared raw and adjusted implementations. This reduction is
caused by the decreased number of shares used in the non-
linear blocks. Moreover, the required number of random bits
per S-box also decreases together with the reduced number
of shares since less shares need to be remasked to satisfy
uniformity.

In Table IV, we show the area, randomness requirements,
and timings of our AES implementations and compare them
with the results in [16]. We again provide our results using the
same compilation techniques as the S-box implementations.
The area costs for the state and the key arrays include the
ANDs and XORs that are shown in Fig. 2. As expected in
the raw and nimble implementations, the cost of the state and
key arrays together with the MixColumns are reduced by one
third compared to [16] and the adjusted implementation, since
we use two shares instead of three. All our versions have the
same timing and use the same control module.

In our implementations, the S-box occupies 30%–40% of
the total area. Compared to the implementation in [16] our
S-boxes with uniform blocks are 13% smaller and our S-box
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TABLE IV
SYNTHESIS RESULTS FOR DIFFERENT VERSIONS OF AES TI WITH

COMPILE/COMPILE_ULTRA COMMANDS

with nonuniform blocks is 33% smaller. These results show
a significant area and randomness improvement for the nim-
ble implementation, indicating that using nonuniform shared
functions can be advantageous if the uniformity of the circuit
is satisfied by remasking.

IV. POWER ANALYSIS

To evaluate the security of our designs in practice, we imple-
ment them on an SASEBO-G board [23] using Xilinx ISE
version 10.1. The Verilog descriptions of the designs are the
same as for the ASIC evaluations, but we replaced all SFFs
by DFFs and MUXes because SFFs are not available. We
use the “keep hierarchy” constraint to prevent the tools from
optimizing over module boundaries (see the last paragraph of
Section II-B and the last sentence before Table III). Apart
from that, we use the standard tool chain. The board features
two Xilinx Virtex-II Pro FPGA devices: we implement the
TI AES and a pseudorandom number generator (PRNG) on
the crypto FPGA (xc2vp7) while the control FPGA (xc2vp30)
handles I/O with the measurement PC and other equipment.
The PRNG that generates all random bits is implemented as
AES-128 in CTR mode.

We measure the power consumption of the crypto FPGA
during the first 1.5 rounds of TI AES as the voltage drop over
a 1 � resistor in the FPGA core GND line. The output of the
passive probe is sampled with a Tektronix DPO 7254C digital
oscilloscope at 1 GS/s sampling rate.

A. Methodology

We define two main goals for our practical evaluations.
First, we want to verify our implementations’ resistance
against first-order attacks. But in practice adversaries are of
course not restricted to applying such attacks. Therefore, our
second goal is to assess the level of security our implementa-
tions provide against other, e.g., higher-order, power analysis
attacks.

Since there is no single, all-embracing test to evaluate the
security of an implementation, we test its resistance against
state-of-the-art attacks. We narrow the evaluation to univariate
attacks because our implementations process all shares of a
value in parallel. Estimating the information-theoretic metric
by Standaert et al. [24] is out of reach. It would require
estimation of at least 248 Gaussian templates.

We make several choices that are in favor of an adversary
and make attacks easier. First, to minimize algorithmic noise
the PRNG and the TI AES do not operate in parallel, i.e.,
the PRNG generates and stores a sufficient number of ran-
dom bits before each TI AES operation. In practice, running
them in parallel will increase the level of noise and thus the
number of measurements needed for an attack to succeed.
Second, we provide the crypto FPGA with a stable 3 MHz
clock frequency to ensure that the traces are well aligned and
the power peaks of adjacent clock cycles do not overlap (this
would also help to assign a possibly identified leak to a spe-
cific clock cycle). In practice, clocking the device at a faster
or unstable clock will make attacks harder. Third, we let the
adversary know the implementation. Specifically, if the PRNG
was switched off the adversary would be able to correctly com-
pute bit values and bit flips under the correct key hypothesis.
In practice, obscurity is often used as an additional layer of
security. Fourth, we use synchronous (over-)sampling [25] to
avoid clock drift and achieve the best possible alignment. In
practice, secure devices use an internal (and unstable) clock
source which prevents synchronous sampling and increases the
number of measurements needed for an attack to succeed.

B. PRNG Switched Off

To confirm that our setup works correctly and to get some
reference values, we first attack the implementations with
the PRNG switched off. We expect that the implementations
can be broken with many first-order attacks. As example, we
applied correlation DPA attacks [26] that use the Hamming
distance of two consecutive S-box outputs as power model.
The attacks require 2 · 28 key hypotheses. To reduce the com-
putational complexity, we let the adversary know one key byte
and aim to recover the second one.

Since the adversary knows the implementation, he can
choose to compute the Hamming distance over three 8-bit
registers (all versions; S33 and P3; output of the S-box in
three shares), two 8-bit registers (raw and nimble; S32; one
cycle later; two shares) or ignore the details and compute the
distance over a single 8-bit register as if it was a plain imple-
mentation. For all versions, only a few hundred traces are
required to recover the key with any of these attacks. It is
worth noting that the highest correlation peaks do not occur
at the S-box output registers, but three resp. two clock cycles
later when the same bit-flips occur in register S30. This reg-
ister drives the MixColumns logic and therefore has a much
greater fanout.

We also applied correlation collision attacks [7] that tar-
get combinational logic. The attacks compute two sets of
mean traces for the values of two processed plaintext bytes
and shift the mean traces in the time domain to align them.
They aim to recover the linear difference between the two key
bytes involved. To do so, they permute one set of mean traces
according to a hypothesis on the linear difference and then
correlate both sets of mean traces. The results show that this
attack is successful with a few thousand measurements for
all versions. For more details and figures regarding the raw
implementation, see [17].
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Fig. 6. Results of the first-order DPA and correlation collision attacks on raw
implementation with PRNG on computed using 10 million traces. Top left:
HD over one register. Top right: HD over two registers. Bottom left: HD over
three registers. Bottom right: correlation collision.

Fig. 7. Results of the second-order DPA (top) and correlation collision
(bottom) attacks on raw implementation with PRNG on computed using
10 million traces. Right: min./max. correlation coefficient per hypothesis (from
the overall time span) over number of traces used.

C. PRNG Switched On

Next, we repeat the evaluation with the PRNG switched on,
i.e., the TI AES uses unknown and unpredictable random bits.
For the DPA attacks using the Hamming distance over two or
three registers as power model, we suppose these bits were
zero.

1) Raw Implementation: Fig. 6 shows the results of
the first-order attacks against the protected implementation
using 10 million measurements. The results show that the
attacks fail.

We proceed with higher-order attacks to assess the level of
security this implementation provides. For our second-order
DPA attacks, we use the same power models as before but
center and then square the traces (for each time sample) before
correlating [2], [27], [28]. Second-order correlation collision
attacks work as above with mean traces replaced by variance
traces [13].

Fig. 7 (top left) shows the results of the second-order DPA
attack that uses the Hamming distance in a single register
as power model (as if it was a plain implementation) using
10 million measurements. We note that the highest corre-
lation peak occurs again when the same bitflips happen in

Fig. 8. Results of the first-order DPA (left) and correlation collision (right)
attacks on adjusted implementation with PRNG on computed using 10 million
traces.

Fig. 9. Results of the second-order DPA (top) and correlation collision
(bottom) attacks on adjusted implementation with PRNG on computed using
10 million traces. Right: min./max. correlation coefficient per hypothesis (from
the overall time span) over number of traces used.

register S30, similar to when the PRNG was switched off.
The attack requires about 600 000 traces to succeed, as shown
in Fig. 7 (top right). Second-order DPA attacks using the
Hamming distance over two resp. three registers as power
model failed to recover the key, presumably because we do
not know the masks’ values and assume they are zero.

Fig. 7 (bottom left) shows the results of the second-order
correlation collision attack using 10 million measurements.
The attack requires about 3.5 million traces to succeed, as
shown in Fig. 7 (bottom right).

2) Adjusted Implementation: We performed the same anal-
ysis as on the raw implementation. Fig. 8 shows that neither
the first-order DPA attack that uses the Hamming distance
in one register as power model nor the first-order correlation
collision attack work with 10 million traces, as expected.

Unlike our result for the raw implementation, we observe
that second-order DPA does not work even with 10 million
traces as shown in Fig. 9 (top). This result is natural since
the adjusted implementation uses three shares instead of two
in register S33 (and the entire state array). We expect a third-
order DPA attack that exploits the third standardized moment
of the traces to be possible, however, the available 10 million
traces were not enough.

On the other hand, a second-order correlation collision
attack still succeeds, indicating leakage from possible glitches
in the S-box, as shown in Fig. 9 (bottom left). Recall that
the adjusted implementation uses at least three shares in every
operation. Compared to Fig. 7 (bottom left) the second corre-
lation peak does not show. This might be the reason why the
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Fig. 10. Results of the second-order DPA (top) and correlation colli-
sion (bottom) attacks on nimble implementation with PRNG on computed
using 1 million and 10 million traces, respectively. Right: min./max. correla-
tion coefficient per hypothesis (from the overall time span) over number of
traces used.

attack becomes harder, as shown in Fig. 9 (bottom right). It
is successful with about 4 million traces, but the separation
of the correct key from the wrong keys is poor, even using
10 million traces. This observation indicates that the leakage
that leads to the first correlation peak is almost linear and
therefore harder to exploit.

3) Nimble Implementation: We performed the same analy-
sis as on the raw implementation and the results are similar.
First-order DPA and correlation collision attacks fail with
10 million traces. Both second-order DPA and correlation col-
lision attacks show peaks (Fig. 10, left) in the same clock
cycle as for the raw implementation. They succeed with about
600 000 and 8.5 million traces, respectively, as shown in
Fig. 10 (right). However, we observe that the correlation col-
lision attack requires more traces to be successful than for
the raw implementation. We suspect that this is due to the
simpler component functions of the nimble implementation,
which cause less glitches in the circuit.

D. Discussion

The first goal of our evaluation is to verify our implemen-
tations’ resistance against first-order attacks. But this goal is
always limited by the number of measurements at hand. It is
simply not possible to demonstrate resistance against attacks
with an infinite number of traces. We have shown that our
implementations resist state-of-the-art first-order attacks with
10 million traces in conditions that are strongly in favor of the
adversary (no algorithmic noise from the PRNG, knowledge
of the implementation, slow and stable clock, best possible
alignment). Given the theoretical foundations of TI and the
correctness of our implementations, we are convinced that our
implementations resist first-order attacks with any number of
measurements, but we have no way to demonstrate that.

The second goal of our evaluation is to assess the level
of security our implementations provide against higher-order
attacks and to relate the results to the area and random-
ness requirements. In the same adversary-friendly conditions,
the most trace-efficient second-order attack in our evaluation
requires about 600 000 traces for the raw and the nimble

implementations. The attack exploits that the state array is
in two shares, which is common to both implementations
that mainly differ in the S-box implementation. Since the
nimble implementation requires less resources and provides
a similar level of security, it is preferable over the raw
implementation.

As expected, the adjusted implementation with at least
three shares in all operations provides better security than
the raw implementation it is based on. The same second-
order DPA attack that succeeded with 600 000 traces against
the raw implementation fails against the adjusted imple-
mentation even with 10 million traces. Also, a third-order
DPA attack against the adjusted implementation fails with
10 million measurements. The trace requirement for a suc-
cessful second-order correlation collision attack increases only
slightly from 3.5 million to about 4 million, but the sep-
aration of the correct key from the wrong keys is much
poorer. The price of this increase in security is a roughly
23% larger circuit (randomness requirements and timings are
identical).

V. CONCLUSION

We discuss three different versions of TIs of AES. We show
that it is possible to achieve first-order DPA resistance with
nonuniform shared functions if remasking is applied properly.
In the case of AES, our “nonuniform” nimble implementation
requires less randomness than our “uniform” raw implemen-
tation, due to the decreased number of shares. However, for
other algorithms and other S-boxes, remasking may increase
the amount of randomness required. This idea can be used
to trade-off between the randomness and area requirements.
Moreover, we empirically confirm that increasing the num-
ber of shares has a significant impact on the performance of
higher-order attacks, which provides another trade-off between
area and DPA resistance. Our most efficient implementation
is approximately 8 k GE small and requires only 32 bits of
fresh randomness per S-box calculation, which is a significant
improvement over all previous works.

APPENDIX

A. Multiplier in GF(24)

(Y1, Y2, Y3, Y4) = (X1, X2, X3, X4)× (X5, X6, X7, X8)

Y1 = X1X5 ⊕ X3X5 ⊕ X4X5 ⊕ X2X6 ⊕ X3X6

⊕ X1X7 ⊕ X2X7 ⊕ X3X7 ⊕ X4X7 ⊕ X1X8

⊕ X3X8

Y2 = X2X5 ⊕ X3X5 ⊕ X1X6 ⊕ X2X6 ⊕ X4X6

⊕ X1X7 ⊕ X3X7 ⊕ X2X8 ⊕ X4X8

Y3 = X1X5 ⊕ X2X5 ⊕ X3X5 ⊕ X4X5 ⊕ X1X6

⊕ X3X6 ⊕ X1X7 ⊕ X2X7 ⊕ X3X7 ⊕ X1X8

⊕ X4X8

Y4 = X1X5 ⊕ X3X5 ⊕ X2X6 ⊕ X4X6 ⊕ X1X7

⊕ X4X7 ⊕ X2X8 ⊕ X3X8 ⊕ X4X8.
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B. Inverter in GF(24)

(Y1, Y2, Y3, Y4) = Inv(X1, X2, X3, X4)

Y1 = X3 ⊕ X4 ⊕ X1X3 ⊕ X2X3 ⊕ X2X3X4

Y2 = X4 ⊕ X1X3 ⊕ X2X3 ⊕ X2X4 ⊕ X1X3X4

Y3 = X1 ⊕ X2 ⊕ X1X3 ⊕ X1X4 ⊕ X1X2X4

Y4 = X2 ⊕ X1X3 ⊕ X1X4 ⊕ X2X4 ⊕ X1X2X3.

C. Sharing With Four Input Three Output Shares

F = XY

where

F = F1 ⊕ F2 ⊕ F3

X = X1 ⊕ X2 ⊕ X3 ⊕ X4

Y = Y1 ⊕ Y2 ⊕ Y3 ⊕ Y4

F1 = (X2 ⊕ X3 ⊕ X4)(Y2 ⊕ Y3)⊕ Y4

F2 = ((X1 ⊕ X3)(Y1 ⊕ Y4))⊕ X1Y3 ⊕ X4

F3 = ((X2 ⊕ X4)(Y1 ⊕ Y4))⊕ X1Y2 ⊕ X4 ⊕ Y4.

D. Sharing With Three Input Three Output Shares

F = XY ⊕ Z

where

F = F1 ⊕ F2 ⊕ F3

X = X1 ⊕ X2 ⊕ X3

Y = Y1 ⊕ Y2 ⊕ Y3

Z = Z1 ⊕ Z2 ⊕ Z3

F1 = ((X2 ⊕ X3)(Y2 ⊕ Y3))⊕ Z2

F2 = (X1Y3 ⊕ Y1X3 ⊕ X1Y1)⊕ Z3

F3 = (X1Y2 ⊕ Y1X2)⊕ Z1.

E. Sharing with Four Input Four Output Shares

F = XYZ ⊕ XY ⊕ Z

where

F = F1 ⊕ F2 ⊕ F3 ⊕ F4

X = X1 ⊕ X2 ⊕ X3 ⊕ X4

Y = Y1 ⊕ Y2 ⊕ Y3 ⊕ Y4

Z = Z1 ⊕ Z2 ⊕ Z3 ⊕ Z4

F1 = ((X2 ⊕ X3 ⊕ X4)(Y2 ⊕ Y3 ⊕ Y4)(Z2 ⊕ Z3 ⊕ Z4))

⊕ ((X2 ⊕ X3 ⊕ X4)(Y2 ⊕ Y3 ⊕ Y4))⊕ Z2

F2 = (X1(Y3 ⊕ Y4)(Z3 ⊕ Z4)⊕ Y1(X3 ⊕ X4)(Z3 ⊕ Z4)

⊕ Z1(X3 ⊕ X4)(Y3 ⊕ Y4)⊕ X1Y1(Z3 ⊕ Z4)

⊕ X1Z1(Y3 ⊕ Y4)⊕ Y1Z1(X3 ⊕ X4)⊕ X1Y1Z1)

⊕ (X1(Y3 ⊕ Y4)⊕ Y1(X3 ⊕ X4)⊕ X1Y1)⊕ Z3

F3 = (X1Y1Z2 ⊕ X1Y2Z1 ⊕ X2Y1X1 ⊕ X1Y2Z2 ⊕ X2Y1Z2

⊕ X2Y2Z1 ⊕ X1Y2Z4 ⊕ X2Y1Z4 ⊕ X1Y4Z2 ⊕ X2Y4Z1

⊕ X4Y1Z2 ⊕ X4Y2Z1)⊕ (X1Y2 ⊕ Y1X2)⊕ Z4

F4 = (X1Y2Z3 ⊕ X1Y3Z2 ⊕ X2Y1Z3 ⊕ X2Y3Z1 ⊕ X3Y1Z2

⊕ X3Y2Z1)⊕ 0⊕ Z1

F. Sharing With Five Input Five Output Shares

F = XYZ ⊕ XY ⊕ Z

where

F = F1 ⊕ F2 ⊕ F3 ⊕ F4 ⊕ F5

X = X1 ⊕ X2 ⊕ X3 ⊕ X4 ⊕ X5

Y = Y1 ⊕ Y2 ⊕ Y3 ⊕ Y4 ⊕ Y5

Z = Z1 ⊕ Z2 ⊕ Z3 ⊕ Z4 ⊕ Z5

F1 = ((X2 ⊕ X3 ⊕ X4 ⊕ X5)(Y2 ⊕ Y3 ⊕ Y4 ⊕ Y5)

(Z2 ⊕ Z3 ⊕ Z4 ⊕ Z5))⊕ ((X2 ⊕ X3 ⊕ X4 ⊕ X5)

(Y2 ⊕ Y3 ⊕ Y4 ⊕ Y5))⊕ Z2

F2 = (X1(Y3 ⊕ Y4 ⊕ Y5)(Z3 ⊕ Z4 ⊕ Z5)⊕ Y1(X3 ⊕ X4 ⊕ X5)

(Z3 ⊕ Z4 ⊕ Z5)⊕ Z1(X3 ⊕ X4 ⊕ X5)(Y3 ⊕ Y4 ⊕ Y5)

⊕ X1Y1(Z3 ⊕ Z4 ⊕ Z5)⊕ X1Z1(Y3 ⊕ Y4 ⊕ Y5)

⊕ Y1Z1(X3 ⊕ X4 ⊕ X5)⊕ X1Y1Z1)

⊕ (X1(Y3 ⊕ Y4 ⊕ Y5)⊕ Y1(X3 ⊕ X4 ⊕ X5)⊕ X1Y1)⊕ Z3

F3 = (X1Y1Z2 ⊕ X1Y2Z1 ⊕ X2Y1X1 ⊕ X1Y2Z2 ⊕ X2Y1Z2

⊕ X2Y2Z1 ⊕ X1Y2Z4 ⊕ X2Y1Z4 ⊕ X1Y4Z2 ⊕ X2Y4Z1

⊕ X4Y1Z2 ⊕ X4Y2Z1 ⊕ X1Y2Z5 ⊕ X2Y1Z5 ⊕ X1Y5Z2

⊕ X2Y5Z1 ⊕ X5Y1Z2 ⊕ X5Y2Z1)⊕ (X1Y2 ⊕ Y1X2)⊕ Z4

F4 = (X1Y2Z3 ⊕ X1Y3Z2 ⊕ X2Y1Z3 ⊕ X2Y3Z1 ⊕ X3Y1Z2

⊕ X3Y2Z1)⊕ 0⊕ Z5

F5 = 0⊕ 0⊕ Z1.
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